
The State Problem for Test Generation in Simulink
Yuan Zhan

Department of Computer Science
University of York

York, YO10 5DD, UK
+44-1904-432749

yuan@cs.york.ac.uk

John A. Clark
Department of Computer Science

University of York
York, YO10 5DD, UK

+44-1904-433379

jac@cs.york.ac.uk

ABSTRACT
Search based test-data generation has proved successful for code-
level testing. In this paper we investigate the application of such
approaches at the higher levels of abstraction offered by Matlab-
Simulink models. The presence of persistent state has been shown to
be problematic at the code level and such difficulties remain when
Matlab-Simulink models are to be tested. In such cases, sequences
of inputs that can put the model under test into particular states are
needed to enable the underlying test goals to be achieved. Simple
search guidance appears to be insufficient and results in a ‘flat’ cost
function landscape. To address this problem, we introduce a
technique called tracing and deducing, which helps provide better
guidance to the search, allowing our developed tools to home in on
the targeted test-data.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging – testing
tools (data generator), tracing.

General Terms: Design, Verification.

Keywords: Matlab-Simulink, test-data generation, automation,
structural coverage, state problem, tracing and deducing.

1. INTRODUCTION
The modern aim of ‘testing’ is to discover faults at the earliest
possible stage as the cost of fixing an error increases with the time
between its introduction and detection. Thus high-level models have
become the focus of much modern-day verification effort and
research. Matlab/Simulink [21] is a widely used notation in the
dynamic system development industry that allows models to be
created and exercised. Matlab/Simulink models are sometimes
considered by industry as architectural level designs of software
systems. The simulation facilities allow such models to be executed
and observed. This property of Simulink turns out to be an
advantage for effective dynamic testing. Simulink can serve many
purposes in testing: as a model from which test data can be
generated, as reference model for test coverage, as a source for the
generation of test oracles, and as a test object in its own right. Many
designers choose to model using Simulink and generate code
automatically from its designs. Although it is possible to encode
Simulink models in hardware, the production of high-level
retargetable code (e.g. in Ada or C) is most popular.

Other authors have recognized the practical significance of such
modeling and the need to provide assurance information
automatically, e.g. the worst-case execution times for such models
[17]. Baresel et al. [9] proposed an innovative way of generating
sequences of signals for testing Simulink models by building the
overall signal from a series of simple signal types such as step, ramp
and sine curves etc. We have focused on the dynamic test-data
generation for Simulink models, for both structural coverage and
mutation coverage criteria [13][22].
The presence of persistent state causes difficulty in automatic test-
data generation not just at the code level [24], but also for Matlab-
Simulink models. In such cases, sequences of inputs that can put the
model under test into particular states are needed to enable the
underlying test goals to be achieved. The task of obtaining such
sequences is often referred to as preamble generation. Simple search
guidance results in a ‘flat’ cost function landscape and so appears to
be insufficient. As our previous work [13][22] did not address this
problem, we propose a technique called tracing and deducing
(T&D) in this paper. It helps provide better guidance to the
search, allowing our previously developed tools to home in on the
targeted test-data in Simulink.

2. SIMULINK AND TEST COVERAGE
Simulink models are made up of blocks connected by lines. Each
block implements some function on its inputs and outputs the
results. Outputs of blocks form inputs to other blocks. Models can
be hierarchical. Each block can be a subsystem comprising other
blocks and lines. This feature allows Simulink to handle complexity.
Figure 1 is a simple Simulink model. It calculates if an equation of
form 02 =++ cbxax is a quadratic equation and if it has real-
valued solution (s). If it is a quadratic equation and it has one or two
real-valued roots, ‘1’ is output; otherwise, ‘-1’ is output. Block
‘IN-A’, ‘IN-B’ and ‘IN-C’ are three input blocks, receiving the
input values of ‘a’, ‘b’ and ‘c’ from the user. Block ‘Out’ provides
the output.
A Switch block is a commonly used for implementing
branching in Simulink. There is a control parameter ‘threshold’
associated with each Switch block. If the signal carried on the
second input port of the Switch block ‘Vp’ satisfies ‘Vp ≥
threshold’ then input 1 is selected to output. Otherwise, input 3 is
selected.
In Simulink all blocks execute at each time step. Thus, the
traditional code-level concept of ‘reaching’ a block (i.e. causing it to
execute) does not really occur. However, some blocks have
conditional behaviours, which is analogous to the behaviours caused
by branches in code. Therefore, analogous code-level structural
coverage [15] can be defined. In this paper, we adopt the Branch
Coverage definition by Reactis Tester [26]. The Branch Coverage
criterion requires all conditional behaviours of blocks, provided the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007…$5.00.

1941

block has conditional behaviours, to be executed at least once. For
example, a logical operator has two conditional behaviours: ‘TRUE’
and ‘FALSE’. Branch coverage requires that each behaviour be
exhibited by at least one test execution. In the current work, we
consider three types of blocks that are most widely and often used in
forming branches; they are Switch, LogicalOperator,
and RelationalOperator.

