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Abstract—Multi-Objective Set Cover problem forms the ba-
sis of many optimisation problems in software testing because
the concept of code coverage is based on the set theory.
This paper presents Mask-Coding, a novel representation of
solutions for set cover optimisation problems that explores
the problem space rather than the solution space. The new
representation is empirically evaluated with set cover problems
formulated from real code coverage data. The results show that
Mask-Coding representation can improve both the convergence
and diversity of the Pareto-efficient solution set of the multi-
objective set cover optimisation.
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I. INTRODUCTION

Multi-Objective Set cover Problem forms an important

basis for optimisation problems in software testing. The set

cover problem itself is essential to software testing because

the concept of code coverage is based on the set theory.

For example, the problem of reducing redundancy in test

suite can be formulated as a set cover problem [1]–[3].

Multi-Objective approach to set cover problem highlights the

trade-offs between the coverage and the cost (often execution

time of test cases). Instead of obtaining the maximum set

cover, the Multi-Objective Set Cover aims to identify all the

maximum coverage possible values for any given budget [4],

[5]. While the traditional greedy heuristic is very effective to

single-objective set cover problems, its inability to cope with

additional objectives facilitated the use of Multi-Objective

Evolutionary Algorithms (MOEAs) [5], [6].

Two important factors when applying a meta-heuristic

algorithm to a software engineering problem is the fitness

function and the representation of a candidate solution [7]. It

is known that the choice of the representation of a solution

can have a significant impact on the performance of a

meta-heuristic algorithm [8], [9]. For example, Rothlauf et

al. report that the use of Random NetKey representation

reduced the distance to the optimal solution by almost 13%

compared to the conventional Characteristic Vector (CV)

representation for network design problem [9].

The de-facto standard representation for set cover problem

is to encode the selection of subsets as a binary string:

the ith digit of the binary string is 1 if the test case ti is

included in the solution and 0 otherwise. Following this, the

neighbouring solutions for local search algorithms are often

defined as solutions with a single digit different from the

original solution. Genetic operators work similarly on the

binary string representation; cross-over mixes the choice of

test cases, while a single bit-flip mutation adds or subtracts a

test case. While the bit-string representation is innocuous in

itself, it may not be the ideal representation for the set cover

problems that deal with code coverage. The empirical study

presents some evidence that the bit-string representation

may actually be sub-optimal for Multi-Objective Set Cover

problem based on code coverage data.
This paper presents a novel representation for set cover

problems called Mask-Coding representation. The main idea

behind the new representation is to replace the solution space

with the problem space, following the approach of Storer

et al. to Job-Shop Scheduling Problem [10]. Mask-Coding

representation still uses binary strings, but an instance of

Mask-Coding representation would denote an alternative set

cover problem in the problem space. The evaluation of this

instance would require an efficient and effective domain

specific construction heuristic: in case of set cover problem,

this would be the greedy algorithm. The solution to the

alternative problem, obtained by the construction heuristic,

is then evaluated against the original problem.
One potential strength of problem space exploration is that

it can be free of the challenges that arise from the features of

the solution search landscape, such as a large plateau. The

empirical evaluation of the new representation on widely

studied code coverage data shows that it can indeed improve

the performance of multi-objective meta-heuristic algorithms

both in terms of convergence and diversity of the resulting

Pareto-front.
The contributions of this paper are as follows:

1) This paper introduces a novel representation for set

cover problems, Mask-Coding representation, based

on the idea of problem space exploration.

2) The paper presents empirical evidence that the widely

used binary string representation may not be ideal for

set cover problems based on code coverage data.
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3) The paper presents an empirical evaluation of Mask-

Coding representation using multi-objective test suite

minimisation problems with real-world coverage data.

The results show that the new representation can

improve both the convergence and diversity of the

results. In the context of software testing, this means

more efficient regression testing with more insightful

cost-benefit analysis of regression test suites.

The rest of the paper is organised as follows: Section II

describes the problems in traditional binary string repre-

sentation with empirical evidence. Section III introduces

Mask-Coding representation and the idea of problem space

exploration. Section IV presents the research questions and

describes the settings for the empirical study based on

test suite minimisation problems, the result of which is

discussed in Section V. Section VI presents related work

and Section VII concludes.

