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Abstract

Regression testing is a testing activity that is performed to provide confidence
that changes do not harm the existing behaviour of the software. Test suites tend
to grow in size as software evolve, often making it too costly to execute entire
test suites. A number of different approaches have been studied to maximise the
value of the accrued test suite: minimisation, selection and prioritisation. Test suite
minimisation seeks to eliminate redundant test cases in order to reduce the number
of tests to run. Test case selection seeks to identify the test cases that are relevant
to some set of recent changes. Test case prioritisation seeks to order test cases in
such a way that early fault detection is maximised. This paper surveys each area
of minimisation, selection and prioritisation technique and discusses open problems
and potential directions for future research.

1 Introduction

Regression testing is performed when changes are made to existing software; the purpose
of regression testing is to provide confidence that the newly introduced changes do not
obstruct the behaviours of the existing, unchanged part of the software. It is a complex
procedure that is all the more challenging because of some of the recent trends in soft-
ware development paradigms. For example, the component-based software development
method tends to result in use of many black-box components, often adopted from a
third-party. Any change in the third-party components may interfere with the rest of
the software system, yet it is hard to perform regression testing because the internals
of the third-party components are not known to their users. The shorter life-cycle of
software development, such as the one suggested by the agile programming discipline,
also imposes restrictions and constraints on how regression testing can be performed
within limited resources.

Naturally, the most straightforward approach to this problem is to simply execute all
the existing test cases in the test suite; this is called a retest-all approach. However, as
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software evolves, the test suite tends to grow, which means it may be prohibitively ex-
pensive to execute the entire test suite. This limitation forces consideration of techniques
that seek to reduce the effort required for regression testing in various ways.

A number of different approaches have been studied to aid the regression testing
process. The three major branches include test suite minimisation, test case selection
and test case prioritisation. Test suite minimisation is a process that seeks to identify
and then eliminate the obsolete or redundant test cases from the test suite. Test case
selection deals with the problem of selecting a subset of test cases that will be used
to test the changed parts of the software. Finally, test case prioritisation concerns the
identification of the ‘ideal’ ordering of test cases that maximises desirable properties,
such as early fault detection. Existing empirical studies show that the application of
these techniques can be cost-effective.

This paper surveys work undertaken in these three related branches of regression
testing. Section 2 introduces the nomenclature. Section 3 describes different test suite
minimisation techniques as well as their efficiency and effectiveness. Section 4 examines
test case selection techniques according to the specific analysis technique used, and
evaluates the strengths and weaknesses of each approach. Section 5 introduces test
case prioritisation techniques. Section 6 introduces meta-empirical studies concerning
evaluation methodologies and cost-effectiveness analysis of regression testing techniques.
Section 7 presents a summary of the field and identifies trends and issues. Section 8
introduces some gaps in the existing literature, thereby suggesting potential directions
for future. Finally, Section 9 concludes.

1.1 Motivation

When writing a survey paper there are two natural questions one has to ask:

1. Why is this the right set of topics for a survey?

2. Is there already a recent survey in this area?

The first question concerns the motivation for the scope chosen for the survey, while
the second concerns the practicality of having such a survey, once a suitable scope is
established. For this paper the scope chosen has been topics on test suite minimisation,
Regression Test Selection (RTS) and test case prioritisation. The reason for this scope
is that these three topics are related by a common thread of optimisation; each is an
approach to take an existing pool of test cases and to optimise the way in which they
are applied.

This distinguishes these topics from test case generation, which seeks to create pools
of test data. The three topics form a coherent set of approaches, each of which shares
the common starting point that the tester has a pool of test cases that is simply too
large to allow all cases to be applied to the System Under Test (SUT). Each of the three
approaches denotes a different way of coping with this problem of scale.

The relationship between the three techniques goes deeper than the mere shared
application to pools of test data. It is not only the sets of problems addressed by each
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that exhibit overlap, but also the solution approaches that are applied. There is an
intimate relationship between solutions to the three related problems, as this survey
reveals. For instance, one way of selecting (or minimising) a set of n test cases from a
test pool would be to prioritise the whole set and pick the first n in priority order. Of
course, there may be more optimal choices, since prioritisation has to contend with any
possible choice of n, whereas selection merely requires that an optimal choice is found
for a given value of n.

Answering the second question, the closest previous papers to this survey are a survey
of Regression Test Selection (RTS) techniques undertaken in 1996 [1]. No previous survey
on regression testing considered minimisation, selection and prioritisation collectively. In
this survey, we claim that these classes of techniques are closely related to each other
and denote a coherent sub-area of study. Our survey also includes recent applications of
techniques that were surveyed in the earlier work of Rothermel and Harrold [1]. There
are existing comparative studies on RTS [2, 3, 4, 5, 6], but these papers only concern a
small number of specific RTS techniques and do not provide an overview of the field.

1.2 Selection of Papers

This survey aims to collect and consider papers that deal with three regression testing
techniques: test suite minimisation, regression test selection and test case prioritisation.
Our intention is not to undertake a systematic review, but rather to provide a broad
state-of-the-art view on these related fields. Many different approaches have been pro-
posed to aid regression testing, which has resulted in a body of literature that is spread
over a wide variety of domains and publication venues. The majority of surveyed lit-
erature has been published in the software engineering domain, and especially in the
software testing and software maintenance literature. However, the regression testing
literature also overlaps with those of programming language analysis, empirical software
engineering and software metrics.

Therefore, we tried to base our paper selection criteria on the problems considered in
papers, while focusing on the specific topics of minimisation, selection and prioritisation.
The formal definitions of these problems are presented in Section 2.2. The list of the
selected papers is present in the Appendix. We have excluded fast abstracts and short
papers.

2 Background

This section introduces the basic concepts and definitions that form a nomenclature of
regression testing and minimisation, selection and prioritisation techniques.

2.1 Regression Testing

Regression testing is performed between two different versions of software in order to
provide confidence that the newly introduced features of the System Under Test (SUT)
do not interfere with the existing features. While the exact details of the modifications
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made to SUT will often be available, note that they may not be easily available in some
cases, such as when the new version is written in a different programming language or
when the source code is unavailable.

The following notations are used to describe concepts in the context of regression
testing. Let P be the current version of the program under test, and P ′ be the next
version of P . Let S be the current set of specifications for P , and S′ be the set of
specifications for P ′. T is the existing test suite. Individual test cases will be denoted
by lower case: t. P (t) stands for the execution of P using t as input.

2.2 Distinction between Classes of Techniques

It is necessary at this point to establish a clear terminological distinction between the
different classes of techniques described in the paper. Test suite minimisation techniques
seek to reduce the size of test suite by eliminating redundant test cases from the test
suite. Minimisation is sometimes also called as ‘test suite reduction’, meaning that the
elimination is permanent. However, these two concepts are essentially interchangeable
because all reduction techniques can be used to produce a temporary subset of the test
suite whereas any minimisation techniques can be used to permanently eliminate test
cases. More formally, following Rothermel et al. [7], we define test suite minimisation as
follows:

Definition 1 Test Suite Minimisation Problem

Given: A test suite, T , a set of test-case requirements {r1, . . . , rn}, that must be
satisfied to provide the desired ‘adequate’ testing of the program, and subsets of T ,
T1, . . . , Tn, one associated with each of the ris such that any one of the test cases tj
belonging to Ti can be used to achieve requirement ri.

Problem: Find a representative set, T ′, of test cases from T that satisfies all ris.

The testing criterion is satisfied when every test-case requirement in {r1, . . . , rn} is
satisfied. A test-case requirement, ri, is satisfied by any test case, tj , that belongs to
Ti, a subset of T . Therefore, the representative set of test cases is the hitting set of Tis.
Furthermore, in order to maximise the effect of minimisation, T ′ should be the minimal
hitting set of Tis. The minimal hitting-set problem is an NP-complete problem as is the
dual problem of the minimal set cover problem [8].

While test case selection techniques also seek to reduce the size of test suite, the
majority of selection techniques are modification-aware. That is, the selection is not
only temporary (i.e. specific to the current version of the program), but also focused on
the identification of the modified parts of the program. Test cases are selected because
they are relevant to the changed parts of SUT, which typically involves a white-box static
analysis of the program code. Throughout this survey, we restrict what we mean by ‘test
case selection problem’ to this modification-aware problem. It is also often referred to as
the Regression Test-case Selection (RTS) problem. More formally, following Rothermel
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and Harrold [1], we define the selection problem as follows (refer to Section 4 for more
details on how the subset T ′ is selected):

Definition 2 Test Case Selection Problem

Given: The program, P , the modified version of P , P ′, and a test suite, T .

Problem: Find a subset of T , T ′, with which to test P ′.

Finally, test case prioritisation concerns ordering test cases for early maximisation of
some desirable properties, such as the rate of fault detection. It seeks to find the optimal
permutation of the sequence of test cases. It does not involve selection of test cases, and
assumes that all the test cases may be executed in the order of the permutation it
produces, but that testing may be terminated at some arbitrary point during the testing
process. More formally, we define the prioritisation problem as follows:

Definition 3 Test Case Prioritisation Problem

Given: a test suite, T , the set of permutations of T , PT , and a function from PT
to real numbers, f : PT → R.

Problem: to find T ′ ∈ PT such that (∀T ′′)(T ′′ ∈ PT )(T ′′ 6= T ′)[f(T ′) ≥ f(T ′′)].

This survey focuses on papers that consider one of these three problems. Through-
out the paper, these three techniques will be collectively referred to as ‘regression test
techniques’.

2.3 Classification of Test Cases

Leung and White present the first systematic approach to regression testing by classify-
ing types of regression testing and test cases [9]. Regression testing can be categorised
into progressive regression testing and corrective regression testing. Progressive regres-
sion testing involves changes of specifications in P ′, meaning that P ′ should be tested
against S′. On the other hand, corrective regression testing does not involve changes in
specifications, but only in design decisions and actual instructions. It means that the
existing test cases can be reused without changing their input/output relation.

Leung and White categorise test cases into five classes. The first three classes consist
of test cases that already exist in T .

• Reusable: reusable test cases only execute the parts of the program that remain
unchanged between two versions, i.e. the parts of the program that are common
to P and P ′. It is unnecessary to execute these test cases in order to test P ′;
however, they are called reusable because they may still be retained and reused for
the regression testing of the future versions of P .
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• Retestable: retestable test cases execute the parts of P that have been changed
in P ′. Thus retestable test cases should be re-executed in order to test P ′.

• Obsolete: test cases can be rendered obsolete because 1) their input/output re-
lation is no longer correct due to changes in specifications, 2) they no longer test
what they were designed to test due to modifications to the program, or 3) they
are ‘structural’ test cases that no longer contribute to structural coverage of the
program.

The remaining two classes consist of test cases that have yet to be generated for the
regression testing of P ′.

• New-structural: new-structural test cases test the modified program constructs,
providing structural coverage of the modified parts in P ′.

• New-specification: new-specification test cases test the modified program spec-
ifications, testing the new code generated from the modified parts of the specifica-
tions of P ′.

Leung and White go on to propose a retest strategy, in which a test plan is con-
structed based on the identification of changes in the program and classification of test
cases. Although the definition of a test plan remains informal, it provides a basis for
the subsequent literature; it is especially of more importance to regression test case se-
lection techniques, since these techniques essentially concern the problem of identifying
retestable test cases. Similarly, test suite minimisation techniques concern the identifi-
cation of obsolete test cases. Test case prioritisation also can be thought of as a more
sophisticated approach to the construction of a test plan.

It should be noted that the subsequent literature focusing on the idea of selecting
and reusing test cases for regression testing is largely concerned with corrective regres-
sion testing only. For progressive regression testing, it is very likely that new test cases
are required in order to test the new specifications. So far this aspect of the overall
regression testing picture has been a question mainly reserved for test data generation
techniques. However, the early literature envisages a ‘complete’ regression testing strat-
egy that should also utilise test data generation techniques.

3 Test Suite Minimisation

Test suite minimisation techniques aim to identify redundant test cases and to remove
them from the test suite in order to reduce the size of the test suite. The minimisation
problem described by Definition 1 can be considered as the minimal hitting set problem.

Note that the minimal hitting-set formulation of test suite minimisation problem de-
pends on the assumption that each ri can be satisfied by a single test case. In practice,
this may not be true. For example, suppose that the test-case requirement is functional
rather than structural and, therefore, requires more than one test case to be satisfied.
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The minimal hitting-set formulation no longer holds. In order to apply the given for-
mulation of the problem, a higher level of abstraction would be required so that each
test-case requirement can be met with a single test scenario composed of relevant test
cases.

3.1 Heuristics

The NP-completeness of the test suite minimisation problem encourages the application
of heuristics; previous work on test case minimisation can be regarded as the development
of different heuristics for the minimal hitting set problem [10, 11, 12, 13].

Horgan and London applied linear programming to the test case minimisation prob-
lem in their implementation of a data-flow based testing tool, ATAC [12, 14]. Harrold
et al. presented a heuristic for the minimal hitting set problem with the worst case
execution time of O(|T | ∗max(|Ti|)) [11]. Here |T | represents the size of the original test
suite, and max(|Ti|) represents the cardinality of the largest group of test cases among
T1, . . . , Tn.

Chen and Lau applied GE and GRE heuristics and compared the results to that of
HGS (Harrold-Gupta-Soffa) heuristic [10]. The GE and GRE heuristics can be thought
of as variations of greedy algorithms, which is known to be an effective heuristic for
the set cover problem [15]. Chen et al. defined essential test cases as the opposite of
redundnt test cases. If a test-case requirement ri can be satisfied by one and only one
test case, the test case is an essential test case. On the other hand, if a test case satisfies
only a subset of test-case requirements satisfied by another test case, it is a redundant
test case. Based on these concepts, the GE and GRE heuristics can be summarised as
follows:

• GE heuristic: first select all essential test cases in the test suite; for the remaining
test-case requirements, use the additional greedy algorithm, i.e. select the test case
that satisfies the maximum number of unsatisfied test-case requirements.

• GRE heuristic: first remove all redundant test cases in the test suite, which may
make some test cases essential; then perform the GE heuristic on the reduced test
suite.

Their empirical comparison suggested that no single technique is better than the
other, which is natural considering the fact that the techniques concerned are heuristics
rather than precise algorithms.

Offutt et al. also treated the test suite minimisation problem as the dual of the
minimal hitting set problem, i.e., the set cover problem [13]. Their heuristics can also
be thought of as variations of the greedy approach to the set cover problem. However,
they adopted several different orderings of consideration of test cases instead of the fixed
ordering in the greedy approach. Their empirical study applied their techniques to a
mutation-score-based test case minimisation, which reduced sizes of test suites by over
30%.
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Test Case Testing Requirements

r1 r2 r3 r4 r5 r6

t1 x x x
t2 x x
t3 x x
t4 x x
t5 x

Table 1: Example test suite taken from Tallam and Gupta [17]. The early selection made
by the greedy approach, t1, is rendered redundant by subsequent selections, {t2, t3, t4}.

Whereas other minimisation approaches primarily considered code-level structural
coverage, Marré and Bertolino formulated test suite minimisation as a problem of finding
a spanning set over a graph [16]. They represented the structure of the SUT using
a decision-to-decision graph (ddgraph). A ddgraph is a more compact form of the
normal CFG since it omits any node that has one entering edge and one exiting edge,
making it an ideal representation of the SUT for branch coverage. They also mapped
the result of data-flow analysis onto the ddgraph for testing requirements such as def-use
coverage. Once testing requirements are mapped to entities in the ddgraph, the test suite
minimisation problem can be reduced to the problem of finding the minimal spanning
set.

Tallam and Gupta developed the greedy approach further by introducing the delayed
greedy approach, which is based on the Formal Concept Analysis of the relation between
test cases and testing requirements [17]. A potential weakness of the greedy approach
is that the early selection made by the greedy algorithm can eventually be rendered
redundant by the test cases subsequently selected. For example, consider the test suite
and testing requirements depicted in Table 1, taken from Tallam and Gupta [17]. The
greedy approach will select t1 first as it satisfies the maximum number of testing re-
quirements, and then continues to select t2, t3 and t4. However, after the selection of
t2, t3 and t4, t1 is rendered redundant. Tallam et al. tried to overcome this weakness by
constructing a concept lattice, a hierarchical clustering based on the relation between
test cases and testing requirements. Tallam et al. performed two types of reduction on
the concept lattice. First, if a set of requirements covered by ti is a superset of the set
of requirements covered by tj , then tj is removed from the test suite. Second, if a set of
test cases that cover requirement ri is a subset of the set of test cases that cover require-
ment rj , requirement ri is removed. The concept lattice is a natural representation that
supports the identification of these test cases. Finally, the greedy algorithm is applied to
the transformed set of test cases and testing requirements. In the empirical evaluation,
the test suites minimised by this ‘delayed greedy’ approach were either the same size or
smaller than those minimised by the classical greedy approach or by the HGS heuristic.

Jeffrey and Gupta extended the HGS heuristic so that certain test cases are selectively
retained [18, 19]. This ‘selective redundancy’ is obtained by introducing a secondary set
of testing requirements. When a test case is marked as redundant with respect to the
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first set of testing requirements, Jeffrey and Gupta considered whether the test case is
also redundant with respect to the second set of testing requirements. If it is not, the
test case is still selected, resulting in a certain level of redundancy with respect to the
first set of testing requirements. The empirical evaluation used branch coverage as the
first set of testing requirements and all-uses coverage information obtained by data-flow
analysis. The results were compared to two versions of the HGS heuristic, based on
branch coverage and def-use coverage. The results showed that, while their technique
produced larger test suites, the fault detection capability was better preserved compared
to single-criterion versions of the HGS heuristic.

