
Extending the Boundaries in Regression Testing:

Complexity, Latency, and Expertise

Shin Yoo

Submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy at

King’s College London

Department of Computer Science

This thesis is dedicated to my grandmother,

김양희 (金良姬) 1923 – 2007,

to whom I owe so much of what I am.

3

Abstract

Automated test case management techniques have been studied in order to aid regression

testing tasks by reducing their cost and improving their efficiency. However, the current

state-of-art test case management techniques remain limited in several aspects. First,

the existing techniques share a scalability problem, not only in terms of the size of

the test suites and SUT (System Under Test), but also in terms of complexity of the

constraints expressible in the process of regression testing, because the problem is often

formulated without considering additional constraints. Second, there is no guarantee

that the reduced effort does not compromise the fault detection capability of the test

suite. Finally, the existing techniques do not provide any means for the human testers to

contribute their important domain knowledge. This domain knowledge is hard to capture

algorithmically.

This thesis aims to reformulate test case management techniques in these regards

by presenting new concepts, algorithms, approaches and combinations of techniques. In

order to deal with the complexity of real world regression testing, multi-objective for-

mulation of test case management is presented, allowing the human tester to apply test

case management techniques while meeting to multiple objectives. The thesis introduces

the concept of latency, which is used to measure the redundancy in a test suite system-

atically so that the tester can make an informed decision on the appropriate size of test

suites. It also shows that the latency of a test suite can be improved automatically using

search-based test data augmentation techniques, which can be significantly more efficient

compared to existing test data generation techniques. Finally, the thesis considers the

combination of clustering and pair-wise comparison approaches to efficiently incorporate

the domain knowledge of human tester into test case management.

4

Acknowledgement

The completion of this thesis would not have been possible without the help and support

from many people, to whom I shall be eternally grateful.

First and foremost, I should thank my supervisor, Mark Harman, who, in addition to

being the best supervisor one could hope for, made the whole experience so exciting and

enjoyable throughout. I am also thankful to my second supervisor, Kathleen Steinhoffel,

for providing me with the valuable insights that allowed me to consider my work in

different contexts. Andrew Jones not only showed belief in me and supported me when

I started the long journey, but also provided me with constructive criticism that helped

me to refine my work. I also thank my fellow colleagues in CREST (Centre for Research

in Evolution, Search and Testing) for all the advice, help, support and discussions we

shared between us. Although I am not naming every one of you, you know who you are.

Dave Binkley always met my blunt questions with friendly, insightful and interesting

discussions during his stay at King’s College London, for which I am greatly indebted. I

should also thank Paolo Tonella and Angelo Susi for their academic insights as well as

for their hospitality.

Maggi Lowe and Claudia Mazzoncini from the Department of Computer Science have

kindly endured with this administratively challenged student over the years; thank you.

My friends John Mitchell, Keith Rapley and Spiros Michalakopoulos; I thank you for

always being there when I felt tired and worn out. Without your friendship this would

have been a much tougher journey.

Most of all, I could not even have dreamt of starting all this had I not had the

support from my family. I thank my parents, brother and sister and everyone in the

family for the love, encouragement and support they have given to me. I am thankful

to my parents-in-law for their belief in me. Finally, I thank my loving wife, Mira, for

standing beside me through the long journey.

5

Declaration

The work presented in this thesis was undertaken between October 2006 and April 2009

at King’s College London. Parts of this thesis have been published or submitted:

• S. Yoo and M. Harman, Regression Testing Minimisation, Selection and Prioriti-

sation : A Survey. Software Testing, Verification and Reliability, under revision.

• S. Yoo and M. Harman, Pareto-Efficient Multi-Objective Test Case Selection. Pro-

ceedings of the 2007 International Symposium on Software Testing and Analysis

(ISSTA), London, UK, pages 140-150, 2007.

• S. Yoo, M. Harman and S. Ur, Measuring and Improving Latency to Avoid Test

Suite Wear Out, Proceedings of the 2009 International Workshop on Search-Based

Software Testing, Denver, CO, USA, pages 101-110, 2009. Best Paper Award.

• S. Yoo and M. Harman, Test Data Augmentation: Generating New Test Data from

Existing Test Data. Software Testing, Verification and Reliability, under revision

• S. Yoo, M. Harman, P. Tonella and A. Susi, Clustering Test Cases To Achieve

Effective & Scalable Prioritisation Incorporating Expert Knowledge. Proceedings

of the 2009 International Symposium on Software Testing and Analysis (ISSTA),

Chicago, USA, pages 201-211.

The following papers have also been written during the course of this PhD pro-

gramme, although they do not form a part of this thesis:

• S. Yoo and M. Harman, Using Hybrid Algorithm For Pareto Efficient Multi-Ob

jective Test Suite Minimisation. Journal of Systems and Software, under revision.

• J. Ren, S. Yoo, M. Harman and J. Krinke, Search Based Data Sensitivity Analy-

sis Applied to Requirement Engineering, Genetic and Evolutionary Computation

Conference 2009 (GECCO 2009), pages 1681-1688.