II. PROBLEMS IN TRADITIONAL BINARY STRING

REPRESENTATION

A. Set Cover Problem

Single-objective set cover problem is NP-hard [11] and

can be described as follows: given several sets that share

some common elements, the goal is to select the minimum

number of these sets so that the selected sets contain all the

elements that are contained in any of the input sets. More

formally,

Set Cover Optimisation Problem
Given a universe U of n elements and a family S of m
subsets of U , a cover is a subfamily C ⊆ U whose union is

equal to U . The problem is to find a cover of U that uses

the fewest sets.

It may not be possible to cover U completely. For ex-

ample, assume that U is the set of all program statements

in SUT (System Under Test) and S is the collection of

execution traces of test cases: any unreachable code in SUT

will not be covered by any combination of traces in S . In this

case, the goal of set cover optimisation becomes to achieve

the highest coverage possible with the fewest sets. Coverage

is defined as the ratio between the size of the cover and the

size of U , i.e.:

coverage(C) = |⋃Si∈C Si|
|U|

Multi-Objective Set Cover optimisation assigns cost to

each set in S and adopts an additional objective to actively

minimise the cost. More formally,

Multi-Objective Set Cover Optimisation Problem
Given a universe U , a family S of subsets of U and a cost

function cost : S → R, the problem is to find a cover C
that maximises coverage(C) and minimises

∑
Si∈C cost(Si).

While the definition of the multi-objective formulation

appears similar to that of the single-objective set cover

problem, the Pareto-optimisation [12] of both objectives

shows the trade-off between coverage and cost of the set

cover, which has application to software testing [5].

B. Binary String Representation and Dimensional Plateau

When applying meta-heuristic optimisation to set cover

problem, the most commonly used representation of an

individual solution is the binary string representation [4]–

[6]. The length of the binary string is equal to the number

of subsets in family S . If the member Si of S is included

in the solution, the ith digit of the binary string is 1; if it is

not included, 0.

While the definition of the binary string representation

is innocuous in nature, there is a specific problem that

arises when it is used for set cover problems based on

code coverage data. It is known that different paths in

a program get executed with different frequency. For ex-

ample, the initialisation code will be executed with every

execution, while a procedure that deals with a very rare

situation, e.g. exception handling code, will be executed

less frequently. Since code coverage data represent recorded

execution traces, this difference in execution frequency will

be reflected in the data. More formally, this means that a

significantly large number of members in family S (i.e. test

cases) may cover similar sets of elements in U that take up

the majority of U .

This redundancy in coverage has an important implication

for the traditional binary string representation, namely, a

large plateau in the coverage dimension. Intuitively, if a

large number of members in S covers largely similar sets of

the majority of elements in U , the chance for any mutation

on an arbitrary digit i of the binary string representation

to make any impact on coverage significantly decreases.

This is because there is a high probability that Sj such that

i �= j, Sj ∈ S will cover the same or very similar set of

elements in U . This would result in a large plateau in the

coverage dimension of the search space. This problem will

be referred to as the dimensional plateau problem:

Dimensional Plateau: in multi-objective search landscape,

if one of the objective value remains the same while the

other objectives changes, this creates a dimensional plateau

for the dimension of the unchanging objective.

When applied to the multi-objective test suite minimisa-

tion problem, the existence of a dimensional plateau would

mean that the search algorithm may fail to find any solutions

with low-coverage and low-cost. If the search algorithm fails

to escape the coverage dimensional plateau, it will only

optimise the cost of the subset of test cases that will achieve

the maximum coverage. Reaching the part of the search
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landscape where solutions with lower coverage/lower cost

exist may be very challenging.

III. MASK-CODING REPRESENTATION

A. Problem Space Exploration

The idea of problem space exploration was first introduced

by Storer et al. in order to design a new neighbourhood

definition for stochastic local search for sequencing prob-

lems [10]. A similar idea was also introduced under the

name of ‘noising method’ by Charon et al [13]. The key

idea lies in the observation that often there exists a fast and

deterministic heuristic for many combinatorial optimisation

problems. Given such a heuristic h, and a problem instance

p, it is possible to calculate a solution s very efficiently

and, therefore, the pair (h, p) can be read as an encoding

for a solution s = h(p). By perturbing the heuristic h, the

problem p, or both, a subset of solutions can be generated,

which forms the neighbourhood for the local search. The

representation used by the local search is not an encoding

of the solution for the original problem p, but an encoding

of the perturbation d. The problem p can be perturbed by

changing the original problem data, whereas the heuristic h
can be perturbed by changing its configuration. In the con-

text of the paper, let us focus on the problem perturbation.