Whereas the selective redundancy approach only considers the secondary criterion
when a test case is marked as being redundant by the first criterion, Black et al. con-
sidered a bi-criteria approach that takes into account both testing criteria [20]. They
combined the def-use coverage criterion with the past fault detection history of each test
case using a weighted-sum approach and used Integer Linear Programming (ILP) opti-
misation to find subsets. The weighted-sum approach uses weighting factors to combine
multiple objectives. For example, given a weighting factor α and two objectives o1 and
o2, the new and combined objective, o′, is defined as follows:

o′ = αo1 + (1− α)o2

Consideration of a secondary objective using the weighted-sum approach has been
used in other minimisation approaches [21] and prioritisation approaches [22]. Hsu and
Orso also considered the use of an ILP solver with multi-criteria test suite minimisa-
tion [21]. They extended the work of Black et al. by comparing different heuristics for a
multi-criteria ILP formulation: the weighted-sum approach, the prioritised optimisation
and a hybrid approach. In prioritised optimisation, the human user assigns a priority to
each of the given criteria. After optimising for the first criterion, the result is added as
a constraint, while optimising for the second criterion, and so on. However, one possi-
ble weakness shared by these approaches is that they require additional input from the
user of the technique in the forms of weighting coefficients or priority assignment, which
might be biased, unavailable or costly to provide.

Contrary to these approaches, Yoo and Harman treated the problem of time-aware
prioritisation as a multi-objective optimisation problem [23]. Instead of using a fitness
function that combines selection and prioritisation, they used a Pareto-efficient multi-
objective evolutionary algorithm to simultaneously optimise for multiple objectives. The
resulting Pareto-frontier not only provides solutions but also allows the tester to observe
trade-offs between objectives, providing additional insights.

McMaster and Memon proposed a test suite minimisation technique based on call-
stack coverage. A test suite is represented by a set of unique maximum depth call stacks;
its minimised test suite is a subset of the original test suite whose execution generates
the same set of unique maximum depth call stacks. Note that their approach is different
from simply using function coverage for test suite minimisation. Consider two test cases,
t1 and t2, respectively producing call stacks c1 =< f1, f2, f3 > and c2 =< f1, f2 >. With
respect to function coverage, t2 is rendered redundant by t1. However, McMaster and
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Memon regard c2 to be unique from c1. For example, it may be that t2 detects a failure
that prevents the invocation of function f3. Once the call-stack coverage information is
collected, the HGS heuristic has been applied. McMaster and Memon later applied the
same approach to Graphical User Interface (GUI) testing [24]. It was also implemented
for object-oriented systems by Smith et al. [25].

While most of test suite minimisation techniques are based on some kind of cover-
age criteria, there do exist interesting exceptions. Harder et al. approached test suite
minimisation using operational abstraction [26]. An operational abstraction is a formal
mathematical description of program behaviour. While it is identical to formal speci-
fication in form, an operational abstraction expresses dynamically observed behaviour.
Harder et al. use the widely studied Daikon dynamic invariant detector [27] to obtain
operational abstractions. Daikon requires executions of test cases for the detection of
possible program invariants. Test suite minimisation is proposed as follows: if the re-
moval of a test case does not change the detected program invariant, it is rendered
as redundant. They compred the operational abstraction approach to branch coverage
based minimisation. While their approach resulted in larger test suites, it also main-
tained higher fault detection capability. Moreover, Harder et al. also showed that cover-
age adequately minimised test suites can be often improved by considering operational
abstraction as an additional minimisation criterion.

Leitner et al. propose a somewhat different version of the minimisation problem [28].
They start from the assumption that they already have a failing test case, which is too
complex and too long for the human tester to understand. Note that this is often the
case with randomly generated test data; the test case is often simply too complex for the
human to establish the cause of failure. The goal of minimisation is to produce a shorter
version of the test case; the testing requirement is that the shorter test case should
still reproduce the failure. This minimisation problem is interesting because there is no
uncertainty about the fault detection capability; it is given as a testing requirement.
Leitner et al. applied the widely studied delta-debugging technique [29] to reduce the
size of the failing test case.

Schroeder and Korel proposed an approach of test suite minimisation for black-box
software testing [30]. They noted that the traditional approach of testing black-box
software with combinatorial test suites may result in redundancy since certain inputs to
the software may not affect the outcome of the output being tested. They first identified,
for each output variable, the set of input variables that can affect the outcome. Then,
for each output variable, an individual combinatorial test suite is generated with respect
to only those input variables that may affect the outcome. The overall test suite is a
union of all combinatorial test suites for individual output variables. Note that this has
a strong connection to the concept of Interaction Testing, which is discussed in detail in
Section 5.2.

Other work has focused on model-based test suite minimisation [31, 32]. Vaysburg
et al. introduced a minimisation technique for model based test suites that uses depen-
dence analysis of Extended Finite State Machines (EFSMs) [31]. Each test case for the
model is a sequence of transitions. Through dependence analysis of the transition being
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tested, it is possible to identify the transitions that affect the tested transition. In other
words, testing a transition T can be thought of as testing a set of other transitions that
affect T . If a test case tests the same set of transitions as some other, then it is redun-
dant. Korel et al. extended this approach by combining the technique with automatic
identification of changes in the model [32]. The dependence analysis based minimisation
technique was applied to the set of test cases that were identified to execute the modified
transitions. Chen et al. extended Korel’s model-based approach to incorporate more
complex representations of model changes [33].

A risk shared by most test suite minimisation techniques is that a discarded test case
may detect a fault. In some domains, however, test suite minimisation techniques can
enjoy the certainty of guaranteeing that discarding a test case will not reduce the fault
detection capability. Anido et al. investigated test suite minimisation for testing Finite
State Machines (FSMs) in this context [34]. When only some components of the SUT
need testing, the system can be represented as a composition of two FSMs: component
and context. The context is assumed to be fault-free. Therefore, certain transitions of
the system that concern only the context can be identified to be redundant. Under the
‘testing in context’ assumption (i.e. the context is fault-free), it follows that it is possible
to guarantee that a discarded test case cannot detect faults.

Kaminski and Ammann investigated the use of a logic criterion to reduce test suites
while guaranteeing fault detection in testing predicates over Boolean vairables [35].
From the formal description of fault classes, it is possible to derive a hierarchy of fault
classes [36]. From the hierarchy, it follows that the ability to detect a class of faults
may guarantee the detection of another class. Therefore, the size of a test suite can be
reduced by executing only those test cases for the class of faults that subsume another
class, whenever this is feasible.

3.2 Impact on Fault Detection Capability

Although the techniques discussed so far reported reduced test suites, there has been
a persistent concern about the effect that the test suite minimisation has on the fault-
detection capability of test suites. Several empirical studies were conducted to investigate
this effect [7, 37, 38, 39].

Wong, Horgan, London and Mathur studied ten common Unix programs using ran-
domly generated test suites; this empirical study is often referred to as the WHLM
study [38]. To reduce the size of the test suites, they used the ATAC testing tool devel-
oped by Horgan and London [12, 14]. First, a large pool of test cases was created using
a random test data generation method. From this pool, several test suites with different
total block coverage were generated. After generating test suites randomly, artificial
faults were seeded into the programs. These artificial faults were then categorised into 4
groups. Faults in Quartile-I can be detected by [0−25)% of the test cases from the orig-
inal test suite; the percentage for Quartile-II, III, and IV is [25− 50)%, [50− 75)%, and
[75− 100]% respectably. Intuitively, faults in Quartile-I are harder to detect than those
in Quartile-IV. The effectiveness of the minimisation itself was calculated as follows:
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(1− number of test cases in the reduced test suite
number of test cases in the original test suite

) ∗ 100%

The impact of test suite minimisation were measured by calculating the reduction in
fault detection effectiveness as follows:

(1− number of faults detected by the reduced test suite
number of faults detected by the original test suite

) ∗ 100%

By categorising the test suites (by different levels of block coverage) and test cases
(by difficulty of detection), they arrived at the following observation. First, the reduc-
tion in size is greater in test suites with a higher block coverage in most cases. This
is natural considering that test suites with higher block coverage will require more test
cases in general. The average size reduction for test suites with (50-55)%, (60-65)%,(70-
75)%,(80-85)%, and (90-95)% block coverage was 1.19%, 4.46%, 7.78%, 17.44%, 44.23%
respectably. Second, the fault detection effectiveness was decreased by test case reduc-
tion, but the overall decrease in fault detection effectiveness is not excessive and could
be regarded as worthwhile for the reduced cost. The average effectiveness reduction
for test suites with (50-55)%, (60-65)%,(70-75)%,(80-85)%, and (90-95)% block coverage
was 0%, 0.03%, 0.01%, 0.38%, 1.45% respectably. Third, test suite minimisation did
not decrease the fault detection effectiveness for faults in Quartile-IV at all, meaning all
faults in Quartile-IV had been detected by the reduced test suite. The average decrease
in fault detection effectiveness for Quartile-I, II, and III was 0.39%, 0.66%, and 0.098%
respectably. The WHLM study concluded that, if the cost of testing is directly related
to the number of test cases, then the use of the reduction technique is recommended.

Wong, Horgan, London and Pasquini followed up on the WHLM study by applying
the ATAC tool to test suites of another, bigger C program; this empirical study is often
referred to as the WHLP study [39]. The studied program, space, was an interpreter for
the ADL(Array Description Language) developed by the European Space Agency. In the
WHLP study, test cases were generated, not randomly, but from the operational profiles
of space; that is, each test case in test case pool was generated so that it matches an
example of real usage of space recorded in an operational profile. From the test case
pool, different types of test suites were generated. The first group of test suites were
constructed by randomly choosing a fixed number of test cases from the test case pool.
The second group of test suites were constructed by choosing test cases from the test case
pool until a predetermined block coverage target was met. The faults in the program
were not artificial, but real faults that were retrieved from development logs.

The results of the WHLP study confirmed the findings of the WHLM study. As in
the WHLM study, test suites with low initial block coverage (50%, 55%, 60%, and 65%)
showed no decrease in fault detection effectiveness after test suite minimisation. For
both the fixed size test suites and fixed coverage test suites, the application of the test
case reduction technique did not affect the fault detection effectiveness in any significant
way; the average effectiveness reduction due to test suite minimisation was less than
7.28%.
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Program Regression Equation r2

totinfo y = 13.82 lnx+ 30.31 0.75
schedule1 y = 15.38 lnx+ 24.20 0.80
schedule2 y = 15.20 lnx+ 25.19 0.80
tcas y = 24.31 lnx− 3.95 0.88
printtok1 y = 12.76 lnx+ 31.69 0.80
printtok2 y = 12.11 lnx+ 34.22 0.78
replace y = 16.73 lnx+ 7.07 0.85

Table 2: Regression analysis on the relation between the original test suite size(x) and
the test suite size reduction effectiveness(y), taken from Rothermel et al. [37].

While both the WHLM and WHLP studies showed that the impact of test suite
minimisation on fault detection capability was insignificant, other empirical studies pro-
duced radically different findings. Rothermel et al. also studied the impact of test suite
minimisation on the fault detection capability [37]. They applied the HGS heuristics to
the Siemens suite [40], and later expanded this to include space [7]. The results from
these empirical studies contradicted the previous findings of the WHLM and WHMP
studies.

For the study of the Siemens suite [37], Rothermel et al. constructed test suites
from the test case pool provided by the Siemens suite so that the test suites include
varying amounts of redundant test cases that do not contribute to the decision coverage
of the test suite. The effectiveness and impact of reduction was measured using the same
metrics that were used in the WHLM study.

Rothermel et al. reported that the application of the test suite minimisation tech-
nique produced significant savings in test suite size. The observed tendency in size
reduction suggested a logarithmic relation between the original test suite size and the
reduction effectiveness, and the results of logarithmic regression confirmed this. The
results are repeated here in Table 2.

However, Rothermel et al. also reported that, due to the size reduction, the fault
detection capabilities of test suites were severely compromised. The reduction in fault
detection effectiveness was over 50% for more than half of 1,000 test suites considered,
with some cases reaching 100%. Rothermel et al. also reported that, unlike the size
reduction effectiveness, the fault detection effectiveness did not show any particular
correlation with the original test suite size.

This initial empirical study was subsequently extended [7]. For the Siemens suite,
the results of the HGS heuristic were compared to random reduction by measuring
the fault detection effectiveness of randomly reduced test suites. Random reduction
was performed by randomly selecting, from the original test suite, the same number of
test cases as in the reduced version of the test suite. The results showed that random
reduction produced larger decreases in fault detection effectiveness. To summarise the
results for the Siemens suite, the test suite minimisation technique produced savings in
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test suite size, but at the cost of decreased fault detection effectiveness; however, the
reduction heuristic showed better fault detection effectiveness than the random reduction
technique.

Rothermel et al. also expanded the previous empirical study by including the larger
program, space [7]. The reduction in size observed in the test suites of space confirmed
the findings of the previous empirical study of the Siemens suite; the size reduction
effectiveness formed a logarithmic trend, plotted against the original test suite size,
similar to the programs in the Siemens suite. More importantly, the reduction in fault
detection effectiveness was less than those of the Siemens suite programs. The average
reduction in fault detection effectiveness of test suites reduced by the HGS heuristic was
8.9%, while that of test suites reduced by random reduction was 18.1%.

Although the average reduction in fault detection effectiveness is not far from that
reported for the WHLP study in the case of space, those of the Siemens suite differed
significantly from both the WHLP study and the WHLM study, which reported that
the application of the minimisation technique did not have significant impact on fault
detection effectiveness. Rothermel et al. [7] pointed out the following differences between
these empirical studies as candidates for the cause(s) of the contradictory findings, which
we paraphrase as follows:

1. Different subject programs: the programs in the Siemens suite are generally larger
than those studied in both the WHLM and the WHLP study. Difference in program
size and structure certainly could have impact on the fault detection effectiveness.

2. Different types of test suites: the WHLM study used test suites that were not
coverage-adequate and much smaller compared to test suites used by Rothermel et
al. The initial test pools used in the WHLM study also did not necessarily contain
any minimum number of test cases per covered item. These differences could have
contributed to less redundancy in test suites, which led to reduced likelihood that
test suite minimisation will exclude fault-revealing test cases.

3. Different types of test cases: the test suites used in the WHLM study contained
a few test cases that detected all or most of the faults. When such strong test
cases are present, reduced versions of the test suites may well show little loss in
fault-detection effectiveness.

4. Different types of faults: the faults studied by Rothermel et al. were all Quartile-I
faults according to the definition of the WHLM study, whereas only 41% of the
faults studied in the WHLM study belonged to the Quartile-I group. By having
more ‘easy-to-detect’ faults, the test suites used in the WHLM study could have
shown less reduction in fault-detection effectiveness after test suite minimisation.

Considering the two contradicting empirical results, it is natural to conclude that the
question of evaluating the effectiveness of the test suite minimisation technique is very
hard to answer in general and for all testing scenarios. The answer depends on too many
factors such as the structure of the SUT, the quality of test cases and test suites, and
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the types of faults present. This proliferation of potential contributory factors makes it
very difficult to generalise any empirical result.

The empirical studies from WHLM, WHLP and Rothermel et al. all evaluated the
effectiveness of test suite minimisation in terms of two metrics: percentage size reduction
and percentage fault detection reduction. McMaster and Memon noticed that neither
metric considers the actual role each testing requirement plays on fault detection [41].
Given a set of test cases, TC, a set of known faults, KF and a set of testing requirements,
CR, fault correlation for a testing requirement i ∈ CR to fault k ∈ KF is defined as
follows:

|{j ∈ TC|j covers i} ∩ {j ∈ TC|j detects k}|
|{j ∈ TC|j covers i}|

The expected probability of finding a given fault k after test suite minimisation is
defined as the maximum fault correlation of all testing requirements with k. From this,
the probability of detecting all known faults in KF is the product of expected probability
of finding all k ∈ KF . Since CR is defined by the choice of minimisation criterion, e.g.
branch coverage or call-stack coverage, comparing the probability of detecting all known
faults provides a systematic method of comparing different minimisation criteria, without
depending on a specific heuristic for minimisation. The empirical evaluation of McMaster
and Memon compared five different minimisation criteria for the minimisation of test
suites for GUI-intensive applications: event coverage (i.e. each event is considered as a
testing requirement), event interaction coverage (i.e. each pair of events is considered
as a testing requirement), function coverage, statement coverage and call-stack coverage
proposed in [42]. While call-stack coverage achieved the highest average probability
of detecting all known faults, McMaster and Memon also found that different faults
correlate more highly with different criteria. This analysis provides valuable insights
into the selection of minimisation criterion.

Yu et al. considered the effect of test suite minimisation on fault localisation [43].
They applied various test suite minimisation techniques to a set of programs, and mea-
sured the impact of the size reduction on the effectiveness of coverage-based fault local-
isation techniques. Yu et al. reported that higher reduction in test suite size, typically
achieved by statement coverage-based minimisation, tends to have a negative impact
on fault localisation, whereas minimisation techniques that maintains higher level of
redundancy in test suites have negligible impact.

4 Test Case Selection

Test case selection, or the regression test selection problem is essentially similar to the
test suite minimisation problem; both problems are about choosing a subset of test cases
from the test suite. The key difference between these two approaches in the literature is
whether the focus is upon the changes in the SUT. Test suite minimisation is often based
on metrics such as coverage measured from a single version of the program under test.

15



Technical Report TR-09-09 4 TEST CASE SELECTION

By contrast, in regression test selection, test cases are selected because their execution
is relevant to the changes between the previous and the current version of the SUT.

To recall Definition 2, T ′ ideally should contain all the faults-revealing test cases in T ,
i.e., the test cases that will reveal faults in P ′. In order to define this formally, Rothermel
and Harrold introduced the concept of a modification− revealing test case [44]. A test
case t is modification-revealing for P and P ′ if and only if P (t) 6= P ′(t). Given the
following two assumptions, it is possible to identify the fault-revealing test cases for P ′

by finding the modification-revealing test cases for P and P ′.

• P -Correct-for-T Assumption : It is assumed that, for each test case t ∈ T ,
when P was tested with t, P halted and produced the correct output.

