
The Journal of Systems and Software 83 (2010) 689–701
Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/locate / jss
Using hybrid algorithm for Pareto efficient multi-objective test suite minimisation

Shin Yoo *, Mark Harman
King’s College London, Strand, London WC2R 2LS, UK
a r t i c l e i n f o

Article history:
Received 14 April 2009
Received in revised form 9 November 2009
Accepted 9 November 2009
Available online 14 November 2009

Keywords:
Regression testing
Test suite minimisation
0164-1212/$ - see front matter � 2009 Elsevier Inc. A
doi:10.1016/j.jss.2009.11.706

* Corresponding author.
E-mail address: shin.yoo@kcl.ac.uk (S. Yoo).
a b s t r a c t

Test suite minimisation techniques seek to reduce the effort required for regression testing by selecting a
subset of test suites. In previous work, the problem has been considered as a single-objective optimisa-
tion problem. However, real world regression testing can be a complex process in which multiple testing
criteria and constraints are involved. This paper presents the concept of Pareto efficiency for the test suite
minimisation problem. The Pareto-efficient approach is inherently capable of dealing with multiple
objectives, providing the decision maker with a group of solutions that are not dominated by each other.
The paper illustrates the benefits of Pareto efficient multi-objective test suite minimisation with empir-
ical studies of two and three objective formulations, in which multiple objectives such as coverage and
past fault-detection history are considered. The paper utilises a hybrid, multi-objective genetic algorithm
that combines the efficient approximation of the greedy approach with the capability of population based
genetic algorithm to produce higher-quality Pareto fronts.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Regression testing is performed in order to guarantee that the
recent changes in a program do not interfere with the functionality
of the unchanged parts. The most straightforward approach to
guarantee this is to execute all of the existing test cases to ensure
that the new changes are harmless. However, this retest-all ap-
proach is often infeasible because, over time, the size of the test
suite grows. Thus it may become prohibitively expensive to exe-
cute the entire test suite. Furthermore, as the development cycle
of software moves to shorter iterations, the regression testing often
needs to be performed within a severely restricted time frame
using limited resources.

A group of ‘test case management’ techniques have emerged to
cope with these limitations, one of which is test suite minimisation
(sometimes called reduction). A test suite minimisation technique
identifies the subset of the original test suite that is deemed to
be redundant, and either removes the subset from the original test
suite permanently or reject it for the current iteration of regression
testing.

However, testing often involves multiple test criteria and con-
flicting constraints. For example, different types of testing, such
as functional testing and structural testing, may require different
testing criteria (Harrold et al., 1993). The tester may also benefit
from considering multiple testing criteria simply because there is
no single most ideal testing criterion. For example, real fault detec-
ll rights reserved.
tion rate may be the most ideal testing criterion but it cannot be
known until testing finishes. Code coverage is a widely used surro-
gate, but there does not exist a guaranteed correlation between
code coverage and fault-detection capability (Hutchins et al.,
1994). Therefore, it may be valuable to complement code coverage
with fault-detection history. There may also exist other types of do-
main knowledge that may contribute to the accuracy and effi-
ciency of testing process.

Apart from testing criteria, there also may exist multiple con-
straints on the testing process. For example, cost is one of the
essential constraints because the whole purpose of test suite min-
imisation and prioritisation is to reduce testing cost. One impor-
tant cost measure, considered by other researchers (Malishevsky
et al., 2006; Elbaum et al., 2001; Walcott et al., 2006), is the execu-
tion time of the test suites. With emerging trends like the agile
software development paradigm (Highsmith and Cockburn,
2001), regression testing often needs to be completed in even more
limited time than in previous paradigms. Execution time, as well as
other resources like human efforts and hardware equipments, can
become critical constraints to testing process.

Existing approaches to regression test suite minimisation (and
prioritisation) have been single-objective approaches that have
sought to optimise a single-objective function. Even where there
exists more than one objective, these multiple objectives have
been combined into a single-objective fitness function. For exam-
ple, the recent work on test case prioritisation (Malishevsky
et al., 2006) concerns both code coverage and cost, which is essen-
tially a two-objective formulation of the test case prioritisation
problem. However, it is dealt with by conflation to a single-objec-
tive of coverage per unit cost. Where there are multiple competing

http://dx.doi.org/10.1016/j.jss.2009.11.706
mailto:shin.yoo@kcl.ac.uk
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss

690 S. Yoo, M. Harman / The Journal of Systems and Software 83 (2010) 689–701
and conflicting objectives the optimisation literature recommends
the consideration of a Pareto optimal optimisation approach (Col-
lette and Siarry, 2004; Szidarovsky et al., 1986). Such a Pareto opti-
mal approach is able to take account of the need to balance the
conflicting objectives, all of which the software engineer seeks to
optimise.

This paper presents the first multi-objective formulation of the
test suite minimisation problem and applies a hybrid algorithm
that combines existing greedy approach with a well known Mul-
ti-Objective Evolutionary Algorithm, NSGA-II. It is likely that a tes-
ter would want to optimise several, possibly conflicting
constraints, for which this approach will be well-suited.

The primary contributions of this paper are as follows:

1. The paper introduces a multi-objective formulation of the
regression test suite minimisation problem and instantiates this
with two versions: A two-objective formulation that caters for
coverage and cost and a three-objective formulation that caters
for coverage, cost and fault-history. The formulations facilitate a
theoretical treatment of the optimality of the greedy algorithm
and makes it possible to establish a relationship between the
multi-objective problems of test case prioritisation and test
suite minimisation.

2. The paper presents two algorithms for solving the two and
three objective instances of the test suite minimisation prob-
lem: a re-formulation of the single-objective greedy algorithm,
and a hybrid variant of NSGA-II of Deb et al. (1917), which we
call HNSGA-II. The hybrid nature of HNSGA-II is based on the
known fact that the greedy algorithm produces a good approx-
imation to the set-cover problem, which forms the basis of the
test suite minimisation problem.

3. The paper presents the results for these algorithms, when
applied to the two-objective version of the problem using, as
subjects, five non-trivial real world programs from Software-
architecture Infrastructure Repository, SIR (Do et al., 2005).
The results confirm the theoretical analysis, revealing cases
where the search based algorithms out-perform the greedy
approach. More importantly, the results show that the hybrid
approach is capable of filling in large gaps in the Pareto fronts
approximated by the greedy algorithm.

4. The paper also presents results from an empirical study of the
algorithms applied to the three-objective formulation of the
problem. These results also show that the hybrid approaches
can out-perform the greedy approach.

The rest of this paper is organised as follows. Section 2 describes
related work. Section 3 introduces the multi-objective formulation
of test suite minimisation, giving theoretical results and connec-
tions between the minimisation and prioritisation problems. Sec-
tion 4 shows that the additional greedy algorithm produces a
good approximation, which forms the basis of the hybrid approach
used in the present paper. Section 5 presents two empirical studies
of multi-objective test suite minimisation for two and three objec-
tive versions of the multi-objective formulation. The results of the
empirical studies are analysed in Section 6. Finally, Section 7 con-
cludes with directions for future work.
2. Background

The existing literature on test case management can be catego-
rised into three different areas of investigation; test suite minimisa-
tion (or reduction), test case selection, and test case prioritisation.

Test suite minimisation shares many similarities with test case
selection. It selects a subset of the test suite that satisfies all the
test requirements.
Test case minimisation
Given: a test suite T ¼ ft1; t2; . . . ; tng and a set of test require-
ments R ¼ fr1; r2; . . . ; tmg.
Problem: to find the smallest T 0 such that
T 0 � T; 8r 2 RðT 0 satisfies rÞ.

One major difference between test suite minimisation and test
case selection is that test case selection chooses a temporary sub-
set of test cases based on the modifications made to a specific ver-
sion of System Under Test, whereas test suite minimisation
reduces the test suite based on some external criterion such as
structural coverage. Harrold et al. formulated test suite minimisa-
tion as a minimal hitting set problem, and applied a heuristic ap-
proach (Harrold et al., 1993). This paper considers test suite
minimisation as a non-weighted version of the set-cover problem,
which is equivalent to the hitting set problem.