The problem space exploration can be powerful when the

search landscape in the solution space for the original prob-

lem p presents challenges such as a large plateau. Problem

space exploration can be used for any class of problems

for which there exists a fast and deterministic construction

heuristic. Since Storer et al. demonstrated the idea with Job

Shop Scheduling Problem, it has been successfully applied

to various combinatorial optimisation problems including 0-

1 Multiple Knapsack Problem [14], Graph Partitioning Prob-

lem [15], Routing Problem [16] and Travelling Salesman

Problem [17].

B. Mask-Coding Representation

The representation for problem perturbation is sometimes

called ‘Weight-Coding’ because the perturbation is repre-

sented by a vector of weights that is applied to the original

problem data [14], [16]. For example, the perturbation vector

for a 0-1 knapsack problem would be a collection of weights

that will be multiplied to the value of each item in the 0-1

Knapsack Problem.

For set cover problems, a vector of real numbers is

not suitable for perturbation as the data consist of sets.

Mask-Coding representation introduced in the paper uses

bit-masking to perturb either the universe, U , or the family

of subsets, S , or both. A genotype representation of a

solution encoded with Mask-Coding would still be a binary

string, but it does not depict the selection of members

in S as in the traditional binary string representation.

Depending on where the masking is applied, there are

three different ways to apply Mask-Coding representation

to the genotype representation for multi-objective set cover

problem: U -mask, S-mask and US-mask.

1) U -Mask Representation: An U -mask perturbs the orig-

inal problem p by masking a subset of elements in U .

An instance of U -mask representation is a binary string,

d = d1d2 . . . dn, whose length equals the size of the

original universe, U . Without losing generality, let U be an

ordered set with n elements, {e1, . . . , en}. The perturbed

(i.e. masked) universe, Ud only contains elements ei such

that di = 1. More formally,

Ud = U − {ei|di = 0}
Similarly, the subsets of U in S are also masked using d:

Sd = {Sd
j |∀Sj ∈ S, Sd

j = Sj − {ei|di = 0}}
The pair of (Ud,Sd) denotes the perturbed problem.

Let x be the traditional binary string representation of

the solution to the perturbed problem (Ud,Sd), which is

obtained using a construction heuristic h. It follows that x
can also be a solution to the original problem (U ,S) because

the length of x remains equal to |S| and is irrelevant to

neither the length nor the cardinality of d. Therefore, it

is possible to measure coverage or cost of the set cover

expressed with x using the original problem data, (U ,S).
Algorithm 1 illustrates the process of measuring coverage

and cost of a solution encoded with U -mask representation

using the greedy algorithm as the construction heuristic (see

Section IV-D for details of the construction heuristic).

Algorithm 1: Fitness evaluation for Multi-Objective Set

Cover optimisation using U Mask-Coding representation and

greedy heuristic

Input: the original universe, U , the original family of

subsets, S , a solution encoded with S-mask, d
Output: a coverage of d, coveraged, and a cost of d,

costd
FITNESSEVALUATIONFORUMASK(U , S , d)

(1) Ud = U − {ei|di = 0}
(2) Sd = {Sd

j |∀Sj ∈ S, Sd
j = Sj − {ei|di = 0}}

(3) x← greedy(Ud,Sd)
(4) coveraged ← coverage(x,U ,S)
(5) costd ← cost(x,U ,S)
(6) return coveraged, costd

2) S-Mask Representation: An S-mask perturbs the orig-

inal problem by masking a subset of family members in S .

An instance of S-mask is a binary string, d = d1d2 . . . dm,

whose length equals the size of the original S . Without

losing generality, let S be an ordered set with m subsets of

U , {S1, . . . , Sm}. After perturbation, the original U remains

the same. However, the perturbed S is defined as follows:

Sd = S − {Sj |dj = 1}
The pair of (U ,Sd) forms the perturbed problem. Unlike

U -mask, the solution x of the perturbed problem cannot be
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accepted as a solution to the original problem as the length of

x would be equal to the size of Sd rather than S . Therefore,

the solution x to (U ,Sd) needs to be decoded into a solution

x′ = x′
1 . . . x

′
m for the original problem (U ,S). Each digit

of x′ is defined as follows w.r.t. the mask d:

x′
i =

{
1 if dj = 1 and Sj is selected by x
0 otherwise

Algorithm 2 shows the process of measuring coverage and

cost of a solution encoded with S-mask representation using

greedy algorithm as the construction heuristic.