Figure 1. Simple Simulink model.

Simulink is generally used for designing embedded systems – of
which a significant feature is that they maintain state. The systems
have continuous inputs and outputs and the execution step is
controlled by some timer trigger, e.g. a step size can be 1
millisecond. Therefore, for the model in Figure 1, the input to the
system over n time steps should be a sequence <(IN-A1, IN-
B1,IN-C1),(IN-A2,IN-B2,IN-C2),…(IN-An,IN-Bn, IN-
Cn)>, and the corresponding (single) output should also be a
sequence <Out1,Out2,…Outn>. A structural element is considered
to be covered if it is covered by any step of the execution.

3. THE STATE PROBLEM
3.1 Automatic Test Data Generation
Test-data generation can be dynamic or static, depending on
whether the execution of the test object is involved or not.
The static approach statically determines conditions (in the case of
path coverage, the conditions would be path-traversal conditions)
that need to be satisfied for the underlying test-data generation aim
to be met, and then uses various means (e.g. linear programming,
constraint solving) to derive desired test data from them. The
constraints are typically generated using symbolic execution
[27][28]. The technique, however, has not seen widespread
application due to technical difficulties in handling certain language
features, such as loops, arrays, pointers and memory allocation.
The dynamic approach executes the software under test. With the
guidance information obtained from dynamically running or
simulating the underlying test objects, it searches the input domains
of the test objects for targeted test-data. This approach has been
widely applied in structural testing [1][2][3][4][5] as well as
functional testing [6][7][8] and non-functional testing (which has
largely focused on temporal testing) [10][11]. (The above works are
all carried out at the code level.) Jones et al. [12] have attempted
test-data generation from Z specifications. We [13][22] applied the
search-based approach to the generation of test-data achieving
particular structural coverage or mutation adequacy measures of
Simulink architectural models.
In search-based testing approaches the satisfaction of a particular
test requirement is couched as a sequence of one or more predicates
over the behavior of the system before, during, or after execution.

For example, a specific path will be taken when the corresponding
set of branch conditions hold true during execution [13]. If X is in
the range [0..25], then an exception may be generated at a specific
assignment statement X=Y×Y, when the healthiness precondition
Y×Y<=25 does not hold before execution of the statement [7]. A
more detailed way of specifying the overflow of X might consist of
a sequence of predicates defining a path that reaches the statement
(with no exceptions along the way) together with Y×Y>25
immediately before the statement. Causing a program to break its
functional specification can be couched as satisfying the
precondition before execution and not satisfying the post-condition
at the end of execution [6].
In order to provide guidance to the search, we must be able to
evaluate how close a program execution comes to satisfying a
predicate. E.g. for a predicate X>=50, a value of 49 for X would be
considered ‘closer’ than would a value of 20. A typical cost
function encoding can be found in [22].

Search based testing combines the costs of satisfying various
relevant predicates to provide an overall cost for a particular
execution. (We omit details here). The aim is to reduce the overall
cost to zero. The test-data generation problem becomes a cost
function minimization problem; a host of optimization techniques
have been adopted, e.g. simulated annealing [6], genetic algorithms
[4][5], tabu search [20], and ant colony optimization [24]. Details of
search techniques can be found in [16]. The dynamic test-data
search is not guaranteed to succeed. Clearly, a search will fail to
find appropriate test data when no such data exists (i.e. we are trying
to satisfy an infeasible requirement). It may also fail, even when test
data actually exists, simply due to the particular strategy employed
by the search method. A full account of test-data generation by
heuristic search can be found in the McMinn’s extensive survey
[19].

Combining static and dynamic approaches seems a promising
avenue to explore. Offutt et al. [29] have proposed the dynamic
domain reduction procedure (DDR) technique, in which run-time
information is explored to reduce the domains in an underlying test-
data constraint problem. (Our approach, by comparison, uses static
techniques to create a more navigable dynamic search problem.)

3.2 The State Problem
Despite the successful use of search-based test-data generation,
certain features of systems can hinder the test-data search, e.g. the
flag problem [23], and the state problem [24]. Embedded systems,
such as engine controllers, typically make extensive use of state to
record real-time information. Such systems usually require test data
to be sequences of inputs that can put the system into a certain state,
in order to exercise particular elements. Thus, the generation of such
input sequences becomes difficult. Usually a coarse objective
landscape is yielded and the test-data search easily gets stuck.