It is known that test suite minimisation can be efficient pro-
vided that the cost of the reduction is smaller than the gain in
the cost of the reduced test suite (Leung and White, 1989). How-
ever, a weakness of test suite reduction is that the removal of some
test cases from the test suite may potentially reduce the fault
detecting capability of the test suite too. Some studies have shown
that the fault-detection capability of the test suite was indeed
damaged (Rothermel et al., 1998), while others have shown that
the reduced test suite still preserved its fault-detection capability
(Wong et al., 1998). The reduction technique studied by Harrold
et al. is of particular interest in the context of this paper because
the technique considers multiple criteria when deciding whether
to preserve a test case or not (Harrold et al., 1993). Their technique
converts this multi-objective problem into a series of single-objec-
tive problems, by solving the problem for the first objective then
uses this intermediate solution as the starting point of the solution
for the next objective. While this sequential approach is one of the
classical techniques to solve multi-objective optimisation prob-
lems, it may produce less optimal results compared to Pareto-effi-
cient approach because the earlier objectives may restrict the
possibility of finding potential solutions to the objectives solved
later.

Test case selection focuses on selecting a subset of the test suite
in order to test software modifications. The selection is typically
made in terms of the structure of the program P and the test suite
T. Several techniques have been considered, including symbolic
execution (Yau and Kishimoto, 1987), flow graph based (Rothermel
and Harrold, 1996) and dependence graph based approaches (Bates
and Horwitz, 1993; Binkley, 1995).

Test case prioritisation is a closely related topic, in which the
goal is to find an optimal order in which to execute test cases.
The ideal ordering of test cases would be the one that maximises
the rate of fault detection. However, since the fault information
is not known to the tester in advance, prioritisation techniques
have to depend on surrogates. Rothermel et al. defined test case
prioritisation problem as follows:

Test case prioritisation
Given: a test suite, T, the set of permutations of T, PT; a function
from PT to real numbers, f.
Problem: to find T 0 2 PT such that ð8T 00ÞðT 00 2 PTÞðT 00–T 0Þ½f ðT 0ÞP
f ðT 00Þ�.

The function f acts as a surrogate for the unknown rate of fault
detection. One of the most widely used metrics for f : PT ! R is
APFD (Average Percentage of Fault Detected), which rewards
orderings with earlier fault detection abilities (Rothermel et al.,
1999). The additional greedy algorithm is known to produce good
results for the test case prioritisation problem (Elbaum et al., 2000;
Li et al., 2007; Do et al., 2004). Rothermel et al. introduced APFDc,

S. Yoo, M. Harman / The Journal of Systems and Software 83 (2010) 689–701 691
the cost cognizant version of APFD (Malishevsky et al., 2006),
which inspired our formulation of the weighted objective greedy
algorithm. Elbaum et al. (2001) expanded the problem to incorpo-
rate not just the cost of test cases, but the severity of the detected
faults.

Walcott et al. also take time into account in their work on the
test case prioritisation problem (Walcott et al., 2006). Their ap-
proach to prioritisation combines both selection and prioritisation
problems into a single-objective, which is the weighted sum of the
selection fitness and prioritisation fitness. The coefficients used for
weights are defined to ensure that selection fitness is the primary
objective, while ordering is secondary.

This paper is an extension of a conference paper by the same
authors (Yoo and Harman, 2007). This previous work applied
NSGA-II and an island genetic algorithm variant of NSGA-II to both
two and three-objective formulations for the programs from Sie-
mens suite and space. The results showed that the search-based
techniques produce wider and more efficient Pareto-frontier for
smaller programs, while the additional greedy algorithm produces
a good approximation for space. This observation provided the ba-
sis for the formulation of the hybrid approach in the present paper.
The empirical results in the present paper shows that adopting the
hybrid approach indeed produces better results; the approxima-
tion produced by the additional greedy algorithm is complemented
by intermediate solutions that are found by NSGA-II. These inter-
mediate solutions add valuable information to the trade-offs be-
tween testing criteria and resources.

3. Multi-objective paradigm

This section introduces the multi-objective formulation of test
suite minimisation. Section 3.1 introduces the Pareto optimal for-
mulation of the test suite minimisation problem. Section 3.2 ex-
plores the theoretical properties of the two-objective greedy
algorithm, while Section 3.3 shows the relationship between mul-
ti-objective selection and prioritisation.

3.1. Pareto-optimality

Pareto-optimality is a notion from economics with broad range
of applications in game theory and engineering. The original pre-
sentation of the Pareto-optimality is that, given a set of alternative
allocations and a set of individuals, allocation A is an improvement
over allocation B only if A can make at least one person better off
than B, without making any other worse off (Fudenberg and Tirole,
1983).

Based on this, the multi-objective optimisation problem can be
defined as the problem of finding a vector of decision variables x,
which optimises a vector of M objective functions fiðxÞ where
i ¼ 1; . . . ;M. The objective functions are the mathematical descrip-
tion of the optimisation criteria.

Without the loss of generality, it is assumed that the goal is to
maximise fi where i ¼ 1; . . . ;M. A decision vector x is said to dom-
inate a decision vector y (also written x � y) if and only if their
objective vectors fiðxÞ and fiðyÞ satisfies:

8i 2 f1; . . . ;Mg � fiðxÞP fiðyÞ and 9i 2 f1; . . . ;Mg � fiðxÞ > fiðyÞ
All decision vectors that are not dominated by any other decision
vector are said to form the Pareto optimal set, while the correspond-
ing objective vectors are said to form the Pareto-frontier. Now the
multi-objective optimisation problem can be defined as follows:

Given: a vector of decision variables, x, and a set of objective
functions, fiðxÞ where i ¼ 1; . . . ;M.
Definition: maximise ff1ðxÞ; . . . ; fMðxÞg by finding the Pareto opti-
mal set over the feasible set of solutions.
Identifying the Pareto-frontier is particularly useful in engineer-
ing because the decision maker can use the frontier to make a well-
informed decision that balances the trade-offs between the objec-
tives. The knowledge of these trade-offs proved to be useful in var-
ious other engineering domains such as architecture (Kicinger and
Arciszewski, 2004), chemical engineering (Fonteix et al., 2004), and
aerodynamics (Obayashi, 1998).

The multi-objective test suite minimisation problem is to select
a Pareto efficient subset of the test suite, based on multiple test cri-
teria. It can be defined as follows:

Multi-objective test suite minimisation
Given: a test suite, T, a vector of M objective functions,
fi; i ¼ 1; . . . ;M.
Problem: to find a subset of T, T 0, such that T 0 is a Pareto optimal
set with respect to the set of objective functions, fi; i ¼ 1; . . . ;M.

The objective functions are the mathematical descriptions of
test criteria concerned. A subset t1 is said to dominate t2 when
ðff1ðt1Þ; . . . ; fMðt1ÞgÞ, the decision vector for t1 dominates that of
t2. The resulting subset of the test suite, T 0, has several benefits
in regards to the regression testing, as shown in Section 3.2.
3.2. Properties of two-objective coverage based selection

Here we instantiate the two-objective formulation with code
coverage as a measure of test adequacy and execution time as a
measure of cost. Thus, code coverage becomes one of the two
objectives, and it should be maximised for a given cost. Time is
the other objective, which should be minimised for a given code
coverage.

In this instantiation of the problem, should there exist a subset
of test suite S with coverage C and execution time T on the Pareto-
frontier, it means that:

� T1. No other subset of S can achieve more coverage than C with-
out spending more time than T.

� T2. No other subset of S can finish in less time than T while
achieving a coverage that is equal to or greater than C.

This is the implication of Pareto-optimality. Rather than obtain-
ing a single answer that approximates the global optimum in the
search space for a single-objective, we obtain a set of points, each
of which denotes one possible way of balancing the two objectives
in a globally optimal way. Each member of the Pareto-frontier is
therefore a candidate solution to the problem, upon which it is
not possible to improve.

In the single-objective formulation of test suite minimisation,
greedy algorithms have been used to maximise coverage. The gree-
dy approach starts with an empty test set as the ‘current solution’
and iteratively adds a test case which gives the most coverage of
those that remain. A variant, additional greedy, improves on this
by adding to the current solution the test case that gives the best
additional coverage to the current solution. Each addition by the
greedy algorithm of a new test case to the ‘current solution’ de-
notes a candidate element of the Pareto-frontier.

Greedy algorithms have proved effective for the single-objec-
tive formulation, so they make a sensible starting point for the con-
sideration of the multi-objective formulation. In order to optimise
both coverage and cost, the additional greedy algorithm will need
to be formulated to measure not coverage, but coverage per unit
time. This produces a single-objective cost cognizant variant of
the greedy algorithm, similar to that used by Malishevsky et al.
for the single objective prioritisation problem (Malishevsky et al.,
2006).

Table 1
An example of a test suite where the additional greedy algorithm produces
suboptimal minimisation of test cases.