Algorithm 2: Fitness evaluation for Multi-Objective Set

Cover optimisation using S Mask-Coding representation and

greedy heuristic

Input: the original universe, U , the original family of

subsets, S , a solution encoded with S-mask, d
Output: a coverage of d, coveraged, and a cost of d,

costd
FITNESSEVALUATIONFORSMASK(U , S , d)

(1) Sd = S − {Sj |dj = 1}
(2) x← greedy(U ,Sd)
(3) x′ ← decode(x, d)
(4) coveraged ← coverage(x′,U ,S)
(5) costd ← cost(x′,U ,S)
(6) return coveraged, costd

3) US-Mask Representation: It is also possible to perturb

both U and S simultaneously. An instance of US-mask is a

binary string of length (n+m), d = d1d2 . . . dn+m. The first

n digits of d form the U mask, du, whereas the following m
digits form the S mask, ds. The perturbation of U remains

the same as in the case of U masking:

Udu = U − {ei|dui = 0}
However, the perturbation of S requires a different ap-

proach. First, the members of S that are masked by ds
should be removed from Sds. Second, the masked elements

of U should be also masked in each member of Sds. More

formally,

Sds = {Sds
j |∀Sj ∈ S − {Sj |dsj = 1},
Sds
j = Sj − {ei|dui = 0}}

Since S has also been perturbed, the solution x from

greedy algorithm needs to be decoded following the descrip-

tion in Section III-B2.

IV. EXPERIMENTAL SET-UP

A. Research Questions

The aim of the empirical study is to evaluate the impact of

Mask-Coding representation on the optimisation of set cover

problems based on code coverage data. The empirical study

compares 4 different representations for Multi-Objective Set

Cover: the traditional binary string representation, the U -

mask representation, the S-mask representation and the US-

mask representation. In comparing these representations, the

paper asks the following research questions:

• RQ1. Convergence: how well do the solutions from

each representation converge to the optimal Pareto-

frontier?

• RQ2. Diversity: how diverse are the solutions from

each representation?

• RQ3. Efficiency: what is the impact of using Mask-

Coding representation on the running time of the algo-

rithm?

RQ1 and RQ2 are answered by analysing the Pareto-

fronts produced by different representations. Ideal mea-

surement of convergence and diversity would require the

knowledge of the true Pareto-fronts. Since it is not available,

reference Pareto-fronts are formed by combining all the

available results. RQ3 concerns the additional computation

resource required when using Mask-Coding representation,

i.e. that of greedy algorithm. It is answered by measuring

the execution time of each representation.

B. Subjects

Table I shows the subject test suites used in the empirical

study. The test suites are obtained from Software Infrastruc-

ture Repository [18]. The set cover problem is instantiated

with statement coverage data. That is, the universe U corre-

sponds to the set of all statements in programs. In turn, the

family of subsets S corresponds to the set of all execution

traces of all the test cases in test suites. Two different types

of test suites were deliberately chosen: ones with a small U
and a large S (printtokens and tcas) and ones with

a large U and a small S (flex and gzip). The level of

redundancy in S (i.e. test suites) is much higher in the test

suites that belong to the first class than the second class. Note

that, while the test suites in the first class have already been

studied for multi-objective test suite minimisation [5], only

smaller subsets of the entire test suite have been considered.

This paper deliberately uses the entire pool of test cases in

order to force the high level of redundancy.

Table I
SIZES OF FOUR SUBJECT TEST SUITES OBTAINED FROM SIR

Subject No. of statements Test Suite Size

printtokens 189 4,115
tcas 65 1,608
flex 3,965 103
gzip 2,007 213

The coverage for each test has been measured using

gcov, a widely used code profiling tool from the gcc
compiler suite. The cost of executing each test has been

measured using valgrind profiling tool [19]; for the
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execution of each test, the number of CPU instructions has

been measured and used as the execution cost.