6

Contents

Abstract . 3

Acknowledgement . 4

Declaration . 5

1 Introduction 15

1.1 An Illustrative Scenario . 17

1.2 Problems of this Thesis . 19

1.2.1 Problem of Complexity . 19

1.2.2 Problem of Managing Redundancy 20

1.2.3 Problem of Incorporating Expert Knowledge 21

1.3 Contributions of this Thesis . 22

1.4 Overview of this Thesis . 23

2 Literature Survey 27

2.1 Background . 27

2.1.1 Regression Testing . 27

2.1.2 Distinction between Classes of Techniques 28

2.1.3 Classification of Test Cases . 30

2.2 Test Suite Minimisation . 31

2.2.1 Heuristics . 32

2.2.2 Impact on Fault Detection Capability 39

7

8 CONTENTS

2.3 Test Case Selection . 45

2.3.1 Integer Programming Approach . 47

2.3.2 Data-flow Analysis Approach . 49

2.3.3 Symbolic Execution Approach . 50

2.3.4 Dynamic Slicing Based Approach 51

2.3.5 Graph-Walk Approach . 55

2.3.6 Textual Difference Approach . 59

2.3.7 SDG Slicing Approach . 59

2.3.8 Path Analysis . 60

2.3.9 Modification-based Technique . 61

2.3.10 Firewall Approach . 62

2.3.11 Cluster Identification . 63

2.3.12 Design-based Approach . 65

2.4 Test Case Prioritisation . 66

2.4.1 Coverage-based Prioritisation . 67

2.4.2 Interaction Testing . 71

2.4.3 Prioritisation Approaches Based on Other Criteria 73

2.4.4 Cost-Aware Test Case Prioritisation 79

2.5 Meta-Empirical Studies . 84

3 Multi-Objective Test Case Management 91

3.1 Introduction . 91

3.2 Single Objective Paradigm . 93

3.2.1 Test Suite Minimisation . 93

3.2.2 Greedy Algorithm & Approximation Level 94

3.3 Multi Objective Paradigm . 96

3.3.1 Pareto Optimality . 96

CONTENTS 9

3.3.2 Properties of 2-Objective Coverage Based Minimisation 97

3.3.3 The Relationship Between Multi Objective Minimisation and Pri-

oritisation . 102

3.4 Empirical Studies . 103

3.4.1 Research Questions . 103

3.4.2 Subjects . 104

3.4.3 Objectives . 104

3.4.4 Algorithms . 106

3.4.5 Evaluation Mechanisms . 107

3.5 Results and Analysis . 109

3.5.1 Threats to Validity . 117

3.6 Conclusions . 118

4 Test Suite Latency 119

4.1 Introduction . 119

4.2 Problem Statement . 121

4.3 Monotonicity & Overlap Study . 124

4.3.1 Experimental Design . 125

4.3.2 Results and Analysis . 126

4.4 Latency Enhancement Strategy . 129

4.4.1 Combined Reduction & Generation Strategy 131

4.4.2 Hill Climbing . 133

4.4.3 Estimation of Distribution Algorithm 134

4.5 Enhancement & Efficiency Study . 135

4.5.1 Subject Programs . 135

4.5.2 Experimental Design . 136

4.5.3 Results and Analysis . 137

10 CONTENTS

4.6 Threats to Validity . 141

4.7 Conclusions . 142

5 On-Demand Regression Testing 145

5.1 Introduction . 145

5.2 Background . 148

5.3 Problem Statement . 151

5.3.1 Motivations for Search-based Test Data Augmentation 151

5.3.2 Problem Statement . 153

5.4 Search-based Test Data Augmentation . 155

5.4.1 Neighbouring Solutions and Interaction Level 156

5.4.2 Search Radius . 158

5.4.3 Fitness Function . 158

5.4.4 Algorithm . 160

5.4.5 Differences to Existing Techniques 162

5.5 Experimental Design . 163

5.5.1 Iguana : Hill Climbing Test Data Generation 163

5.5.2 Subject Programs . 164

5.5.3 Input Domain . 165

5.5.4 Original Test Suites and Mutation Faults 165

5.5.5 Evaluations . 167

5.6 Results and Analysis . 167

5.6.1 Efficiency Evaluation . 167

5.6.2 Effectiveness Evaluation: Coverage 170

5.6.3 Effectiveness Evaluation : Mutation Score 172

5.6.4 Settings: Impact of Interaction Level 176

5.6.5 Settings: Impact of Search Radius 181

CONTENTS 11

5.7 Discussion . 185

5.8 Case Study . 187

5.8.1 Subject Programs . 187

5.8.2 Test Data Augmentation Technique 187

5.8.3 Iguana : Hill Climbing Test Data Generation 190

5.8.4 Original Test Suite and Mutation Faults 191

5.8.5 Evaluations . 191

5.8.6 Results and Analysis . 192

5.9 Threats to Validity . 195

5.10 Conclusions . 197

6 Expert Knowledge in Test Case Management 199

6.1 Introduction . 199

6.2 Clustering Based Prioritisation . 201

6.2.1 Motivation . 201

6.2.2 Clustering Criterion . 202

6.2.3 Clustering Method . 203

6.2.4 Interleaved Clusters Prioritisation 203

6.2.5 Cost of Pair-wise Comparisons . 205

6.2.6 Suitability Test . 206

6.3 Analytic Hierarchy Process . 207

6.3.1 Definition . 207

6.3.2 User Model . 209

6.3.3 Hierarchy . 211

6.4 Experimental Set-up . 212

6.4.1 Subjects . 212

6.4.2 Suitability Test Configuration . 213

12 CONTENTS

6.4.3 Evaluation . 214

6.4.4 Research Questions . 215

6.5 Results and Analysis . 216

6.5.1 Effectiveness & Configuration . 217

6.5.2 Tolerance & Suitability . 217

6.5.3 Limitations & Threats to Validity 223

6.6 Related Work . 225

6.7 Conclusions . 226

7 Conclusions 227

7.1 Summary of Achievements . 227

7.1.1 Multi-objective Test Case Management 228

7.1.2 Test Suite Latency & On-demand Regression Testing 228

7.1.3 Use of Expert Knowledge in Test Case Management 229

7.2 Summary of Future Work . 231

7.2.1 Orchestrating Test Case Management with Test Data Generation . 231

7.2.2 Non-functional Testing and Test Case Management 231

7.2.3 Industrial Scale Adaptation & Tool Support 232

Reference . 233

List of Figures

2.1 Example program from Agrawal et al. 52

2.2 Example of execution slice . 53

2.3 Example of dynamic slice . 53

2.4 Example of relevant slice . 54

2.5 Example of CFG-based graph walking algorithm from Rothemel et al. . . 57

2.6 Example of isomorphism between reduced CFGs 64

2.7 Visualisation of Average Percentage of Fault Detection 68

2.8 Plots of APFDc for different permutations of the same test suite 81

2.9 Comparisons of different heuristics to the reference Pareto-frontier 83

3.1 Comparison of the real Pareto frontier and the results of greedy algorithm 102

3.2 Pareto frontier from 2-objective formulation of test suite minimisation

that involves structural coverage and execution time 110

3.3 Pareto frontier from 3-objective formulation of test suite minimisation

that involves structural coverage, fault history and execution time 112

4.1 Latency analysis with no overlap . 127

4.2 Latency analysis with overlapping test subsets 130

4.3 Overview of latency enhancement approach 132

13

14 LIST OF FIGURES

4.4 Results of latency enhancement using random, hill climbing and EDA(Estimation

of Distrubution Algorithm) . 138

5.1 Illustration of traditional local search-based test data generation and test

data augmentation . 152

5.2 Comparisons of efficiency between test data augmentation technique and

traditional test data generation technique 168

5.3 Comparisons of effectiveness in branch coverage between test data aug-

mentation technique and traditional test data generation technique 171

5.4 Comparisons of effectiveness in mutation score between test data augmen-

tation technique and traditional test data generation technique 173

5.5 Venn diagram classification of mutation faults detected by original test

suite, test data augmentation technique and traditional test data genera-

tion technique . 175

5.6 Plot of average number of fitness evaluations against interaction level . . . 177

5.7 Plot of average branch coverage against interaction level 179

5.8 Plot of average mutation score against interaction level 180

5.9 Plots of the average number of fitness evaluations against search radius . 182

5.10 Plots of average mutation score against search radius 183

5.11 Average mutation score for original test suite, test data augmentation

technique and traditional test data generation technique 194

5.12 Venn diagram classification of mutation faults detected by original test

suite, test data augmentation technique and traditional test data genera-

tion technique for the real world case study 195

6.1 Example dendrogram of agglomerative hierarchical clustering 203

6.2 Plot of average number of pair-wise comparisons required for k cluster-

based prioritisation of 100 test cases. 205

LIST OF FIGURES 15

6.3 An example hierarchy between comparison criteria for AHP 207

6.4 Boxplots of APFD values of Interleaving Cluster Prioritisation with single

criterion . 220

6.5 Boxplots of APFD values of Interleaving Cluster Prioritisation with mul-

tiple criteria and various error rates . 221

6.6 Boxplots of random prioritisation results 222

16 LIST OF FIGURES

List of Tables

2.1 Example test suite for delayed greedy approach 34

2.2 Regression analysis between original test suite size and test suite minimi-

sation effectiveness from Rothermel et al. 41

2.3 An example test suite for the dynamic slicing approach to test case selec-

tion from Agrawal et al. 52

2.4 Example test suite with fault detection information, taken from Elbaum

et al. 66

2.5 Example testing environment factors . 71

2.6 An example test suite with execution time and varying fault severity . . . 80

3.1 An example test suite that leads greedy algorithm for sub-optimal min-

imisation . 100

3.2 Test suite size of subject programs studied in Section ?? 105

3.3 Statistical analysis of the number of non-dominated solutions in 2-objective