Program points Exec. time

t1 X X X X X X X X 4
t2 X X X X X X X X X 5
t3 X X X X 3
t4 X X X X X 3

692 S. Yoo, M. Harman / The Journal of Systems and Software 83 (2010) 689–701
Suppose that the additional greedy algorithm has chosen a test
case t that covers a set of structural elements, s. Let CovðsÞ be the
coverage of test case t and let TimeðtÞ be the execution time of t.
Assume that the selection of t increases the coverage by DCovðsÞ.
By definition, there is no single test case t0 (which would cover
s0) that the algorithm could have chosen, such that DCovðs0Þ >
DCovðsÞ and Timeðt0Þ 6 TimeðtÞ (otherwise the algorithm would
have picked t0). Therefore, the selection of a test case made by
the two-objective cost cognizant additional greedy algorithm can-
not be improved upon by the addition of another single case. How-
ever, this leaves open the possibility that there may be a set of test
cases that, taken together, could have produced a better approxi-
mation to the Pareto front.

Let us consider the case of the basic greedy algorithm that se-
lects one test case at a time. It turns out that any selection of a test
case made by the additional greedy algorithm can only be im-
proved with respect to T2. It is not possible to improve on the
selection made by the additional greedy algorithm with respect
to T1. This observation is stated and proved more formally below.

Proposition 1 (Partial Optimality). The selection of a test case made
by the additional greedy algorithm cannot be improved upon with
respect to T1.

Proof. Suppose the contrary. That is, let t1 be a test case that cov-
ers a set of structural elements, s1. Suppose there also exists a pair
of test cases, t2 and t3, covering s2 and s3 respectively, that together
improve upon t1 by achieving more coverage without spending
more time. By definition, we have

DCovðs2Þ
Timeðt2Þ

<
DCovðs1Þ
Timeðt1Þ

and
DCovðs3Þ
Timeðt3Þ

<
DCovðs1Þ
Timeðt1Þ

ð1Þ

because, otherwise, the additional greedy algorithm would not have
selected t1. From this, it follows that

Timeðt1Þ � ðDCovðs2Þ þ DCovðs3ÞÞ < DCovðs1Þ � ðTimeðt2Þ þ Timeðt3ÞÞ
ð2Þ

However, in order for t2 and t3 to be collectively a better choice than
t1 we require t2 and t3 to achieve higher increase in coverage, taking
no longer than t1. That is,

DCovðs2 [s3Þ > DCovðs1Þ ð3Þ

and

Timeðt2Þ þ Timeðt3Þ 6 Timeðt1Þ ð4Þ

Combining step (2) and step (4), we get: DCovðs2Þ þ DCovðs3Þ <
DCovðs1Þ. Now, because code coverage is a set theoretic concept, it
is not possible for the coverage of the union to be greater than the
sum of the coverage of the parts. Therefore we have: DCovðs2[
s3Þ 6 DCovðs2Þ þ DCovðs3Þ. By transitivity, DCovðs2 [s3Þ <
DCovðs1Þ, which contradicts step (3), so we must conclude that it
is not possible to dominate the selection made by the additional
greedy algorithm by breaking T1. h

However it is possible to construct an example that shows that
the additional greedy algorithm does not produce solutions that
are Pareto efficient with respect to T2. Such an example is shown
in Table 1. The first choice of the additional greedy algorithm will
be t1, which has the additional coverage per unit time value of
0:8
4 ¼ 0:2 ðT2; T3; T4 each has 0:18; 0:1~3; and 0:1~6Þ. The second

choice will be t2 with the additional coverage per unit time value
of 0:2

5 ¼ 0:04, whereas t3 and t4 each has 0:0~3 and 0. At this point,
the algorithm achieves 100% coverage in 9 units of time. However,
the same amount of coverage is also achievable in 8 units of time
by selecting t2 and t3, so the subset ft2; t3g dominates the subset
ft1; t2g.
It is indeed possible to extend the greedy approach to consider a
pair of test cases, rather than a single test case, at a time, to over-
come this problem. This formulation of the greedy approach is of-
ten called a 2-way greedy algorithm. Then, however, it would be
possible to construct another counter-example that consists of a
set of 3 test cases. Eventually, for n test cases, an n-way greedy ap-
proach is required to ensure its Pareto-optimality with respect to
T2. However, the n-way greedy approach would be identical to
an exhaustive search, which is not practical.

Furthermore, though the additional greedy algorithm may pro-
duce points that are Pareto efficient with respect to T1, it does not
produce a complete Pareto-frontier. The existence of t4 in the
above example demonstrates this. According to the additional
greedy algorithm, the first decision point chosen for this example
would be the subset of ft1g, which achieves 80% coverage in 4 units
of time. The subset ft1g is on the Pareto-frontier because no other
test case can achieve 80% coverage in 4 units of time. However, the
subset of ft4g is also on the Pareto-frontier, because no other test
case can achieve 50% coverage in 3 units of time. This point ft4g
on the Pareto-frontier is ignored by the additional greedy algo-
rithm. As we will see in the next subsection, this issue is important,
because it is necessary to produce the most complete approxima-
tion to the Pareto-frontier possible in order to exploit the relation-
ship between multi-objective selection and prioritisation.

3.3. The relationship between multi-objective selection and
prioritisation

While they are formally different concepts, test suite minimisa-
tion and test case prioritisation problems are closely related to
each other. Test case prioritisation concerns the ideal ordering of
a given test suite. Since it only changes the order of a given test
suite, it is not capable of producing an efficient test case scheduling
when the available time is shorter than the total time required by
the test suite, assuming that the test suite can be executed in its
entirety.

Fig. 1 shows the result that the additional greedy algorithm pro-
duces with the test data shown in Table 1, along with the real Par-
eto-frontier of the test data. If the tester applies the existing test
case prioritisation techniques based on the additional greedy algo-
rithm, the algorithm will produce an ordering of t1 � t2 for the test
cases in Table 1.

If the tester is allowed 9 units of time for the testing, it is pos-
sible to follow the ordering produced by the additional greedy
algorithm; t1 is executed first, followed by t2, at which point a final
coverage of 100% is achieved in 9 units of time. However, let us
suppose that the testing environment allows only 6 units of time
for the testing. According to the additional greedy algorithm, the
tester should fall back to the first data point, ft1g, since it is not
possible to execute both t1 and t2 in the given time. This achieves
80% coverage in 4 units of time, but leaves 2 units of time unused.
However, the Pareto-frontier tells us that the subset of ft2g can
achieve 90% coverage in 5 units of time, making more efficient
use of the given time. Similarly, it also reveals that, should the
budget allow only 3 units of time, it is still possible to achieve

Fig. 1. Comparison between the Pareto-frontier and the results of the additional
greedy algorithm from the test data shown in Table 1.

S. Yoo, M. Harman / The Journal of Systems and Software 83 (2010) 689–701 693
50% coverage by executing T4. Furthermore, the Pareto-frontier
also shows us that a coverage of 100% is achievable in only 8 units
of time, which is shorter than the 9 units of time predicted by the
additional greedy algorithm.

Concerning the limitations of the testing environment, it is pos-
sible to consider a few different scenarios. First, it may be the case
that the entire regression can be executed, regardless of the
amount of time it takes. In this scenario, only prioritisation matters
as the complete test suite can be executed. Second, there may be a
case where the tester is given an exact amount of time available for
the regression testing. The benefits of knowing the existence of
ft2; t3g and ft4g as candidate selections of test cases becomes clear
under this scenario, where there is a cost constraint, i.e., testing
budget. Prioritisation alone cannot optimise the testing process
in such a situation, because it is not capable of selecting test cases.
Fortunately, the Pareto efficient approach enables the tester to
make an informed decision about the regression testing under such
constrained scenarios. Finally, there may exist cases where the tes-
ter does not know the exact amount of time available for the
regression testing but has to cater for the possibility that testing
may be stopped abruptly. In this scenario, only prioritisation mat-
ters because it seeks to maximise the early fault detection. How-
ever, the knowledge of trade-offs between testing criteria and
testing budget can still provide a valuable frame of reference when
measuring the progress of testing procedure.