• Obsolete-Test-Identification Assumption : It is assumed that there exists an
effective procedure for determining, for each test case t ∈ T , whether t is obsolete
for P ′.

From these assumptions, it is clear that every test case in T terminates and produces
correct output for P , and is also supposed to produce the same output for P ′. Therefore,
a modification-revealing test case t must be also fault-revealing. Unfortunately, it is not
possible to determine whether a test case t is fault-revealing against P ′ or not because
it is undecidable whether P ′ will halt with t. Rothermel considers a weaker criterion for
the selection, which is to select all modification-traversing test cases in T . A test case t
is modification-traversing for P and P ′ if and only if :

1. it executes new or modified code in P ′, or

2. it formerly executed code that has been deleted in P ′

Rothermel also introduced the third assumption, which is the Controlled-Regression-
Testing assumption.

• Controlled-Regression-Testing Assumption : When P ′ is tested with t, all
factors that might influence the output of P ′, except for the code in P ′, are kept
constant with respect to their states when P was tested with t.

Given that the Controlled-Regression-Testing assumption holds, a non-obsolete test
case t can thereby be modification-revealing only if it is also modification-traversing for
P and P ′. Now, if the P -Correct-for-T assumption and the Obsolete-Test-Identification
assumption hold along with the Controlled-Regression-Testing assumption, then the
following relation also holds between the subset of fault-revealing test cases, Tfr, the
subset of modification-revealing test cases, Tmr, the subset of modification-traversing
test cases, Tmt, and the original test suite, T :

Tfr = Tmr ⊆ Tmt ⊆ T
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Rothermel and Harrold admitted that the Controlled-Regression-Testing assump-
tion may not be always practical, since certain types of regression testing may make it
impossible to control the testing environment, e.g. testing of a system ported to dif-
ferent operating system [1]. Other factors like non-determinism in programs and time
dependencies are also difficult to control effectively. However, finding the subset of
modification-traversing test cases may still be useful approach in practice, because Tmt

is the closest approximation to Tmr that can be achieved without executing all test cases.
In other words, by finding Tmt, it is possible to exclude those test cases that are guaran-
teed not to reveal any fault in P ′. The widely used term, safe regression test selection, is
based on this concept [45]. A safe regression test selection technique is not safe from all
possible faults; however, it is safe in a sense that, if there exists a modification-traversing
test case in the test suite, it will definitely be selected.

Based on Rothermel’s formulation of the problem, it can be said that test case
selection techniques for regression testing focus on identifying the modification-traversing
test cases in the given test suite. The details of the selection procedure differ according
to how a specific technique defines, seeks and identifies modifications in the program
under test. Various techniques have been proposed using different criteria based on,
among others, data flow analysis [46, 47, 48, 49], CFGs (Control Flow Graphs) [45, 50,
51, 52], PDGs (Program Dependence Graphs), SDGs (System Dependence Graphs) [53],
program slices [54], and symbolic execution [55]. The following subsections describe these
in more detail, highlighting their strengths and weaknesses.

4.1 Integer Programming Approach

One of the earliest approaches to test case selection was presented by Fischer and Fis-
cher et al. who used Integer Programming (IP) to represent the selection problem for
testing FORTRAN programs [56, 57]. Lee and He implemented a similar technique [58].
Fischer first defined a program segment as a single-entry, single exit block of code whose
statements are executed sequentially. Their selection algorithm relies on two matrices
that describe the relation between program segments and test cases, as well as between
different program segments.

For a program with m segments and n test cases, the IP formulation is given as
the problem of finding the decision vector,< x1, . . . , xn >, that minimises the following
objective function, Z :

Z = c1x1 + c2x2 + . . .+ cnxn

subject to :

a11x1 + a12x2 + . . .+ a1nxn ≥ b1

a21x1 + a22x2 + . . .+ a2nxn ≥ b2
· · ·

am1x1 + am2x2 + . . .+ amnxn ≥ bm
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The decision vector, < x1, . . . , xn >, represents the subset of selected test cases; xi

is equal to 1 if the ith test case is included; 0 otherwise. The coefficients, c1, . . . , cn,
represent the cost of executing each corresponding test case; Fischer et al. used the
constant value of 1 for all coefficients, treating all test cases as being equally expensive.
The test case dependency matrix, a11, . . . , amn represents the relations between test cases
and the program segments. The element aij is equal to 1 if the ith program segment is
executed by the test case j; 0 otherwise.

After deriving the series of inequalities, the set of bk values are determined by using
a reachability matrix that describes the program segments that are reachable from other
segments. Using this, if one knows the modified segments, it is possible to get all the
segments that are reachable from the modified segments, which need to be tested at least
once. The integer programming formulation is completed by assigning 1 to the b values
for all the segments that need to be tested. The inequality, ai1x1 + . . .+ainxn ≥ bi, thus
ensures that at least one included test case covers the program element reachable from
a change.

Hartmann and Robson implemented and extended a version of Fischer’s algorithm
in order to apply the technique to C [59, 60, 61]. They treat subroutines as segments,
achieving subroutine coverage rather than statement coverage.

One weakness in Fischer’s approach is its inability to deal with control-flow changes
in P ′. The test case dependency matrix, a11, . . . , amn, depends on the control-flow
structure of the program under test. If the control-flow structure changes, the test case
dependency matrix can be updated only by executing all the test cases, which negates
the point of applying the selection technique.

4.2 Data-flow Analysis Approach

Several test case selection techniques have been proposed based on data-flow analysis [46,
48, 47, 49]. Data-flow analysis based selection techniques seek to identify new, modified
or deleted definition-use pairs in P ′, and select test cases that exercise these pairs.

Harrold and Soffa presented data-flow analysis as the testing criterion for an incre-
mental approach to unit testing during the maintenance phase [47]. Taha, Thebaut,
and Liu built upon this idea and presented a test case selection framework based on
an incremental data-flow analysis algorithm [49]. Harrold and Soffa developed both
intra-procedural and inter-procedural selection techniques [48, 62]. Gupta et al. applied
program slicing techniques to identify definition-use pairs that are affected by a code
modification [46]. The use of slicing techniques enabled identification of definition-use
pairs that need to be tested without performing a complete dataflow analysis, which is of-
ten very costly. Wong et al. combined data-flow selection approach with coverage-based
minimisation and prioritisation to further reduce the effort [63].

One weakness shared by all data-flow analysis-based test case selection techniques
is the fact that they are unable to detect modifications that are unrelated to data-flow
change. For example, if P ′ contains new procedure calls without any parameter, or
modified output statements that contain no variable uses, data-flow techniques may not
select test cases that execute these.
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Fisher II et al. applied the data-flow based regression test selection approach for
test re-use in spreadsheet programs [64]. Fisher II et al. proposed an approach called
What-You-See-Is-What-You-Test (WYSIWYT) to provide incremental, responsive and
visual feedback about the testedness of cells in spreadsheets. The WYSIWYT framework
collects and updates data-flow information incrementally as the user of the spreadsheet
makes modifications to cells, using Cell Relation Graph (CRG). Interestingly, the data-
flow analysis approach to re-test spreadsheets is largely free from the difficulties that
the approach has used to test procedural programs, because spreadsheet programs are
purely based on data-flow and not on control-flow information. This makes spreadsheet
programs an ideal candidate for a data-flow analysis approach.

4.3 Symbolic Execution Approach

Yau and Kishmoto presented a test case selection technique based on symbolic execution
of the SUT [55]. In symbolic execution of a program, the variables’ values are treated as
symbols, rather than concrete values [65]. Yau and Kishimoto’s approach can be thought
of as an application of symbolic execution and input partitioning to the test case selection
problem. First, the technique statically analyses the code and specifications to determine
the input partitions. Next, it produces test cases so that each input partition can be
executed at least once. Given information on where the code has been modified, the
technique then identifies the edges in the control flow graph that lead to the modified
code. While symbolically executing all test cases, the technique determines test cases
that traverse edges that do not reach any modification. The technique then selects
all test cases that reach new or modified code. For the symbolic test cases that reach
modifications, the technique completes the execution of those; the real test cases that
match these symbolic test cases should be retested.

While it is theoretically powerful, the most important drawback of the symbolic
execution approach is the algorithmic complexity of the symbolic execution. Yau and
Kishmoto acknowledge that symbolic execution can be very expensive. Pointer arith-
metic can also present challenging problems for symbolic execution based approaches.

4.4 Dynamic Slicing Based Approach

Agrawal et al. introduced a family of test case selection techniques based on different
program slicing techniques [54]. An execution slice of a program with respect to a test
case is what is usually referred to as an execution trace; it is the set of statements
executed by the given test case. A dynamic slice of a program with respect to a test
case is the set of statements in the execution slice that have an influence on an output
statement. Since an execution slice may contain statements that do not affect the pro-
gram output, a dynamic slice is a subset of an execution slice. For example, consider
the program shown in Figure 1. It contains two faults in line S3 and S11 respectively.
The execution slice of the program with respect to test case T3 in Table 3 is shown in
Figure 2. The dynamic slice of the program with respect to test case T1 in Table 3 is
shown in Figure 3.
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 S1: read(a,b,c);
 S2: class := scalene;
 S3: if a = b or b = a
 S4:      class := isosceles;
 S5: if a * a = b * b + c * c
 S6:      class := right
 S7: if a = b and b = c
 S8:      class := equilateral
 S9: case class of:
S10:      right        : area = b * c / 2;
S11:      equilateral  : area = a * 2 * sqrt(3) / 4;
S12:      otherwise    : s := (a + b + c) / 2;
S13:                     area := sqrt(s * (s-a) * (s-b) * (s-c));
S14: end;
S15: write(class, area);

Figure 1: Example triangle classification program taken from Agrawal et al. [54]. Note
that it is assumed that the input vector is sorted in descending order. It contains two
faults. In S3, b = a should be b = c. In S11, a * 2 should be a * a.

Testcase Input Output

a b c class area

T1 2 2 2 equilateral 1.73
T2 4 4 3 isosceles 5.56
T3 5 4 3 right 6.00
T4 6 5 4 scalene 9.92
T5 3 3 3 equilateral 2.60
T6 4 3 3 scalene 4.47

Table 3: Test cases used with the program shown in Figure 1, taken from Agrawal et
al. [54]. Note that T5 detects the fault in S11, because the value for area should be 3.90.
Similarly, T6 detects the fault in S3, because the value for class should be isosceles.
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 S1: read(a,b,c);
 S2: class := scalene;
 S3: if a = b or b = a
 S4:      class := isosceles;
 S5: if a * a = b * b + c * c
 S6:      class := right
 S7: if a = b and b = c
 S8:      class := equilateral
 S9: case class of:
S10:      right        : area = b * c / 2;
S11:      equilateral  : area = a * 2 * sqrt(3) / 4;
S12:      otherwise    : s := (a + b + c) / 2;
S13:                     area := sqrt(s * (s-a) * (s-b) * (s-c));
S14: end;
S15: write(class, area);

Figure 2: Execution slice of program shown in Figure 1 with respect to test case T3 in
Table 3, taken from Agrawal et al. [54]

 S1: read(a,b,c);
 S2: class := scalene;
 S3: if a = b or b = a
 S4:      class := isosceles;
 S5: if a * a = b * b + c * c
 S6:      class := right
 S7: if a = b and b = c
 S8:      class := equilateral
 S9: case class of:
S10:      right        : area = b * c / 2;
S11:      equilateral  : area = a * 2 * sqrt(3) / 4;
S12:      otherwise    : s := (a + b + c) / 2;
S13:                     area := sqrt(s * (s-a) * (s-b) * (s-c));
S14: end;
S15: write(class, area);

Figure 3: Dynamic slice of program shown in Figure 1 with respect to test case T1 in
Table 3, taken from Agrawal et al. [54]

21



Technical Report TR-09-09 4 TEST CASE SELECTION

 S1: read(a,b,c);
 S2: class := scalene;
 S3: if a = b or b = a
 S4:      class := isosceles;
 S5: if a * a = b * b + c * c
 S6:      class := right
 S7: if a = b and b = c
 S8:      class := equilateral
 S9: case class of:
S10:      right        : area = b * c / 2;
S11:      equilateral  : area = a * 2 * sqrt(3) / 4;
S12:      otherwise    : s := (a + b + c) / 2;
S13:                     area := sqrt(s * (s-a) * (s-b) * (s-c));
S14: end;
S15: write(class, area);

Figure 4: Relevant slice of program shown in Figure 1 with respect to test case T4 in
Table 3, taken from Agrawal et al. [54]

In order to make the selection more precise, Agrawal et al. proposed two additional
slicing criteria: a relevant slice and an approximate relevant slice. A relevant slice of
a program with respect to a test case is the dynamic slice with respect to the same
test case together with all the predicate statements in the program that, if evaluated
differently, could have caused the program to produce different output. An approximated
relevant slice is a more conservative approach to include predicates that could have
caused different output; it is the dynamic slice with all the predicate statements in the
execution slice. By including all the predicates in the execution slice, an approximated
relevant slice caters for the indirect references via pointers. For example, consider the
correction of S3 in the program shown in Figure 1. The dynamic slice of T4 does not
include S3 because the class value of T4 is not affected by any of the lines between S3
and S8. However, the relevant slice of T4, shown in Figure 4, does include S3 because it
could have affected the output when evaluated differently.

The test suite and the previous version of the program under test are preprocessed
using these slicing criteria; each test case is connected to a slice, sl, constructed by one
of the four slicing criteria. After the program is modified, test cases for which sl contains
the modified statement should be executed again. For example, assume that the fault in
S11, detected by T5, is corrected. The program should be retested with T5. However,
T3 need not be executed because the execution slice of T3, shown in Figure 2, does not
contain S11. Similarly, assume that the fault in S3, detected by T6, is corrected. The
program should be retested with T6. The execution slice technique selects all six test
cases, T1 to T6, after the correction of the fault in S3 because the execution slices of
all six test cases include S3. However, it is clear that T1 and T3 are not affected by
the correction of S3; their class values are overwritten after the execution of S3. The
dynamic slicing technique overcomes this weakness. The dynamic slice of T1 is shown
in Figure 3. Since S3 does not affect the output of T1, it is not included in the dynamic
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slice. Therefore, the modification of S3 does not necessitate the execution of T1.
Agrawal et al. first build their technique on cases in which modifications are restricted

to those that do not alter the control flow graph of the program under test. As long
as the control flow graph of the program remains the same, their technique is safe
and can be regarded as an improvement over Fischer’s integer programming approach.
Slicing removes the need to formulate the linear programming problem, reducing the
effort required from the tester. Agrawal et al. later relaxed the assumption about static
control flow graph in order to cater for modifications in the control flow graph of the
SUT. If a statement s is added to P , now the slice sl contains all the statements in P
that uses the variables defined in s. Similarly, if a predicate p is added to P , the slice
sl contains all the statements in P that are control-dependent on p. This does cater
for the changes in the control flow graph to some degree, but it is not complete. For
example, if the added statement is a simple output statement that does not define or
use any variable, then this statement can still be modification-revealing. However, since
the new statement does not contain any variable, its addition will not affect any of the
existing slices, resulting in an empty selection.

4.5 Graph-Walk Approach

Rothermel and Harrold presented regression test case selection techniques based on graph
walking of Control Dependence Graphs (CDGs), Program Dependence Graphs (PDGs),
System Dependence Graphs (SDGs) and Control Flow Graphs (CFGs) [45, 51, 52, 66].
The CDG is similar to PDG but lacks data dependency relations. By performing a
depth-first traversal of the CDGs of both P and P ′, it is possible to identify points in a
program through which the execution trace reaches the modifications [45]. If a node in
the CDG of P is not lexically equivalent to the corresponding node in the CDG of P ′,
the algorithm selects all the test cases that execute the control-dependence predecessors
of the mismatching node. The CDG based selection technique does not cater for inter-
procedural regression test case selection; Rothermel and Harrold recommend application
of the technique at the individual procedural level.

Rothermel and Harrold later extended the graph walking approach to use PDGs for
intra-procedural selection, and SDGs for inter-procedural selection [51]. A weakness of
the CDG based technique is that, due to the lack of data dependence, the technique will
select test cases that execute modified definitions but not the actual uses of a variable. If
the modified definition of a variable is never used, it cannot contribute to any different
output, and therefore its inclusion is not necessary for safe regression testing. PDGs
contain data dependence for a single procedure; SDGs extend this to a complete program
with multiple procedures. By using these graphs, Rothermel and Harrold’s algorithm is
able to check whether a modified definition of a variable is actually used later.

Rothermel and Harrold later presented the graph walking approach based on CFGs [52].
The CFG-based technique essentially follows the approach introduced for the CDG-based
technique, but on CFGs rather than on CDGs. Since CFG is a much simpler represen-
tation of the structure of a program, the CFG-based technique may be more efficient.
However, the CFG lacks data dependence information, so the CFG based technique may
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   twovisits(x)
   {
P1      if(x=0)
S2           goto L1
        else
   L1:
S3           print("1")
         endif
S4       exit
    }

   twovisits'(x)
   {
P1'      if(x=0)
S2'           goto L1
         else

S3'           print("1")
         endif
S4'      exit
    L1:
S5'      print("2")
    }

entry

S4

exit

S3S2

P1

entry

S4'

exit

S3'S2'

P1'

S5'

T F T F

Figure 5: Example of CFG-based graph walking algorithm, taken from Rothermel and
Harrold [52]. The algorithm detects a modification when comparing S2 and S2’. Since
their child nodes are not lexically equivalent to each other, there is a modification. The
algorithm then selects all test cases that previously traversed the edge between S2 and
S3.

select test cases that are not capable of producing different outputs from the original
programs as explained above. The technique has been evaluated against various com-
binations of subject programs and test suites [67]. Ball improved the precision of the
graph walk approach with respect to branch coverage [68].