formulation of test suite minimisation . 115

3.4 Statistical analysis of the number of non-dominated solutions in 3-objective

formulation of test suite minimisation . 116

4.1 Test suite sizes of subject programs studied in Section ?? 126

4.2 Latency measurement observed in subject programs from SIR 128

17

18 LIST OF TABLES

4.3 Subject programs for the latency enhancement study 135

4.4 Statistical analysis of latency enhancement strategies 140

5.1 A list of mutation operators used in this chapter. 166

5.2 Statistical analysis of fitness evaluations required by test data augmenta-

tion technique and traditional test data generation technique 169

5.3 Statistical analysis of branch coverage achieved by test data augmentation

technique and the traditional test data augmentation technique 170

5.4 Statistical analysis of mutation score achieved by test data augmentation

technique and the traditional test data generation technique 174

5.5 Correlation between search radius and average number of fitness evalua-

tions/average mutation score . 184

5.6 Statistical analysis of the number of fitness evaluations required by test

data augmentation technique and the traditional test data generation

technique . 191

5.7 Statistical analysis of the branch coverage achieved by test data augmen-

tation technique and the traditional test data generation technique 192

5.8 Statistical analysis of the number of fitness evaluations required by test

data augmentation technique and the traditional test data generation

technique for the real world case study . 194

6.1 Scale of preference used in the comparison matrix of AHP 207

6.2 Scale of preference for the ‘ideal user’ model used in Chapter ?? 209

6.3 Classification of different types of errors that the human tester can make

for AHP . 210

6.4 An example test suite that leads the single-criterion AHP model to sub-

optimal test case prioritisation . 211

6.5 Program & test suite sizes of subject programs studied in Chapter ?? . . 213

LIST OF TABLES 19

6.6 Experimental configuration of known faults for subject programs studied

in Chapter ?? . 214

6.7 APFD values obtained from the single-criterion Interleaved Cluster Pri-

oritisation . 216

6.8 APFD values obtained from the multi-criteria Interleaved Cluster Priori-

tisation . 218

6.9 Results of the test for suitability for Interleaved Cluster Prioritisation . . 224

20 LIST OF TABLES

Chapter 1

Introduction

The correctness of software systems is more important than ever as virtually every

aspect of modern life, including safety-critical areas, now involves or depends on the role

of software. Software failure has a significant impact on economy; a recent report claims

that software failure costs United States economy an estimated $59.5 billion, which is

approximately 0.6% of US Gross Domestic Product [200].

One way of increasing confidence in the correctness of a software system is through

software testing. Software testing is an extremely laborious process; some report that

it can account for up to 50% of software development cost [14]. The problem of high

testing cost becomes amplified as software life-cycle grows shorter with more competitive

market that emphasises shorter time-to-market and software development paradigms

that introduce shorter development iterations such as the agile approach.

Regression testing is a type of software testing that is heavily affected by these factors

in particular [121, 122, 124]. Regression testing is a software testing that is performed

to increase confidence in the knowledge that newly introduced software features do not

obstruct the existing features. Essentially, whenever new features are added to an existing

software system, not only the new features should be tested, but also the existing features

should be tested to ensure that their behaviours were not affected by the modifications.

21

22 CHAPTER 1. INTRODUCTION

This is usually done by applying existing test cases, which test the existing features,

to the new system. Therefore, regression testing entails the task of managing a pool of

test cases that are repeatedly used for the testing of software systems across multiple

versions.

However, as the software system evolves, this pool of test cases are bound to grow

larger, thereby increasing the cost of regression testing. Eventually, the pool of test cases

will grow so large that the cost of a simple retest-all approach becomes inhibitive. For

example, a large IBM middleware product is known to require 20,000 test cases for its

regression, which take 10 days to run [227]. Automated heuristics have been studied

to reduce the cost, either by eliminating the redundancy in the test suites (test suite

minimisation) [18, 77, 107, 150, 176, 225], selecting only the relevant test cases (test

case selection) [17, 21, 59, 82, 216, 219], or prioritising test cases so that the fault

detection rate is maximised (test case prioritisation) [24, 43, 53, 102, 120, 191, 226].

Test suite minimisation is a ‘do fewer ’ approach; it aims to reduce the size of the

given test suite by eliminating the test cases that are redundant in achieving the testing

goal such as structural coverage. Test case selection is a ‘do smarter ’ approach; it first

identifies the areas of the System Under Test (SUT) that has been changed, and selects all

the test cases that will execute the changed areas. Test suite prioritisation is another ‘do

smarter ’ approach that can be used when the information about changes is unavailable;

it aims to prioritise test cases in such an order that will maximise early fault detection.

Collectively these techniques form what is called “test case management”, in this thesis.

While many heuristics have been developed and studied for test case management,

industrial up-take has been slow at best, or non-existent in many cases. This thesis aims

to extend the existing test case management techniques in various directions in order to

fill the gap between the state-of-art test case management techniques and the real world

problems that practitioners face.

The thesis of this dissertation is to reformulate existing regression testing techniques

1.1. AN ILLUSTRATIVE SCENARIO 23

in order to cope with various aspects of real world challenges in regression testing that

have not been considered previously. This is achieved by considering the cross-cutting

concerns of multi-objectiveness, redundancy and the use of human expertise. These ap-

proaches are evaluated using real examples of software and their test data, providing

confidence that the suggested approaches can be successfully deployed to be used in the

context of real-world software testing.

1.1 An Illustrative Scenario

This section describes, step by step, a scenario that may develop during regression test-

ing, and how this thesis addresses the issues that may arise.

Suppose that you are a tester in charge of a software product. The product is a

mature one with several previous versions already released to the market. You have

a large pool of test cases that have been used to test the previous versions. A new

version of the software, with a series of new features, is soon to be released. As a tester,

one of your tasks is to make sure that the newly introduced features do not interfere

with the functionality of the previous versions of the product. For this, you rely on

regression testing, which entails executing the accumulated test cases. Fortunately, you

have an access to a well-maintained database which keeps track of not only the structural

coverage achieved by each test case, but also the faults detected by each test case. What

is unfortunate though, is that you only have a limited time allocated for regression testing

and the pool of existing test cases is too large to execute in its entirety. In order to finish

the regression testing within the given time, you will have to make a few decisions:

• What is the most effective subset of test cases that you can execute within the

given time?

• Which test case should you execute first?

24 CHAPTER 1. INTRODUCTION

You are aware of the so called test case management techniques, hitherto presented

in the literature, and decide to utilise some of the techniques. In order to finish the

regression testing in time, you first consider the use of a test suite minimisation technique,

which will produce the minimal subset of test cases that will achieve full structural

coverage. However, you also want to utilise the information about the previously detected

faults. That is, you want to achieve fault coverage, in addition to the structural coverage,

by executing all test cases that have a history of detecting faults. Unfortunately, none of

the previously published test suite minimisation techniques allow you to consider these

two objectives - structural coverage and fault coverage - at the same time. This is the

problem of complexity, which is described in Section 1.2.1.