The second scenario discussed here is increasingly relevant be-
cause of the trend towards shorter development cycles. For exam-
ple, nightly build is widely adopted in open source software
development (Halloran and Scherlis, 2002). This process usually in-
volves regression testing, which naturally needs to be completed
within tight, inflexible time constraints. In order to construct an
efficient test sequence under such constraints, an appropriate sub-
set of test cases should be selected first. This subset can subse-
quently be prioritised in order to achieve the ideal ordering
among the selected test cases. This way, test suite minimisation
and test case prioritisation techniques can be used in combination
in order to achieve more efficient regression testing.
4. Greedy algorithm

Code coverage is a discrete and bounded concept, in a sense that
there exist only a finite number of entities (i.e. statements or
blocks) to cover. Therefore, the problem of maximising code cover-
age can be reformulated as a weighted set-cover problem as
follows:
Weighted set-cover problem
Given: a universe U with n elements, a set S of m subsets of U
with cost1; . . . ; costm.
Problem: to find C such that C#S;

S
Si2CSi ¼ U, and

8S0 #S½
S

Si2S0Si ¼ U!
P

Si2Ccosti 6
P

Si2S0costi�.

The additional greedy algorithm is illustrated in Algorithm 1.
Let U be the universe, fe1; . . . ; eng;S the set containing S1; . . . ; Sm,
the subsets of U such that

S
iSi ¼ U; cost1; . . . ; costm the cost of each

subset in S. Without loss of generality, it is assumed that there ex-
ists a subset S0 �S that covers U completely. Through line (4) of
Algorithm 1, the additional greedy algorithm picks Sj 2S accord-
ing to the density of the set, costj=jSj � Cj. The minimum density
corresponds to the maximum increase in coverage per cost in each
iteration.

Algorithm 1. Outline of additional greedy algorithm
ADDITIONALGREEDYðU;SÞ
(1) C /// covered elements in U

(2) repeat
(3) j minkðcostk=jSk � CjÞ
(4) add Sj to solution
(5) C ¼ C

S
Sj

(6) until C ¼ U
The set-covering problem is known to be NP-hard (Garey and
Johnson, 1979). Fortunately, the additional greedy algorithm is also
empirically known to be efficient for solving test case prioritisation
problems (Rothermel et al., 1999). The weighted set-cover problem
is essentially a selection problem. However, the requirement in
test case prioritisation, i.e. to maximise the test adequacy as early
as possible, combined with the inherent nature of the algorithm,
allows the greedy algorithm to simultaneously produce an efficient
solution for the prioritisation problem, which is a sequencing
problem.

With respect to T2 in Section 3.2, it is known that the additional
greedy algorithm gives an approximation ratio of ln n (Johnson,
1973), with n being the input size, i.e. the size of test suite in the
context of the present paper. However, the theoretical analysis in
Section 3.2 suggests that there exist solutions that are better than
those approximated by the greedy algorithm. This paper intro-
duces a hybrid approach that utilises both the deterministic addi-
tional greedy algorithm and a population-based multi-objective
genetic algorithm in order to produce better solutions more
efficiently.

5. Empirical studies

This section explains the experiments conducted to explore the
two and three-objective formulations of the multi-objective selec-
tion problem. Section 5.1 describes subjects studied and Section
5.2 describes the objectives to be optimised. Section 5.3 describes
the algorithms studied, while Section 5.4 explains the mechanisms
by which these algorithms will be evaluated in the two empirical
studies. Finally Section 5.5 sets out research questions.

5.1. Subjects

A total of 5 programs are studied in this paper: the program
space from the European Space Agency, and the GNU open-source
programs flex, grep, gzip, and sed. These programs range from
6,199 to 19,737 lines of code, and they are all real world applica-
tions with non-trivial test suites. The software artifacts and their

Table 2
Size of test suites and studied programs.

Program Lines of code Test suite size Description

flex 15,297 567 Lexical analyser
grep 15,633 806 Regular expression utility
gzip 8889 213 Compression tool
sed 19,737 370 Non-iterative text editor
space 6199 156 European Space Agency program

694 S. Yoo, M. Harman / The Journal of Systems and Software 83 (2010) 689–701
test suites were available from Software-artifact Infrastructure
Repository (SIR) (Do et al., 2005).

For GNU open-source programs, the largest test suite available
from the archive was selected. The program space has multiple
test suites; the test suite that provides the highest code coverage
was selected among the available test suites. The size of the pro-
grams and their test suites are shown in Table 2.
5.2. Objectives

It is not the aim of this paper to enter into a discussion concern-
ing which objectives are more important for regression testing. We
simply note that, irrespective of arguments about their suitability,
coverage and fault histories are likely candidate objectives for
assessing test adequacy and that execution time is one realistic
measure of effort. It also should be noted that it is not the intention
of the present paper to confine the test criteria to coverage-based
measurements. The formulations for which the paper reports re-
sults serve to illustrate the possibilities created by a multi-objec-
tive approach.

For the two-objective formulation, statement coverage and
computational cost of test cases will be used as objectives. The
additional objective used in the three-objective formulation is
the past fault-detection history. Each software artifact used in this
paper has several seeded faults (taken from the data available on
the SIR (Do et al., 2005)). SIR records the test cases that reveal these
faults. Using this information, it is possible to assign past fault cov-
erage to each test case subset, corresponding to how many of the
known past faults in the previous version this subset would have
revealed (for the evaluation of the three-objective formulation,
grep was excluded because no historical fault information was
available for it).

The statement level coverage information used in this paper
was measured using the GNU compiler, gcc, and its profiling tool,
gcov. The instrumentation is performed by gcc during compila-
tion. The instrumented subject program produces execution-trace
information with each execution, which is converted to statement
level coverage information using gcov.

Physical execution time of test cases is hard to measure accu-
rately. Measurement is confounded by many external factors; dif-
ferent hardware, application software and operating system. In
particular, any measurement of execution time is likely to be af-
fected by aspects of the environment unconnected to the choice
of test cases. Such factors include concurrent execution, caching
and other low-level processor optimisations.

In this paper we circumvent these issues by using the software
profiling tool, Valgrind, which executes the program in an emu-
lated, virtual CPU (Nethercote and Seward, 2007). The computa-
tional cost of each test case was measured by counting the
number of virtual instruction codes executed by the emulated
environment. Valgrind was created to allow just this sort of precise
and unequivocal assessment of computational effort; it allows us
to argue that these counts are directly proportional to the cost of
the test case execution.
5.3. Algorithms

5.3.1. Hybrid multi-objective algorithm
Population-based genetic algorithms are inherently well-suited

to multi-objective optimisation problems because of their ability to
retain multiple solutions. In this paper NSGA-II is used. NSGA-II is a
multi-objective genetic algorithm developed by Deb et al. (1917). It
produces a group of solutions that collectively form the final state
of the Pareto-frontier when the algorithm terminates. NSGA-II is
based on elitism, which means that, unless better solutions are
found, the best-so-far solutions are always retained.

NSGA-II differs from normal genetic algorithms in two major
aspects. First, selection of individual solutions for the next genera-
tion is based on Pareto-optimality. NSGA-II uses an algorithm
called fast-nondominated sorting, which classifies individual solu-
tions into different dominance levels. For example, solutions on the
current Pareto-frontier get assigned dominance level of 0. Then,
after taking these solutions out, fast-nondominated sorting calcu-
lates the Pareto-frontier of the remaining population; solutions
on this second frontier get assigned dominance level of 1, and so
on. The dominance level becomes the basis of selection of individ-
ual solutions for the next generation.

Algorithm 2. Outline of the main loop for NSGA-II
NSGA-II-MAIN-LOOP(Generation counter, t, Parent population,
Pt , Children population, Qt , Population size, N)

(1) Rt Pt [Qt

(2) F FAST-NONDOMINATED-SORTðRtÞ
(3) Ptþ1 ; and i 1
(4) repeat
(5) CROWDING-DISTANCE-ASSIGNMENTðFiÞ
(6) Ptþ1 Ptþ1 [Fi

(7) i iþ 1
(8) until jPtþ1j þ jFij 6 N
(9) SortðFi;�nÞ
(10) Ptþ1 Ptþ1 [Fi½1 : ðN � jPtþ1jÞ�
(11) Qtþ1 MAKE-NEW-POPULATIONðPtþ1Þ
(12) t t þ 1
The second difference concerns the concept of crowding dis-
tance. When NSGA-II has to select one out of two individual solu-
tions with the same dominance level, it relies on the crowding
distance to make the selection. Intuitively, the crowding distance
of an individual solution is the normalised sum of distances from
other individuals with respect to each objective. An individual with
higher crowding distance is located in the part of the solution
space that is sparsely populated. In order to obtain wider Pareto-
frontiers, NSGA-II rewards individuals with higher crowding dis-
tance when the dominance level is the same. In the context of test
suite minimisation under cost-constraints, it means that the algo-
rithm seeks to produce a higher variety of decision points that cor-
respond to different testing budgets.