The Sort-Code-Verification problem used in McMinn’s PhD thesis
[25] is an example. The description is as follows:

The system validates a UK bank sort code of the form ‘XX
– XX – XX’ where ‘X’ is an integer digit. A line feed character is
also expected at the end of the input. Unicode characters are
submitted to the system one at a time. The system needs to keep
track of how far through the validation process the system is. One of
three constant integer values are returned.
RESULT_ENTER_NEW_CHAR signals the system is ready to
accept a new character; RESULT_VALID signals the previously

1942

entered sequence is valid and that the system is ready to read in
another sort code; or RESULT_INVALID, which signals that the
last character was invalid.
The code description of the problem can be found in [25]. Figure 10
in section 8 is its Simulink version. Characters are read from In1
(in section A) at each time step. The ASCII encodings of characters
are used. Section B contains components that determine when
characters of these types have been entered. The parse of a sort code
proceeds by successively reading its constituent characters. The
system may be in one of several state positions: 1 to 9. The position
is incremented by 1 (in section C) as the parser reads
successive characters in a valid sort code sequence supplied at the
input. Section D checks what position the state is in (and so what
sort of character is expected). Section E determines whether the
current input is of the form expected. If an invalid character is input
(the information is shown as the output of the NOT block above
section E), the system will reset to position 1. Section F determines
the output signal for the whole system.

In the model, the states are maintained by the UnitDelay block
passing the information in the previous step back into the system for
use by the new step. Assume that our test goal is to cause the output
of block ‘pos9+lf’ to be TRUE. This requires a valid sort code input.
To satisfy such a test aim manually we can derive the following
constraints: the targeted test datum should consist of at least 9 steps;
and the shortest sequential input should be: digit, digit, dash, digit,
digit, dash, digit, digit, and line-feed. Standard cost function design
as described previously [13][22] will usually generate two
constraints: the value of ‘In1’ equals to 12 and the runtime value of
the output of block ‘pos’ equals to 9. Such constraints do not tell the
minimum number of steps needed to execute. The cost function
landscape of the second constraint will be 9 plateaus; each indicates
one of the states of the system. Therefore the search will obtain little
guidance from these constraints and result in failure. The kind of
guidance the search really needs is something like the constraints
that are derived manually.

We therefore will introduce a technique called tracing and
deducing (T&D), which uses more detailed constraint information
to replace the rough guidance. The more detailed constraint
information allows a more easily navigable landscape to be created.
Such a process enables existing search tools to home in on targeted
test-data.

4. TRACING AND DEDUCING
Suppose that some testing goal is given. This would typically be a
requirement to satisfy some predicate P over line (signal) values at a
certain step in the execution of the system, e.g. a branch condition.
For simplicity assume that this is a predicate over a single signal.
This signal will be the output of some block B. By back-propagating
the signal through block B, the predicate can be replaced by a new
predicate or a conjunction or disjunction of multiple predicates. The
new predicate(s) is (are) over the input signal(s) of block B. We call
a replacement like this one ‘application’ of the deducing process.

When a goal is defined over the output of a UnitDelay block, a
refined goal defined over its input signal value at the previous time
step can be derived. By tracing back recursively in this way, more
helpful guidance to the targeted test-data search can be derived. This
is in fact a kind of reverse symbolic execution. No complete
symbolic execution is required. Certain stopping rules are applied
for the process so that the problems of standard symbolic execution

do not apply. A simplification process is also used with the tracing
and deducing process in order to keep the complexity of predicates
under control.

4.1 Assumptions
Our approach requires us to identify a suitable number of steps over
which to consider the execution of the system. It is assumed that the
goal will be met on the final step. Section 4.6 will describe how to
obtain this ‘suitable number of steps.’

A branch-coverage testing goal can be interpreted into a predicate
defining the value range of a particular signal value at the final step
of the execution. For example, if the goal is to have the output of
block ‘pos3+dash’ to be ‘TRUE’, the goal predicate will be: the
output value of block ‘pos3+dash’ on the Nth step is ‘TRUE’ (N is
the minimum step size identified by the technique described in
section 4.6). Starting from this initial predicate (constraint), new
constraint(s) can be deduced. All constraints should concern values
of signals at a certain time unit. Each signal has a unique integer
label (determined by its source block name and source port
number). The following notation is used in denoting constraints.
The value of the 5th step of signal 32 will be denoted as ‘P32(5)’.
‘P’ represents term ‘Probe’, which indicates that we have to insert a
probe in to that signal to detect its value. In a similar way, a constant
value of 58 will be denoted as ‘C(58)’, where ‘C’ represents
‘Constant’.

Constraints are always in the form of a relational predicate or
various logical combinations of relational predicates, such as:

P32(5)>=C(58);

{P32(5)>=C(58)∨P32(5)<=C(47)}∧P32(5)≠C(12).

The constraints are recorded in a tree-like structure, which is
composed of two types of nodes and lines. The tree structure is
called an objective-tree. The data structure of the tree-like graph will
be described in section 4.2.

The T&D process is really a process of constructing the objective-
tree, starting from one single node, which is the goal predicate. The
construction process involves tree node refinement and tree
simplification.