You settle for achieving full structural coverage and use the test suite minimisation

to obtain the minimal subset of test cases with full structural coverage. The minimisa-

tion technique works well. In fact, the minimised subset is so small that you are actually

left with some time to do further testing. You decide to apply the minimisation tech-

nique once again, to obtain another subset of test cases. However, this turns out to be

problematic as the minimisation technique was deterministic and, therefore, the second

subset was identical to the first subset. You decide to avoid this problem by applying

the minimisation technique to the pool of test cases after taking out the first subset.

This, however, reveals another problem: some parts of the software are only executed

by a very small number of test cases that belonged to the first subset, and there are

no alternatives in the rest of the test case pool. Since these test cases execute the most

complex functionality of the software, they cost a lot of effort to generate. There is not

enough time to generate new test cases for this. This is the problem of redundancy, which

is described in Section 1.2.2.

Finally, you decide to execute the first subset of test cases. You use a test case

prioritisation technique to increase the rate of fault detection and give more time for

the programmers to debug. However, you discover that the order produced by the test

1.2. PROBLEMS OF THIS THESIS 25

case prioritisation technique is not satisfactory: you know that certain test cases are

very effective at detecting faults from your experience, but the test case prioritisation

technique prioritises these test cases at the end of the order. Adding to the complexity,

you are just informed by the marketing department that testing of a particular module

in the product needs to be tested first because of a very important business deal the

company is about to make. However, there is no way to feed these additional important

factors - expertise and other human factors - into the test case prioritisation technique.

This is the problem of expertise, which is described in Section 1.2.3.

1.2 Problems of this Thesis

This section describes three problems in automated test case management: the problem

of complexity, the problem of managing redundancy, and the problem of incorporating

expert knowledge. These are generic questions that apply to many aspects of regression

testing; this thesis does not intend to claim that the solutions it presents can be fully

generalised. It rather attempts to provide the initial momentum in each of these chal-

lenges by presenting new approaches and related empirical studies, to support claims for

feasibility, performance and applicability.

1.2.1 Problem of Complexity

Any automated test case management technique needs to scale up to the sizes of its real

world application. Often the computational complexity of these techniques is based on

the number of test cases and the size of the SUT. However, one overlooked aspect of

the scalability is the complexity of the problem itself. For example, existing test case

prioritisation techniques assume that any permutation of a given set of test cases is

feasible for execution, or at least share the same total cost of execution. In reality, this

may not be true. There may be dependency relations between test cases, such as the

26 CHAPTER 1. INTRODUCTION

one between a test case that sets up the database, and another test case that reads from

the database. Some test cases may share the same set-up process in a way that reduces

the total cost of testing when they are executed side by side. Finally, there may not be

enough time to execute the entire test suite according to the given permutation. It is

necessary that these additional constraints are considered before automated test case

management techniques are widely adopted by practitioners.

This thesis considers the use of multi-objective meta-heuristic optimisation technique

to deal with these complex, multiple constraints. Meta-heuristic optimisation techniques

have been utilised for test case management before, but the formulations of the problem

were all single-objective. The multi-objective formulation will allow us to deal with the

inherent complexity of regression testing problems more effectively.

1.2.2 Problem of Managing Redundancy

The aim of test case management is to reduce the effort required for regression testing.

However, the question of whether the reduced effort will compromise the fault detection

capability of the testing process has not been answered in general. Indeed, it might

be inherently impossible to generalise an answer to the question, given the complex

interaction between SUT and test suites. There have been contradictory observations

on whether eliminating the redundancy in a test suite actually deteriorates its fault

detection capability.

Software testing can only show the existence of faults, not the lack of faults. There-

fore, provided that there is no constraint on the effort required for testing, redundancy

can only be good in a sense that any novel test case will provide increased confidence

in the correctness of the SUT. From an engineering viewpoint, the question is how we

manage the trade-off between the amount of effort required for testing and the added

confidence we can obtain from having the redundancy. Unless the tester is allowed to

observe and reason about this trade-off, the threat of compromised fault detection ca-

1.2. PROBLEMS OF THIS THESIS 27

pability may remain as an obstacle to the adoption of any attempt to reduce the effort

of regression testing.

This thesis presents the concept of latency, a systematic measurement of redundancy

in a given test suite with respect to a specific testing goal. Having a systematic measure-

ment of redundancy will allow us to represent the trade-off between the effort and fault

detection capability. In addition to that, this thesis introduces a meta-heuristic approach

to test data augmentation, a technique that generates additional novel test cases from

the existing ones so that the desired level of redundancy can be achieved automatically.

The cost of test data augmentation is significantly lower than that of existing test data

generation techniques. In fact, it is low enough to allow this thesis to introduce a new

framework for regression testing called “on-demand” regression testing.

1.2.3 Problem of Incorporating Expert Knowledge

A seasoned tester is a source of rich domain knowledge that is hard to capture in algo-

rithms. For example, the human tester may have knowledge about which parts of the

SUT are more important or more error-prone; or, the human may have knowledge about

which test cases have good history of detecting faults. It would be advantageous for

test case management techniques to utilise this expertise. More importantly, the human

tester may not want to depend completely on an automated test case management and

opt for (or even insist upon) making the human tester’s own input to the process.

In this regard, incorporating expert knowledge from a human tester is a largely miss-

ing element that is essential to the wider adoption of automated test case management.

Test case management techniques will benefit not only in terms of their effectiveness

and efficiency from the human expertise, but also in a sense that the blend of automated

techniques and human input allows more smooth transition towards the wider adoption

of test case management techniques.

Unfortunately, any human interaction is very costly and, therefore, does not scale

28 CHAPTER 1. INTRODUCTION

well. This thesis presents a combination of clustering algorithm and a human-based pair-

wise comparison approach that is used for test case prioritisation. Clustering test cases

based on their similarity reduces the size of the problem, allowing us to utilise a human

interactive pair-wise comparison approach.

1.3 Contributions of this Thesis

The contributions of this thesis are as follows:

1. The formulation of test case management as a multi-objective optimisation prob-

lem, which is empirically evaluated using both an existing multi-objective genetic

algorithm and a novel hybrid algorithm;

2. The demonstration that the multi-objective formulation of the test suite minimi-

sation problem produces solutions that cannot be found by the existing greedy

approach, which includes solutions that achieve higher test adequacy at smaller

costs;

3. The proposal of the concept of latency which allows the tester to systematically

measure the redundancy in test suites with respect to the specific testing goal that

is present;

4. The introduction of search-based test data augmentation, which is used to auto-

matically enhance the latency of a given test suite by generating novel test data

from already existing test data;

5. The empirical evaluation of the search-based test data augmentation against an

existing test data generation technique based on local search, which produces evi-

dence of its cost-effectiveness;

1.3. CONTRIBUTIONS OF THIS THESIS 29

6. The introduction of a clustering technique to improve the scalability of human

interactive test case prioritisation that is based on pair-wise comparison approach.