While the empirical study is based on code coverage data,

its aim is to analyse the impact of Mask-Coding represen-

tation rather than to show their benefits in the context of

software testing. Therefore, the impact of Multi-Objective

Test Suite Minimisation on fault detection capability lies

beyond the interest of this paper and will not be considered.

C. MOEA Algorithm

The four representations are evaluated using a Multi-

Objective Evolutionary Algorithm (MOEA) called Two-

Archive Algorithm [20]. Two Archive Algorithm maintains

two separate memorisation archive for convergence and

diversity respectively. Algorithm 3 shows the high-level

outline of Two-Archive Algorithm.

The key idea behind Two-Archive Algorithm lies in the

algorithm that collects non-dominated solutions to two sepa-

rate archives. A non-dominated solution from the population

is first compared to both archives. If the new solution is

dominated by a solution from archives, it is discarded. If the

new solution is not dominated, there are two possibilities: 1)

the new solution dominates a solution in archives, in which

case the dominated solution is removed from the archive and

the new solution is added to the convergence archive, and 2)

the new solution is not dominated by and does not dominate

any solution in archives, in which case the new solution is

added to the diversity archive. In order to control the size of

the archive, solutions are removed from the diversity archive

when the size goes over a predefined limit: the solution in

diversity archive that has the shortest distance to any solution

in the convergence archive is removed. For more details,

readers are encouraged to refer to Praditwong and Yao [20].

Algorithm 3: Outline of Two-Archive Algorithm

(1) Initialise the population

(2) Initialise archives to the empty set

(3) Evaluate initial population

(4) while stopping criterion is not met

(5) Collect non-dominated individuals to archives

(6) Select parents from archives

(7) Generate a new population from parents

(8) Evaluate the new population

When using Mask-Coding, the individual solutions in

the population represent the masking, i.e. the input d of

Algorithm 1-??, rather than the actual solution. The selection

operator for Two-Archive Algorithm selects two parents

from both archives with uniform probability distribution. It

also uses the standard single-point crossover operator with

the crossover rate of 0.9 and the single bit-flip mutation. The

population size was set to 100. The stopping criterion was

set to the maximum of 25,000 fitness evaluations.

D. Construction Heuristic

Fitness evaluation using problem space exploration re-

quires an efficient and effective construction heuristic. For

set cover, the greedy algorithm is known to produce results

that are within lnn of the optimal cost [21]. Algorithm 4

describes the additional greedy algorithm used as the con-

struction heuristic in the empirical study.

Algorithm 4: Outline of additional greedy algorithm

ADDITIONALGREEDY(U , S)

(1) C ← φ // covered elements in U
(2) repeat
(3) k ← mink(costk/|Sk − C|)
(4) add Sk to solution

(5) C = C
⋃
Sk

(6) until C = U
E. Evaluation

In order to cater for the inherent randomness in

population-based evolutionary algorithm, each experiment

was repeated 30 times. The reference Pareto-fronts for con-

vergence and diversity research questions were formed by

combining solutions from all four representations and iden-

tifying a Pareto-front from the combined set of solutions,

i.e. the results from 120 individual runs (4 representations,

30 runs per representation).

RQ1 and RQ2 are answered by statistically analysing the

number of solutions contributed to the reference Pareto-front

by each representation. The hypothesis test is performed

using t-test; while the distribution of the sample is not

known, the central limit theorem dictates that the distribution

approximates the normal distribution with a large enough

sample size [22]. Additionally, Wilcoxon’s rank-sum test, the

non-parametric alternative, would not produce the precise p-

value under the existence of ties, which have been frequently

observed in the results.

V. RESULTS AND ANALYSIS

A. Convergence

Figure 1 shows the boxplots of the number of unique

solutions contributed to the reference Pareto-fronts by each

representation. The plot u0s0 represents neither U nor S
mask, i.e. the traditional binary string representation. Re-

spectively, u1 and s1 represent U - and S-mask being used.

One surprising finding is that the traditional binary string

representation failed to produce any solution on the reference

Pareto-front in the cases of printtokens and tcas.

