Introduction to SAT (constraint) solving

Justyna Petke
SAT, SMT and CSP solvers are used for solving problems involving constraints.
The term “constraint solver”, however, usually refers to a CSP solver.
The 8-queens problem
The **Boolean satisfiability problem (SAT)** is the problem of deciding whether there is a variable assignment that satisfies a given propositional formula.
SAT example

\[x_1 \lor x_2 \lor \neg x_4 \]
\[\neg x_2 \lor \neg x_3 \]

- \(x_i \): a Boolean variable
- \(x_i, \neg x_i \): a literal
- \(\neg x_2 \lor \neg x_3 \): a clause
The 8-queens problem
The 8-queens problem : SAT model

p cnf 64 744
1 2 3 4 5 6 7 8 0
-1 -2 0
-1 -3 0
-1 -4 0
-1 -5 0
-1 -6 0
-1 -7 0
-1 -8 0
-2 -3 0
-2 -4 0
-2 -5 0
-2 -6 0
-2 -7 0
-2 -8 0
-3 -4 0
-3 -5 0
-3 -6 ..
The Satisfiability Modulo Theories (SMT) is the problem of deciding whether there is a variable assignment that satisfies a given formula in first order logic with respect to a background theory.
Example background theories for SMT

- Equality with Uninterpreted Functions (e.g. \(f(x) = y \land f(x) \neq y \) is UNSAT)
- Non-linear arithmetic (e.g. \(x^2 + yz \leq 10 \)) : variables can be reals
- Arrays (e.g. write(a, x, 3) = b, read(a, x) = b)
- Bit vectors (e.g. \(x[0:1] \neq y[0:1] \))
The 8-queens problem: SMT model

(set-logic QF_IDL)
(set-info :source |
Queens benchmarks generated by Hyondeuk Kim in SMT-LIB format. |
)
(set-info :smt-lib-version 2.0)
(set-info :category "crafted")
(set-info :status sat)
declare-fun x0 () Int
declare-fun x1 () Int
declare-fun x2 () Int
declare-fun x3 () Int
declare-fun x4 () Int
declare-fun x5 () Int
declare-fun x6 () Int
declare-fun x7 () Int
declare-fun x8 () Int
assert (let ((?v_0 (- x0 x8)) (?v_1 (- x1 x8)) (?v_2 (- x2 x8)) (?v_3 (- x3 x8)) (?v_4 (- x4 x8)) (?v_5 (- x5 x8)) (?v_6 (- x6 x8)) (?v_7 (- x7 x8)) (?v_8 (- x8 x1)) (?v_9 (- x0 x2)) (?v_10 (- x0 x3)) (?v_11 (- x8 x4)) (?v_12 (- x0 x5)) (?v_13 (- x0 x6)) (?v_14 (- x0 x7)) (?v_15 (- x1 x2)) (?v_16 (- x1 x3)) (?v_17 (- x1 x4)) (?v_18 (- x1 x5)) (?v_19 (- x1 x6)) (?v_20 (- x1 x7)) (?v_21 (- x2 x3)) (?v_22 (- x2 x4)) (?v_23 (- x2 x5)) (?v_24 (- x2 x6)) (?v_25 (- x2 x7)) (?v_26 (- x3 x4)) (?v_27 (- x3 x5)) (?v_28 (- x3 x6)) (?v_29 (- x3 x7)) (?v_30 (- x4 x5)) (?v_31 (- x4 x6)) (?v_32 (- x4 x7)) (?v_33 (- x5 x6)) (?v_34 (- x5 x7)) (?v_35 (- x6 x7)))))
and (== ?v_0 7) (== ?v_1 7) (== ?v_2 0) (== ?v_3 0) (== ?v_4 0) (== ?v_5 0) (== ?v_6 0) (== ?v_7 0)
not (= x0 x1) (not (= x0 x2)) (not (= x0 x3)) (not (= x0 x4))
(not (= x0 x5)) (not (= x0 x6)) (not (= x0 x7)) (not (= x1 x2)) (not (= x1 x3)) (not (= x1 x4))
(not (= x1 x5)) (not (= x1 x6)) (not (= x1 x7)) (not (= x2 x3)) (not (= x2 x4)) (not (= x2 x5)) (not (= x2 x6))
(not (= x2 x7)) (not (= x3 x4)) (not (= x3 x5)) (not (= x3 x6)) (not (= x3 x7)) (not (= x4 x5))
(not (= x4 x6)) (not (= x4 x7)) (not (= x5 x6)) (not (= x5 x7)) (not (= x6 x7)) (not (= x8 1))
(not (= v_8 2)) (not (= ?v_9 2)) (not (= v_9 2)) (not (= v_10 3)) (not (= v_10 3)) (not (= v_11 4))
(not (= v_11 4)) (not (= v_12 5)) (not (= v_12 5)) (not (= v_13 6)) (not (= v_13 6)) (not (= v_14 7))
(not (= v_14 7)) (not (= v_15 1)) (not (= v_15 1)) (not (= v_16 2)) (not (= v_16 2)) (not (= v_17 3))
(not (= v_17 3)) (not (= v_17 3)) (not (= v_18 4)) (not (= v_18 4)) (not (= v_19 5))
(not (= v_19 5)) (not (= v_19 5)) (not (= v_20 6)) (not (= v_20 6)) (not (= v_21 1))
(not (= v_21 1)) (not (= v_22 2)) (not (= v_22 2)) (not (= v_23 3)) (not (= v_23 3)) (not (= v_24 4))
(not (= v_24 4)) (not (= v_24 4)) (not (= v_25 5)) (not (= v_25 5)) (not (= v_26 1))
(not (= v_26 1)) (not (= v_27 2)) (not (= v_27 2)) (not (= v_28 3)) (not (= v_28 3)) (not (= v_29 4))
(not (= v_29 4)) (not (= v_29 4)) (not (= v_30 1)) (not (= v_30 1)) (not (= v_31 2)) (not (= v_31 2))
(not (= v_32 3)) (not (= v_32 3)) (not (= v_33 1)) (not (= v_33 1)) (not (= v_34 2))
(not (= v_34 2)) (not (= v_35 1)) (not (= v_35 1)))
(check-sat)
(exit)
The **Constraint Satisfaction Problem (CSP)** is the problem of deciding whether there is a variable assignment that satisfies a given set of constraints.
The 8-queens problem: CSP model