30 CHAPTER 1. INTRODUCTION

1.4 Overview of this Thesis

This thesis is organised as follows:

Chapter 2 - Literature Survey surveys the literature in the area of test case manage-

ment. The chapter begins by describing the basic concepts in regression testing and test

case management. The chapter then considers the literature in three main areas of test

case management: test suite minimisation, test case selection and test case prioritisation.

Chapter 3 - Multi-Objective Test Case Management presents the multi-objective

formulation of test suite minimisation problem. The chapter first describes the existing

single-objective paradigm and a theoretical proof of the ln(n) approximation level of the

greedy algorithm for the set cover problem, which is the foundation of test suite min-

imisation. Then the chapter moves on to the introduction of multi-objective paradigm,

and illustrates a multi-objective instance of the test suite minimisation problem in which

the performance of a greedy approach is sub-optimal. Finally, the chapter presents the

empirical evaluation of the multi-objective optimisation approach in 2-objective and 3-

objective formulation of the test suite minimisation problem.

Chapter 4 - Test Suite Latency introduces the concept of test suite latency with its

theoretical formulation. Intuitively, latency of a test suite is a measure of its potential

to satisfy the given testing goal with different subsets of test cases. The chapter in-

stantiates the latency measurement with respect to structural coverage and investigates

various Unix utilities and their test suites. Most of the studied test suites contain a much

larger number of test cases than required to achieve the testing goal, i.e. maximum struc-

tural coverage. However, they do not provide more than one subset that achieves the

goal and, therefore, their latency remains low despite the existence of the redundant test

cases. The chapter then presents an automated latency enhancement strategy that is

1.4. OVERVIEW OF THIS THESIS 31

based on meta-heuristic optimisation and the use of the knowledge of existing test cases.

The result shows that the automated approach can successfully enhance the latency of

a test suite so that it can provide multiple paths to the achievement of testing goals.

Chapter 5 - Towards On-Demand Regression Testing extends Chapter 4 by sug-

gesting a new approach to regression testing called on-demand regression testing. On-

demand regression testing tries to overcome the problem of low latency test suites by

always providing a novel set of test cases that satisfy a given testing goal. The key to this

approach is a low cost, automated test data generation that can guarantee the satisfac-

tion of a specific testing goal. The chapter extends the automated latency enhancement

strategy, introduced in Chapter 4, to a technique called test data augmentation. The

test data augmentation technique utilises knowledge of existing test data to generate

additional test data. The result of the empirical study shows that the cost of test data

augmentation can lower than existing search-based test data generation by two orders of

magnitude. The fault detection capability of the test data generated by the augmenta-

tion technique is evaluated using mutation testing. The result shows that the test data

augmentation technique not only maintains competitive level of fault detection capabil-

ity, but also is capable of detecting different types of mutation faults than the test data

generation technique.

Chapter 6 - Use of Expert Knowledge in Test Case Management considers how

to resolve the scalability issues that arise when human expert knowledge is utilised for

test case management. The chapter studies a test case prioritisation technique that is

based on human pair-wise comparison approach. The O(n2) cost of pair-wise comparison

approach is mitigated by the use of clustering: instead of comparing individual test cases,

the human expert is required merely to compare clusters of test cases, thereby reducing

the load on the human. The actual prioritisation of individual test cases is extrapo-

32 CHAPTER 1. INTRODUCTION

lated from the human comparisons by interleaving the prioritised clusters. The proposed

technique is empirically evaluated using a model of a human tester whose accuracy of

comparing test cases for their fault detection capability can vary. The result shows that,

for some SUTs, the proposed technique can outperform existing prioritisation techniques

based on structural coverage. The chapter also presents an automated test that can be

used to determine whether the cost of human input can be justified for the prioritisation

of a specific combination of SUT and test suite.

Chapter 7 - Conclusions closes this thesis with summaries of its achievements and

proposals of future work.

Chapter 2

Literature Survey

2.1 Background

This section introduces the basic concepts and definitions that form a nomenclature of

regression testing and minimisation, selection and prioritisation techniques.

2.1.1 Regression Testing

Regression testing is performed between two different versions of software in order to

provide confidence that the newly introduced features of the System Under Test (SUT)

do not interfere with the existing features. While the exact details of the modifications

made to SUT will often be available, note that they may not be easily available in some

cases, such as when the new version is written in a different programming language or

when the source code is unavailable.

The following notations are used to describe concepts in the context of regression

testing. Let P be the current version of the program under test, and P ′ be the next

version of P . Let S be the current set of specifications for P , and S′ be the set of

specifications for P ′. T is the existing test suite. Individual test cases will be denoted by

lower case: t. P (t) stands for the execution of P using t as input.

33

34 CHAPTER 2. LITERATURE SURVEY

2.1.2 Distinction between Classes of Techniques

It is necessary at this point to establish a clear terminological distinction between the

different classes of techniques described in the paper. Test suite minimisation techniques

seek to reduce the size of test suite by eliminating redundant test cases from the test

suite. Minimisation is sometimes also called as ‘test suite reduction’, meaning that the

elimination is permanent. However, these two concepts are essentially interchangeable

because all reduction techniques can be used to produce a temporary subset of the test

suite whereas any minimisation techniques can be used to permanently eliminate test

cases. More formally, following Rothermel et al. [165], test suite minimisation is defined

as follows:

Definition 1. Test Suite Minimisation Problem

Given: A test suite, T , a set of test-case requirements {r1, . . . , rn}, that must be satis-

fied to provide the desired ‘adequate’ testing of the program, and subsets of T , T1, . . . , Tn,

one associated with each of the ris such that any one of the test cases tj belonging to Ti

can be used to achieve requirement ri.

Problem: Find a representative set, T ′, of test cases from T that satisfies all ris.

The testing criterion is satisfied when every test-case requirement in {r1, . . . , rn} is

satisfied. A test-case requirement, ri, is satisfied by any test case, tj , that belongs to

Ti, a subset of T . Therefore, the representative set of test cases is the hitting set of Tis.

Furthermore, in order to maximise the effect of minimisation, T ′ should be the minimal

hitting set of Tis. The minimal hitting-set problem is an NP-complete problem as is the

dual problem of the minimal set cover problem [69].

While test case selection techniques also seek to reduce the size of test suite, the

majority of selection techniques are modification-aware. That is, the selection is not only

2.1. BACKGROUND 35

temporary (i.e. specific to the current version of the program), but also focused on the

identification of the modified parts of the program. Test cases are selected because they

are relevant to the changed parts of SUT, which typically involves a white-box static

analysis of the program code. Throughout this chapter, the term ‘test case selection

problem’ is restricted to this modification-aware problem. It is also often referred to as

the Regression Test-case Selection (RTS) problem. More formally, following Rothermel

and Harrold [171], the selection problem is defined as follows (refer to Section 2.3 for

more details on how the subset T ′ is selected):

Definition 2. Test Case Selection Problem

Given: The program, P , the modified version of P , P ′, and a test suite, T .

Problem: Find a subset of T , T ′, with which to test P ′.