Additionally, even though the redundancy is not so severe

in the test suite of gzip, the traditional binary string

representation contributes very little. This shows that the

traditional binary string representation may not be effective

if the search landscape contains a large plateau (which, in

the case of printtokens and tcas, is incurred by the

high level of redundancy in the test suites).
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Figure 1. Number of unique solutions that are contributed to the reference Parefo-front by different representations. Boxplot u0s0 represents both U
and S masking turned off, i.e. the traditional binary string representation, whereas u1 and s1 represent U and S masking turned on respectively. While
different combinations of Mask-Coding work best for different problems, US- and U -mask tend to produce a larger number of non-dominated solutions
for 3 out of 4 datasets.

Table II
MEAN AND STANDARD DEVIATION OF THE NUMBER OF UNIQUE

SOLUTIONS CONTRIBUTED TO THE REFERENCE PARETO-FRONT

Subject
Traditional U -Mask S-Mask US-Mask

n̄ σ n̄ σ n̄ σ n̄ σ

printtokens 0.0 0.0 4.83 1.55 0.0 0.0 3.57 2.63
tcas 0.0 0.0 9.60 0.55 0.0 0.0 8.80 1.83
flex 19.47 1.26 3.56 0.56 0.13 0.34 2.23 1.26
gzip 0.20 0.40 0.0 0.0 0.03 0.18 14.83 18.49

In printtokens, tcas and gzip, U -mask tends to

contribute the most to the number of solutions contributed

to the reference Pareto-front. Interestingly, U -mask seems

to be more effective than US-mask for printtokens and

tcas. In all programs, S-mask alone did not perform very

well. Table II shows the statistical details of the results

presented in Figure 1.

Table III shows the results of statistical hypothesis test

of the data presented in Figure 1. The comparison between

the traditional binary string representation and Mask-Coding

representations does not require any statistical analysis: the

results from the traditional representation is either almost

always 0 (printtokens, tcas and gzip) or completely

surpasses other representations (flex). Rather, the statisti-

cal analysis was performed to see whether U -mask is more

effective than US-mask with statistical significance. The null
hypothesis is that n̄U and n̄US are the same. The alternative
hypothesis is that n̄U is greater than n̄US . The hypothesis is

tested with one-tailed t-test with 95% significance level.

In printtokens, tcas and flex, the null hypothesis

is rejected with statistical significance, meaning that U -mask

produces more unique solutions on the reference Pareto-

front than US-mask. From Table II and Table III, RQ1
is answered as follows: Mask-Coding representation results

in higher convergence compared to the traditional binary

string representation if the search landscape contains a large

dimensional plateau. This claim is backed by the observation

Table III
THE p-VALUES OF THE STATISTICAL HYPOTHESIS TEST BETWEEN n̄U

AND n̄US . THE HYPOTHESIS IS TESTED WITH ONE-TAILED t-TEST WITH

THE SIGNIFICANCE LEVEL OF 95%.

Subject p-value (n̄U > n̄US )

printtokens 0.015
tcas 0.015
flex < 0.001
gzip 1.0

of larger number of unique solutions contributed to the

reference Pareto-fronts for subjects printtokens and

tcas.

B. Diversity

In order to answer RQ2, the number of unique solutions

produced by each representation is compared statistically.

Unlike Section V-A, all solutions produced by each repre-

sentation are considered, regardless of whether they are on

the reference Pareto-fronts or not.

Table IV
MEAN AND STANDARD DEVIATION OF THE NUMBER OF UNIQUE

SOLUTIONS PRODUCED BY EACH REPRESENTATION.

Subject
Traditional U -Mask S-Mask US-Mask

n̄ σ n̄ σ n̄ σ n̄ σ

prttkn 1.03 0.18 10.7 1.83 1.0 0.0 11.03 3.40
tcas 1.00 0.0 9.60 0.55 1.0 0.0 8.80 1.83
flex 26.73 2.34 8.66 1.81 26.77 6.13 41.07 8.57
gzip 1.10 0.30 16.77 3.87 47.30 8.47 126.77 21.07

Figure 2 shows the boxplots of the number of unique

solutions produced by each representation. When compared

to Figure 1, it can be observed that US-mask had produced

some solutions for printtokens that were dominated

by the solutions produced by U -mask. Another interesting

observation is that US-mask has produced a much larger

number of solutions for flex compared to the traditional

binary string representation, but most of those additional
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Figure 2. Number of unique solutions that are produced by different representations. Boxplot u0s0 represents both U and S masking turned off, i.e. the
traditional binary string representation, whereas u1 and s1 represent U and S masking turned on respectively. Overall, US-mask tends to produce a larger
number solutions compared to other representations.