ESSENCE' 1.0

given n : 8
letting queens_n be domain int(0..n – 1)

find queens : matrix indexed by [queens_n] of queens_n

such that

alldifferent(queens),
forall i, j : queens_n .

(i > j) => ((queens[i] - i ! = queens[j] - j)
/\ (queens[i] + i ! = queens[j] + j))
SAT, SMT or CSP?

- **SAT:**
 + extremely efficient
 - problem with expressivity

- **SMT:**
 + better expressivity, incorporates domain-specific reasoning
 - some loss of efficiency

- **CSP:**
 + very expressive, uses domain-specific reasoning
 - some loss of efficiency
SAT, SMT or CSP?

- **SAT:**
 + extremely efficient
 - problem with expressivity

- **SMT:**
 + better expressivity, incorporates domain-specific reasoning
 - some loss of efficiency

- **CSP:**
 + very expressive, uses domain-specific reasoning
 - some loss of efficiency

highly problem-dependent though..
A short introduction to SAT solving
SAT solver classification

- complete SAT solvers
 : based on the Davis-Putnam-Logemann-Loveland (DPLL) algorithm

- incomplete SAT solvers
 : based on local search

- hybrid SAT solvers
SAT solver classification

Most widely used SAT solvers:

- Conflict-Driven Clause Learning (CDCL) SAT solvers
Why use SAT solvers?
SAT solvers are extremely efficient

<table>
<thead>
<tr>
<th>Year</th>
<th>Variables</th>
<th>Clauses</th>
</tr>
</thead>
<tbody>
<tr>
<td>60s - 70s</td>
<td>tens</td>
<td>hundreds</td>
</tr>
</tbody>
</table>
SAT solvers are extremely efficient

<table>
<thead>
<tr>
<th>Year</th>
<th>Variables</th>
<th>Clauses</th>
</tr>
</thead>
<tbody>
<tr>
<td>60s - 70s</td>
<td>tens</td>
<td>hundreds</td>
</tr>
<tr>
<td>80s - early 90s</td>
<td>hundreds</td>
<td>thousands</td>
</tr>
</tbody>
</table>
SAT solvers are extremely efficient

<table>
<thead>
<tr>
<th>Year</th>
<th>Variables</th>
<th>Clauses</th>
</tr>
</thead>
<tbody>
<tr>
<td>60s - 70s</td>
<td>tens</td>
<td>hundreds</td>
</tr>
<tr>
<td>80s - early 90s</td>
<td>hundreds</td>
<td>thousands</td>
</tr>
<tr>
<td>late 90s</td>
<td>thousands</td>
<td>hundreds of thousands</td>
</tr>
</tbody>
</table>
SAT solvers are extremely efficient

<table>
<thead>
<tr>
<th>Year</th>
<th>Variables</th>
<th>Clauses</th>
</tr>
</thead>
<tbody>
<tr>
<td>60s - 70s</td>
<td>tens</td>
<td>hundreds</td>
</tr>
<tr>
<td>80s - early 90s</td>
<td>hundreds</td>
<td>thousands</td>
</tr>
<tr>
<td>late 90s</td>
<td>thousands</td>
<td>hundreds of thousands</td>
</tr>
<tr>
<td>00s - now</td>
<td>hundreds of thousands</td>
<td>millions</td>
</tr>
<tr>
<td></td>
<td>and more</td>
<td></td>
</tr>
</tbody>
</table>
SAT Applications

- Bounded Model Checking
- Planning
- Software Verification
- Automatic Test Pattern Generation
- Combinational Equivalence Checking
- Combinatorial Interaction Testing
- and many others..
How do CDCL SAT solvers work?
CDCL SAT solver