For example, consider Figure 5. The algorithm performs a depth-first traversal of
two CFGs at the same time. When it visits S3 and S3’, the child nodes S4 and S4’ are
lexically equivalent to each other. However, when it visits S2 and S2’, the child nodes
S3 and S5’ are lexically different from each other. The algorithm selects all the test
cases that previously traversed the edge between S2 and S3 in the original program.

Rothermel et al. extended the CFG-based graph walk approach for object-oriented
software using the Interprocedural Control Flow Graph (ICFG) [69]. The ICFG connects
methods using call and return edges. Harrold et al. adopted a similar approach for
test case selection for Java software, using the Java Interclass Graph as representation
(JIG) [70]. Xu and Rountev later extended this technique to consider AspectJ programs
by incorporating the interactions between methods and advices at certain join points into
the CFG [71]. Zhao et al. also considered a graph representation of AspectJ programs
to apply a graph walk approach for RTS [72]. Beydeda and Gruhn extended the graph
walk approach by adding black-box data-flow information to the Class Control Flow
Graph (CCFG) to test object-oriented software [73].

Orso et al. considered using different types of graph representation of the system
to improve the scalability of graph-walk approach [74]. Their approach first relied on a
high-level graph representation of SUT to identify the parts of the system to be further
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analysed. The technique then used more detailed graph representation to perform more
precise selection.

One strength of the graph walk approach is its generic applicability. For example,
it has been successfully used in black-box testing of re-usable classes [75]. Martins and
Vieira captured the behaviours of a re-usable class by constructing a directed graph
called the Behavioural Control Flow Graph (BCFG) from the Activity Diagram (AD)
of the class. The BCFG is a directed graph, G = (V,E, s, x), with vertices V , edges E,
a unique entry vertex s and an exit vertex x. Each vertex contains a label that specifies
the signature of a method; each edge is also labelled according to the corresponding
guards in AD. A path in G from s to x represents a possible life history of an object.
By mapping changes made to the object to its BCFG and applying the graph walking
algorithm, it is possible to select test cases based on the behavioural difference between
two versions of the same object. Note that, though, this approach requires traceability
between the behavioural model and the actual test cases, because test cases are selected,
not based on their structural coverage, but based on their behavioural coverage measured
on BCFG. Activity diagrams have also been directly used for RTS by Chen et al. [76].

Orso et al. used a variation of the graph walk approach to consider an RTS tech-
nique based on meta-data and specifications obtained from software components [77, 78].
They presented two different techniques based on meta-data: code-based RTS using
component meta-data and specification-based RTS using component meta-data. For
code-based RTS, it was assumed that each software component was capable of provid-
ing structural coverage information, which was fed into the graph walk algorithm. For
specification-based RTS, the component specification was represented in UML state-
chart diagrams, which were used by the graph walk algorithm.

The graph walk algorithm has also been applied to test web services, despite the
challenges that arise from the distributed nature of web services [79, 80, 81, 82, 83].
Several different approaches have been introduced to overcome these challenges. Lin et
al. adopted the JIG-based approach after transforming the web services to a single-JVM
local application [79]. Ruth et al. collected a coarse-grained CFG from developers of
each web service that forms a part of the entire application [80, 81, 83]. Finally, Tarhini
et al. utilised Timed Labeled Transition System (TLTS), which is a coarse-grained
representation of web services that resembles a labelled state machine [82].

4.6 Textual Difference Approach

Volkolos and Frankl proposed a selection technique based on the textual difference be-
tween the source code of two versions of SUT [84, 85]. They identified modified parts
of SUT by applying the diff Unix tool to the source code of different versions. The
source code was pre-processed into canonical forms to remove the impact of cosmetic
differences. Although their technique operates on a different representation of SUT, its
behaviour is essentially very similar to that of the CFG based graph-walk approach.
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4.7 SDG Slicing Approach

Bates and Horwitz proposed test case selection techniques based on program slices from
Program Dependency Graphs (PDGs) [53]. Bates and Horwitz approach the regression
test selection problem in two stages. First, all the test cases that can be reused for
P ′ need to be identified. Bates and Horwitz introduce the definition of an equivalent
execution pattern. If statements s and s′ belong to P and P ′ respectively, s and s′ have
equivalent execution patterns if and only if all of the following hold:

1. For any input file on which both P and P ′ terminate normally, s and s′ are exercised
the same number of times.

2. For any input file on which P terminates normally but P ′ does not, s′ is exercised
at most as many times as s is exercised.

3. For any input file on which P ′ terminates normally but P does not, s is exercised
at most as many times as s′ is exercised.

Using program slicing, Bates and Horwitz categorize statements into execution classes.
Statement s from P and s′ from P ′ belong to the same execution class if and only if any
test that exercises s will also exercise s′.

Now, a statement s′ in P ′ is affected by the modification if and only if one of the
following holds:

1. There is no corresponding statement s in P .

2. The behaviour of s′ is not equivalent to the corresponding statement s in P .

Equivalent behaviour is determined by PDG slice isomorphism; if the PDG slice of
two statements are isomorphic, then those statements share an equivalent behaviour. For
each affected statement in P ′, reusable test cases are selected based on the information
retrieved from the identification stage.

While Bates and Horwitz’s technique selects test cases for modified or newly added
statements in P ′, it does not select tests that exercise statements that are deleted from
P , and therefore is not safe.

Binkley [86] presented a technique based on System Dependence Graph (SDG) slic-
ing, which extends Bates and Horwitz’s intra-procedural to inter-procedural test case
selection. Binkley introduced the concept of common execution patterns, which corre-
sponds to the equivalent execution patterns of Bates and Horwitz.

4.8 Path Analysis

Benedusi et al. applied path analysis for test case selection [87]. They construct exemplar
paths from P and P ′ expressed in an algebraic expression. By comparing two sets of
exemplar paths, they classified paths in P ′ as new, modified, cancelled, or unmodified.
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Test cases and the paths they execute in P are known; therefore, they selected all the
test cases that will traverse modified paths in P ′.

One potential weakness of the path analysis approach of Benedusi et al. lies not in
path analysis itself, but in the potentially over-specific definition of ‘modification’ used
in the post-analysis selection phase. No test cases are selected for the paths that are
classified to be new or cancelled. However, new or cancelled paths denote modifications
that represent differences between P and P ′; test cases that execute new or cancelled
paths in P ′ may be modification-revealing. As presented, therefore, the path analysis
approach is not safe.

4.9 Modification-based Technique

Chen et al. introduced a testing framework called TestTube, which utilises a modification-
based technique to select test cases [88]. TestTube partitions the SUT into program enti-
ties, and monitors the execution of test cases to establish connections between test cases
and the program entities that they execute. TestTube also partitions P ′ into program
entities, and identifies program entities that are modified from P . All the test cases that
execute the modified program entities in P should be re-executed.

TestTube can be thought of as an extended version of the graph walk approach. Both
techniques identify modifications by examining the program source code, and select test
cases that will execute the modified parts. TestTube extends the CDG-based graph walk
technique by introducing program entities that include both functions and entities that
are not functions, i.e. variables, data types, and pre-processor macros. Any test case
that executes modified functions will be selected. Therefore, TestTube is a safe test case
selection technique.

One weakness of TestTube is pointer handling. By including variable and data types
as program entities, TestTube requires that all value creations and manipulations in a
program can be inferred from source code analysis. This is only valid for languages
without pointer arithmetic and type coercion. As a result, TestTube makes assumptions
such as all pointer arithmetic is well-bounded. If these assumptions do not hold then
safety cannot be guaranteed.

4.10 Firewall Approach

Leung and White introduced and later implemented what they called a firewall technique
for regression testing of system integration [89, 90, 91, 92]. The main concept is to draw
a firewall around the modules of the system that need to be retested. They categorise
modules into the following categories:

• No Change : module A has not been modified, NoCh(A).

• Only Code Change : module A has the same specification but its code has been
modified, CodeCh(A).
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• Spec Change : module A has modified specifications, SpecCh(A).

If a module A calls a module B, there exist 9 possible pairings between the states
of A and B. The integration between A and B can be ignored for regression testing if
NoCh(A) ∧NoCh(B), leaving 8 pairings. If both A and B are modified either in code
or in specifications, the integration tests between A and B should be executed again as
well as the unit tests of A and B; this accounts for 4 of the remaining 8 pairings. The
other 4 pairings are cases in which an unchanged module calls a changed module, or vice
versa; these pairs form the boundary for integration testing, i.e. the so-called firewall.

By considering modules as the atomic entities, Leung and White maintained a very
conservative approach to test case selection. If a module has been modified, any test
case that tests the integration of the modified module should be selected. Therefore,
all modification-traversing test cases will be selected. However, their technique may
also select other test cases that execute the modified module, but are not modification-
traversing in any way. Leung and White also noted that, in practice, the test suite for
system integration is often not very reliable. The low reliability means that it is more
likely that there may still exist a fault-revealing test case that does not belong to the
test suite, and therefore cannot be selected. Note that it is always a risk that a fault-
revealing test case exists outside the given test suite in any type of testing, not only in
integration testing. What Leung and White pointed out was that such a risk can be
higher in system integration testing due to the generally low quality of test suites.

The Firewall approach has been applied to Object-Oriented programs [93, 94, 95]
and GUIs [96]. Firewall approach has also been successfully applied to RTS for black-
box Commercial Off-the-Shelf (COTS) components. Zheng et al. applied the firewall
technique of Leung and White based on the information extracted from the deployed
binary code [97, 98, 99, 100]. Skoglund and Runeson applied the firewall approach to a
large-scale banking system [101].

4.11 Cluster Identification

Laski and Szemer presented a test case selection technique based on analysis of the
CFG of the program under test [102]. Their technique identifies single-entry, single-exit
subgraphs of CFG called clusters. Given a program P and its modified version P ′,

• each cluster in P encapsulates some modifications to P ,

• there is a unique cluster in P ′ that corresponds to the cluster in P , and

• when clusters in each graph are replaced by single nodes, there is a one-to-one
correspondence between nodes in both graphs.

The CFGs of the original program and the modified program are reduced using a
set of operators such as node collapse and node removal. During the process, if the
counterpart of a node from the CFG of the original program cannot be found in the
CFG of the modified program, this node is labelled as ‘MOD’, indicating a modification
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program P1
var a,b:real
 begin
1     read(a);
2     if a < 0
3         then b := -a
4         else b := a;
5     write(a,b)
6 end

program P2
var a,b:real
 begin
1     read(a);
2     b := abs(a);
3     write(a,b)
4 end

1 read(a)

2 if a<0

3

b:=-a

4
b:=a

5 write(a,b)

6 exit

1

2

5 write(a,b)

6
exit

read(a)

MOD

MOD

Figure 6: Example of isomorphism between reduced CFGs, taken from Laski and Sze-
mer [102]. Program P2 is a modified version of P1. Note that the modification made to
P2 is enclosed in MOD cluster.

at the node. Eventually, all the modifications will be enclosed in one or more MOD
cluster nodes. As with other test case selection techniques, their technique requires that
the tester records the execution history of each test case in the test suite. Once clustering
is completed, test case selection is performed by selecting all the test cases for which the
corresponding execution path enters any of the MOD clusters.

For example, consider Figure 6. Program P2 is a modified version of P1. By collapsing
nodes 2, 3, and 4 into a MOD cluster, the CFGs of two programs become isomorphic. Any
test case that enters MOD with P1 also enters MOD in P2 and vice versa. Note that MOD
in P1 is considered to be single-entry/single-exit by the inclusion of a dummy merging
node (the solid black node). The modification made to P1 is enclosed in the MOD cluster.
If a test case has an execution trace that enters MOD, it should be selected.

The strength of the cluster identification technique is that it guarantees to select all
modification-traversing test cases regardless of the type of the modification, i.e. addi-
tion or deletion of statements and control structures. However, since the clusters can
encapsulate much larger areas of the SUT than the scope of actual modification, the
technique may also select test cases that are not modification-traversing. In this sense
the approach sacrifices precision in order to achieve safety.

4.12 Design-based Approach

Briand et al. presented a black-box, design level regression test selection approach for
UML-based designs [103, 104]. Assuming that there is traceability between the design
and regression test cases, it is possible to perform regression test selection of code-level
test cases from the impact analysis of UML design models. Briand et al. formalised
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Test Case Fault revealed by test case

1 2 3 4 5 6 7 8 9 10

A x x
B x x x x
C x x x x x x x
D x
E x x x

Table 4: Example test suite with fault detection information, taken from Elbaum et
al [114]. It is clearly beneficial to execute test case C first, followed by E.

possible changes in UML models, and classified the relevant test cases into the categories
defined by Leung and White [9]: obsolete, retestable and reusable. They implemented
an automated impact analysis tool for UML and empirically evaluated it using both
student projects and industrial case studies.

The results showed that the changes made to a model can have a widely variable
impact on the resulting system, which, in turn, yield varying degrees of reduction of
effort in terms of the number of selected test cases. However, Briand et al. noted that
the automated impact analysis itself can be valuable, especially for very large systems,
such as the cruise control and monitoring system they studied. The UML use-cases of
the model of the system had 323,614 corresponding test cases. UML-based models have
been also considered by Dent et al. [105], Pilskalns et al. [106] and Farooq et al. [107]
for regression test selection; Le Traon et al. [108] and Wu and Offutt [109] considered
the use of UML models in the wider context of regression testing in general. Muccini
et al. considered the RTS problem at the software architecture level, although they did
not use UML for the representation [110, 111].

5 Test Case Prioritisation

Test case prioritisation seeks to find the ideal ordering of test cases for testing, so that
the tester obtains maximum benefit, even if the testing is prematurely halted at some
arbitrary point. The approach was first mentioned by Wong et al. [38]; however, it was,
in that work, only applied to test cases that were already selected by a test case selection
technique. Subsequently, Harrold proposed the approach in more general context [112],
which was empirically evaluated by Rothermel et al. [113].

For example, consider the test suite described in Table 4. Note that the example
depicts an ideal situation in which fault detection information is known. The goal of
prioritisation is to maximise early fault detection. It is obvious that the ordering A-
B-C-D-E is inferior to B-A-C-D-E. In fact, any ordering that starts with the execution
of C-E is superior to those that do not, because the subsequence C-E detects faults as
early as possible; should testing be stopped prematurely, this ensures that the maximum
possible fault coverage will have been achieved.
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Note that the problem definition concerns neither versions of the program under
test nor exact knowledge of modifications. Ideally, the test cases should be executed in
the order that maximises early fault detection. However, fault detection information is
typically not known until the testing is finished. In order to overcome the difficulty of
knowing which tests reveal faults, test case prioritisation techniques depend on surro-
gates, hoping that early maximisation of a certain chosen surrogate property will result
in maximisation of earlier fault detection. In a controlled regression testing environ-
ment, the result of prioritisation can be evaluated by executing test cases according to
the produced ordering and measuring the fault detection rate.

5.1 Coverage-based Prioritisation

Structural coverage is a metric that is often used as the prioritisation criterion [114, 115,
116, 117, 118, 113, 119]. The intuition behind the idea is that early maximisation of
structural coverage will also increase the chance of early maximisation of fault detection.
Therefore, while the goal of test case prioritisation still remains as a higher fault detection
rate, the prioritisation techniques actually aim to maximise early coverage.

Rothermel et al. reported empirical studies of several prioritisation techniques [113,
119]. They applied the same algorithm with different fault detection rate surrogates. The
considered surrogates were: branch-total, branch-additional, statement-total, statement-
additional, Fault Exposing Potential (FEP)-total, and FEP-additional.

The branch-total approach prioritises test cases according to the number of branches
covered by individual test cases, while branch-additional prioritises test cases according
to the additional number of branches covered by individual test cases. The statement-
total and statement-additional approaches do the same thing with the number of pro-
gram statements instead of branches. Algorithmically, ‘total’ approaches are essentially
instances of greedy algorithms whereas ‘additional’ approaches are essentially instances
of additional greedy algorithms.

The FEP of a test case is measured using program mutation. Program mutation
introduces a simple syntactic modification to the program source, producing a mutant
version of the program [120]. This mutant is said to be killed by a test case if the test
case reveals the difference between the original program and the mutant. Given a set
of mutants, the mutation score of a test case is the ratio of mutants that are killed by
the test case to the total kill-able mutants. The FEP-total approach prioritises test
cases according to the mutation score of individual test cases, while the FEP-additional
approach prioritises test cases according to the additional increase in mutation score
provided by individual test cases. Note that FEP criterion can be constructed to be at
least as strong strong as structural coverage; to kill a mutant, a test case not only need
to achieve the coverage of the location of mutation but also to execute the mutated part
with a set of test input that can kill the mutant. In other words, coverage is necessary
but not sufficient to kill the mutant.

It is important to note that all the ‘additional’ approaches may reach 100% realisation
of the utilised surrogate before every test case is prioritised. For example, achieving 100%
branch coverage may not require all the test cases in the test suite, in which case none
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Figure 7: Average Percentage of Fault Detection : higher APFD values mean higher
average fault detection rate [114].

of the remaining test cases can increase the branch coverage. Rothermel et al. reverted
to the ‘total’ approach once such condition is met.

The results were evaluated using the Average Percentage of Fault Detection (APFD)
metric. Higher APFD values denote faster fault detection rates. When plotting the
percentage of detected faults against the number of executed test cases, APFD can be
calculated as the area below the plotted line, as shown in Figure 7 taken from Elbaum
et al. [114]. Figure 7 shows the APFD values of orderings of the test suite described in
Table 4. After the execution of the subsequence C-E, a 100% fault detection is achieved
and the ordering of the remaining test cases does not affect the APFD value.

More formally, let T be the test suite containing n test cases and let F be the set of
m faults revealed by T . For ordering T ′, let TFi be the order of the first test case that
reveals the ith fault. The APFD value for T ′ is calculated as following [121]:

APFD = 1− TF1 + . . .+ TFm

nm
+

1
2n

Note that, while APFD is commonly used to evaluate test case prioritisation tech-
niques, it is not the aim of test case prioritisation techniques to maximise APFD. Max-
imisation of APFD would be only possible when every fault that can be detected by
the given test suite is already known. This would imply that all test cases have been
already executed, which would nullify the need to prioritise. APFD is computed after
the prioritisation only to evaluate the performance of the prioritisation technique.