4.2 Storage Rules
There are two types of nodes in the objective-tree: Predicate-Node
and Or-Node. A Predicate-Node records the information of an
atomic constraint, which is a relational predicate, and its ‘next’
domain, which is a pointer pointing to the node that has a
conjunctive ‘AND’ relation with it. An Or-Node can have a number
of children; each is denoted by a pointer to the corresponding Child-
Node, which will, in turn, be a Predicate-Node or an Or-Node. The
relation between the children of an Or-Node is disjunctive ‘OR’. An
Or-Node also has a ‘next’ domain, pointing to the node that has an
‘AND’ relation with all its children. If the ‘next’ domain of a node
is ‘0’, it means no more predicates will be included in this
conjunctive relation. Therefore, in the objective-tree representation,
branches represent disjunctions; linear sequences represent
conjunctions. In an objective-tree, an Or-Node is denoted by a
triangle, with arrows coming out of its left corner representing the
child pointers and one arrow originating from the middle of its
bottom side representing the next pointer; a Predicate-Node is
denoted by a rectangle with one arrow originating from the middle

1943

of its bottom side representing the next pointer. For both types of
nodes, the next pointer may or may not exist.

For example, predicate {P32(5)>=C(58)∨P32(5)<=
C(47)}∧P32(5)≠C(12)can be denoted as shown in Figure 2. In
the figure, the numerals, such as 1, 2, 3, 4, are node numbers. Node
1 is an Or-Node, having two children – node 3 and node 4. The
‘next’ domain of node 1 points to node 2.

Figure 2. An example of objective-tree representation.

4.3 Deducing Rules
The deducing activity is the process of refining predicates. It is
called on by the tracing process, as described in section 4.4.
If a predicate is deduced, a new predicate or a few new predicates
will be generated to replace the original one. Some deduction rules
for various types of Predicate-Nodes are defined below. These rules
have been implemented into a prototype tool. However, the
deduction rules may not be restricted to these. More rules about
deduction for other types of blocks can be added to the set.
In this prototyping tool implementation, for simplicity, a predicate is
not deduced if both of its operands are probes.
A predicate can be deduced to ‘TRUE’ or ‘FALSE’ when both of its
operands are constants. Then the objective-tree can be simplified
accordingly (see section 4.5 Simplification Rules).
For a predicate of form ‘Px(y) rel C(z)’, it can be deduced
when the source block of probe ‘x’ is: Switch, or
LogicalOperator, or RelationalOperator, or
UnitDelay, or Sum and it has only one non-constant input,
or Product and it has only one non-constant input.

Below we describe how each of these blocks can be deduced.

4.3.1 ‘Switch’ Block
If the source block is Switch, as illustrated in Figure 3:

According to the functionality of the Switch block (given in
section 2), there are two ways the predicate ‘Px(y) rel C(z)’
can be satisfied: the second input of Switch is greater than or
equal to the ‘Threshold’ parameter and the first input satisfies the
predicate requirement as x does; or, the second input of Switch is
less than the ‘Threshold’ parameter and the third input satisfies the
predicate requirement as x does. The step number of the signals in
the newly deduced constraints should be the same as in the original
predicate. The implementation is as described below.

The original Predicate-Node ‘Px(y) rel C(z)’ will be
changed into an Or-Node, with two children – newNode1 and
newNode2. Its ‘next’ domain remains the same.

Figure 3. Deductive process for Switch block.

Four new nodes are created: newNode1, newNode2, newNode3
and newNode4 (see Figure 4). The ‘Threshold’ (‘thres’) of
the Switch block will be detected.

NewNode1 will be recorded as predicate ‘PnewP2(y) >=
C(thres)’. Its ‘next’ domain will be ‘newNode3’.

NewNode2 will be recorded as predicate ‘PnewP2(y) <
C(thres)’. Its ‘next’ domain will be ‘newNode4’.

NewNode3 will be recorded as predicate ‘PnewP1(y) rel
C(z)’. Its ‘next’ domain will be ‘0’.

NewNode4 will be recorded as predicate ‘PnewP3(y) rel
C(z)’. Its ‘next’ domain will be ‘0’.

The new tree structure is:

Figure 4 Tree node after deducing a Switch block.

4.3.2 ‘LogicalOperator’ Block
If the source block of signal x is LogicalOperator or
RelationalOperator, since the output of such blocks must
be either ‘0’ or ‘1’, the original predicate node ‘Px(y) rel
C(z)’ needs to be interpreted. For example, if rel is ‘>’ and z is
‘0.5’, the predicate will be interpreted into ‘Px(y) == C(1)’; if
rel is ‘<’ and z is ‘0.3’, the predicate will be interpreted into
‘Px(y) == C(0)’; if rel is ‘<’ and z is ‘0’, the predicate will
be deduced to ‘FALSE’ since that is impossible; if rel is ‘≠’ and z
is ‘5’, the predicate will be deduced to ‘TRUE’ since it is always

3: P32(5)>=C(58) 4: P32(5)>=C(47)

2: P32(5)≠C(12)

1: 3, 4

newNode1:PnewP2(y)>=C(thres)

newNode1:PnewP2(y)<C(thres)

next: ……

originalNode:
newNode1, newNode2

newNode3:PnewP1(y)) rel C(z)

newNode4:PnewP3(y)) rel C(z)

Next

Child1
Child2

1944

true. A value of ‘0’ or ‘1’ of Px(y)is called the target result of
such source blocks.
If the logical operator is ‘AND’:
If the target result is ‘1’, in order to satisfy this predicate, all inputs
of the block need to be TRUE. If the target result is ‘0’, in order to
satisfy this predicate, at least one of the inputs of the block needs to
be FALSE.