Unit Propagation

Variable-Value Decisions

Conflict Analysis

Backtracking

literal

no conflict

undo decisions

conflict

new clause
Unit propagation

\[x_0 \lor x_2 \lor x_3 \]
\[\neg x_2 \lor \neg x_3 \]

decision: \(x_3 = 0 \)
decision level: 1
Unit propagation

\[x_0 \lor x_2 \lor x_3 \]
\[\neg x_2 \lor \neg x_3 \]

decision: \(x_3 = 0 \)
decision level: 1
Unit propagation

\[x_0 \lor x_2 \]
\[\neg x_2 \lor \neg x_3 : \text{satisfied} \]

decision: \(x_3 = 0 \)

decision level: 1
Unit propagation

\[x_0 \lor x_2 \]
\[\neg x_2 \lor \neg x_3 : \text{satisfied} \]

decision: \(x_3 = 0 \) (d.l. 1), \(x_2 = 0 \)

decision level: 2
Unit propagation

\[x_0 \lor x_2 \]
\[\neg x_2 \lor \neg x_3 : \text{satisfied} \]

decision: \(x_3 = 0 \) (d.l. 1), \(x_2 = 0 \)

decision level: 2
Unit propagation

\[x_0 \]
\[\neg x_2 \lor \neg x_3 : \text{satisfied} \]

decision: \(x_3 = 0 \) (d.l. 1), \(x_2 = 0 \)

decision level: 2
Unit propagation

\[x_0 \]
\[\neg x_2 \lor \neg x_3 : \text{satisfied} \]

decision: \(x_3 = 0 \) (d.l. 1), \(x_2 = 0 \) (d.l. 2), \(x_0 = 1 \) (cl. 1)

decision level: 2
Unit propagation

\[x_0 : \text{satisfied} \]
\[\neg x_2 \lor \neg x_3 : \text{satisfied} \]

decision: \(x_3 = 0 \) (d.l. 1), \(x_2 = 0 \) (d.l. 2), \(x_0 = 1 \) (cl. 1)
decision level: 2
SAT solver (60s)

\[F = \text{BCP}(F) : \text{unit propagation (Boolean constraint propagation)} \]
if \(F = \text{True} \) : return satisfiable
if empty clause \(\in F \) : return unsatisfiable
pick remaining variable \(x \) and literal \(l \in \{x, \neg x\} \)
if DPLL(\(F \land \{l\} \)) returns satisfiable : return satisfiable
return DPLL(\(F \land \{\neg l\} \))
Conflict Analysis (late 90s)

MiniSAT demo
http://minisat.se/Papers.html
Conflict Analysis - implication graph

\[x_3 = 0 \quad x_0 = 1 \quad x_1 = 0 \]

\[x_2 = 0 \quad x_1 = 1 \]

dec. level 1

dec. level 2

dec. level 2

dec. level 2
Conflict Analysis - conflict clause

Candidate conflict clauses:

¬(x_3 = 0 ∧ x_2 = 0 ∧ x_0 = 1) ↔ x_3 ∨ x_2 ∨ ¬x_0

or

¬(x_3 = 0 ∧ x_2 = 0) ↔ x_3 ∨ x_2

or

¬(x_2 = 0 ∧ x_0 = 1) ↔ x_2 ∨ ¬x_0

First Unit Implication Point (First UIP) scheme adds a conflict clause that contains only one variable that is assigned at the current decision level (a so-called asserting clause).
Conclusions
SAT, SMT and CSP solvers are used for solving problems involving constraints.
CDCL SAT solver

![Diagram](image-url)

- Unit Propagation
- Variable-Value Decisions
- Conflict Analysis
- Backtracking

- Literal
- Conflict
- No conflict
- Undo decisions
- New clause
SAT solvers are extremely efficient

<table>
<thead>
<tr>
<th>Year</th>
<th>Variables</th>
<th>Clauses</th>
</tr>
</thead>
<tbody>
<tr>
<td>60s - 70s</td>
<td>few tens</td>
<td>hundreds</td>
</tr>
<tr>
<td>80s - early 90s</td>
<td>few hundreds</td>
<td>few thousands</td>
</tr>
<tr>
<td>late 90s</td>
<td>(tens of) thousands</td>
<td>hundreds of thousands</td>
</tr>
<tr>
<td>00s - now</td>
<td>hundreds of thousands</td>
<td>millions</td>
</tr>
</tbody>
</table>
SAT Applications

- Bounded Model Checking
- Planning
- Software Verification
- Automatic Test Pattern Generation
- Combinational Equivalence Checking
- Combinatorial Interaction Testing
- and many others..
References

- MiniSAT demo (“Practical SAT - a tutorial on applied satisfiability solving”) http : //minisat.se/Papers.html
Example solvers

- **SAT:** MiniSAT, Glucose, CryptoMiniSAT, SAT4J
- **SMT:** Z3, Yices, CVC4
- **CSP:** Minion, Gecode, G12, ILOG, JaCoP
- **SAT- and SMT-based constraint solvers:** Sugar, Fzn2smt
- **hybrid solvers:** Chuffed
- and many others (see SAT/SMT/CSP solver competitions and MiniZinc challenge)