Rothermel et al. compared the proposed prioritisation techniques to random priori-
tisation, optimal prioritisation, and no prioritisation, using the Siemens suite programs.
Optimal prioritisation is possible because the experiment was performed in a controlled
environment, i.e. the faults were already known. The results show that all the proposed
techniques produce higher APFD values than random or no prioritisation. The surro-
gate with the highest APFD value differed between programs, suggesting that there is
no single best surrogate. However, on average across the programs, the FEP-additional
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approach performed most efficiently, producing APFD value of 74.5% compared to the
88.5% of the optimal approach. It should still be noted that these results are dependent
on many factors, including the types of faults used for evaluation and types of mutation
used for FEP, limiting the scope for generalisation.

Elbaum et al. extended the empirical study of Rothermel et al. by including more
programs and prioritisation surrogates [114]. Among the newly introduced prioritisation
surrogates, function-coverage and function-level FEP enabled Elbaum et al. to study
the effects of granularity on prioritisation. Function-coverage of a test case is calculated
by counting the number of functions that the test case executes. Function-level FEP is
calculated, for each function f and each test case t, by summing the ratio of mutants
in f killed by t. Elbaum et al. hypothesised that approaches with coarser granularity
would produce lower APFD values, which was confirmed statistically.

Jones and Harrold applied the greedy-based prioritisation approach to Modified Con-
dition/Decision Coverage (MC/DC) criterion [122]. MC/DC is a ‘stricter form’ of branch
coverage; it requires execution coverage at condition level. A condition is a Boolean ex-
pression that cannot be factored into simpler Boolean expressions. By checking each
condition in decision predicates, MC/DC examines whether each condition indepen-
dently affects the outcome of the decision [123]. They presented an empirical study that
contained only an execution time analysis of the prioritisation technique and not an
evaluation based on fault detection rate.

Srivastava and Thiagarajan combined the greedy-based prioritisation approach with
regression test selection [124]. They first identified the modified code blocks in the new
version of the SUT by comparing its binary code to that of the previous version. Once the
modified blocks are identified, test case prioritisation is performed using greedy-based
prioritisation, but only with respect to the coverage of modified blocks.

Do and Rothermel applied coverage-based prioritisation techniques to the JUnit test-
ing environment, a popular unit testing framework [125]. The results showed that pri-
oritised execution of JUnit test cases improved the fault detection rate. One interesting
finding was that the random prioritisation sometimes resulted in an APFD value higher
than the untreated ordering, i.e. the order of creation. When executed in the order of
creation, newer unit tests are executed later. However, it is the newer unit tests that
have higher chance of detecting faults. It turns out that random prioritisation could
exploit this weakness of untreated ordering in some cases.

Li et al. applied various meta-heuristics for test case prioritisation [126]. They
compared random prioritisation, hill climbing algorithm, a genetic algorithm, a greedy
algorithm, the additional greedy algorithm, and a two-optimal greedy algorithm. The
greedy algorithm corresponds to the total approaches outlined above, whereas the addi-
tional greedy algorithm corresponds to the additional approaches outlined above. The
two-optimal greedy is similar to the greedy algorithm except that it considers two candi-
dates at the same time rather than a single candidate for the next order. They considered
the Siemens suite programs and the program space, and evaluated each technique based
on APBC (Average Percentage of Block Coverage) instead of APFD. The results showed
that the additional greedy algorithm is the most efficient in general.

33



Technical Report TR-09-09 5 TEST CASE PRIORITISATION

Hardware Operating System Network Connection Memory

Desktop MS Windows Dial-up 256MB
Laptop Linux DSL 512MB
Smartphone Mac OS X Cable 1GB

Table 5: Example testing environment factors

5.2 Interaction Testing

Interaction testing is required when the SUT involves multiple combinations of different
components. For example, consider the testing environment described in Table 5. Each
column represents a component that can have one of multiple possible settings. These
are called factors. Each row in a column represents one possible setting. These are
called levels. From the factors listed in Table 5, 34 = 81 combinations arise. As the
system grows larger, exhaustive testing of all possible combinations of factors requires
exponentially more tests.

Instead of testing exhaustively, pair-wise interaction testing requires only that every
individual pair of interactions between different factors are included at least once in the
testing process. In the example in Table 5, the number of combinations to test is reduced
from 81 to 9. The reduction grows larger as more factors and levels are involved. More
formally, the problem of obtaining interaction testing combinations can be expressed as
the problem of obtaining a covering array, CA(N ; t, k, v), which is an array with N rows
and k columns, v is the number of levels associated with each factor, and t is the strength
of the interaction coverage (2 in the case of pair-wise interaction test).

Many approaches have been studied for the generation of interaction test suites,
some of which share the same basic principles of test case prioritisation. For example,
the greedy approach aims to find, one by one, the ‘next’ test case that will increase the
k-way interaction coverage the most [127, 128], which resembles the greedy approach to
test case prioritisation. However, the similarities are not just limited to the generation
of interaction test suite. Bryce and Colbourn assume that testers may value certain
interactions higher than others [129, 130]. For example, an operating system with a
larger user base may be more important than one with smaller user base. After weighting
each level value for each factor, they calculate the combined benefit of a given test by
adding the weights of each level value selected for the test. They present a Deterministic
Density Algorithm (DDA) that prioritises interaction tests according to their combined
benefit. Qu et al. compared different weighting schemes used for prioritising covering
arrays [131, 132].

Bryce and Memon also applied the principles of interaction coverage to the testing
of Event-Driven Software (EDS) [133]. EDS takes sequences of events as input, changes
state and output new event sequences. A common example would be GUI-based pro-
grams. Bryce and Memon interpreted t-way interaction coverage as sequences that
contain different combinations of events over t unique GUI windows. Interaction cover-
age based prioritisation of test suites was compared to different prioritisation techniques
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such as unique event coverage (the aim is to cover as many unique events as possible,
as early as possible), longest to shortest (execute the test case with the longest event
sequence first) and shortest to longest (execute the test case with the shortest event
sequence first). The empirical evaluation showed that interaction coverage based testing
of EDS can be more efficient than the other techniques, provided that the original test
suite contains higher interaction coverage. Note that Bryce and Memon did not try
to generate additional test cases to improve interaction coverage; they only considered
permutations of existing test cases.

5.3 Prioritisation Approaches Based on Other Criteria

While the majority of existing prioritisation literature concerns structural coverage in
some form or other, there are prioritisation techniques based on other criteria [134, 135,
136, 137].

Distribution-based Approach Leon and Podgurski introduced distribution-based fil-
tering and prioritisation [134]. Distribution-based techniques minimise and prioritise
test cases based on the distribution of the profiles of test cases in the multi-dimensional
profile space. Test case profiles are produced by the dissimilarity metric, a function
that produces a real number representing the degree of dissimilarity between two input
profiles. Using this metric, test cases can be clustered according to their similarities.
The clustering can reveal some interesting information. For example:

• Clusters of similar profiles may indicate a group of redundant test cases

• Isolated clusters may contain test cases inducing unusual conditions that are per-
haps more likely to cause failures

• Low density regions of the profile space may indicate uncommon usage behaviours

The first point is related to reduction of effort; if test cases in a cluster are indeed
very similar, it may be sufficient to execute only one of them. The second and third
point are related to fault-proneness. Unusual conditions and uncommon behaviours
are by definition harder to reproduce than more common conditions and behaviours.
Therefore, the corresponding parts of the program are likely to be tested less than
other, more frequently used parts of the program. Assigning a high priority to test cases
that execute these unusual behaviours may increase the chance of early fault detection.
A good example might be exception handling code.

Leon and Podgurski developed new prioritisation techniques that combine coverage-
based prioritisation with distribution-based prioritisation. This hybrid approach is based
on the observation that basic coverage maximisation performs reasonably well compared
to repeated coverage maximisation. Repeated coverage maximisation refers to the priori-
tisation technique of Elbaum et al. [114], which, after realising 100% coverage, repeat-
edly prioritises test cases starting from 0% coverage again. In contrast, basic coverage
maximisation stops prioritising when 100% coverage is achieved. Leon and Podgurski
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observed that the fault detection rate of repeated coverage maximisation is not as high as
that of basic coverage maximisation. This motivated them to consider a hybrid approach
that first prioritises test cases based on coverage, then switches to distribution-based
prioritisation once the basic coverage maximisation is achieved. They considered two
different distribution-based techniques. The one-per-cluster approach samples one test
case from each cluster, and prioritises them according to the order of cluster creation
during the clustering. The failure-pursuit approach behaves similarly, but it adds the
k closest neighbours of any test case that finds a fault. The results showed that the
distribution-based prioritisation techniques could outperform repeated coverage max-
imisation.

Human-based Approach Tonella et al. combined Case-Based Reasoning (CBR) with
test case prioritisation [135]. They utilised a machine learning technique called boost-
ing, which is a framework to combine simple learners into a single, more general and
effective learner [138]. They adopted a boosting algorithm for ranking learning called
Rankboost [139]. The algorithm takes a test suite, T , an initial prioritisation index, f ,
and a set of pair-wise priority relations between test cases, Φ, as input. The pair-wise
priority relation is obtained from comparisons of test cases made by the human tester.
The output is a ranking function H : T → R such that, with test cases t1 and t2, t1 ≺ t2
if H(t1) > H(t2). The ranking function H is then used to prioritise test cases.

They used the statement coverage metric and the cyclomatic complexity computed
for the functions executed by test cases as the initial prioritisation index. The test
suite of the space program was considered. In order to measure the human effort re-
quired for the learning process, different test suite sizes were adopted, ranging from 10
to 100 test cases. The results were compared to other prioritisation techniques including
optimal ordering, random prioritisation, statement coverage prioritisation, and addi-
tional statement coverage prioritisation (the latter two correspond to statement-total
and statement-additional respectively).

The results showed that, for all test suite sizes, the CBR approach was outperformed
only by the optimal ordering. The number of pair-wise relations entered manually showed
a linear growth against the size of test suites. Tonella et al. reported that, for test suites
of space with fewer than 60 test cases, the CBR approach can be more efficient than
other prioritisation techniques with limited human effort. Note that empirical evaluation
was performed based on an ideal user model, i.e. it was assumed that the human tester
always makes the correct decision when comparing test cases. One notable weakness of
this approach was that it did not scale well. The input from the human tester becomes
inconsistent beyond a certain number of comparisons, which in turn limits the size of
the learning samples for CBR.

Yoo et al. tried to improve the scalability of human-based prioritisation approaches
by combining pair-wise comparisons of test cases with a clustering technique [136]. While
the prioritisation is still based on the comparisons made by the human tester, the tester
is presented with clusters of similar test cases instead of individual test cases. The
prioritisation between clusters (inter-cluster prioritisation) is, therefore, performed by
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the tester. However, the prioritisation within each cluster (intra-cluster prioritisation)
is performed based on coverage. After both layers of prioritisation are complete, the
final ordering of test cases is determined by selecting the test case with the highest
priority, determined by intra-cluster prioritisation, from the next cluster in the order
determined by inter-cluster prioritisation, until all the clusters are empty. This is called
the Interleaved Clusters Prioritisation (ICP) technique.

With the use of clustering, Yoo et al. were able to reduce the size of the priori-
tisation problem so that they could apply a more expensive pair-wise approach called
Analytic Hierarchy Process (AHP). AHP is a pair-wise comparison technique developed
by the Operations Research community [140] and has been successfully applied to Re-
quirements Engineering [141]. The combination of AHP and ICP has been empirically
evaluated for programs and test suites of various sizes, using a more realistic user model
(with errors). The results showed that this combination of techniques can be much more
effective than coverage-based prioritisation. One surprising finding was that, sometimes,
an error rate higher than 50%, i.e. the human tester making wrong comparison half the
time, did not prevent this technique from achieving higher APFD than coverage-based
prioritisation. Yoo et al. explained this unexpected finding by showing that a certain
amount of improvement derived from the effect of clustering. This confirms the argu-
ment of Leon and Podgurski about the benefits of distribution-based approach [134];
the clustering sometimes enables the early execution of a fault-revealing test case that
would have been assigned low priority due to its low contribution to code coverage.

Probabilistic Approach Kim and Porter proposed a history based approach to priori-
tise test cases that are already selected by regression test selection [142]. If the number
of test cases selected by an RTS technique is still too large, or if the execution costs
are too high, then the selected test cases may have to be further prioritised. Since the
relevance to the recent change in SUT is assumed by the use of an RTS technique, Kim
et al. focus on the execution history of each test case, borrowing from statistical quality
control. They define the probabilities of each test case tc to be selected at time t as
Ptc,t(Htc, α), where Htc is a set of t timed observations {h1, . . . , ht} drawn from previous
runs of tc and α is a smoothing constant. Then the probability Ptc,t(Htc, α) is defined
as follows:

P0 = h1

Pk = αhk + (1− α)Pk−1 (0 ≤ α ≤ 1, k ≥ 1)

Different definitions of Htc result in different prioritisation approaches. For example,
Kim et al. define Least Recently Used (LRU) prioritisation by using test case execution
history as Htc with α value that is as close to 0 as possible. The empirical evaluation
showed that the LRU prioritisation approach can be competitive in a severely constrained
testing environment, i.e. when it is not possible to execute all test cases selected by an
RTS technique.

Mirarab and Tahvildari took a different probabilistic approach to test case priori-
tisation using Bayesian Networks [143]. The Bayesian Network model is built upon
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changes in program elements, fault proneness of program elements and probability of
each test case to detect faults. Mirarab and Tahvildari extended the approach by adding
a feedback route to update the Bayesian Network as prioritisation progresses [144]. For
example, if a test case successfully detects a fault, there is a decrease in the probability
for other test cases to be selected in order to cover the same program element.

History-based Approach Sherriff et al. presented a prioritisation technique based on
association clusters of software artefacts obtained by a matrix analysis called Singular
Value Decomposition (SVD) [145]. The prioritisation approach depends on three ele-
ments: association clusters, relationship between test cases and files and a modification
vector. Association clusters are generated from a change matrix using SVD; if two files
are often modified together as a part of a bug fix, they will be clustered into the same
association cluster. Each file is also associated with test cases that affect or execute
it. Finally, a new system modification is represented as a vector in which the value
indicates whether a specific file has been modified. Using the association clusters and
the modification vector, it is then possible to assign each file with a priority that corre-
sponds to how closely the new modification matches each test case. One novel aspect of
this approach is that any software artefact can be considered for prioritisation. Sherriff
et al. noted that the faults that are found in non-source files, such as media files or
documentation, can be as severe as those found in source code.

Requirement-based Approach Srikanth et al. presented requirement-based test case
prioritisation [137]. Test cases are mapped to software requirements that are tested by
them, and then prioritised by various properties of the mapped requirements, including
customer-assigned priority and implementation complexity. One potential weakness of
this approach is the fact that requirement properties are often estimated and subjective
values. Krishnamoorthi and Sahaaya developed a similar approach with additional met-
rics [146].

Model-based Approach Korel et al. introduced a model based prioritisation ap-
proach [147, 148, 149]. Their initial approach was called selective prioritisation, which
was strongly connected to RTS [147]. Test cases were classified into a high priority set,
TSH , and a low priority set, TSL. They defined and compared different definitions of
high and low priority test case, but essentially a test case is assigned high priority if it is
relevant to the modification made to the model. The initial selective prioritisation pro-
cess consists of the random prioritisation of TSH followed by the random prioritisation
of TSL. Korel et al. developed more sophisticated heuristics based on the dependence
analysis of the models [148, 149].

Other Approaches The use of mutation score for test case prioritisation has been
analysed by Rothermel et al. along with other structural coverage criteria [113, 119]. Hou
et al. considered interface-contract mutation for the regression testing of component-
based software and evaluated it with the additional prioritisation technique [150].
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Sampath et al. presented the prioritisation of test cases for web applications [151].
The test cases are, in this case, recorded user sessions from the previous version of
the SUT. Session-based test cases are thought to be ideal for testing web applications
because they tend to reflect the actual usage patterns of real users, thereby making
for realistic test cases. They compared different criteria for prioritisation such as the
number of HTTP requests per test case, coverage of parameter values, frequency of visits
for the pages recorded in sessions and the number of parameter values. The empirical
evaluations showed that prioritised test suites performed better than randomly ordered
test suites, but also that there is not a single prioritisation criterion that is always best.
However, the 2-way parameter-value criterion, the prioritisation criterion that orders
tests to cover all pair-wise combinations of paramenter-values between pages as soon
as possible, showed the highest APFD value for 2 out of 3 web applications that were
studied.

Fraser and Wotawa introduced a model-based prioritisation approach [152]. Their
prioritisation technique is based on the concept of property relevance [153]. A test
case is relevant to a model property if it is theoretically possible for the test case to
violate the property. The relevance relation is obtained by the use of a model-checker,
which is used as the input to the greedy algorithm. While they showed that property-
bsed prioritisation can outperform coverage-based prioritisation, they noted that the
performance of property-based prioritisation is heavily dependent on the quality of the
model spicification.

A few techniques and analyses used for test suite minimisation or regression test
selection problem have been also applied to test case prioritisation. Rummel et al.
introduced a prioritisation technique based on data-flow analysis by treating each du
pair as a testing requirement to be covered [154]. Smith et al. introduced a prioritisation
technique based on a call-tree model, which they also used for test suite minimisation [25].
They prioritised test cases according to the number of call-tree paths covered by each
test case. Jeffrey and Gupta prioritised test cases using relevant slices [155], which was
also used for regression test selection [54]. Each test case was associated with output
statements, from which relevant slices were calculated. Then test cases were prioritised
according to the sum of two elements: the size of the corresponding relevant slice and
the number of statements that are executed by the test case but do not belong to the
relevant slice. Both elements were considered to correlate to the chance of revealing a
fault introduced by a recent change.

