
Input Data Generation for Model-based Testing

R. Tiella (tiella@fbk.eu) and P. Tonella (tonella@fbk.eu)
Software Engineering Unit

FBK - Trento, Italy

3rd FITTEST Industrial Day - May 31, 2013

1 / 23

Outline

Background

Model-based Testing
Test Adequacy Criteria

Proposed Approach

Working example
Input Data Generation Problem
Intuition behind the solution
the Tool
a Case study

Conclusions

2 / 23

Model-based Testing - the Process

Test Adequacy
Criteria

Test Suite

+

ModelProgram traces
Application

RequirementsRequirements

1

1

2

2

34 5

6

6

3 / 23

Model-based Testing - the Model

Given that:

SUT’ state is observable by “inspector” messages
SUT’ state changes due to “mutator” messages
observable states are abstracted collapsing “equivalent” ones

SUT is modeled by a Finite State Machine (FSM):
with parametrized events, e.g. e(x , y)

method calls, http requests, etc.

non-deterministic

S1 S2

e(x,y)

f(x)

 e(x,y)e(x,y)

4 / 23

Test Adequacy Criteria

“good” test cases:

can hardly be defined a-priori
informally are effective, cheap, helpful to identify the underlying
fault

test adequacy criteria:

are a means to concretely specify the extent to which a test
suite has to exercise a SUT

currently, well-accepted criteria are:

all transitions coverage: [fsm] every transition in a FSM has
to be traversed by at least a test case
all branches coverage: [source code] every branch in a
program’s CFG has to be executed by at least a test case

5 / 23

Subject Under Test Example

package cart;

public class Cart {

public Cart() { ... }

public void add(int c) { ... }

public void rem(int c) { ... }

public void pay() { ... }

public int n() { ... }

}

6 / 23

SUT Model

n = 0 n = 1 n > 1
1:add 3:add

6:rem5:rem

2:add

8:add

7:rem

9:rem

n = -1

4:pay 10:pay

actual Cart’s state is abstracted with 4 states
transitions are triggered by events:
add(int c), rem(int c), pay()

7 / 23

FSM specification

mutators {
a := add(int);
r := rem(int);
p := pay();

}

inspectors {
int n:=n();

}

states {
n0 [initial] { n == 0; } ;
n1 { n == 1; } ;
n2 { n > 1; } ;
n3 { n == -1; } ;

}

transitions {
n0 -> n1 { a; } ;
n0 -> n2 { a; } ;

n1 -> n0 { r; } ;
n1 -> n2 { a; } ;
n1 -> n3 { p; } ;

n2 -> n2 { a; } ;
n2 -> n2 { r; } ;
n2 -> n3 { p; } ;
n2 -> n1 { r; } ;
n2 -> n0 { r; } ;

}

8 / 23

Input Data Generation Problem (Example)

Test Requirement:

traverse rem(n) : q2 → q2

Problem:

devise a path that reaches state q2

find out the proper inputs:

to reach q2 and then
to traverse rem : q2 → q2

n = 0 n = 1 n > 1add add

remrem

add

add

rem

rem

n = -1

pay pay

q0: q1: q2:

q3:

9 / 23

Intuition behind the proposed approach

Observation: if the SUT logic was implemented following a typical
FSM design pattern ...

S1 S2

S3

m

m

// pseudo-code to handle

// transitions triggered by m

if (s==1)

s=2 // S_1 -> S_2

elseif (s==2)

s=3 // S_2 -> S_3

else

throw unexpected

... CFG branches corresponds to FSM transitions.

10 / 23

FSM Monitor Generation

Introduce a component which encodes the FSM logic in its
branches, a sort of “man-in-the-middle”, so that exploring its
branches means exploring SUT transitions.

SUT

inference

Model

generation

FSM
monitor

TC
generator

generation

Test
Suite

1

2

3

1

specification

11 / 23

FSM Monitor Generation

:TC generator :FSM monitor :SUT

add(1)
add(1)

Ok

n()

return value = 1

check and update
internal state

n == 0
add(1)

n == 1

12 / 23

FSM Monitor Generation

n = 1 n > 1add add

remrem

add

add

rem

rem

n = -1

pay pay

q1: q2:

q3:

void rem(int n) {

sut.rem(n);

switch (s_state) {

case 2:

if (n > 1) {

s_state = 2;

} else if (n == 1) {

s_state = 1;

} else if (n == 0) {

s_state = 0;

} else {

throw new UnderSpecEx(...);

}

break;

case 1:

...