Table V
THE p-VALUES OF THE STATISTICAL HYPOTHESIS TEST BETWEEN n̄US ,
n̄U , n̄S AND n̄0 (TRADITIONAL BINARY STRING REPRESENTATION) FOR

RQ2. THE HYPOTHESIS IS TESTED WITH ONE-TAILED t-TEST WITH THE

SIGNIFICANCE LEVEL OF 95%.

Subject
p-value

n̄US > n̄0 n̄U > n̄0 n̄S > n̄0

flex < 10−9 1.0 0.48
gzip < 10−19 < 10−19 < 10−19

solutions were at the same time dominated by the solutions

produced by the binary string representation.

Since the boxplots for printtokens and tcas largely

reproduce the results in Figure 1 for which the traditional

binary string representation and S-mask do not produce

almost any solution at all, the statistical analysis of diversity

results focuses on the cases of flex and gzip. For

each representation, the null hypothesis is that there is no

difference in the number of unique solutions produced by the

traditional binary string representation and the corresponding

Mask-Coding representation. The alternative hypothesis is

that the corresponding Mask-Coding representation produces

a larger number of unique solutions. The results from the

traditional binary string representation are denoted with n̄0.

Table V shows the result of the statistical hypothesis test.

For flex, the alternative hypothesis is only accepted for

US-mask at the significance level of 95%. For gzip, all

three Mask-Coding representations produce a larger number

of unique solutions compared to the traditional binary string

representation.

Figure 3 shows the shape of Pareto-fronts produced by

different representations in order to facilitate more qualita-

tive analysis of the results. The plot for each representation

consists of non-dominated solutions collected from the com-

bined results of the 30 repeated runs. For printtokens
and tcas, the Pareto-fronts from both US- and U -mask

covers the widest range of solutions. In contrast, the tra-

ditional binary string representation fails to escape the

dimensional plateau and produces only one solution.

With flex and gzip, it can be observed that all three

types of Mask-Coding largely fail to produce solutions with

low cost and low coverage. This may be explained by the

differences in redundancy in test suites. Solutions with low

cost and low coverage will in turn require the inclusion

of test cases with extremely low cost and coverage. These

test cases are more likely to represent less frequent usage

pattern of the program, e.g. error handling routines, and,

therefore, the proportion of such test cases in the entire test

suite is likely to be small. If the test suite has a very high

level of redundancy that can lead to a dimensional plateau,

the probability for the masking to hide these low cost/low

coverage test cases is relatively low. On the other hand, if the

level of redundancy is low, the probability for the masking to

hide these test cases increase. This in turn may prevent the

optimisation algorithm to produce solutions with low cost

and low coverage.

Overall, RQ2 is answered as follows: if the set cover

problem contains a high level of redundancy in S that can

lead to a dimensional plateau, Mask-Coding representation

can help escaping the dimensional plateau to produce a

Pareto-front with high diversity.

C. Impact on Performance

Since the fitness evaluation for Mask-Coding represen-

tation involves using a separate construction heuristic, it

requires additional computation resources. Figure 4 shows

the boxplots of the wall-clock execution time measured

for the runs of different representations. While all three

Mask-Coding representations require more computational

resources than the traditional binary string representation,

the amount of resources additionally required differs depend-

ing on the type of masking.

For printtokens and tcas, U - and S-mask requires

similarly large amounts of additional computational cost

whereas US-mask requires significantly less. The combined

use of both types of masking has reduced the size of problem

instances for the construction heuristic significantly enough
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Figure 3. The shape of Pareto-fronts produced by different representations. Each Pareto-front consists of non-dominated solutions collected from the
combined results of the 30 repeated runs. The x-axis is in a logarithmic scale.

to have an impact on the overall execution time. However,

for flex and gzip, only S-mask seems to make any

difference in the amount of additionally required compu-

tational resources. This is probably because |U| is much

larger than |S|. Masking one element in U saves |S| steps

for the construction heuristic, and vice versa. Therefore, if

|U| � |S|, the impact of S-mask is much bigger than that

of U -mask.