5.4 Cost-Aware Test Case Prioritisation

Unlike test suite minimisation and regression test selection, the basic definition of test
case prioritisation does not involve filtering out test cases, i.e. it is assumed that the
tester executes the entire test suite following the order given by the prioritisation tech-
nique. This may not be feasible in practice due to limited resources. A number of priori-
tisation techniques addressed this problem of the need to be cost-aware [116, 22, 23, 156].

With respect to cost-awareness, the basic APFD metric has two limitations. First,
it considers all faults to be equally severe. Second, it assumes that every test case costs
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Fault

ID 1 2 3 4 5 6 7 8 9 10
Severity 1 1 1 1 1 1 1 1 3 3

Testcase Time

A x x 1
B x x x x 1
C x x x x x x x 6
D x 1
E x x x 1

Table 6: Example test suite with execution time and fault severity information. The
original test suite is taken from Elbaum et al. [114]. Note that the test case C detects
most faults at the cost of taking 6 times longer than other test cases. Also note that
the faults detected by the test case E have higher severity values than the others. This
leads to different prioritisation to a non cost-cognizant approach.

the same in resources. Elbaum et al. extended the basic APFD metric to APFDc so
that the metric incorporates not just the rate of fault detection but also the severity of
detected faults and the expense of executing test cases [116]. Whereas the x-axis and
y-axis in Figure 7 show the number of executed test cases and the number of detected
faults respectively, they denote the sum of execution costs of test cases and the sum
of fault severity values of detected faults in an APFDc plot. An ordering of test cases
according to the APFDc metric detects severer faults earlier.

More formally, let T be the set of n test cases with costs t1, . . . , tn, and let F be the
set of m faults with severity values f1, . . . , fm. For ordering T ′, let TFi be the order of
the first test case that reveals the ith fault. APFDc of T ′ is calculated as following:

APFDc =

∑m
i=1 (fi × (

∑n
j=TFi

tj − 1
2 tTFi))∑n

i=1 ti ×
∑m

i=1 fi

For example, consider the test suite described in Table 6. The fault detection in-
formation is the same as one shown in Table 4, but it additionally contains the fault
severity information and test case execution time. Figure 8 shows how APFDc is calcu-
lated for the orderings of C-E-A-B-D and E-C-A-B-D from the test suite in Table 6. The
APFDc value for E-C-A-B-D is 77.5%, which is higher than the APFDc value of C-E-A-
B-D, 59.5%. Note that C-E-A-B-D is deemed to be better than E-C-A-B-D by the non
cost-cognizant approach in Figure 7 (Section 5.1). However, using the cost-cognizant
approach, E-C-A-B-D is favoured over C-E-A-B-D.

Elbaum et al. applied random ordering, additional statement coverage prioritisation,
additional function coverage prioritisation and additional fault index prioritisation tech-
niques to space, which contains faults discovered during the development stage. They
adopted several different models of test case cost and fault severity, including uniform
values, random values, normally distributed values and models taken from the Mozilla
open source project. The empirical results achieved by synthetically adding cost severity

40



Technical Report TR-09-09 5 TEST CASE PRIORITISATION

●

●

● ● ● ●

0 20 40 60 80 100

0
20

40
60

80
10

0

Percentage of Execution Time

P
er

ce
nt

ag
e 

of
 T

ot
al

 F
au

lt 
S

ev
er

ity
 D

et
ec

te
d

● E−C−A−B−D
C−E−A−B−D

Comparison of C−E−A−B−D and E−C−A−B−D w.r.t. APFDc

Figure 8: APFDc plot of C-E-A-B-D and E-C-A-B-D from the test suite shown in
Table 6. C detects 7 faults, but collectively they are not as severe as the 3 faults
detected by E. E also takes shorter time to execute than C.

models to space. This enabled them to observe the impact of different severity and cost
models. They claimed two practical implications. With respect to test case cost, they
proposed the use of many small test cases rather than a few large test cases. Clearly
the number of possible prioritisations is higher with a test suite that contains many
small test cases, compared to one with a small number of large test cases. It was also
claimed that having different models of fault severity distribution can also impact the
efficiency of testing. This is only true when the prioritisation technique considers the
fault detection history of previous tests.

Elbaum et al. compared two different severity distribution models: linear and expo-
nential. In the linear model, the severity values grow linearly as the severity of faults
increase, whereas they grow exponentially in the exponential model. If the previous fault
detection history correlates to the fault detection capability of the current iteration of
testing, the exponential model ensures that test cases with a history of detecting severer
faults are executed earlier.

Walcott et al. presented a time-aware prioritisation technique [22]. Time-aware pri-
oritisation does not prioritise the entire test suite; it aims to produce a subset of test
cases that are prioritised and can be executed within the given time budget. More for-
mally, it is defined as following:

Given: A test suite, T , the collection of all permutations of elements of the power
set of permutations of T , perms(2T ), the time budget, tmax, a time function time :
perms(2T )→ R, and a fitness function fit : perms(2T )→ R:
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Figure 9: Comparison of different heuristics to the reference Pareto-frontier obtained
from the test suite of schedule using exhaustive search, taken from Yoo and Har-
man [23]. The solid line represents the trade-off between code coverage and cost of test
case execution.

Problem: Find the test tuple σmax ∈ perms(2T ) such that time(σmax) ≤ tmax and
∀σ′ ∈ perms(2T ) where σmax 6= σ′ and time(σ′) ≤ tmax, fit(σmax) > fit(σ′).

Intuitively, a time-aware prioritisation technique selects and prioritises test cases at
the same time so that the produced ordered subset yields higher fault detection rates
within the given time budget. They utilised a genetic algorithm, combining selection
and prioritisation into a single fitness function. The selection component of the fitness
function is given higher weighting so that it dominates the overall fitness value produced.
The results of the genetic algorithm were compared to random ordering, reverse ordering
and the optimal ordering. The results showed that time-aware prioritisation produces
higher rates of fault detection compared to random, initial, and reverse ordering. How-
ever, they did not compare the time-aware prioritisation to the existing, non time-aware
prioritisation techniques. Note that non time-aware prioritisation techniques can also
be executed in ‘time-aware’ manner by stopping the test when the given time budget is
exhausted.

While Yoo and Harman studied test suite minimisation [23], their multi-objective
optimisation approach is also relevant to the cross-cutting concern of cost-awareness.
By using multi-objective optimisation heuristics, they obtained a Pareto-frontier which
represents the trade-offs between the different criteria including cost. Figure 9 is such
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an example obtained from the test suite of the Siemens suite program, schedule. Two
observations are of interest. First, the reference Pareto-frontier obtained from exhaustive
search reveals that full code coverage can be achieved with lower cost compared to
greedy prioritisation. Second, the reference Pareto-frontier contains more decision points
than that produced by greedy prioritisation. When there is a constraint on cost, the
knowledge of Pareto-frontier can therefore provide the tester with more information to
achieve higher coverage. The tester can then prioritise the subset selected by observing
the Pareto-frontier.

The cost-constraint problem has also been analysed using Integer Linear Program-
ming (ILP) [157, 158]. Hou et al. considered the cost-constraint in web service test-
ing [157]. Users of web services are typically assigned with a usage quota; testing a
system that uses web services, therefore, has to consider the remaining quota for each
web service. The ILP approach was later analysed in more generic context using execu-
tion time of each test as cost factor [158].

Do and Rothermel studied the impact of time constraints on the cost-effectiveness
of existing prioritisation techniques [156]. In total six different prioritisation approaches
were evaluated: original order, random order, total block coverage, additional block
coverage, Bayesian Network approach without feedback, Bayesian Network approach
with feedback. They considered four different time constraints, each of which allows
{25%, 50%, 75%, 100%} of time required for the execution of all test cases. Each pri-
oritisation approach was evaluated under these constraints using a cost-benefit model.
The results showed that, although time constraints affect techniques differently, it is
always beneficial to adopt some prioritisation when under time constraints. The original
ordering was always affected the most severely.

6 Meta-Empirical Studies

Recently, the meta-empirical study of regression testing techniques has emerged as a sep-
arate subject in its own right. It addresses cross-cutting concerns such as cost-benefit
analysis of regression testing techniques and the studies of evaluation methodology for
these techniques. Both studies seek to provide more confidence in efficiency and ef-
fectiveness of regression testing techniques. Work in these directions are still in early
stages compared to the bodies of work available for minimisation, selection or prioriti-
sation techniques. However, we believe these studies will make significant contributions
towards the technology transfer.

Empirical evaluation of any regression testing technique is inherently a post-hoc pro-
cess that assumes the knowledge of a set of known faults. Without the a-priori knowledge
of faults, it would not be possible to perform a controlled experiment of comparing dif-
ferent regression testing techniques. This poses a challenge to the empirical evaluation
of techniques, since the availability of fault data tends to be limited [159].

Andrews et al. performed an extensive comparison between real faults and those
seeded by mutation [159]. One concern when using mutation faults instead of real
faults is that there is no guarantee that the detection of mutation faults can be an
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accurate predictor of the detection of real faults. After considering various statistical
data such as the ratio and distribution of fault detection, Andrews et al. concluded that
mutation faults can indeed provide a good indication of the fault detection capability
of the test suite, assuming that mutation operators are carefully selected and equivalent
mutants are removed. However, they also note that, while mutation faults were not
easier to detect than real faults, they were also not harder to detect. Do and Rothermel
extended this study by focusing the comparison on the result of test case prioritisation
techniques [160, 161]. Here, they considered whether evaluating prioritisation techniques
against mutation faults produces results different from evaluating against hand seeded
faults. Based on the comparison of these two evaluation methods, it was concluded that
mutation faults can be safely used in place of real or hand-seeded faults.

Although it was not their main aim, Korel et al. made an important contribution
to the empirical evaluation methodology of regression testing techniques through the
empirical evaluation of their prioritisation techniques [147, 148, 149]. They noted that,
in order to compare different prioritisation techniques in terms of their rate of fault
detection, they need to be evaluated using all possible prioritised sequences of test cases
that may be generated by each technique. Even deterministic prioritisation algorithms,
such as the greedy algorithm, can produce different results for the same test suite if some
external factors change; for example, if the ordering of the initial test suite changes, there
is a chance that the greedy algorithm will produce a different prioritisation result. Korel
et al. argued, therefore, that the rate of fault detection should be measured in average
across all possible prioritised sequences. They introduced a new metric called Most
Likely average Position (MLP), which measures the average relative position of the first
test case that detects a specific fault.

Elbaum et al. extended the empirical studies of prioritisation techniques with the
Siemens suite and space [114] by performing statistical analysis of the variance in
APFD [115]. The APFD values were analysed against various program, change, and
test metrics. Program metrics included mean number of executable statements, mean
function size across all functions, etc. Change metrics included number of functions with
at least one changed statement, number of statements inserted or deleted, etc. Test met-
rics included number of tests in the test suite, percentage of tests reaching a changed
function, mean number of changed functions executed by a test over a test suite, etc.
The aim was to identify the source of variations in results. They reported that the met-
rics that reflected normalised program characteristics (such as mean function size across
the program) and characteristics of test suites in relation to programs (such as mean
percentage of functions executed by a test over a test suite) were the primary contrib-
utors to the variances in prioritisation. While they reported that this finding was not
the anticipated one, it showed that the prioritisation results are the product of closely
coupled interactions between programs under test, changes and test suites.

Empirical evaluation of different techniques can benefit from a shared evaluation
framework. Rothermel and Harrold presented a comparison framework for RTS tech-
niques [44], which was used to compare different RTS techniques [1]. While minimisation
and prioritisation techniques lack such a framework, certain metrics have been used as a
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de facto standard evaluation framework. Rate of reduction in size and rate of reduction
in fault detection capability have been widely used to evaluate test suite minimisation
techniques [11, 17, 18, 19, 20, 24, 25, 37, 38, 39, 42]. Similarly, Average Percentage
of Fault Detection (APFD) [114] has been widely used to evaluate prioritisation tech-
niques [22, 114, 115, 118, 119, 121, 125, 134, 135, 136, 143, 144, 152, 154, 155, 157, 158,
160, 161, 162, 163].

Rothermel et al. studied the impact of test suite granularity and test input group-
ing on the cost-effectiveness of regression testing [118, 163]. They first introduced the
concept of test grains, which is the smallest unit of test input that is executable and
checkable. Test cases are constructed by grouping test grains. Based on this, they de-
fined test suite granularity as the number of test grains in a test case, and test input
grouping as the way test grains are added to each test case, e.g. randomly or grouped
by their functionality. They reported that having a coarse grained test suite did not
significantly compromise the fault detection capability of the test suite, but resulted in
decreased total execution time. The savings in execution time can be explained by the
fact that a coarse grained test suite contains fewer test cases, thereby reducing the set-up
time and other overheads that occur between execution of different test cases. However,
they did not consider the cost of the test oracle. It is not immediately obvious whether
the cost of a test oracle would increase or decrease as the test suite granularity increases.
This oracle cost could affect the overall cost-effectiveness.

Kim et al. studied the impact of test application frequency to the cost-effectiveness
of RTS techniques [164, 165]. Their empirical studies showed that the frequency of re-
gression test application has a significant impact on cost-effectiveness of RTS techniques.
They reported that RTS techniques tend to be more cost-effective when the frequency
of test application is high. It implies that only small amount of changes are made be-
tween tests, which makes RTS more effective. However, as intervals between tests grows,
changes are accumulated and RTS techniques tend to select more and more test cases,
resulting in low cost-effectiveness. One interesting finding is that, as intervals between
tests grows, random re-testing tends to work very well. With small testing intervals,
the random approach fails to focus on the modification. As testing intervals increase,
more parts of SUT need to be re-tested, improving the effectiveness of the random ap-
proach. Elbaum et al. studied the impacts of changes in terms of the quantitative
nature of modifications [162]. They investigated how the cost-effectiveness of selection
and prioritisation techniques is affected by various change metrics such as percentage of
changed lines of code, average number of lines of code changed per function, etc. Their
empirical analysis confirmed that the differences in these metrics can make a significant
impact to the cost-effectiveness of techniques. However, they also reported that simple
size of change, measured in lines of code, was not a predominant factor in determining
the cost-effectiveness of techniques. Rather, it was the distribution of changes and the
ability of test cases to reach these changes.

Elbaum et al. also presented a technique for selecting the most cost-effective prioriti-
sation technique [166]. They applied a set of prioritisation techniques to the same set of
programs, and analysed the resulting APFD metric values. Different techniques perform
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best for different programs; they applied the classification tree technique to predict the
best-suited technique for a program. Note that the term ‘cost-effectiveness’ in this work
means the efficiency of a prioritisation technique measured by the APFD metric; the
computational cost of applying these techniques was not considered.

Rosenblum and Weyuker introduced a coverage-based cost-effective predictor for RTS
techniques [167]. Their analysis is based on the coverage relation between test cases and
program entities. If each program entity has a uniformly distributed probability of
being changed in the next version, it is possible to predict the average number of test
cases to be selected by a safe RTS technique using coverage relation information. They
evaluated their predictor with the TestTube RTS tool [88], using multiple versions of the
KornShell [168] and an I/O library for Unix, SFIO [169], as subjects. Their predictor
was reasonably accurate; for example, it predicted an average of 87.3% of the test suite
to be selected for KornShell, when TestTube selected 88.1%. However, according to
the cost model of Leung and White [170], the cost of coverage analysis for RTS per test
case was greater than the cost of execution per test case, indicating that TestTube was
not cost-effective. Harrold et al. introduced an improved version of the cost-effective
predictor of Rosenblum et al. for more accurate cost-effectiveness prediction of version-
specific RTS [171]. They evaluated their predictor using TestTube and another RTS
tool, DejaVu [52].

Modelling the cost-effectiveness of regression testing techniques has emerged as an es-
sential research topic as any analysis of cost-effectiveness should depend on some model.
Leung and White introduced an early cost-model for regression testing strategies and
compared the cost models of the retest-all strategy and the selective retesting strat-
egy [170]. Malishevsky et al. presented detailed models of cost-benefit trade-offs for
regression testing techniques [117]. They applied their models to the regression testing
of bash, a popular Unix shell [172], with different ratio values of f

e+c , where f is the
cost of omitting one fault, e is the additional cost per test and c is the result-validation
cost per test. The results implied that if a regression testing technique does not consider
f , it may overestimate the cost-effectiveness of a given technique. The cost model of
Malichevsky et al. has been extended and evaluated against the prioritisation of JUnit
test cases [173]. Smith and Kapfhammer studied the impact of the incorporation of cost
into test suite minimisation [174]. Existing minimisation heuristics including HGS [11],
delayed greedy [17] and 2-optimal greedy algorithm [126] were extended to incorporate
the execution cost of each test case. Do and Rothermel considered the impact of time
constraints on selection and prioritisation techniques across multiple consecutive versions
of subject programs to incorporate software life-cycle factors into the study [175].

Reflecting the complexity of regression testing process, cost-effectiveness models often
need to be sophisticated in order to incorporate multiple variables [117, 173, 174, 175].
However, complexity can be a barrier to uptake. Do and Rothermel introduced an ap-
proach based on statistical sensitivity analysis to simplify complicated cost models [176].
Their approach fixed certain cost factors that were deemed to be the least significant
by the sensitivity analysis. The empirical evaluation showed that, while certain levels
of simplification can still preserve the accuracy of the model, over-simplification may be
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Year count

1977 1

1978 0

1979 0

1980 0

1981 1

1982 0

1983 0

1984 0

1985 0

1986 0

1987 1

1988 2

1989 5

1990 5

1991 2

1992 4

1993 5

1994 3

1995 3

1996 3

1997 6

1998 6

1999 3

2000 5

2001 9

2002 11

2003 8

2004 7

2005 12

2006 16

2007 22

2008 14

2009 7

161

Year Minimisation Selection Prioritisation Empirical/ComparativeAugmenttion

1977 0 1 0 0 0
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Figure 10: Number of surveyed papers in each year since 1977. The field is still growing.

risky.

