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Background
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Background – Concurrency Bug 

Detection Techniques
• Concurrency Testing

– Coverage of the interleaving space in addition to 
coverage of the source code, inputs, etc.

• Static Analysis
– Typically aimed at specific patterns or bugs

• Software Model Checking (exhaustive search)
– Scalability issues

• No satisfactory benchmark exists
– Effective
– Small

– Systematic



4

IBM Case Study System

• A distributed application for managing system resources in a networked 
environment. 
– Already described in IR10.2. 

• Consists of:
– a management server 

• application that communicates with multiple managed clients and with 
users of the management system.  

– Managed clients

• physical or virtual resources distributed over a network. 

• Managed resources include servers, virtual servers, storage devices, and 
network devices  

• Used by IBM customers for managing 
IBM hardware and virtual devices, 
such as servers, Virtual Machines 
(VMs), switches and storage devices. 

• The case study was performed on 
some new components of a version 
of this system which is still under 
development and has not yet been 
released for customer use.  
– Uses simulated environment
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Background – Covering Arrays

• CA(k,v,t) is an array:

– k columns

– v possible values in each

– All combinations of size t appear at least once



6

Background – Covering Arrays –

cont.

• CA(4,2,2):

0111

1011

1101

1110

0000



7

Background – Covering Arrays –

cont.
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Background – Covering Arrays –

cont.
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Background – Covering Arrays –

cont.

• Extensions to “pure” covering arrays:

– Restrictions

– Mixed-values

– Mixed-strength

– And many more…
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Background – Combinatorial Test 

Design (CTD)

• CTD = Using covering arrays for testing

• Very well studied for 30 years

• Based on studies that show that software 
defects are caused by a small combination 
of attributes 
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Using Covering Arrays to Construct 

a Benchmark For Concurrency 

Testing Tools
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Rationale

• Effective benchmark – differentiates 
between tools

– For each pair of tools – have at least one task 

sample on which one outperforms the other

– Typically, would want also another task 

sample on which the “other” outperforms the 

“one”

• (Intuition-only) claim: tool differentiation 
results from small combinations of factors 
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Rationale – cont.

• Exhaustive search tools vs. “noise-making” tools

– Exhaustive tools choke on large programs and/or 

large # threads and/or large # critical regions

– Noise-making tools will have difficulty finding certain 

bug patterns if the bugs are deep and/or rare

• “Noise-making” tools

– Different heuristics are less/more effective based on 
combination of # threads and # critical regions
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The proposed model

• Program size – # statements

• Program size – # critical regions

• Program size – % statements in critical 
regions

• Num threads

• Path error density

• Bug depth

• Bug pattern Each combination here characterizes a 

(buggy) concurrent program



15

Pairwise plan for the model

… there are 44 such programs in our plan 
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… but you can’t run a table

- or -

finding the needles in the haystack

• Our plan characterizes 44 combinations out of

> 14,000 possible in the model

• No chance of finding actual programs that 

exactly match these
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Mutants to the rescue…

• We therefore propose to:

– Leverage existing benchmarks

– Apply program mutation to generate new 

programs
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Analyzing existing benchmarks

To be contin
ued…
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ConMAn

• 25 mutation operators, in 5 categories:

– Modify parameters of concurrent methods

– Modify the occurrence of concurrency method 

calls (re-moving, replacing, exchanging)

– Modify concurrency keywords (addition and 

removal)

– Switch concurrent objects

– Modify critical regions (shift, 

expand, shrink, split)
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Zooming out…

Combinatorial Test 
Design

Combinatorial 
Benchmark Design
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Zooming out…

Combinatorial Test 
Design

(Intuitively) -

differentiation results 

from small combinations

Rationale

Combinatorial 
Benchmark Design
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Zooming out…

Describe points of 

variability in tests –

potential causes of 

defects

Combinatorial Test 
Design
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tool effectiveness
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Zooming out…

Tests commonly need to 
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level of the model
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Zooming out…
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Thanks!

Questions ?