If the logical operator is ‘OR’:
If the target result is ‘1’, in order to satisfy this predicate, at least
one of the inputs of the block needs to be TRUE. If the target result
is ‘0’, in order to satisfy this predicate all inputs of the block need to
be FALSE.

If the logical operator is ‘NOT’, as illustrated in Figure 5, In order to
satisfy the predicate, the value of the input signal of the block
should be exactly the opposite of the target result.

Figure 5. Deductive process for ‘NOT’ Logic block.

Detailed implementation will be similar to the treatment of a
Switch block and is omitted here.

4.3.3 ‘RelationalOperator’ Block
If the source block is RelationalOperator (like in Figure
6), as explained in section 4.3.2, the original Predicate-Node
‘Px(y) rel C(z)’ can be interpreted into one of the following
two forms: ‘Px(y) == C(1)’ or ‘Px(y) == C(0)’. To satisfy
such a predicate, the inputs of the block should satisfy the relation
defined by the operator in the first case, or fail to do so in the second
case.

Figure 6. Deductive process for RelationalOperator block.

4.3.4 ‘UnitDelay’ Block
If the source block is UnitDelay, as in Figure 7, according to
the functionality of the UnitDelay block (the output of it equals
the value of its input signal in the previous step), the input signal of
the UnitDelay block in the previous step should satisfy exactly
the requirement for the output signal of the UnitDelay block
defined by the original predicate. The implementation can be
defined accordingly:

Figure 7. Deductive process for UnitDelay block.

If the step number y equals to ‘1’, the original Predicate-Node
‘Px(y) rel C(z)’ will be deduced to ‘TRUE’ or ‘FALSE’
accordingly. This is because the output value of a UnitDelay
block is always ‘0’ for the first step. Otherwise, the original

Predicate-Node will be changed into ‘PnewP1(y-1) rel C(z)’.
Its ‘next’ domain remains the same.

4.3.5 ‘Sum’ or ‘Product’ Block
If the source block is Sum or Product and it has only one non-
constant input, the predicate can be deduced into a constraint about
the non-constant signal. By example, for the situation illustrated in
Figure 8, if the constant is A, the original Predicate-Node ‘Px(y)
rel C(z)’ will be changed into ‘PnewP1(y) rel C(z-A)’. Its
‘next’ domain remains the same.

Figure 8. Deductive process for Sum block.

4.4 Tracing Stopping Rules
The tracing process is a recursive process. In every pass, it checks
each available node in turn; if deducible, the deducing function is
called upon. Simplification (introduced in the next sub-section) to
the objective-tree occurs at the end of each pass.
A node will not be further traced and deduced if both of its
relational operands are probes.
Since the output value of a UnitDelay block is always ‘0’ for
the first step, a node cannot be further traced when its step number
is ‘1’ and the probe’s source block is UnitDelay.

When a signal is about to be traced through a UnitDelay block,
which means the signal step number will be reduced by ‘1’, the
program will withhold the tracing back until the tracing back
process of all the other signals reaches the same situation. This rule
assists the synchronization of the tracing back process and enables
significant simplification of the constraints earlier in the objective-
tree construction procedure.
To avoid the typical problem caused by symbolic execution (i.e.
objective-tree explosion), a maximum tree-size is imposed in the
tracing process. The process is stopped when the number of nodes
reaches this limit. This does not prevent us using heuristic search to
find the ultimate test-data, but the guidance provided to the search
may be less informative.

4.5 Simplification Rules
During the tracing and deducing process the objective-tree gets
bigger. The tree is repeatedly simplified.
There are a few simplification treatments defined in the prototyping
tool. For example, if a node is determined to be constantly TRUE,
the node will be deleted (as illustrated in Figure 9); if a node is
determined to be constantly FALSE, the branch the node belongs to
will be removed. Simplification methods are also defined for cases
such as: an Or-Node has only one child branch left or no child
branch at all (such a situation results from previous node-TRUE or
node-FALSE simplification), two nodes on one path are conflicting,
and two nodes on one path are consistent (i.e. the satisfaction of one
can assure the satisfaction of the other). Due to limitations of paper
length, details of the implementation of the simplification rules are
omitted here. Interested readers can refer to [30].
If a tree is simplified to be empty, it indicates that the test-data
generation is infeasible. One reason might be the number of steps is

1945

too small and needs to be augmented. (This will be discussed in
more detail in section 4.6.)
The current simplification tool is only a proof-of-concept
implementation. Complicated conflicting constraints cannot be
identified nor thereafter be simplified. For example, constraint
(A<=0.3∨B>=3)∧ (A>0.3∧B==2) cannot be identified as
FALSE. The usefulness of the T&D approach may be enhanced by
incorporating more powerful constraint solving tools.