Algorithm 2 presents a top-level outline of the main loop of
NSGA-II. In line (2), FAST-NONDOMINATED-SORT() assigns dominance le-
vel to individuals. In the loop that spans from line (4) to (8), the
algorithm adds as many non-dominated frontiers (i.e. sets of solu-
tions with the same dominance level) as possible to the next gen-
eration. Any remaining slots in the next generation are filled in
according to the descending order of crowding distance in line
(9) and (10).

The present paper utilises a variant of the basic NSGA-II, called
Hybrid NSGA-II (HNSGA-II). The additional greedy algorithm is
known to produce an efficient approximation to the set-cover

S. Yoo, M. Harman / The Journal of Systems and Software 83 (2010) 689–701 695
problem (Johnson, 1973), but Section 3.2 also shows that there can
exist solutions that are better than those found by the greedy algo-
rithm. Therefore, it is natural to complement the additional greedy
algorithm with NSGA-II by taking the results from the additional
greedy algorithm as the initial population, which is how HNSGA-
II works. Thanks to elitism, the approximation produced by the
additional greedy algorithm will be discarded only when more effi-
cient solutions are found. Additionally, HNSGA-II also includes the
same number of random solutions as the number of solutions pro-
duced by the additional greedy algorithm in order to guarantee a
certain level of diversity in the initial population.

HNSGA-II algorithm was executed 20 times for each subject
program in order to account for their inherent randomness.
HNSGA-II uses single-point crossover and bit-flip mutation. Cross-
over rate and mutation rate were set to 0.1. Because of the hybrid
approach to the initial population, HNSGA-II uses different popula-
tion size and maximum fitness evaluation count for each subject
programs, which is shown in Table 3.

5.3.2. Greedy algorithms
Two greedy algorithms were also implemented. For the two-

objective formulation, a cost cognizant version of the additional
greedy algorithm was implemented. For the three-objective for-
mulation, code coverage, fault coverage and execution time were
combined by taking the weighted sum of [code coverage per unit
time] and [fault coverage per unit time] using the classical
weighted-sum approach. With M different objectives, fi with
i ¼ 1;2; . . . ;M, the weighted-sum approach calculates the single-
objective, f 0, as follows:

f 0 ¼
XM

i¼1

ðwi � fiÞ;
XM

i¼1

wi ¼ 1

Both the additional code coverage per unit time and
additional past fault coverage per unit time were combined using
coefficients of 0.5 and 0.5, thereby giving equal weighting to each
objective.

5.4. Evaluation mechanisms

The difficulty of evaluating Pareto-frontiers lies in the fact that
the absolute frame of reference is the real Pareto-frontier, which,
by definition, is impossible to know a priori. Instead, a reference
Pareto-frontier can be constructed and used when comparing dif-
ferent algorithms with respect to the Pareto-frontiers that they
produce. The reference frontier represents the hybrid of all ap-
proaches, combining the best of each. It is one of the advantages
of Pareto-optimality that results for various approaches can be
combined in this way.

More formally, let us assume that we have N different Pareto
frontiers, Pi with i ¼ 1;2; . . . ;N. A reference Pareto frontier, Pref ,
can be formulated as follows. Let P0 be the union of all Pi with
i ¼ 1;2; . . . ;N. Then:

Pref � P0; ð8p 2 Pref Þð 9= q 2 P0Þðq � pÞ
Table 3
HNSGA-II configurations for subject programs.

Program Population size Max. fitness evaluation

flex 92 9200
grep 154 15,400
gzip 42 4200
sed 64 6400
space 232 23,200
For all the programs, the reference Pareto-frontier was pro-
duced by combining the result of the additional greedy algorithm
and the multiple executions of HNSGA-II.

One of the methods to compare Pareto-frontiers is to look at the
number of solutions that are not dominated by the reference Par-
eto-frontier. By definition, Pref is not dominated by any of the N dif-
ferent Pareto-frontiers, because it consists of the best parts of the
different Pareto-frontiers. However, each of N different Pareto-
frontiers may be partly dominated by Pref . Therefore, these N differ-
ent Pareto-frontiers can be compared with each other by counting
the number of solutions that are not dominated by Pref in each Par-
eto-frontier.

Another meaningful measurement is the size of each Pareto-
frontier. Achieving larger Pareto-frontiers is one of the important
goals of Pareto optimisation. This is particularly of concern in engi-
neering application, because a larger Pareto-frontier means a larger
number of alternatives available to the decision maker.

Both the number of non-dominated solutions and the size of
Pareto frontiers were measured and statistically analysed in this
paper using an one-sided Wilcoxon signed-rank test. The Wilcoxon
signed-rank test is a non-parametric hypothesis test that does not
require any assumption on the parametric distribution of the sam-
ples. It tests the null hypothesis that the means of two normally
distributed groups are equal. In the context of this paper, the null
hypothesis is that with two different algorithms, the mean values
of the size of Pareto-frontiers and the number of solutions that
are not dominated by the reference Pareto frontier are equivalent.
For these tests the a level was set to 0.95. Significant p-values sug-
gest that the null hypothesis should be rejected in favour of the
alternative hypothesis, which states that one of the algorithm pro-
duces a larger Pareto-frontier or a larger number of non-dominated
solutions.
5.5. Research questions

This paper aims to provide empirical evidence to answer the
four research questions stated below. RQ1 concerns whether the
use of the hybrid multi-objective optimisation technique can be
validated by identifying solutions that cannot be found by single-
objective greedy approach.

RQ1: Do the situations theoretically predicted in Section 3.2
arise in practice? That is, does there exist a situation in which
the Pareto-efficient approach can provide the tester with addi-
tional information, either by finding solutions that achieve
identical coverage in less time or by producing additional points
on the Pareto-frontier?

If the answer to RQ1 is positive, i.e. if solutions formally identi-
fied as theoretically possible in Section 3.2 actually exist in prac-
tice, by definition of the elitism in the hybrid algorithm
guarantees improved results. RQ2 and RQ3 concern how much
improvement can be observed and at what cost. Improvements
are measured by the contribution to the reference frontier as de-
scribed in Section 5.4. The costs of improvement are evaluated
by the execution time of optimisation algorithms.

RQ2: How much improvement, in terms of the number of non-
dominated solutions, do the greedy and the hybrid algorithm
produce for the two-objective formulation? What is the cost
of the improvement?
RQ3: How much improvement, in terms of the number of non-
dominated solutions, do the greedy and the hybrid algorithm
produce for the three-objective formulation? What is the cost
of the improvement?

696 S. Yoo, M. Harman / The Journal of Systems and Software 83 (2010) 689–701
Finally, RQ4 concerns the potential insights that can be ob-
tained by performing the multi-objective optimisation of test suite
minimisation.

RQ4: What can be said about the shape of the Pareto-frontiers,
both approximated and optimal? What insights do they reveal
l

l

l

l

l
l
l
ll
ll
ll
llll
lllllll

lllll llllll lllllllllllllllll

0e+00 2e+05 4e+05 6e+05

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

flex

Execution Time

C
ov

er
ag

e

l Reference
Additional Greedy
Hybrid NSGA−II
(Single Execution)

l

l

l

l
l
l
l
ll
ll
ll

llll ll llll

0 50000 150000 250000

0.
3

0.
4

0.
5

0.
6

gzip

Execution Time

C
ov

er
ag

e l Reference
Additional Greedy
Hybrid NSGA−II
(Single Execution)

l

l

l

l

l

l
l
l
l
ll

ll
ll

lll
lll

lll
llll

llll
lllll

llllll
llllll

llll

0 5000 10000

0.
5

0.
6

0.
7

0.
8

0.
9

s

Exec

C
ov

er
ag

e

l Re
Ad
Hy
(S

Fig. 2. Plot of Pareto-frontier for two-objective formulation. For flex an
concerning the tester’s dilemma as to how to balance the
trade-offs between objectives?

The first three research questions will be answered quantita-
tively using the approaches described in Section 5.4. The last re-
search question is more qualitative in nature.
l

l

l

l

l

l
l

l
l
l
l
ll

ll
ll

llll
llllllll

lllllllllllllll
llllllllllllllllllll

lllllllllllll

0e+00 2e+05 4e+05 6e+05 8e+05

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

grep

Execution Time

C
ov

er
ag

e

l Reference
Additional Greedy
Hybrid NSGA−II
(Single Execution)

l

l

l

l

l

l

l
l

l
l
l

l ll
ll l l lll l l llll l l l l l

0 5000 10000 15000 20000

0.
3

0.
4

0.
5

0.
6

sed

Execution Time

C
ov

er
ag

e

l Reference
Additional Greedy
Hybrid NSGA−II
(Single Execution)

llllllll
llllllllll

llllllllllllll
llllllllllllll

lllllllllllllllll

15000 20000 25000

pace

ution Time

ference
ditional Greedy
brid NSGA−II
ingle Execution)

d grep, HNSGA-II finds data-points between two groups of solution.