Finally, test case prioritisation concerns ordering test cases for early maximisation of

some desirable properties, such as the rate of fault detection. It seeks to find the optimal

permutation of the sequence of test cases. It does not involve selection of test cases,

and assumes that all the test cases may be executed in the order of the permutation it

produces, but that testing may be terminated at some arbitrary point during the testing

process. More formally, the prioritisation problem is defined as follows:

Definition 3. Test Case Prioritisation Problem

Given: a test suite, T , the set of permutations of T , PT , and a function from PT

to real numbers, f : PT → R.

Problem: to find T ′ ∈ PT such that (∀T ′′)(T ′′ ∈ PT)(T ′′ 6= T ′)[f(T ′) ≥ f(T ′′)].

36 CHAPTER 2. LITERATURE SURVEY

2.1.3 Classification of Test Cases

Leung and White present the first systematic approach to regression testing by classify-

ing types of regression testing and test cases [121]. Regression testing can be categorised

into progressive regression testing and corrective regression testing. Progressive regres-

sion testing involves changes of specifications in P ′, meaning that P ′ should be tested

against S′. On the other hand, corrective regression testing does not involve changes in

specifications, but only in design decisions and actual instructions. It means that the

existing test cases can be reused without changing their input/output relation.

Leung and White categorise test cases into five classes. The first three classes consist

of test cases that already exist in T .

• Reusable: reusable test cases only execute the parts of the program that remain

unchanged between two versions, i.e. the parts of the program that are common

to P and P ′. It is unnecessary to execute these test cases in order to test P ′;

however, they are called reusable because they may still be retained and reused for

the regression testing of the future versions of P .

• Retestable: retestable test cases execute the parts of P that have been changed

in P ′. Thus retestable test cases should be re-executed in order to test P ′.

• Obsolete: test cases can be rendered obsolete because 1) their input/output re-

lation is no longer correct due to changes in specifications, 2) they no longer test

what they were designed to test due to modifications to the program, or 3) they

are ‘structural’ test cases that no longer contribute to structural coverage of the

program.

The remaining two classes consist of test cases that have yet to be generated for the

regression testing of P ′.

2.2. TEST SUITE MINIMISATION 37

• New-structural: new-structural test cases test the modified program constructs,

providing structural coverage of the modified parts in P ′.

• New-specification: new-specification test cases test the modified program specifi-

cations, testing the new code generated from the modified parts of the specifications

of P ′.

Leung and White go on to propose a retest strategy, in which a test plan is con-

structed based on the identification of changes in the program and classification of test

cases. Although the definition of a test plan remains informal, it provides a basis for

the subsequent literature; it is especially of more importance to regression test case se-

lection techniques, since these techniques essentially concern the problem of identifying

retestable test cases. Similarly, test suite minimisation techniques concern the identifi-

cation of obsolete test cases. Test case prioritisation also can be thought of as a more

sophisticated approach to the construction of a test plan.

It should be noted that the subsequent literature focusing on the idea of selecting

and reusing test cases for regression testing is largely concerned with corrective regres-

sion testing only. For progressive regression testing, it is very likely that new test cases

are required in order to test the new specifications. So far this aspect of the overall

regression testing picture has been a question mainly reserved for test data generation

techniques. However, the early literature envisages a ‘complete’ regression testing strat-

egy that should also utilise test data generation techniques.

2.2 Test Suite Minimisation

Test suite minimisation techniques aim to identify redundant test cases and to remove

them from the test suite in order to reduce the size of the test suite. The minimisation

problem described by Definition 1 can be considered as the minimal hitting set problem.

38 CHAPTER 2. LITERATURE SURVEY

Note that the minimal hitting-set formulation of test suite minimisation problem

depends on the assumption that each ri can be satisfied by a single test case. In practice,

this may not be true. For example, suppose that the test-case requirement is functional

rather than structural and, therefore, requires more than one test case to be satisfied. The

minimal hitting-set formulation no longer holds. In order to apply the given formulation

of the problem, a higher level of abstraction would be required so that each test-case

requirement can be met with a single test scenario composed of relevant test cases.

2.2.1 Heuristics

The NP-completeness of the test suite minimisation problem encourages the application

of heuristics; previous work on test case minimisation can be regarded as the development

of different heuristics for the minimal hitting set problem [28, 77, 89, 150].

Horgan and London applied linear programming to the test case minimisation prob-

lem in their implementation of a data-flow based testing tool, ATAC [88, 89]. Harrold

et al. presented a heuristic for the minimal hitting set problem with the worst case ex-

ecution time of O(|T | ∗max(|Ti|)) [77]. Here |T | represents the size of the original test

suite, and max(|Ti|) represents the cardinality of the largest group of test cases among

T1, . . . , Tn.

Chen and Lau applied GE and GRE heuristics and compared the results to that of

HGS (Harrold-Gupta-Soffa) heuristic [28]. The GE and GRE heuristics can be thought

of as variations of greedy algorithms, which is known to be an effective heuristic for

the set cover problem [154]. Chen et al. defined essential test cases as the opposite of

redundnt test cases. If a test-case requirement ri can be satisfied by one and only one

test case, the test case is an essential test case. On the other hand, if a test case satisfies

only a subset of test-case requirements satisfied by another test case, it is a redundant

test case. Based on these concepts, the GE and GRE heuristics can be summarised as

follows:

2.2. TEST SUITE MINIMISATION 39

• GE heuristic: first select all essential test cases in the test suite; for the remaining

test-case requirements, use the additional greedy algorithm, i.e. select the test case

that satisfies the maximum number of unsatisfied test-case requirements.

• GRE heuristic: first remove all redundant test cases in the test suite, which may

make some test cases essential; then perform the GE heuristic on the reduced test

suite.

Their empirical comparison suggested that no single technique is better than the

other, which is natural considering the fact that the techniques concerned are heuristics

rather than precise algorithms.

Offutt et al. also treated the test suite minimisation problem as the dual of the

minimal hitting set problem, i.e., the set cover problem [150]. Their heuristics can also

be thought of as variations of the greedy approach to the set cover problem. However,

they adopted several different orderings of consideration of test cases instead of the fixed

ordering in the greedy approach. Their empirical study applied their techniques to a

mutation-score-based test case minimisation, which reduced sizes of test suites by over

30%.

Whereas other minimisation approaches primarily considered code-level structural

coverage, Marré and Bertolino formulated test suite minimisation as a problem of find-

ing a spanning set over a graph [131]. They represented the structure of the SUT using a

decision-to-decision graph (ddgraph). A ddgraph is a more compact form of the normal

CFG since it omits any node that has one entering edge and one exiting edge, making

it an ideal representation of the SUT for branch coverage. They also mapped the result

of data-flow analysis onto the ddgraph for testing requirements such as def-use cover-

age. Once testing requirements are mapped to entities in the ddgraph, the test suite

minimisation problem can be reduced to the problem of finding the minimal spanning

set.

40 CHAPTER 2. LITERATURE SURVEY

Test Case Testing Requirements

r1 r2 r3 r4 r5 r6

t1 x x x
t2 x x
t3 x x
t4 x x
t5 x

Table 2.1: Example test suite taken from Tallam and Gupta [198]. The early selec-
tion made by the greedy approach, t1, is rendered redundant by subsequent selections,
{t2, t3, t4}.

