
1

Using Covering Arrays to Construct a

Benchmark For Concurrency Testing

Tools

==

Using Combinatorial Test Design

Techniques for Benchmark Construction

IBM Haifa Research Labs

Based on joint work of
Itai Segall, Eitan Farchi (IBM Haifa Research Labs)

Jeremy Bardbury, Kevin Jalbert and David Kelk
(University of Ontario Institute of Technology)

2

Background

3

Background – Concurrency Bug

Detection Techniques
• Concurrency Testing

– Coverage of the interleaving space in addition to
coverage of the source code, inputs, etc.

• Static Analysis
– Typically aimed at specific patterns or bugs

• Software Model Checking (exhaustive search)
– Scalability issues

• No satisfactory benchmark exists
– Effective
– Small

– Systematic

4

IBM Case Study System

• A distributed application for managing system resources in a networked
environment.
– Already described in IR10.2.

• Consists of:
– a management server

• application that communicates with multiple managed clients and with
users of the management system.

– Managed clients

• physical or virtual resources distributed over a network.

• Managed resources include servers, virtual servers, storage devices, and
network devices

• Used by IBM customers for managing
IBM hardware and virtual devices,
such as servers, Virtual Machines
(VMs), switches and storage devices.

• The case study was performed on
some new components of a version
of this system which is still under
development and has not yet been
released for customer use.
– Uses simulated environment

Server
node

Storage
node

Switch

Mgmt

server

Storage
node

Storage
node

Storage
node

Server
VM VM

node
Server

Server
VM VM

Server
node

Server
node

Switch Switch

5

Background – Covering Arrays

• CA(k,v,t) is an array:

– k columns

– v possible values in each

– All combinations of size t appear at least once

6

Background – Covering Arrays –

cont.

• CA(4,2,2):

0111

1011

1101

1110

0000

7

Background – Covering Arrays –

cont.

• CA(4,2,2):

0111

1011

1101

1110

0000

8

Background – Covering Arrays –

cont.

• CA(4,2,2):

0111

1011

1101

1110

0000

9

Background – Covering Arrays –

cont.

• Extensions to “pure” covering arrays:

– Restrictions

– Mixed-values

– Mixed-strength

– And many more…

10

Background – Combinatorial Test

Design (CTD)

• CTD = Using covering arrays for testing

• Very well studied for 30 years

• Based on studies that show that software
defects are caused by a small combination
of attributes

11

Using Covering Arrays to Construct

a Benchmark For Concurrency

Testing Tools

12

Rationale

• Effective benchmark – differentiates
between tools

– For each pair of tools – have at least one task

sample on which one outperforms the other

– Typically, would want also another task

sample on which the “other” outperforms the

“one”

• (Intuition-only) claim: tool differentiation
results from small combinations of factors

13

Rationale – cont.

• Exhaustive search tools vs. “noise-making” tools

– Exhaustive tools choke on large programs and/or

large # threads and/or large # critical regions

– Noise-making tools will have difficulty finding certain

bug patterns if the bugs are deep and/or rare

• “Noise-making” tools

– Different heuristics are less/more effective based on
combination of # threads and # critical regions

14

The proposed model

• Program size – # statements

• Program size – # critical regions

• Program size – % statements in critical
regions

• Num threads

• Path error density

• Bug depth

• Bug pattern Each combination here characterizes a

(buggy) concurrent program

15

Pairwise plan for the model

… there are 44 such programs in our plan

16

… but you can’t run a table

- or -

finding the needles in the haystack

• Our plan characterizes 44 combinations out of

> 14,000 possible in the model

• No chance of finding actual programs that

exactly match these

17

Mutants to the rescue…

• We therefore propose to:

– Leverage existing benchmarks

– Apply program mutation to generate new

programs

18

Analyzing existing benchmarks

To be contin
ued…

19

ConMAn

• 25 mutation operators, in 5 categories:

– Modify parameters of concurrent methods

– Modify the occurrence of concurrency method

calls (re-moving, replacing, exchanging)

– Modify concurrency keywords (addition and

removal)

– Switch concurrent objects

– Modify critical regions (shift,

expand, shrink, split)

20

Zooming out…

Combinatorial Test
Design

Combinatorial
Benchmark Design

21

Zooming out…

Combinatorial Test
Design

(Intuitively) -

differentiation results

from small combinations

Rationale

Combinatorial
Benchmark Design

22

Zooming out…

Describe points of

variability in tests –

potential causes of

defects

Combinatorial Test
Design

Describe points of

variability in task

samples – potential

causes of variability in

tool effectiveness

Models

(Intuitively) -

differentiation results

from small combinations

Rationale

Combinatorial
Benchmark Design

23

Zooming out…

Tests commonly need to

be abstracted to the

level of the model

Describe points of

variability in tests –

potential causes of

defects

Combinatorial Test
Design

Samples in existing

benchmarks need to be

analyzed

Analyzing existing
artifacts

Describe points of

variability in task

samples – potential

causes of variability in

tool effectiveness

Models

(Intuitively) -

differentiation results

from small combinations

Rationale

Combinatorial
Benchmark Design

24

Zooming out…

Tests commonly need to

be abstracted to the

level of the model

Describe points of

variability in tests –

potential causes of

defects

Combinatorial Test
Design

MutationsGeneration

Samples in existing

benchmarks need to be

analyzed

Analyzing existing
artifacts

Describe points of

variability in task

samples – potential

causes of variability in

tool effectiveness

Models

(Intuitively) -

differentiation results

from small combinations

Rationale

Combinatorial
Benchmark Design

25

Thanks!

Questions ?