Table 4
The statistical analysis of the results for two-objective formulation. The average size
of Pareto-frontiers for flex and gzip, which is larger than those of the additional
greedy algorithm, reflects the findings of the intermediate solutions for those
programs shown in Fig. 2. Also, only 108 of 116 solutions provided by the additional
greedy for space are non-dominated by the reference frontier, implying that 8 of its
solutions were dominated by the solutions produced by HNSGA-II.

Two objectives

Program Reference Add. greedy HNSGA-II

Size Size nND �nND rND p

flex 52 46 46 51.80 1.58 3:6	 10�9

grep 77 77 77 77 0 1.0
gzip 23 21 20 23.60 1.05 3:2	 10�9

sed 32 32 32 32 0 1.0
space 116 116 116 116 0 1.0

flex

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05 7e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

Execution Time

C
ov

er
ag

e

Fa
ul

t C
ov

er
ag

e

lll
l

l

l

l

l Reference

Additional Greedy

Hybrid NSGA−II
(Single Execution)

sed

 0 5000 10000 15000 20000 25000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

Execution Time

C
ov

er
ag

e

Fa
ul

t C
ov

er
ag

e

lllllllllllllllllllllllllllll
l

l
l

l

l

l

l Reference

Additional Greedy

Hybrid NSGA−II
(Single Execution)

Fig. 3. Plots of Pareto-frontier for three-objective formulation. Programs with fa

S. Yoo, M. Harman / The Journal of Systems and Software 83 (2010) 689–701 697
6. Results and analysis

The results for the two-objective formulation for the five differ-
ent subjects are shown in Fig. 2. The figures are provided for illus-
tration and qualitative evaluation only. For complete quantitative
data, see Table 4. Plotted data-points for the reference Pareto-fron-
tier and the additional greedy algorithm represent the entire
respective results. With HNSGA-II, a single execution out of 20 exe-
cutions was chosen for each subject program, in order to increase
the readability. The variance in its complete results over 20 runs
can be seen in Table 4.

The results provide a positive answer to RQ1; the results for
flex and gzip show that HNSGA-II is capable of finding solutions
that are not found by the additional greedy algorithm. For both
programs, the groups of data-points on the right end, produced
by the additional greedy algorithm, indicate that after a certain
point a large amount of computational resource is required in
gzip

 0 50000 100000 150000 200000 250000 300000 350000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

Execution Time

C
ov

er
ag

e

Fa
ul

t C
ov

er
ag

e

llllllllllllllllllll
l

l

l

l

l

l Reference

Additional Greedy

Hybrid NSGA−II
(Single Execution)

space

 0 5000 10000 15000 20000 25000 30000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

Execution Time

C
ov

er
ag

e

Fa
ul

t C
ov

er
ag

e

lll

l

l

l

l

l

l

l
l

l
l

l
l

l

l

l

l

l

l l Reference

Additional Greedy

Hybrid NSGA−II
(Single Execution)

ult-history show an elbow point where the rates of both coverages change.

698 S. Yoo, M. Harman / The Journal of Systems and Software 83 (2010) 689–701
order to cover the remaining small amount of the program. How-
ever, the intermediate data-points produced by HNSGA-II suggest
that it is still possible to increase the coverage without requiring
the same amount of resource. In a testing environment with lim-
ited resource, these data-points may provide important alterna-
tives to the tester.

While it is difficult to read from the plotted graphs, Table 4
shows that some of the solutions produced by the additional gree-
dy algorithm for flex and gzip are dominated by HNSGA-II with
statistical significance. Note that, for HNSGA-II, all solutions found
Table 5
The statistical analysis of the results for three-objective formulation. For flex and
gzip, HNSGA-II still retain the intermediate solutions found in two-objective
formulation, resulting in wider Pareto-frontier than the additional greedy algorithm.

Three objectives

Program Reference Add. greedy HNSGA-II

Size Size nND �nND rND p

flex 52 46 45 53.55 1.79 3:6	 10�9

gzip 25 22 22 25.35 0.87 2:9	 10�9

sed 35 35 33 35 0 1.0
space 121 115 99 115.35 0.81 0.042

l

llllllllllllllllllllllllllll llllllllll l lllllllllllllllll

0e+00 2e+05 4e+05 6e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

flex

Execution Time

Fa
ul

t C
ov

er
ag

e

l Reference
Additional Greedy
Hybrid NSGA−II
(Single Execution)

l

lllllllllllll lll ll l lllll

0 50000 150000 250000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

gzip

Execution Time

Fa
ul

t C
ov

er
ag

e

l Reference
Additional Greedy
Hybrid NSGA−II
(Single Execution)

Fig. 4. Two-dimensional projections of Fig. 3 for flex and gzip. It can be observed
maximised.
by the algorithm are by definition non-dominated because of the
elitism; therefore, we only present the number of non-dominated
solutions, nND, and do not record the size of the Pareto-frontier sep-
arately. For these programs, the size of the reference frontier is lar-
ger than the number of non-dominated solutions produced by the
additional greedy algorithm, implying that HNSGA-II produced and
contributed solutions that dominate some of those produced by
the additional greedy.

Apart from the additional solutions found for flex and gzip,
the Pareto-frontiers produced by HNSGA-II are largely non-domi-
nated by the reference frontier, suggesting that HNSGA-II succeeds
at finding the solutions on the reference frontier. It is noticeable
that, with grep, sed and space, none of the solutions produced
by the additional greedy algorithm is dominated by the reference
frontier, meaning that HNSGA-II was not able to improve on these
solutions. This suggests that the results may indeed be close to the
optimal Pareto-frontier. Combined with RQ1, this answers RQ2 by
showing the existence of additional solutions on Pareto-frontier.
The approximations produced by the additional greedy algorithm
are close to the optimal solution. However, the hybrid approach
complements the approximations by finding intermediate solu-
tions that cannot be found by the additional greedy algorithm.

Fig. 3 shows the results for the three-objective formulation. The
3D plots display the solutions produced by the weighted-sum
l

l l l lll

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

flex

Statement Coverage

Fa
ul

t C
ov

er
ag

e

l Reference
Additional Greedy
Hybrid NSGA−II
(Single Execution)

l

l l l l llllllllllllllllllll

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

gzip

Statement Coverage

Fa
ul

t C
ov

er
ag

e

l Reference
Additional Greedy
Hybrid NSGA−II
(Single Execution)

that the fault coverage is often maximised before the statement coverage is fully

S. Yoo, M. Harman / The Journal of Systems and Software 83 (2010) 689–701 699
additional greedy algorithm and HNSGA-II. The intermediate
points that were found by HNSGA-II in two-objective formulation
are still present in the 3D plot, showing that HNSGA-II is capable
of improving upon the solutions produced by the additional greedy
algorithm in three-objective formulation as well. Table 5 also
shows that HNSGA-II contributes solutions that dominate those
produced by the additional greedy algorithm in programs flex,
gzip and space with statistical significance. Let us also note that,
while it fails to gain statistical significance, the result for sed con-
sistently produce higher �nND values than nND values by the addi-
tional greedy. These results provide a positive answer to RQ3.

In order to provide a more concrete quantitative analysis of the
answers to RQ2 and RQ3, we compare the results obtained using
tests for statistical significance. In two-objective formulation,
HNSGA-II consistently produces Pareto-frontiers of the same size
as the additional greedy algorithm for grep, sed and space. It also
produces larger Pareto-frontier than the additional greedy algo-
rithm for flex and gzip; the observed p-values for the comparison
of the frontier size are significant at the 95% level. The additional
solutions produced by HNSGA-II for flex and gzip are the inter-
mediate solutions we have observed in the plotted graphs.