Figure 9 Simplification for Node-True.

4.6 Discussions
According to the first assumption in section 4.1, to use T&D the
number of steps to execute needs to be given. When the number
given is smaller than the minimum number of steps required to
satisfy the test-data generation requirement, the T&D process may
fail (result in an empty objective-tree). If the number given is larger
than necessary, it usually results in complicated constraints being
deduced due to the variability involved. A strategy of trying
different numbers from small to large, one by one, is suggested, in
searching for the appropriate number of steps to execute. When the
number tried is too small, the T&D program usually fails quickly
(tells that the constraints are not satisfiable). This approach avoids
giving too much flexibility in the constraints and ending up
producing a large, complicated, and potentially unworkable
objective-tree.
The technique can be considered as a partial symbolic execution. It
is partial because it does not fully execute the system. It executes
only to the extent that the symbolic conditions can be handled
without any difficulty. This is controlled by the tracing stopping
rules. The technique allows some of the benefits of symbolic
execution to be obtained within the context of a heuristic search
approach, but without suffering its state explosion problems.

5. RESULTS
An experiment was run with a preliminary implementation of the
T&D technique. T&D was implemented as an additional component
that we can insert into our previously implemented standard search-
based test-data generation tool for Simulink. The search engine
applied is Simulated Annealling (SA) [18]. In our application a
move effectively perturbs the value of one of the inputs of one step
in the current test sequence by a value less than or equal to 2 percent
of the range of the input. We applied a geometric cooling rate of 0.8.
The number of attempted moves at each temperature was 100, with
a maximum of 300 temperature reductions. These parameters may
be thought to be on the ‘small’ side, but the computational expense
of simulation necessitated pragmatic choices.
In this experiment, five models are tested; four test-data generation
approaches are compared. The five models are: Sort-Code-
Verification, Post-Code-Verification, Smoke-Detector, Inputs-
Check, Sys-Fuel-Dip-Ign-Req. The first three problems are
borrowed from McMinn’s PhD thesis [25]. The fourth one was

created by the author. The fifth, an engine controller subsystem, was
taken from industry. In this experiment, the input ranges of the first
two problems are modified to [1 .. 1000], which is smaller than the
ranges used by [25] ([0 .. 65535]). The modified setting helps to
better demonstrate the different capabilities of various test-data
generation techniques.
The four test-data generation approaches are: random testing,
standard SA search-based testing, tracing and deducing technique
facilitated SA search-based testing and Reactis Tester (as mentioned
in section 2). They are named RAND, SA-STD, SA-T&D and
Reactis respectively. The aim of this experiment is to compare the
performances of various test generation approaches. When the
RAND and SA-STD approaches (which do not have self-adjustment
ability to set the sequences lengths) are used, it is ensured that the
fixed sequence lengths for generating the appropriate test-data were
long enough for all targets (i.e. branches in this experiment) to be
covered.
The experiment was performed on a [Intel Pentium M 1.6 GHz,
512M RAM] laptop computer. It is made up of two parts. The first
part examines the total coverage achievements of each approach.
The goal is to achieve all branch coverage, as defined in section 2.
For each branch coverage goal, the SA-STD and SA-T&D methods,
according to the SA cooling schedule setting, the maximum number
of attempts to achieve the coverage of one branch will be 30,100
(of which 100 is used in determining the initial temperature). For
RAND and Reactis, each approach is allowed 100,000 attempts
(evaluations of test-data) to achieve an individual branch coverage
goal 1 . Table 1 shows the results. The aim of this part of the
experiment is to show that the T&D technique enhances the
solvability of the SA-STD approach (i.e. can achieve higher
coverage). The second part of the experiment compares the time
cost of different approaches in generating an input sequence to
cover an individual branch. Again each approach is allowed of
100,000 attempts. Since Reactis Tester cannot be set to target one
individual branch at a time it is not included in this comparison.
Table 2 illustrates the results. The aim of this part of experiment is
to show that with the aid of the T&D method, the SA-T&D
approach outperforms the SA-STD approach, in terms of solving
success rate and time cost, for some individual branch coverage
requirements.
All results in Table 1 and Table 2 are based on the average of 10
individual runs. Some of the runs may be unsuccessful, given the
limit of attempts imposed. So, it is reasonable to assume that the real
time cost is larger than our cost (hence the prefix of ‘>’ in Table 2).

Table 1 Average coverage achievement comparison

Model No. of
Branches RAND SA-STD SA-

T&D Reactis

Sort-Code-V. 56 76.4% 86.8% 100% 75%

Post-Code-V. 76 84.2% 91.7% 100% 84.2%

Smoke-Detector 34 88.2% 90.0% 94.1% 88.2%

Inputs-Check 8 75% 87.5% 100% 100%

Sys-Fuel-Dip. 20 65% 93% 82% 65%

1 Since Reactis attempts to cover all branches at a time (no individual

branch can be targeted), it is allowed (number_of_branches ×
100,000) attempts each time to cover a whole model.