For all subjects, all three Mask-Coding representation

require a significantly large amount of additional com-

putation power. This partially answers RQ4. However, it

should be noted that the data presented in Figure 4 are the

measurements of execution time for fixed number of fitness

evaluations. That is, the algorithms may have continued to

run even after they have converged. Therefore, these data

should not be read as the true cost of the use of Mask-

Coding, which can be only measured by the time it took

to converge to the Pareto-front. However, since the use of

convergence as a stopping criterion requires the knowledge

of the true Pareto-front a priori, here only the additional

overhead of using Mask-Coding is studied and presented.

D. Threats to Validity

There are a few threats to validity regarding the gener-

alisation of the results presented in this paper. First, most
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Figure 4. Execution time required by the use of different representations. Boxplot u0s0 represents both U and S masking turned off, i.e. the traditional
binary string representation, whereas u1 and s1 represent U and S masking turned on respectively. For printtokens and tcas, US-mask requires the
least amount of time as the use of both types of masking reduces the computational cost for the construction heuristic by reducing the problem size. For
flex and gzip, since |U| is much larger than |S|, U -masking requires less computational cost for the construction heuristic than S-masking.

of existing work on problem space exploration has been

done with single objective optimisation. The implications

of applying the same idea to multi-objective optimisation

problems are not clear and Mask-Coding representation

may perform differently when applied to single-objective

problems. This can only be answered with further empirical

evaluation of the new representation. However, this paper

chooses to evaluate the new representation with respect

to the multi-objective optimisation because, in the context

of Search-Based Software Engineering, the multi-objective

version of set cover problem provides much more value

to practitioners compared to the single-objective version

of the same problem [5]. Second, there is no evidence

that the additional greedy algorithm is the ideal choice

of construction heuristic for the approach presented here.

However, the additional greedy algorithm was selected due

to its known effectiveness for set cover problem and it fits

the profile of an ideal construction heuristic.

Threats to construct validity arises when the measurement

used in the study does not reflect the concepts they represent.

It should be noted that the research question on perfor-

mance only evaluates the additional computational resource

required by the masking. It does not reflect the savings in

fitness evaluation that could have been gained if the stopping

criterion was set differently. For example, if the true refer-

ence Pareto-front had been known, the stopping criterion

could have been set with respect to the distance to the

reference Pareto-front. If the new representation converges

faster than the traditional representation, it would require

less fitness evaluations. However, without the knowledge of

the true Pareto-fronts, it was not possible to set the stopping

criterion with respect to convergence.

VI. RELATED WORK

Problem space exploration was first suggested by Storer

et al. in an attempt to improve the optimisation for Job-

Shop Scheduling problem [10]. A similar approach was also

introduced as noising by Charon and Hudry [13]. Storer

et al. discussed two different approaches of exploring the

problem space: by perturbing the problem and by perturbing

the construction heuristic (e.g. changing parameters of the

construction heuristic). Since the additional greedy algo-

rithm does not require any parameter tuning, the heuristic

perturbation has not been considered in this paper.

The idea was applied to various combinatorial optimi-

sation problems including 0-1 Multiple Knapsack Prob-

lem [14], Graph Partitioning Problem [15], Routing Prob-

lem [16] and Travelling Salesman Problem [17]. For all

of these problems, the problem perturbation is represented

as a vector of real numbers, which are usually weights

that are multiplied to the numbers in the original problem.

Therefore, these representations are often called weight-
coding. However, no existing work uses bit-masking to

perturb problem data expressed as sets.

Set-cover problem formed the basis of the widely studied

test suite minimisation problem [1], [2], [23], [24]. Recently,

formulating the test suite minimisation problem as a multi-

objective set cover optimisation is an emerging trend found

in search-based software testing [4]–[6]. This is because

shorter development cycle often require the precise knowl-

edge of how much testing is feasible given a budget on

time. All of the existing work rely on the traditional binary

string representation and, therefore, potentially suffer from

the existence of dimensional plateau.

VII. CONCLUSIONS AND FUTURE WORK

The paper introduces Mask-Coding, a novel representation

for solutions of multi-objective set cover problem based

on the concept of problem space exploration and prob-

lem perturbation. Mask-Coding uses bit-masks to perturb

instances of set-cover problems. The empirical evaluation

of the novel representation has shown that it can outperform

the traditional binary string representation, especially under

the existence of the dimensional plateau. Future work will

consider evaluation of the representation with wider problem

instances.
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