For grep, sed and space, HNSGA-II consistently produces the
same number of non-dominated solutions (�nND) as the additional
greedy algorithm. The observed p-value for flex and gzip, how-
l

l

l

ll l l l lll l lll ll l ll llll l l lllllll l l

0 5000 10000 15000 20000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sed

Execution Time

Fa
ul

t C
ov

er
ag

e

l Reference
Additional Greedy
Hybrid NSGA−II
(Single Execution)

l

l

l

l

l
l
l
l
l
l

l
l

l

l

l

l

l

l

lll

0 5000 10000 15000 20000 25000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

space

Execution Time

Fa
ul

t C
ov

er
ag

e

l Reference
Additional Greedy
Hybrid NSGA−II
(Single Execution)

Fig. 5. Two-dimensional projections of Fig. 3 for sed and space. It can be observed t
maximised.
ever, accepts the alternative hypothesis at 95% significance level,
which means HNSGA-II has produced larger numbers of non-dom-
inated solutions for these subject programs.

In three-objective formulation, HNSGA-II constantly produces
Pareto-frontiers of a size larger than that of the additional greedy
algorithm for sed (i.e. �nND ¼ 35 compared to nND ¼ 33). While
the result fails to gain statistical significance, it shows that
HNSGA-II improved upon the result from the additional greedy
algorithm. For flex, gzip and space, the observed p-values are
significant at the 95% level, resulting in the acceptance of the alter-
native hypothesis (i.e. HNSGA-II produces larger number of non-
dominated solutions than the additional greedy).

Turning to the last research question, RQ4, a more qualitative
analysis is required. This is made possible by the visualisations of
the solutions plotted in Figs. 2 and 3, as well as the two-dimen-
sional projections in Figs. 4 and 5. In two-objective formulation,
it is noticeable that all the programs share similar shape of Pare-
to-frontier with an elbow point where the rate of increase in the
coverage changes abruptly. Such elbow points are considered
important in the study of Pareto-optimality. They indicate points
of particular interest where the balance of trade-offs inherent in
the objectives changes.

With flex and gzip, the changes are even more extreme in a
sense that the rightmost end of the plot is separated from the rest
l

l

l

l l l lllllllllllllllllllllllllllll

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sed

Statement Coverage

Fa
ul

t C
ov

er
ag

e

l Reference
Additional Greedy
Hybrid NSGA−II
(Single Execution)

l

l

l

l

l
l
l
l
l
l

l
l

l

l

l

l

l

l

lll

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

space

Statement Coverage

Fa
ul

t C
ov

er
ag

e

l Reference
Additional Greedy
Hybrid NSGA−II
(Single Execution)

hat the fault coverage is often maximised before the statement coverage is fully

Table 6
Average execution time for algorithms.

Program Greedy(2Obj)
(s)

HNSGA-II(2Obj)
(s)

Greedy(3Obj)
(s)

HNSGA-
II(3Obj)

flex 4.383 19.646 6.461 4 m 3.980 s
grep 11.774 20.068 18.335 10 m 1.719 s
gzip 0.481 1.120 – –
sed 1.245 2.776 1.978 2 m 4.777 s
space 2.117 10.892 3.300 21 m 57.205 s

700 S. Yoo, M. Harman / The Journal of Systems and Software 83 (2010) 689–701
of the solutions. This change of the increase rate and the resulting
flat tail may suggest a general relation between the code coverage
and the computational cost, implying that there only exist a certain
part of the software that is relatively inexpensive to cover. It is also
interesting that the similarity in the shape of Pareto-frontier is
shared across programs with incomplete test suites with less-
than-optimal total coverage (flex, grep, gzip, sed) and the pro-
gram with a rather complete test suite (space).

In three-objective formulation, there still exist elbow points in
all program. More interestingly, the change in the increase rate
does not only involve coverage vs. execution time, but fault cover-
age vs. code coverage as well, which is particularly evident in the
case with sed. It is observed that once past the elbow point, the
past fault detection rate rarely increases while the code coverage
still increase. These results provide evidence to suggest that the
faults seeded into these programs under controlled environment
is rather concentrated within parts of the software that is relatively
inexpensive to cover. However more data is required to see
whether this phenomenon is specific to the set of programs we
have chosen to study in the present paper, or whether it is generic
to test case.

Another important observation is that the weighted-sum gree-
dy algorithm performs very well, despite the known fact that it
does not necessarily cope well with multi-objective optimisation
problems. This provide evidence to suggest that, within the pro-
gram studies in the paper, there may exist a strong correlation be-
tween the code coverage and the past fault coverage. However, it is
subject to debate whether the code coverage subsumes the fault
coverage, and more data is required to see whether this is a generic
tendency between two coverage concepts.

Table 6 contains the average execution time of each algorithm.
The execution time was measured using a machine with Intel Core
Duo processor running at 2.16 GHz with 2 GB RAM. The algorithms
were implemented in Java with no explicit attempt to optimise it
for speed. For two-objective formulation, the execution time of
HNSGA-II algorithm remains under 20 s for all programs. For
three-objective formulation, the additional objective has a signifi-
cant impact, increasing the execution time up to over 20 min.

6.1. Summary of answers to the research questions

RQ1 is positively answered by the solutions found by HNSGA-II
for flex,gzip and space. For these programs, HNSGA-II produces
solutions that dominate some of the solutions produced by the
greedy approach. Particularly for flex and gzip, HNSGA-II finds
solutions that fill the large gap that existed in the Pareto-frontier
estimated by the greedy approach. These solutions make it possi-
ble to increase coverage with reduced resource requirements.
The solutions also provide important alternatives in cost-con-
strained testing environments.

RQ2 and RQ3 are answered by the statistical analysis shown in
Tables 4 and 5. The Pareto-frontier approximated by the greedy ap-
proach is mostly not dominated by the hybrid approach, suggest-
ing that the greedy approach is an efficient approximation
technique. However, HNSGA-II complements the greedy approach
by finding additional solutions that provide important alternatives.
The overhead of using HNSGA-II can vary. For a large software
product, the retest-all regression testing approach can be inhibitive
and the overhead of using HNSGA-II for more precise test suite
minimisation may be justified. For smaller software products, the
results of the empirical study suggest that greedy approach may
provide a good approximation.

In answering RQ4, the shapes of the Pareto-frontiers provide
interesting insights into correlations between code coverage, fault
coverage and cost. The universal existence of ‘elbow points’ sug-
gests that there exist points where the balance of trade-offs be-
tween coverage and cost changes dramatically. The Pareto-
frontiers of three-objective formulation also reveal how widely
the faults are located in the program code. This suggests that Par-
eto analysis is able to provide useful insights into the structure of
the solution space.
6.2. Threats to validity

Threats to internal validity concern the factors that might have
affected the multi-objective optimisation techniques used in the
paper. One potential concern involves the accuracy of the instru-
mentation of the subject software, e.g. the correctness of the cov-
erage information. To address this, a widely used and well tested
open-source profiler/compiler tool (GNU gcc and gcov) was used
to collect code coverage information. The fault coverage informa-
tion was extracted from SIR – a well-managed software archive
(Do et al., 2005). Precisely determined computational cost was
used in place of the physical execution time in order to raise the
precision of the cost information using the Valgrind profiling tool
(Nethercote and Seward, 2007).

Another potential internal threat comes from the selection,
optimisation and parameterisation of the meta-heuristic tech-
niques themselves. No particular algorithm is known to be effec-
tive for the multi-objective test suite minimisation problem.
However the genetic algorithm used in this paper is known to be
effective for a wide range of multi-objective problems (Coello
et al., 2002; Deb, 2001), and the previous work strongly suggests
that a hybrid approach between the greedy algorithm and the ge-
netic algorithm will be well-suited for the problem. The algorithms
used in the present paper can serve as a basis for the future re-
search. Systematic parameterisation of meta-heuristic optimisa-
tion lies beyond the scope of this paper. This is a current topic in
the optimisation community, which seeks hyper-heuristics (Burke
et al., 2003).

Usually, evaluation of a hybrid algorithm involves a comparison
to its original components. In this paper, the elitism in NSGA-II
guaranteed that any solution obtained by HNSGA-II will not be
dominated by those obtained by NSGA-II and, therefore, a direct
comparison to NSGA-II was not performed.

Threats to external validity concern the conditions that limit
generalisation from the result. The primary concern for this paper
is the representativeness of the subjects that were studied. This
threat can be addressed only by additional research using a wider
range of software artifacts and optimisation techniques.
7. Conclusion and future work

This paper introduced the concept of Pareto efficient multi-
objective optimisation to the problem of test suite minimisation.
It described the benefits of Pareto efficient multi-objective optimi-
sation, and presented an empirical study that investigated the rel-
ative effectiveness of two algorithms for Pareto efficient multi-
objective test suite minimisation. The two-objective formulation
of the existing test case prioritisation problem, in particular, shows
that multi-objective approach can lead to more efficient testing

S. Yoo, M. Harman / The Journal of Systems and Software 83 (2010) 689–701 701
decisions. The empirical results obtained reveal that greedy algo-
rithms (which perform well for single-objective formulations) are
not always Pareto efficient in the multi-objective paradigm, moti-
vating the study of meta-heuristic search techniques. Future work
will consider a wider range of software artifacts with different
meta-heuristic multi-objective optimisation techniques.
References

Bates, S., Horwitz, S., 1993. Incremental program testing using program dependence
graphs. In: Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. ACM Press, pp. 384–396.