 Next

 N

 Next

 N

Ancestor’s next pointer Ancestor’s next pointer

1946

Table 2 Time cost (seconds) comparison

SA-T&D Prob.
No. RAND SA-STD Total Tree Construct

1 >6347
(all fail) 712 141 30.5%

2 >12101
(all fail) 1386 133 58.6%

3 >2017
(all fail)

>603
(70% fail) 839 88.2%

4 >2457
(all fail)

>789
(50% fail) 54 3.1%

5 >2714
(all fail)

>287
(20% fail)

>323
(40% fail) <1.2%

Taking the whole Table 1 into account, the SA-T&D approach
demonstrates superiority in covering models by and large.
Table 2 details the results of the second part of the experiment. For
each of the five models identified in Table 1, a specific difficult
branch coverage requirement was subjected to experiment.
(Problem 1 corresponds to a difficult branch of Sort-Code-
Verification, problem 2 corresponds to a difficult branch of Post-
Cod-Verification, and so on.) The ratio of time cost for objective-
tree construction (incurred by the T&D algorithm) is also given as
reference information for readers. As can be seen, for the third
problem, the majority of the cost was spent in the tree construction
rather than SA search. Such high cost is due to the limitation of the
prototype implementation of the simplification tool.
The T&D approach failed to achieve full coverage for two models
in the experiments. For Smoke-Detector, the failure was also due to
the immature constraint simplification technique used in the
prototype tool. Advanced constraint solving tool should solve the
problem. For Sys-Fuel-Dip-Ign-Req, the inability to achieve full
coverage was partly due to infeasibility of one branch. In
comparison to the SA-STD approach, the SA-T&D approach has a
lower success rate in covering Sys-Fuel-Dip-Ign-Req. Detailed
information shows that the difference lies in the different solving
success rates of 5 of the branches. For this particular problem, SA-
STD was allowed 3 steps for each test-datum evaluation whilst the
minimum requirement is 2 steps (which is the sequence length used
by SA-T&D). Therefore, in each test-datum evaluation, SA-STD
actually had two opportunities (goal achieved in the 2nd or 3rd step)
to win the assessment while SA-T&D had only one (goal achieved
in the 2nd step). This is also the reason SA-T&D costs more than
SA-STD in the fifth problem of Table 2.
As mentioned earlier, we reduced the input range of problem Sort-
Code-Verification and Post-Code-Verification in order to show
discriminating solvability of different approaches. We have also
tried to use the SA-T&D method on the difficult versions of the
problems as used in [25]. Full coverage was also achieved. Zhan’s
thesis [30] gives evidence.

6. CONCLUSIONS
The results have shown that the tracing and deducing technique can
substantially enhance the capability of search-based test data
generation for Simulink. It improves both the time to produce test
data and the coverage.
The T&D technique proposed here is actually a partial symbolic
execution procedure. It attempts to exploit the capabilities of
symbolic execution in order to provide more informative guidance

to the search whilst avoiding the disadvantages of symbolic
execution by imposing certain stopping rules to it. Such a concept
should apply to code level testing too. However, the ‘tracing’
process for code will not be as simple as in Simulink. It should rely
on some kind of semantic analysis.
The T&D technique is not restricted to search-based test-data
generation. Taken some tracing stopping rules away, it should apply
to test data generation through other techniques such as constraint
solving (which is employed by Reactis Tester), etc..
There has been considerable success applying heuristic search
techniques for code level test data generation. The work presented
in this paper forms part of a larger investigation into the application
of search techniques to test-data generation for Simulink models. A
framework has been created that applies search-based techniques to
structural coverage problems [13] and mutation coverage problems
[22]. In addition, test set optimization is also included. The full
framework, including the tracing and deducing work, is described in
[30]. The work is very much in keeping with the current emphasis
on "model-based testing". The state problem remains a challenge for
higher level as well as code level test-data generation. Automatic
generation of test data for higher level models more generally is a
very challenging area. We recommend both as promising research
areas to the Search-Based Software Engineering community.

7. ACKNOWLEDGMENTS
Our thanks to Rolls-Royce for sponsoring this research.

8. REFERENCES
[1] B. Korel. Automated Software Test Data Generation. IEEE

Trans. on Softw. Engineering, 16(8): 870-879, 1990.
[2] N. Tracey, J. Clark, K. Mander, and J. McDermid. An

Automated Framework for Structural Test-Data Generation.
Int’l Conf. on Auto. Softw. Eng., pp 285-288, 1998.

[3] J. Wegener, K. Buhr, and H. Pohlheim. Automatic Test Data
Generation for Structural Testing of Embedded Software
Systems by Evolutionary Testing. GECCO 2002, pp 1233-
1240.

[4] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gal, S. Katsikas and
K. Karapoulios. Application of Genetic Algorithms to
Software Testing. In Int’l Conf. on Softw. Engineering and its
Applications, pp 625-636, 1992.