7 Summary & Discussion

7.1 Analysis of Current Global Trends in the Literature

This paper has produced a survey of 157 papers on test suite minimisation, Regression
Test Selection (RTS) and test case prioritisation. This includes papers on methodologies
of empirical evaluation and comparative studies. Data summarising the results in these
papers are shown in Tables 7, 8, 9 and 10 in Appendix. Note that the last category
consists of papers on cross-cutting concerns for empirical studies, such as methodologies
of empirical evaluation and analyses of cost-effectiveness, as well as purely comparative
studies and surveys. Figure 10 plots the number of surveyed papers for each year since
1977, when Fischer published his paper on regression test selection using linear program-
ming approach [56]. The observed trend in number of publications shows that the field
continues to grow.

Figure 11 shows the chronological trend in the number of studies for each of the top-
ics in this paper. In this figure, we have classified papers into four different categories.
The first three categories contain papers on minimisation, selection and prioritisation
respectively. The fourth category contains papers on empirical evaluation and compar-
ative studies, including previous surveys. Papers that consider more than one subject
are represented in each category for which they are relevant; for example, a survey on
RTS [1] is counted in both the selection category and the comparative studies category.
Therefore, while the graph closely resembles Figure 10, it is not a representation of the
number of publications. Rather, the figure should be read as a guide to the trends in
study topics over time.
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Figure 11: Relative research interest in each subject. Papers that consider more than
one subject were counted multiple times.

Considering that many different RTS approaches were introduced in late 80s and
90s, recent research on RTS techniques has been mostly concerned with the application
and evaluation of the graph walk approach [71, 72, 75, 78, 79, 80, 81, 82, 83]. As the
figure reveals, the interest in test case prioritisation has been steadily growing since late
90s. In Figures 10 and 11, the data for 2009 is, of course, partial.

Whereas most of the early papers on RTS were theoretical (see Table 8), empirical
evaluation of regression testing techniques has received a burgeoning interest recently.
Not only are there more publications on pure empirical/comparative studies (as can be
observed in Figure11), but recent studies of regression testing techniques tend to evaluate
the suggested techniques empirically, as can be observed in Table 7, 8 and 9.

However, the scale of empirical studies seems to remain limited. Figure 12 shows
the maximum size of SUTs (measured in Lines of Code) and test suites (measured in
number of test cases) studied empirically in the literature. For both data, we have only
included empirical studies that explicitly note the size of subject SUTs and test suites.
When only average size of test suites is given, we included the maximum average size
of studied test suites. For the maximum size of SUTs, we have only included empirical
studies that use source code as test subjects; for example, studies of regression testing
of UML models are not included. For about 60% of empirical studies, the largest SUT
studied is smaller than 10,000 LoC. For about 70% of empirical studies, the largest test
suite studied contains fewer than 1,000 test cases.

Figure 13 shows the origins of subject SUTs studied in the literature. For detailed
information about the classification, refer to the Appendix. Programs available from
Software Infrastructure Repository (SIR) [177] account for over 50% of subjects of em-
pirical studies of regression testing techniques. The predominant programming language
is C, followed by Java. Considering that the first paper appeared in 2002, model-based
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Figure 13: Origins of subject SUTs observed in the literature.
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techniques have shown significant growth. Although there are several papers on RTS for
web applications [79, 80, 81, 82, 83], empirical evaluation of these techniques remains
limited.

7.2 State-of-the-Art, Trends and Issues

7.2.1 State-of-the-Art

Among the class of RTS techniques, the graph walk approach seems to be the pre-
dominant technique in the literature. Although it was originally conceived for Control
Dependence Graphs and Program Dependence Graphs [45, 51], the most widely used
form of graph walk approach works on Control Flow Graphs [52, 67]. Its popularity can
be observed from the fact that the approach has been applied to many forms of graph
representation of SUT that are not CFGs [70, 71, 72, 75]. Indeed, the strength of the
graph walk approach lies not only in the fact that it is intuitive but also in the generic
applicability of the technique to any graph representation of systems.

By studying the literature, it becomes clear that two ideas played essential roles in the
development of RTS techniques: Leung and White’s early idea of regression testing and
test case classification [9], and Rothermel and Harrold’s definition of a safe regression test
selection [44]. Collectively, these two ideas provided a profound theoretical framework
that can be used to evaluate RTS techniques.

The existence of such a theoretical framework is what differentiate RTS techniques
from test suite minimisation and test case prioritisation. For RTS techniques, it is pos-
sible to define what a safe technique should do because the RTS problem is specifically
focused on the modifications between two versions of SUT. Minimisation and prioritisa-
tion techniques, on the other hand, are forced to rely on surrogate metrics for real fault
detection capability. Therefore, while it may theoretically be possible to define a safe
minimisation or prioritisation technique, it would not be possible to implement one in
the real world without knowing all the faults in SUT in advance.

Naturally, the history of minimisation and prioritisation literature is an on-going
exploration of different heuristics and surrogate metrics. It is interesting to note that
the greedy algorithm, a good approximation for the set cover problem and, therefore,
test suite minimisation problem, is also an efficient heuristic for test case prioritisation
precisely because of its greedy nature - in other words, as much as possible, as soon as
possible. As a result of this, the greedy approach and its variations have strong presence
in the literature on both test suite minimisation [10, 13, 17] and test case prioritisa-
tion [113, 114, 119]. Recently, there are other approaches to test suite minimisation and
test case prioritisation that aim to overcome the uncertainty of surrogates, e.g. the use
of multiple minimisation criteria [20, 21, 23] and the use of expert knowledge for test
case prioritisation [135, 136].
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7.2.2 Trends

Emphasis on Models: Whereas most of the early regression testing techniques con-
cerned code-based, white-box regression testing, the model-based regression testing ap-
proach has been of more recent growing interest [31, 32, 33, 76, 103, 104, 105, 106, 107,
108, 109]. UML models and Extended Finite State Machines (EFSMs) are often used.

New Domains: While the majority of existing literature on regression testing tech-
niques concerns stand-alone programs written in C and Java, there are a growing number
of other domains that are being considered for regression testing. For example, spread-
sheets [64], GUIs [24, 178] and web applications [79, 80, 83, 81, 151, 82] have been
considered.

Multi-criteria Regression Testing: In minimisation and prioritisation, it is known
that there is no single surrogate metric that correlates to fault prediction capability for
all programs [7, 37, 38, 39, 113, 119]. One potential way of overcoming this limitation
is to consider multiple surrogates simultaneously [20, 21] using classical multi-objective
optimisation techniques such as the weighted sum approach [20] or the prioritised ap-
proach [21]. Expert domain knowledge has also been used in addition to software metrics
for test case prioritisation [135, 136]. Finally, Multi-Objective Evolutionary Algorithms
(MOEAs) have been used to deal with multiple objectives [23].

Cost-awareness: The cost of regression testing is a cross-cutting concern for all three
classes of regression testing techniques. Studies of cost-aware regression testing can be
classified into two categories. First, there is work that aims to incorporate the cost of
testing directly into regression testing techniques at technical level; for example, cost-
aware test case prioritisation [22, 116] or minimisation techniques that provide the tester
with a series of alternative subsets of the original test suites that can be executed in
different amounts of time [23]. Second, there are empirical evaluations of regression
testing techniques that consider whether the application of these techniques is indeed
cost-effective in the wider context of the overall software lifecycle [118, 156, 163, 167, 175].

7.2.3 Issues

Limited Subjects: In Figure 13, subject programs from SIR [177] account for almost
60% of the subjects of empirical studies observed in the regression testing technique
literature. While this is certainly evidence that SIR has been of tremendous value to
the research community, it also means that many regression testing techniques are being
evaluated against a limited set of programs and test suites. By no means is this a criticism
of SIR itself or work that are based on subjects from SIR; rather, the dependency on
SIR shows how time consuming and difficult it is to collect multiple versions of program
source code, their test suites and associated fault information, let alone to make it
publicly available. The SIR commonality also supports and facilitates comparisons.
However, as a community, we face a possible risk of ‘over-fitting’ the research of these
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techniques to those programs that are easily available. Open source software projects
are often suggested as an alternative source of data, but from the results of this survey
analysis it seems that their use for research on regression testing techniques is limited.

We envision two potential approaches to the issue of limited subjects. The first
approach is to design a method that will allow a realistic simulation of real software faults.
There is early work in this direction. Andrews et al. considered whether mutation faults
are similar to real faults [159]; Do and Rothermel studied the same question especially
in the context of regression testing [161]. Jia and Harman used a search-based approach
to obtain higher-order mutation faults that are more ‘subtle’ and, therefore, potentially
harder to detect than first order mutation faults [179].

The second approach is to engage more actively with industry and open source com-
munities. This is not an easy task, as the information about testing and software faults
tend to be very sensitive, particularly to commercial organisations and, therefore, often
strictly confidential. As a research community, we face the challenge of convincing the
wider practitioners community of the cost-effectiveness and usefulness of these techniques
in order to advance the research further using information obtained from the industry
and open source communities. This is closely related to the issue of technology transfer,
to which we now turn.

Technology Transfer: A close observation of the literature suggests that the commu-
nity may have reached a stage of maturity that, in order to progress to the next level
of achievement, technology transfer to industry will play an important role. While the
research community may not have found the ‘silver bullet’, most empirical evaluation of
the proposed techniques suggests that application of minimisation, selection and priori-
tisation techniques does make a difference from 1) uncontrolled regression testing, i.e.
retest-all approach and un-prioritised regression testing, and 2) random approaches.

However, empirical evaluation and application of regression testing techniques at
industrial level seem to remain limited. Out of the 157 papers listed in Table 7, 8, 9
and 10, only 31 papers list a member of industry as an author or a co-author. More
importantly, only 12 papers consider industrial software artefacts as a subject of the
associated empirical studies [103, 104, 76, 145, 101, 124, 96, 94, 95, 97, 99, 100]. This
suggests that a large scale industrial uptake of these techniques has yet to occur.

8 Future Directions

This section discusses some of the possible future directions in the field of regression
testing techniques. While it is not possible to predict the future direction a field of
study will follow, we have identified some trends in literature, which may suggest and
guide the direction of future research.
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8.1 Orchestrating Regression Testing Techniques with Test Data Gen-
eration

Automatic test data generation has made advances in both functional and non-functional
testing [180]. Superficially test data generation is the counterpart to regression testing
techniques; it creates test cases while regression testing seeks to mange them. However,
because these two activities are typically located at the opposite ends of the testing
process, they may become close when the testing process repeats.

In certain aspects of regression testing, orchestrating regression testing with test data
generation is not strictly a new idea. From the classification of test cases by Leung and
White [9], it follows that regression testing involves two different needs that are closely
related to test data generation: repairing obsolete test cases for corrective regression
testing and generating additional test data for progressive regression testing. The second
problem, in particular, has been referred to as the test suite augmentation problem [181,
182]. There was early work in both directions. Memon and Soffa considered automatic
repair of GUI test cases that were made obsolete by the changes in the GUI [178], which
was later extended by Memon [183]. Similarly, Alshahwan and Harman focused on the
use of user session data for regression testing of web applications, and how the test
cases can be automatically repaired for the next version [184]. Apiwattanapong et al.
identified the testing requirements that are needed to test the new and modified parts
of a SUT so that additional test data can be generated automatically [181, 182].

However, we believe that there are additional areas that may be synergetic. For ex-
ample, test data generation might possibly refer to the test cases selected and unselected
during the last iteration in order to identify the part of the SUT to focus on. Similarly,
regression testing techniques can use the additional information provided by test data
generation techniques in order to make regression testing more efficient and effective.
For example, there are test data generation techniques that target a specific concern in
the SUT, such as detection of the presence of a memory leak. The additional informa-
tion about the intention behind each test case could be used to enrich the minimisation,
selection and prioritisation process.

8.2 Multi-Objective Regression Testing

Regression testing is a complex and costly process that may involve multiple objectives
and constraints. For example, the cost of executing a test case is usually measured as
the time taken to execute the test case. However, there may be a series of different costs
involved in executing a test case, such as setting up the environment or preparing test
input, each of which may be subject to a different constraint. Existing techniques also
assume that test cases can be executed in any given order without any change to the
cost of execution, which seems unrealistic. Test cases may have dependency relations
between them. It may also be possible to lower the cost of execution by grouping test
cases that share the same test environment, thereby saving set-up time.

Considering the complexity of real-world regression testing, existing representations
of problems in regression testing may be oversimplistic. Indeed, most of the published
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empirical studies rely on relatively small-scale academic examples. Even when real-world
programs are studied, they tend to be individual programs, not a software system as
a whole. Larger software systems do not simply entail larger problem size; they may
denote a different complexity level.

We believe that, in order to cope with the complexity of regression testing, regression
testing techniques may need to become multi-objective. There is existing, preliminary
work that seeks to represent the cost of test case execution as an additional constraint
using evolutionary algorithms [22, 23]. Multi-objective optimisation heuristics may pro-
vide the much-needed flexibility that is required for the representation of problems with
high complexity.

Another benefit of moving to a multi-objective paradigm is the fact that it provides
additional insight into the regression testing problem by allowing the testers to observe
the inherent trade-offs between multiple constraints. This is not possible with so called
classical approaches to multi-objective objective that either consider one objective at
a time [21] or conflate multiple objectives into a single objective using weighting [20,
22]; these approaches may be based on multiple criteria, but they are not truly multi-
objective in a sense that they all produce a single solution. The result of a multi-objective
optimisation is often a set of solutions that do not dominate each other, thereby forming
the trade-offs between constraints. The insight into the trade-offs may provide additional
information that is hard to obtain manually.

8.3 Problem of Test Oracle and Its Cost

Test oracles present a set of challenging problems for software testing. It is difficult to
generate them automatically, they often require human efforts to verify and the cost
of this effort is hard to estimate and measure. The oracle cost has been considered as
a part of cost models [176], but has not been considered as a part of the process of
minimisation, selection and prioritisation itself. Since regression testing techniques seek
to efficiently re-use existing test cases, the information about the cost of verifying the
output observed with the existing test suite may be collected across versions. This can
be incorporated into the existing regression testing techniques.

While test oracle and its cost may be seen as yet another additional objective that can
be considered using a multi-objective approaach, we believe the test oracle will present
many interesting and exciting research questions in the context of regression testing and,
thus, deserves a special treatment in its own right. This is because, compared to other
testing cost such as the physical execution time of test cases, the test oracle cost is closely
related to the quality of testing. Moreover, unlike some costs that can be reduced by
using more advanced hardware, the cost of oracle verification derives from human effort
and is, therefore, harder to reduce. These characteristics make the issues related to test
oracles challenging but interesting research subjects.
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8.4 Consideration of Other Domains

The majority of regression testing techniques studied in this survey concern white-box
structural regression testing of code-level software artefacts. However, other domains
are emerging as new and exciting research subjects.

Recently, Service Oriented Architectures (SOAs) have been of keen interest both for
academic researchers and industrialists. In the SOA paradigm, software system is built,
or composed, by orchestrating a set of web services, each of which takes charge of a
specific task. Several approaches have been introduced to address the issue of regression
testing of web services, most of which seek to apply the same technique developed for
traditional applications to web services [80, 79, 81, 82, 83]. However, the inherently dis-
tributed nature of an SOA system presents several challenges that are alien to traditional
regression testing techniques.

Web services often reside in remote locations and are developed by a third-party,
making it hard to apply the traditional white-box regression testing techniques that re-
quire analysis of source code. Modifications can happen across multiple services, which
can make fault localisation difficult. High interactivity in web applications may result
in complex test cases that may involve human interaction. Finally, distributed systems
often contain concurrency issues. Traditional regression testing techniques assume that
the program produces deterministic output; this may not be adequate for testing appli-
cations with concurrency. Answers to these specific issues in regression testing of web
applications are still in the early stage of development.

Model-based regression testing techniques have received growing interests too [103,
104, 105, 106, 107, 108, 109]. We believe the model-based regression testing techniques
will be of crucial importance in the future for the following reasons:

• Higher level regression testing: these techniques can act as a medium between
requirement/specification and testing activities, bringing regression testing from
the structural level to functional level.

• Scalability: in dealing with software systems of industrial scale, model-based
techniques will scale up better than code-based techniques.

However, there are a few open research questions. First, there is the well known issue
of traceability; unless the traceability from requirements and specifications to code-level
artefacts and test cases is provided, the role of model-based regression testing techniques
will be severely limited. Second, there is the issue of test adequacy: if a test adequacy A
is appropriate for a model M , which test adequacy should be used to test the program
P that has been automatically generated from M? Does A still apply to P? If so, does
it follow that M being adequate for A means P will be adequate for A as well?

There are also other interesting domains to consider. Testing of GUIs has received
growing interests, not only in the context of regression testing [24, 133, 178], but also in
the context of testing in general [185, 186]. Regression testing GUIs presents a different
set of challenges to code-based structural regression testing since GUIs are usually gen-
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erated in a visual programming environment; they are often subject to frequent changes
and, not being well-typed, do not readily facilitate static analysis.

8.5 Non-functional Testing

A majority of existing test case management techniques rely upon structural information
about the SUT, such as data flow analysis, CFG analysis, program slices and structural
coverage. The impact that non-functional property testing will have on regression test-
ing techniques has not been fully studied. Existing techniques were able to map the
problems in the regression testing to well-formed abstract problems using the proper-
ties of structural information. For example, test suite minimisation could be mapped
to the minimal hitting set problem or the set coverage problem, precisely because the
techniques were based on the concept of ‘coverage’. Similarly, graph-walking approaches
to test case selection were made possible because the changes between different versions
were defined by structural difference in CFGs.