}

13 / 23

FSM Monitor Generation

observation: From the FSM, we can build a class A so that:

if the SUT is compliant with FSM, then

All Transitions Criterion for FSM is satisfied
iff

All
NonError

g Branches Criterion for A is satisfied

theoretical result: it’s true!

COTS are available: we can use an already available TC generator
for branch coverage (e.g. Evosuite)

generator implementation: template-based ⇒
highly configurable
different implementation styles can be supported
graphical representations can be produced with proper templates

14 / 23

TC Generator - Evosuite

Evosuite1 is a search-based test suite generator for Java

based on an evolutionary approach, i.e. it mimics natural
evolution to optimize branch coverage:

candidate solutions in the search space are modeled by
chromosomes
good candidate solutions have high branch coverage level
chromosomes of “best” individuals are combined by cross-over
some chromosomes are mutated to maintain diversity and to
introduce new alleles

uses whole test suite generation strategy:
each chromosome encodes a whole test suite

1http://www.evosuite.org/ - G. Fraser and A. Arcuri
15 / 23

Detecting Diverging Behavior - 1

SUT Model Out Effect

Ok, q′ q
m−→ q′ Ok invocation accepted

Ok, q′ q′ 6∈ T (q, m) Undersp. Exc. TC discarded
Error m ∈ Out(q) Infeasible Exc. TC discarded

- m 6∈ Out(q) Infeasible Exc. TC discarded

:TC generator :FSM monitor :SUT

add(1)
add(1)

Ok

n()

return value = 1

check and update
internal state

n == 0
add(1)

n == 1

16 / 23

Detecting Diverging Behavior - 2

SUT Model Out Effect

Ok, q′ q
m−→ q′ Ok invocation accepted

Ok, q′ q′ 6∈ T (q, m) Undersp. Exc. TC discarded
Error m ∈ Out(q) Infeasible Exc. TC discarded

- m 6∈ Out(q) Infeasible Exc. TC discarded

:TC generator :FSM monitor :SUT

rem(2)
rem(2)

!!! underspecified !!!

n()

return value = 3

not in model

n == 1 n > 1
rem rem

n == 3

17 / 23

Detecting Diverging Behavior - 3

SUT Model Out Effect

Ok, q′ q
m−→ q′ Ok invocation accepted

Ok, q′ q′ 6∈ T (q, m) Undersp. Exc. TC discarded
Error m ∈ Out(q) Infeasible Exc. TC discarded

- m 6∈ Out(q) Infeasible Exc. TC discarded

:TC generator :FSM monitor :SUT

add(1)
add(1)

!!!Errror!!!

!!!Infeasible!!!

n == 0
add(1)

n == 1

18 / 23

Detecting Diverging Behavior - 4

SUT Model Out Effect

Ok, q′ q
m−→ q′ Ok invocation accepted

Ok, q′ q′ 6∈ T (q, m) Undersp. Exc. TC discarded
Error m ∈ Out(q) Infeasible Exc. TC discarded

- m 6∈ Out(q) Infeasible Exc. TC discarded

:TC generator :FSM monitor :SUT

rem(1)

!!! not applicable !!!

n == 0 n == 1
add

rem

19 / 23

Test Suite

//Test case number: 0

testCart0.add(1);

testCart0.add(1);

testCart0.add(1);

//Test case number: 1

testCart0.add(2);

testCart0.pay();

//Test case number: 2

testCart0.add(11);

testCart0.rem(11);

//Test case number: 3

testCart0.add(1);

testCart0.rem(1);

//Test case number: 4

testCart0.add(1734);

testCart0.rem(1);

//Test case number: 5

testCart0.add(2);

testCart0.rem(1);

//Test case number: 6

testCart0.add(1);

testCart0.pay();

Note: test cases are small thanks to Evosuite’s minimization
algorithm.

20 / 23

Flexstore

Selenium ServerFlexstoreProxy

Flexstore
(instrumented)

State Manager

invoke
actions

Web Browserlaunches

loads and interacts with

notifies state changes

Flexstore
FSM monitor

invoke
mutators

invoke
inspectors

21 / 23

Conclusions

a method to resolve the input data generation problem was
proposed

it is base on the idea that “all transition coverage” criterion can
be transformed into “all branches coverage” criterion for which
already exists good solutions (e.g. Evosuite)

the transformation was formally proved correct (not shown)

the method was successfully applied to a real application

22 / 23

That’s all

Thanks for your kindly attention,
any question?

23 / 23