Tallam and Gupta developed the greedy approach further by introducing the delayed

greedy approach, which is based on the Formal Concept Analysis of the relation between

test cases and testing requirements [198]. A potential weakness of the greedy approach

is that the early selection made by the greedy algorithm can eventually be rendered

redundant by the test cases subsequently selected. For example, consider the test suite

and testing requirements depicted in Table 2.1, taken from Tallam and Gupta [198].

The greedy approach will select t1 first as it satisfies the maximum number of testing

requirements, and then continues to select t2, t3 and t4. However, after the selection of

t2, t3 and t4, t1 is rendered redundant. Tallam et al. tried to overcome this weakness by

constructing a concept lattice, a hierarchical clustering based on the relation between

test cases and testing requirements. Tallam et al. performed two types of reduction on

the concept lattice. First, if a set of requirements covered by ti is a superset of the

set of requirements covered by tj , then tj is removed from the test suite. Second, if a

set of test cases that cover requirement ri is a subset of the set of test cases that cover

requirement rj , requirement ri is removed. The concept lattice is a natural representation

that supports the identification of these test cases. Finally, the greedy algorithm is

applied to the transformed set of test cases and testing requirements. In the empirical

evaluation, the test suites minimised by this ‘delayed greedy’ approach were either the

same size or smaller than those minimised by the classical greedy approach or by the

2.2. TEST SUITE MINIMISATION 41

HGS heuristic.

Jeffrey and Gupta extended the HGS heuristic so that certain test cases are selectively

retained [94, 95]. This ‘selective redundancy’ is obtained by introducing a secondary set

of testing requirements. When a test case is marked as redundant with respect to the

first set of testing requirements, Jeffrey and Gupta considered whether the test case is

also redundant with respect to the second set of testing requirements. If it is not, the

test case is still selected, resulting in a certain level of redundancy with respect to the

first set of testing requirements. The empirical evaluation used branch coverage as the

first set of testing requirements and all-uses coverage information obtained by data-flow

analysis. The results were compared to two versions of the HGS heuristic, based on

branch coverage and def-use coverage. The results showed that, while their technique

produced larger test suites, the fault detection capability was better preserved compared

to single-criterion versions of the HGS heuristic.

Whereas the selective redundancy approach only considers the secondary criterion

when a test case is marked as being redundant by the first criterion, Black et al. con-

sidered a bi-criteria approach that takes into account both testing criteria [18]. They

combined the def-use coverage criterion with the past fault detection history of each

test case using a weighted-sum approach and used Integer Linear Programming (ILP)

optimisation to find subsets. The weighted-sum approach uses weighting factors to com-

bine multiple objectives. For example, given a weighting factor α and two objectives o1

and o2, the new and combined objective, o′, is defined as follows:

o′ = αo1 + (1− α)o2

Consideration of a secondary objective using the weighted-sum approach has been

used in other minimisation approaches [92] and prioritisation approaches [210]. Hsu and

Orso also considered the use of an ILP solver with multi-criteria test suite minimisa-

42 CHAPTER 2. LITERATURE SURVEY

tion [92]. They extended the work of Black et al. by comparing different heuristics for a

multi-criteria ILP formulation: the weighted-sum approach, the prioritised optimisation

and a hybrid approach. In prioritised optimisation, the human user assigns a priority to

each of the given criteria. After optimising for the first criterion, the result is added as

a constraint, while optimising for the second criterion, and so on. However, one possi-

ble weakness shared by these approaches is that they require additional input from the

user of the technique in the forms of weighting coefficients or priority assignment, which

might be biased, unavailable or costly to provide.

The multi-objective formulation of test suite minimisation presented in this thesis

also treats time constraint as one of the objectives. For more details, refer to Chapter 3.

McMaster and Memon proposed a test suite minimisation technique based on call-

stack coverage. A test suite is represented by a set of unique maximum depth call stacks;

its minimised test suite is a subset of the original test suite whose execution generates

the same set of unique maximum depth call stacks. Note that their approach is different

from simply using function coverage for test suite minimisation. Consider two test cases,

t1 and t2, respectively producing call stacks c1 =< f1, f2, f3 > and c2 =< f1, f2 >. With

respect to function coverage, t2 is rendered redundant by t1. However, McMaster and

Memon regard c2 to be unique from c1. For example, it may be that t2 detects a failure

that prevents the invocation of function f3. Once the call-stack coverage information is

collected, the HGS heuristic has been applied. McMaster and Memon later applied the

same approach to Graphical User Interface (GUI) testing [133]. It was also implemented

for object-oriented systems by Smith et al. [191].

While most of test suite minimisation techniques are based on some kind of cover-

age criteria, there do exist interesting exceptions. Harder et al. approached test suite

minimisation using operational abstraction [72]. An operational abstraction is a formal

mathematical description of program behaviour. While it is identical to formal speci-

fication in form, an operational abstraction expresses dynamically observed behaviour.

2.2. TEST SUITE MINIMISATION 43

Harder et al. use the widely studied Daikon dynamic invariant detector [55] to obtain

operational abstractions. Daikon requires executions of test cases for the detection of pos-

sible program invariants. Test suite minimisation is proposed as follows: if the removal of

a test case does not change the detected program invariant, it is rendered as redundant.

They compred the operational abstraction approach to branch coverage based minimi-

sation. While their approach resulted in larger test suites, it also maintained higher fault

detection capability. Moreover, Harder et al. also showed that coverage adequately min-

imised test suites can be often improved by considering operational abstraction as an

additional minimisation criterion.

Leitner et al. propose a somewhat different version of the minimisation problem [119].

They start from the assumption that they already have a failing test case, which is too

complex and too long for the human tester to understand. Note that this is often the

case with randomly generated test data; the test case is often simply too complex for the

human to establish the cause of failure. The goal of minimisation is to produce a shorter

version of the test case; the testing requirement is that the shorter test case should

still reproduce the failure. This minimisation problem is interesting because there is no

uncertainty about the fault detection capability; it is given as a testing requirement.

Leitner et al. applied the widely studied delta-debugging technique [229] to reduce the

size of the failing test case.

Schroeder and Korel proposed an approach of test suite minimisation for black-box

software testing [188]. They noted that the traditional approach of testing black-box

software with combinatorial test suites may result in redundancy since certain inputs to

the software may not affect the outcome of the output being tested. They first identified,

for each output variable, the set of input variables that can affect the outcome. Then,

for each output variable, an individual combinatorial test suite is generated with respect

to only those input variables that may affect the outcome. The overall test suite is a

union of all combinatorial test suites for individual output variables. Note that this has

44 CHAPTER 2. LITERATURE SURVEY

a strong connection to the concept of Interaction Testing, which is discussed in detail in

Section 2.4.2.

Other work has focused on model-based test suite minimisation [107, 207]. Vaysburg

et al. introduced a minimisation technique for model based test suites that uses depen-

dence analysis of Extended Finite State Machines (EFSMs) [207]. Each test case for the

model is a sequence of transitions. Through dependence analysis of the transition being

tested, it is possible to identify the transitions that affect the tested transition. In other

words, testing a transition T can be thought of as testing a set of other transitions that

affect T . If a test case tests the same set of transitions as some other, then it is redun-

dant. Korel et al. extended this approach by combining the technique with automatic

identification of changes in the model [107]. The dependence analysis based minimisa-

tion technique was applied to the set of test cases that were identified to execute the

modified transitions. Chen et al. extended Korel’s model-based approach to incorporate

more complex representations of model changes [30].