[5] B. Jones, H. Sthamer, and D. Eyres. Automatic Structural
Testing Using Genetic Algorithms. Software Engineering
Journal, 11(5): 299-306, 1996.

[6] N. Tracey, J. Clark, and K. Mander. Automated Program Flaw
Finding Using Simulated Annealing. Symposium on Software
Testing and Analysis (ISSTA), pp 73-81. 1998.

[7] N. Tracey, J. Clark, K. Mander, and J. McDermid. Automated
Test Data Generation for Exception Conditions. Software –
Practice and Experience, 30(1): 61-79, 2000.

[8] O. Buehler and J. Wegener. Evolutionary Functional Testing
of an Automated Parking System. In Int’l Conf. on Computer,
Communication and Control Technologies (CCCT’03) and The
9th Int’l Conf. on Information Systems Analysis and Synthesis,
(ISAS’03), 2003.

[9] A. Baresel, H. Pohlheim, and S. Sadeghipour. Structural and
Functional Sequence Test of Dynamic and State-Based
Software with Evolutionary Algorithms. GECCO 2003, pp
2428-2441.

[10] J. Wegener, K. Grimm, M. Grochtmann, H. Sthamer and B.
Jones. Systematic Testing of Real-Time Systems. Proc. of the

1947

4th European Conference on Software Testing, Analysis &
Review (EuroSTAR '1996), Dec. 1996.

[11] P. Puschner and R. Nossal. Testing the Results of Static Worst-
Case Execution-Time Analysis. Proc. of the 19th IEEE Real-
Time Systems Symposium, pp 134-143, 1998.

[12] B. Jones, H. Sthamer, X. Yang, and D. Eyres. The Automatic
Generation of Software Test Data Sets Using Adaptive Search
Techniques. The 3rd Int’l Conf. on Software Quality
Management, pp 435-444, 1995.

[13] Y. Zhan, and J. Clark. Search-Based Automatic Test-Data
Generation at an Architectural Level. GECCO 2004, pp 1413-
1426.

[14] Leonardo Bottaci. Predicate Expression Cost Functions to
Guide Evolutionary Search for Test Data. GECCO 2003, pp
2455-2464.

[15] Hong Zhu, Patrick A. V. Hall and John H. R. May. Software
Unit Test Coverage and Adequacy. ACM Computing Surveys,
Vol. 29(4): 366-427. December 1997.

[16] C. R. Reeves (Ed.). Modern Heuristic Techniques for
Combinatorial Problems. Blackwell, Oxford, 1993.

[17] R. Kirner, R. Lang, G. Freiberger and P. Puschner. Fully
Automatic Worst-Case Execution Time Analysis for
Matlab/Simulink Models. Euromicro Conference on Real-Time
Systems, 2002.

[18] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by
Simulated Annealing. Science, 220(4598): 671-680, 1983.

[19] P. McMinn. Search-based Software Test Data Generation: A
Survey. Software Testing, Verification and Reliability, 14(2),
pp 105-156, June 2004.

[20] Eugenia Díaz, Javier Tuya, Raquel Blanco. Automated
Software Testing Using a Metaheuristic Technique Based on
Tabu Search. In 18th IEEE Int’l. Conf. on Automated Software
Engineering. Montreal, Canada, Oct. 2003.

[21] The MathWorks.
http://www.mathworks.com/products/simulink.

[22] Y. Zhan, and J. Clark. Search-Based Mutation Testing for
Simulink Models. GECCO 2005, pp 1061-1068.

[23] M. Harman, L. Hu, R. Hierons, A. Baresel, and H. Sthamer.
Improving Evolutionary Testing by Flag Removal. GECCO
2002, pp 1359-1366.

[24] P. McMinn, and M. Holcombe. The State Problem for
Evolutionary Testing. GECCO 2003, pp 2488-2500.

[25] P. McMinn. Evolutionary Search for Test Data in the Presence
of State Behaviour. PhD Thesis, University of Sheffield,
January 2005.

[26] Reactive Systems Inc. Http://www.reactive-systems.com/.
[27] L. Clarke. A System to Generate Test Data and Symbolically

Execute Programs. IEEE Transactions on Software
Engineering, 2(3): 215-222. 1976.

[28] R. A. DeMillo and A. J. Offutt. Constraint-Based Automatic
Test Data Generation. IEEE Transactions on Software
Engineering, 17(9): 900-909. 1991.

[29] A. J. Offutt, Z. Jin and J. Pan. The Dynamic Domain
Reduction Procedure for Test Data Generation. Software –
Practice and Experience, 29(2): 167-193. 1999.

[30] Y. Zhan. A Search-Based Framework for Automatic Test-Set
Generation for MATLAB/Simulink Models. PhD thesis,
University of York. Dec 2005.

9. APPENDIX: ‘sortCodeVerificaiton’

Figure 10. Simulink model of ‘SortCodeVerificaiton’.

 A

B

C

D

 E

 F

1948

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