Binkley, D., 1995. Reducing the cost of regression testing by semantics guided test
case selection. In: Proceedings of the International Conference on Software
Maintenance (ICSM 1995). IEEE Computer Society, pp. 251–260.

Burke, E.K., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S., 2003. Hyper-
heuristics: An Emerging Direction in Modern Search Technology. Kluwer. pp.
457–474 (Chapter 16).

Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B., 2002. Evolutionary
Algorithms for Solving Multi-Objective Problems. Kluwer Academic
Publishers, New York.

Collette, Y., Siarry, P., 2004. Multiobjective Optimization: Principles and Case
Studies. Springer, Oxford, UK.

Deb, K., 2001. Multi-Objective Optimization Using Evolutionary Algorithms. Wiley,
Chichester, UK.

Deb, K., Agrawal, S., Pratab, A., Meyarivan, T., 1917. A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: NSGA-II.
Proceedings of the Parallel Problem Solving from Nature VI Conference.
Lecture Notes in Computer Science, vol. 1917. Springer, Paris, France, pp.
849–858.

Do, H., Rothermel, G., Kinneer, A., 2004. Empirical studies of test case prioritization
in a junit testing environment. In: Proceedings of 15th International
Symposium on Software Reliability Engineering (ISSRE 2004). IEEE Computer
Society Press, pp. 113–124.

Do, H., Elbaum, S.G., Rothermel, G., 2005. Supporting controlled experimentation
with testing techniques: an infrastructure and its potential impact. Empirical
Software Engineering 10 (4), 405–435.

Elbaum, S.G., Malishevsky, A.G., Rothermel, G., 2000. Prioritizing test cases for
regression testing. In: Proceedings of International Symposium on Software
Testing and Analysis (ISSTA 2000). ACM Press, pp. 102–112.

Elbaum, S.G., Malishevsky, A.G., Rothermel, G., 2001. Incorporating varying test
costs and fault severities into test case prioritization. In: Proceedings of the
International Conference on Software Engineering (ICSE 2001). ACM Press, pp.
329–338.

Fonteix, C., Massebeuf, S., Pla, F., Kiss, L.N., 2004. Multicriteria optimization of an
emulsion polymerization process. European Journal of Operational Research
153 (2), 350–359.

Fudenberg, D., Tirole, J., 1983. Game Theory. MIT Press.
Garey, M.R., Johnson, D.S., 1979. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman and Company.
Halloran, T.J., Scherlis, W.L., 2002. High quality and open source software practices.

In: Meeting Challenges and Surviving Success: Second Workshop on Open
Source Software Engineering.

Harrold, M.J., Gupta, R., Soffa, M.L., 1993. A methodology for controlling the size of a
test suite. ACM Transactions on Software Engineering and Methodology 2 (3),
270–285.

Highsmith, J., Cockburn, A., 2001. Agile software development: the business of
innovation. Computer 34 (9), 120–127.

Hutchins, M., Foster, H., Goradia, T., Ostrand, T., 1994. Experiments of the
effectiveness of dataflow- and controlflow-based test adequacy criteria. In:
Proceedings of the 16th International Conference on Software Engineering (ICSE
1994). IEEE Computer Society Press, pp. 191–200.
Johnson, D.S., 1973. Approximation algorithms for combinatorial problems. In:
Proceedings of the Fifth Annual ACM Symposium on Theory of Computing
(STOC 1973). ACM Press, pp. 38–49.

Kicinger, R., Arciszewski, T., 2004. Multiobjective evolutionary design of steel
structures in tall buildings. In: Proceedings of the AIAA First Intelligent Systems
Technical Conference, Chicago, IL, September 20–23, 2004, AIAA 2004.
American Institute of Aeronautics and Astronautics Press, Reston, VA, p. 6438.

Leung, H.K.N., White, L., 1989. Insight into regression testing. In: Proceedings of
International Conference on Software Maintenance (ICSM 1989). IEEE Computer
Society Press, pp. 60–69.

Li, Z., Harman, M., Hierons, R.M., 2007. Search Algorithms for Regression Test Case
Prioritization. IEEE Transactions on Software Engineering 33 (4), 225–237.

Malishevsky, A.G., Ruthruff, J.R., Rothermel, G., Elbaum, S., 2006. Cost-cognizant test
case prioritization. Tech. Rep. TR-UNL-CSE-2006-0004, Department of
Computer Science and Engineering, University of Nebraska-Lincoln, March.

Nethercote, N., Seward, J., 2007. Valgrind: a program supervision framework. In:
Proceedings of ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2007). ACM Press, pp. 89–100.

Obayashi, S., 1998. Multidisciplinary design optimization of aircraft wing planform
based on evolutionary algorithms. Proceedings of the 1998 IEEE International
Conference on Systems, Man, and Cybernetics, vol. 4. IEEE Computer Society
Press, La Jolla, California, pp. 3148–3153.

Rothermel, G., Harrold, M.J., 1996. Analyzing regression test selection techniques.
IEEE Transactions on Software Engineering 22 (8), 529–551.

Rothermel, G., Harrold, M.J., Ostrin, J., Hong, C., 1998. An empirical study of the
effects of minimization on the fault detection capabilities of test suites. In:
Proceedings of International Conference on Software Maintenance (ICSM 1998).
IEEE Computer Society Press, pp. 34–43.

Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J., 1999. Test case prioritization: an
empirical study. In: Proceedings of International Conference on Software
Maintenance (ICSM 1999). IEEE Computer Society Press, pp. 179–188.

Szidarovsky, F., Gershon, M.E., Dukstein, L., 1986. Techniques for Multiobjective
Decision Making in Systems Management. Elsevier, New York.

Walcott, K.R., Soffa, M.L., Kapfhammer, G.M., Roos, R.S., 2006. Time aware test suite
prioritization. In: Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA 2006). ACM Press, pp. 1–12.

Wong, W.E., Horgan, J.R., London, S., Mathur, A.P., 1998. Effect of test set
minimization on fault detection effectiveness. Software Practice and
Experience 28 (4), 347–369.

Yau, S.S., Kishimoto, Z., 1987. A method for revalidating modified programs in the
maintenance phase. In: Proceedings of International Computer Software and
Applications Conference (COMPSAC 1987). IEEE Computer Society Press, pp.
272–277.

Yoo, S., Harman, M., 2007. Pareto efficient multi-objective test case selection. In:
Proceedings of International Symposium on Software Testing and Analysis
(ISSTA 2007). ACM Press, pp. 140–150.

Shin Yoo received his BSc in Computer Science at Seoul National University and
finished his MSc and PhD in Computer Science at King’s College London. His
research interests include the use of meta-heuristic optimisation for regression
testing and test data generation. He has served in program committees of Inter-
national Symposium on Search-Based Software Engineering (SSBSE) and Interna-
tional Workshop on Search-Based Software Testing (SBST). He is currently a post-
doc researcher in the Department of Computer Science at King’s College London.

Mark Harman is professor of Software Engineering in the Department of Computer
Science at King’s College London. He is widely known for work on source code
analysis and testing and he was instrumental in the founding of the field of Search
Based Software Engineering, a topic on which he has given 14 keynote invited talks.
Professor Harman is the author of over 150 refereed publications, on the editorial
board of 7 international journals and has served on 90 programme committees. He
is director of the CREST centre at King’s College London. More details are available
from the CREST website (http://crest.dcs.kcl.ac.uk/).

http://crest.dcs.kcl.ac.uk/

	Using hybrid algorithm for Pareto efficient multi-objective test suite minimisation
	Introduction
	Background
	Multi-objective paradigm
	Pareto-optimality
	Properties of two-objective coverage based selection
	The relationship between multi-objective selection and prioritisation

	Greedy algorithm
	Empirical studies
	Subjects
	Objectives
	Algorithms
	Hybrid multi-objective algorithm
	Greedy algorithms

	Evaluation mechanisms
	Research questions

	Results and analysis
	Summary of answers to the research questions
	Threats to validity

	Conclusion and future work
	References