Imagine regression testing techniques for non-functional properties. What would be
the minimised test suite that can test the power consumption of an embedded system?
How would test cases be prioritised to achieve an efficient and effective stress testing
of a web application? These questions remain largely unanswered and may require
approaches that are significantly different from existing paradigms.

8.6 Tool Support

Closely related to the issue of technology transfer is the issue of tool support. With-
out readily available tools that implement test case management techniques, practical
adoption will remain limited. One potential difficulty of providing tool support is the
fact that, unlike unit testing for which there exists a series of frameworks based on
the xUnit architecture, there is not a common framework for the regression testing
process in general. The closest to a common ground for regression testing would be
an Integrated Development Environment (IDE), such as Eclipse, with which the xUnit
architecture is already integrated successfully. A good starting point for test case man-
agement techniques may be the management framework of unit test cases, built upon
xUnit architecture and IDEs.

9 Conclusion

This paper provides both a survey and a detailed analysis of trends in regression test
case selection, minimisation and prioritisation. The paper shows how the work on these
three topics is closely related and provides a survey of the landscape of work on the
development of these ideas, their applications, empirical evaluation and open problems
for future work.

The analysis of trends reported in the paper reveals some interesting properties.
There is evidence to suggest that the topic of test case prioritisation is of increasing
importance, judging by the shift in emphasis towards it that is evident in the literature.
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It is also clear that the research community is moving towards assessment of the com-
plex trade offs and balances between different concerns, with an increase in work that
considers the best way in which to incorporate multiple concerns (cost and value for
instance) and to fully evaluate regression testing improvement techniques.

This focus on empirical methodology is one tentative sign that the field is beginning
to mature. The trend analysis also indicates a rising profile of publication, providing
evidence to support the claim that the field continues to attract growing attention from
the wider research community, which is a positive finding for those working on regression
test case selection and minimisation and, in particular those working on prioritisation
problems.

Our survey also provides evidence to indicates that there is a preponderance of
empirical work that draws upon a comparatively small set of subjects (notably those
available through the SIR repository). This is a testament to the importance of this
source of case study material. It is valuable because it allows for cross comparison of
results and replication, which is essential for the development of any science. However,
this comes with a potential caveat; it may potentially suggest a risk of over-fitting,
though we found no direct evidence to suggest that this had taken place.
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Appendix

The following tables contain detailed information about publications on each class of
technique: test suite minimisation in Table 7, Regression Test Selection (RTS) in Table 8,
test case prioritisation in Table 9 and empirical/comparative studies in Table 10. Note
that publications that consider more than one class of techniques appear in multiple
tables for ease of reference. For example, a survey of Regression Test Selection [1]
appears in both Table 8 and Table 10.

Information on the maximum size of SUT (measured in Lines of Code) and the
maximum size of test suites were collected from papers only when they were explicitly
noted. Some papers that considered multiple test suites for a single program contained
only the average, in which case we record the size of the test suite with largest average
size. When the studied SUT cannot be measured in Lines of Code (LOC), we have
provided detailed information in footnotes. Tables also contain information about the
origins of the studied SUT, which are classified as follows:

• Siemens suite [40]: all or part of the following set of C programs - printtokens,
printtokens2, schedule, schedule2, replace, tcas, totinfo, available from
SIR [177].

• space: an interpreter for Array Description Language (ADL), developed by Euro-
pean Space Agency. Available from SIR.

• Unix utilities in SIR: all or part of the following set of C programs - flex, grep,
gzip, sed, vim, bash, available from SIR

• Java programs in SIR: all or part of the following set of Java programs - siena,
ant, jmeter, jtopas, xml-security, nanoxml, available from SIR

• Other C/C++/C# programs: programs written in C/C++/C# that are not
available from SIR

• Other Java programs: programs written in Java that are not available from SIR

• Models and programs in other languages : models including state machines
and UML diagrams. There are also a very few empirical studies that consider
programs written in other languages, e.g. Pascal.

• Web applications : web applications and web services

Table 7: Summary of publications on test suite minimisation

Reference Year Max. SUT Max. Test S S S S O O M W
Size(LoC) Suite Size S P U J C J

Horgan et al. [12] 1992 1,000 26 •
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Table 7: Summary of publications on test suite minimisation

Reference Year Max. SUT Max. Test S S S S O O M W
Size(LoC) Suite Size S P U J C J

Harrold et al. [11] 1993 N/A 19 •
Offutt et al. [13] 1995 48 36.8 •
Chen et al. [10] 1996 N/A1 -
Rothermel et al. [37] 1998 516 260 •
Wong et al. [38] 1998 842 33 •
Wong et al. [39] 1999 6,218 200 •
Schroeder et al. [30] 2000 Theory -
Korel et al. [32] 2002 Theory -
Malishevsky et al. [117] 2002 65,632 1,168 •
Rothermel et al. [118] 2002 68,782 1,985 • •
Rothermel et al. [7] 2002 516 260 •
Vaysburg et al. [31] 2002 Theory -
Anido et al. [34] 2003 Theory -
Harder et al. [26] 2003 6,218 169 • •
Marre et al. [16] 2003 516 5,542 •
Black et al. [20] 2004 512 5,542 •
Rothermel et al. [163] 2004 68,782 1,985 • •
Jeffrey et al. [18] 2005 516 135 •
McMaster et al. [42] 2005 6,218 4,712 •
Tallam et al. [17] 2006 6,218 539 • •
Chen et al. [33] 2007 Theory -
Hou et al. [150] 2007 5,500 183 •
Jeffrey et al. [19] 2007 6,218 1,560 • •
Leitner et al. [28] 2007 N/A2 -
McMaster et al. [41] 2007 11,803 1,500 •
Smith et al. [25] 2007 1,455 N/A •
Yoo et al. [23] 2007 6,218 169 • •
McMaster et al. [24] 2008 11,803 1,500 •
Yu et al. [43] 2008 6,218 13,585 • •
Zhong et al. [5] 2008 26,824 N/A • •
Hsu et al. [21] 2009 1,892,226 5,542 • • •
Kaminski et al. [35] 2009 N/A3 -
Smith et al. [174] 2009 6,822 110 •

1Chen et al. [10]1 evaluated their heuristics using simulation rather than real data.
2Leitner et al. [28]2 minimised the length of a unit test case, not a test suite.
3Kaminski et al. [35]3 applied logical reduction to a set of 19 boolean predicates taken from avionic

software.
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Table 8: Summary of publications on Regression Test Selec-
tion (RTS)

Reference Year Max. SUT Max. Test S S S S O O M W
Size(LoC) Suite Size S P U J C J

Fischer [56] 1977 Theory -
Fischer et al. [57] 1981 Theory -
Yau et al. [55] 1987 Theory -
Benedusi et al. [87] 1988 Theory -
Harrold et al. [47] 1988 Theory -
Harrold et al. [62] 1989 Theory -
Harrold et al. [48] 1989 Theory -
Hartmann et al. [59] 1989 Theory -
Leung et al. [9] 1989 Theory -
Taha et al. [49] 1989 Theory -
Hartmann et al. [61] 1990 Theory -
Hartmann et al. [60] 1990 Theory -
Lee et al. [58] 1990 Theory -
Leung et al. [89] 1990 Theory -
Leung et al. [90] 1990 550 235 •
Horgan et al. [14] 1991 1,000 26 •
Gupta et al. [46] 1992 Theory -
Laski et al. [102] 1992 Theory -
White et al. [91] 1992 Theory -
Agrawal et al. [54] 1993 Theory -
Bates et al. [53] 1993 Theory -
Rothermel et al. [45] 1993 Theory -
White et al. [92] 1993 Theory -
Chen et al. [88] 1994 11,000 39 •
Rothermel et al. [51] 1994 Theory -
Rothermel et al. [44] 1994 Theory -
Binkley [86] 1995 Theory -
Kung et al. [93] 1995 N/A1 N/A
Rothermel et al. [1] 1996 Survey -
Rothermel [50] 1996 516 5,542 • •
Rosenblum et al. [4] 1997 49,316 1,033 • •
Rosenblum et al. [167] 1997 N/A2 N/A
Rothermel et al. [52] 1997 516 5,542 •
Rothermel et al. [66] 1997 512 5,542 •
Wong et al. [63] 1997 6,218 1,000 •
Vokolos et al. [84] 1997 N/A3 N/A •
Ball [68] 1998 Theory -
Graves et al. [6] 1998 516 398 •
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Table 8: Summary of publications on Regression Test Selec-
tion (RTS)

Reference Year Max. SUT Max. Test S S S S O O M W
Size(LoC) Suite Size S P U J C J

Rothermel et al. [67] 1998 516 5,542 •
Vokolos et al. [85] 1998 6,218 100 •
Harrold [112] 1999 Theory -
Kim et al. [164] 2000 6,218 4,361 • •
Le-Traon et al. [108] 2000 N/A4 N/A
Rothermel et al. [69] 2000 24,849 317 •
Beydeda et al. [73] 2001 Theory -
Bible et al. [3] 2001 49,316 1,033 • • •
Harrold et al. [70] 2001 N/A 189 • •
Harrold et al. [171] 2001 516 19 •
Jones et al. [122] 2001 6,218 4,712 • •
Orso et al. [77] 2001 6,035 138 •
Briand et al. [103] 2002 N/A5 596 •
Chen et al. [76] 2002 N/A 306 •
Fisher II et al. [64] 2002 N/A6 493 •
Malishevsky et al. [117] 2002 65,632 1,168 •
Rothermel et al. [118] 2002 68,782 1,985 • •
Elbaum et al. [162] 2003 65,632 1,168 •
Wu et al. [109] 2003 Theory -
White et al. [96] 2003 N/A7 N/A •
Deng et al. [105] 2004 Theory -
Rothermel et al. [163] 2004 68,782 1,985 • •
Orso et al. [74] 2004 532,000 707 •
White et al. [94] 2004 N/A7 N/A •
Kim et al. [165] 2005 6,218 4,361 • •
Martins et al. [75] 2005 902 N/A •
Muccini et al. [110] 2005 N/A5 •
Skoglund et al. [101] 2005 1,200,000 N/A •
Do et al. [175] 2006 80,400 1,533 •
Lin et al. [79] 2006 N/A8 N/A
Pilskalns et al. [106] 2006 N/A 52 •
Tarhini et al. [82] 2006 Theory -
Zhao et al. [72] 2006 Theory -
Zheng et al. [97] 2006 757,000 592 •
Zheng et al. [98] 2006 757,000 592 •
Muccini et al. [111] 2006 N/A5 N/A •
Farooq et al. [107] 2007 Theory -
Orso et al. [78] 2007 6,035 567 • •
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Table 8: Summary of publications on Regression Test Selec-
tion (RTS)

Reference Year Max. SUT Max. Test S S S S O O M W
Size(LoC) Suite Size S P U J C J

Ruth et al. [80] 2007 Theory -
Ruth et al. [83] 2007 Theory -
Ruth et al. [81] 2007 Theory -
Sherriff et al. [145] 2007 Theory -
Xu et al. [71] 2007 3,423 63 •
Zheng et al. [99] 2007 757,000 592 •
Zheng et al. [100] 2007 757,000 31 •
Fahad et al. [2] 2008 Survey -
White et al. [95] 2008 Over 1MLoC N/A •
Briand et al. [104] 2009 N/A5 323,614 •

1Kung et al. applied their technique to InterView C++ library, which contains 147 files and over 140
classes [93].

2Rosenblum and Weyuker [167] evaluated their cost-effectiveness predictor using 31 versions of the
KornShell and a single version of the SFIO (Unix library), but exact versions, sizes of SUT and sizes of
test suites were not specified.

3Vokolos et al. evaluated their textual difference selection technique using a small C function in
addmon family of tools, power [84].

4Le-Traon et al. [108] presented a case study of a model of packet-switched data transport service,
the size of which was not specified.

5Briand et al. studied UML models rather than real systems, the biggest of which contained either
9 classes with 70 methods [103] or 32 classes with 64 methods [104]. Muccini et al. studied an RTS
technique at software architecture level and presented case studies for the architecture model of an
elevator system and a cargo router system [110, 111].

6Fisher II et al. [64] evaluated their retesting strategy for spreadsheets with a spreadsheet containing
48 cells, 248 expressions and 100 predicates.

7White et al. applied the firewall approach to GUI program with 246 GUI objects [96]. White and
Robinson applied the firewall approach to a real time system developed by ABB [94].

8Lin et al. [79] applied their technique to a Java Interclass Graph (JIG) with over 100 nodes.
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Table 9: Summary of publications on test case prioritisation

Reference Year Max. SUT Max. Test S S S S O O M W
Size(LoC) Suite Size S P U J C J

Harrold [112] 1999 Theory -
Rothermel et al. [113] 1999 516 19 •
Elbaum et al. [114] 2000 6,218 169 • •
Elbaum et al. [115] 2001 6,218 169 • •
Elbaum et al. [116] 2001 6,218 166 •
Jones et al. [122] 2001 6,218 4,712 • •
Rothermel et al. [119] 2001 6,218 169 • •
Elbaum et al. [121] 2002 6,218 169 • •
Kim et al. [142] 2002 6,218 226 • •
Malishevsky et al. [117] 2002 65,632 1,168 •
Rothermel et al. [118] 2002 68,782 1,985 • •
Srivastava et al. [124] 2002 18,000,0001 3,128 •
Elbaum et al. [162] 2003 65,632 1,168 •
Leon et al. [134] 2003 N/A2 3,333 • •
Do et al. [125] 2004 80,400 877 •
Elbaum et al. [166] 2004 68,000 1,985.32 • •
Rothermel et al. [163] 2004 68,782 1,985 • •
Bryce et al. [129] 2005 N/A3 -
Do et al. [160] 2005 80,400 877
Korel et al. [147] 2005 800 980 •
Rummel et al. [154] 2005 N/A4 21 •
Srikanth et al. [137] 2005 2,500 50 •
Bryce et al. [130] 2006 N/A3 -
Do et al. [175] 2006 80,400 1,533 •
Do et al. [173] 2006 80,400 877 •
Do et al. [161] 2006 80,400 877 •
Jeffrey et al. [155] 2006 516 N/A •
Tonella et al. [135] 2006 6,218 169 •
Walcott et al. [22] 2006 1,808 53 •
Bryce et al. [133] 2007 N/A3 -
Fraser et al. [152] 2007 N/A4 246 •
Hou et al. [150] 2007 5,500 183 •
Korel et al. [148] 2007 1,416 1,000 •
Li et al. [126] 2007 11,148 4,350 • •
Mirarab et al. [143] 2007 124,000 105 •
Qu et al. [131] 2007 17,155 796 •
Smith et al. [25] 2007 1,455 N/A •
Do et al. [156] 2008 80,400 912 •
Hou et al. [157] 2008 N/A5 1,000
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Table 9: Summary of publications on test case prioritisation

Reference Year Max. SUT Max. Test S S S S O O M W
Size(LoC) Suite Size S P U J C J

Korel et al. [149] 2008 1,416 1,439 • •
Mirarab et al. [144] 2008 80,400 912 •
Qu et al. [132] 2008 107,992 975 •
Sampath et al. [151] 2008 9,401 890
Krishnamoorthi et al. [146] 2009 6,000 N/A •
Smith et al. [174] 2009 6,822 110 •
Yoo et al. [136] 2009 122,169 1,061 • •
Zhang et al. [158] 2009 5,361 209 •

1Srivastava and Thiagarajan [124] considered the biggest software system so far, which was an office
productivity application with over 18 million lines of code. However, their technique took the executable
binary as input rather than its source code. The compiled application was 8.8Mb in size, with a 22Mb
symbol table.

2Leon et al. [134] considered three compilers: javac, jikes and gcc. The exact size of the source
code of these programs was not specified.

3Bryce et al. [129, 130, 133] studied the prioritisation of interaction coverage, for which the Lines of
Code metric is not appropriate.

4These papers considered models rather than real software systems. Rummel et al. [154] applied their
technique to a model with 3 classes and 21 methods. Fraser et al. [152] did not specify the size of the
studied models and test suites.

5Hou et al. [157] evaluated their technique using a web application composed of 12 web services.
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Table 10: Summary of publications on empirical evaluation
& comparative studies

Reference Year Max. SUT Max. Test S S S S O O M W
Size(LoC) Suite Size S P U J C J

Leung et al. [170] 1991 Theory -
Rothermel et al. [44] 1994 Theory -
Rothermel et al. [1] 1996 Survey -
Rosenblum et al. [4] 1997 49,316 1,033 • •
Rosenblum et al. [167] 1997 N/A1 N/A
Rothermel et al. [66] 1997 512 5,542 •
Graves et al. [6] 1998 516 398 •
Kim et al. [164] 2000 6,218 4,361 • •
Bible et al. [3] 2001 49,316 1,033 • • •
Harrold et al. [171] 2001 516 19 •
Malishevsky et al. [117] 2002 65,632 1,168 •
Rothermel et al. [118] 2002 68,782 1,985 • •
Elbaum et al. [162] 2003 65,632 1,168 •
Elbaum et al. [166] 2004 68,000 1985.32 • •
Rothermel et al. [163] 2004 68,782 1,985 • •
Do et al. [160] 2005 80,400 877
Do et al. [177] 2005 Theory -
Kim et al. [165] 2005 6,218 4,361 • •
Do et al. [175] 2006 80,400 1,533 •
Do et al. [173] 2006 80,400 877 •
Do et al. [161] 2006 80,400 877 •
Do et al. [156] 2008 80,400 912 •
Do et al. [176] 2008 80,400 912 •
Fahad et al. [2] 2008 Survey -
Zhong et al. [5] 2008 26,824 N/A • •
Smith et al. [174] 2009 6,822 110 •

1Rosenblum et al. [167] evaluated their cost-effectiveness predictor using 31 versions of the KornShell

and a single version of the SFIO (Unix library), but exact versions, sizes of SUT and sizes of test suites
were not specified.
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