A risk shared by most test suite minimisation techniques is that a discarded test case

may detect a fault. In some domains, however, test suite minimisation techniques can

enjoy the certainty of guaranteeing that discarding a test case will not reduce the fault

detection capability. Anido et al. investigated test suite minimisation for testing Finite

State Machines (FSMs) in this context [6]. When only some components of the SUT

need testing, the system can be represented as a composition of two FSMs: component

and context. The context is assumed to be fault-free. Therefore, certain transitions of

the system that concern only the context can be identified to be redundant. Under the

‘testing in context’ assumption (i.e. the context is fault-free), it follows that it is possible

to guarantee that a discarded test case cannot detect faults.

Kaminski and Ammann investigated the use of a logic criterion to reduce test suites

while guaranteeing fault detection in testing predicates over Boolean vairables [100].

From the formal description of fault classes, it is possible to derive a hierarchy of fault

2.2. TEST SUITE MINIMISATION 45

classes [116]. From the hierarchy, it follows that the ability to detect a class of faults

may guarantee the detection of another class. Therefore, the size of a test suite can be

reduced by executing only those test cases for the class of faults that subsume another

class, whenever this is feasible.

2.2.2 Impact on Fault Detection Capability

Although the techniques discussed so far reported reduced test suites, there has been

a persistent concern about the effect that the test suite minimisation has on the fault-

detection capability of test suites. Several empirical studies were conducted to investigate

this effect [165, 176, 220, 221].

Wong, Horgan, London and Mathur studied ten common Unix programs using ran-

domly generated test suites; this empirical study is often referred to as the WHLM

study [220]. To reduce the size of the test suites, they used the ATAC testing tool devel-

oped by Horgan and London [88, 89]. First, a large pool of test cases was created using

a random test data generation method. From this pool, several test suites with differ-

ent total block coverage were generated. After generating test suites randomly, artificial

faults were seeded into the programs. These artificial faults were then categorised into 4

groups. Faults in Quartile-I can be detected by [0−25)% of the test cases from the orig-

inal test suite; the percentage for Quartile-II, III, and IV is [25− 50)%, [50− 75)%, and

[75− 100]% respectably. Intuitively, faults in Quartile-I are harder to detect than those

in Quartile-IV. The effectiveness of the minimisation itself was calculated as follows:

(1− number of test cases in the reduced test suite

number of test cases in the original test suite
) ∗ 100%

The impact of test suite minimisation were measured by calculating the reduction in

fault detection effectiveness as follows:

46 CHAPTER 2. LITERATURE SURVEY

(1− number of faults detected by the reduced test suite

number of faults detected by the original test suite
) ∗ 100%

By categorising the test suites (by different levels of block coverage) and test cases

(by difficulty of detection), they arrived at the following observation. First, the reduc-

tion in size is greater in test suites with a higher block coverage in most cases. This

is natural considering that test suites with higher block coverage will require more test

cases in general. The average size reduction for test suites with (50-55)%, (60-65)%,(70-

75)%,(80-85)%, and (90-95)% block coverage was 1.19%, 4.46%, 7.78%, 17.44%, 44.23%

respectably. Second, the fault detection effectiveness was decreased by test case reduc-

tion, but the overall decrease in fault detection effectiveness is not excessive and could

be regarded as worthwhile for the reduced cost. The average effectiveness reduction for

test suites with (50-55)%, (60-65)%,(70-75)%,(80-85)%, and (90-95)% block coverage

was 0%, 0.03%, 0.01%, 0.38%, 1.45% respectably. Third, test suite minimisation did not

decrease the fault detection effectiveness for faults in Quartile-IV at all, meaning all

faults in Quartile-IV had been detected by the reduced test suite. The average decrease

in fault detection effectiveness for Quartile-I, II, and III was 0.39%, 0.66%, and 0.098%

respectably. The WHLM study concluded that, if the cost of testing is directly related

to the number of test cases, then the use of the reduction technique is recommended.

Wong, Horgan, London and Pasquini followed up on the WHLM study by applying

the ATAC tool to test suites of another, bigger C program; this empirical study is often

referred to as the WHLP study [221]. The studied program, space, was an interpreter

for the ADL(Array Description Language) developed by the European Space Agency.

In the WHLP study, test cases were generated, not randomly, but from the operational

profiles of space; that is, each test case in test case pool was generated so that it matches

an example of real usage of space recorded in an operational profile. From the test case

pool, different types of test suites were generated. The first group of test suites were

2.2. TEST SUITE MINIMISATION 47

constructed by randomly choosing a fixed number of test cases from the test case pool.

The second group of test suites were constructed by choosing test cases from the test

case pool until a predetermined block coverage target was met. The faults in the program

were not artificial, but real faults that were retrieved from development logs.

The results of the WHLP study confirmed the findings of the WHLM study. As in

the WHLM study, test suites with low initial block coverage (50%, 55%, 60%, and 65%)

showed no decrease in fault detection effectiveness after test suite minimisation. For both

the fixed size test suites and fixed coverage test suites, the application of the test case

reduction technique did not affect the fault detection effectiveness in any significant way;

the average effectiveness reduction due to test suite minimisation was less than 7.28%.

While both the WHLM and WHLP studies showed that the impact of test suite

minimisation on fault detection capability was insignificant, other empirical studies pro-

duced radically different findings. Rothermel et al. also studied the impact of test suite

minimisation on the fault detection capability [176]. They applied the HGS heuristics to

the Siemens suite [93], and later expanded this to include space [165]. The results from

these empirical studies contradicted the previous findings of the WHLM and WHMP

studies.

For the study of the Siemens suite [176], Rothermel et al. constructed test suites

from the test case pool provided by the Siemens suite so that the test suites include

varying amounts of redundant test cases that do not contribute to the decision coverage

of the test suite. The effectiveness and impact of reduction was measured using the same

metrics that were used in the WHLM study.

Rothermel et al. reported that the application of the test suite minimisation technique

produced significant savings in test suite size. The observed tendency in size reduction

suggested a logarithmic relation between the original test suite size and the reduction

effectiveness, and the results of logarithmic regression confirmed this. The results are

repeated here in Table 2.2.

48 CHAPTER 2. LITERATURE SURVEY

Program Regression Equation r2

totinfo y = 13.82 lnx+ 30.31 0.75
schedule1 y = 15.38 lnx+ 24.20 0.80
schedule2 y = 15.20 lnx+ 25.19 0.80
tcas y = 24.31 lnx− 3.95 0.88
printtok1 y = 12.76 lnx+ 31.69 0.80
printtok2 y = 12.11 lnx+ 34.22 0.78
replace y = 16.73 lnx+ 7.07 0.85

Table 2.2: Regression analysis on the relation between the original test suite size(x) and
the test suite size reduction effectiveness(y), taken from Rothermel et al. [176].

However, Rothermel et al. also reported that, due to the size reduction, the fault

detection capabilities of test suites were severely compromised. The reduction in fault

detection effectiveness was over 50% for more than half of 1,000 test suites considered,

with some cases reaching 100%. Rothermel et al. also reported that, unlike the size

reduction effectiveness, the fault detection effectiveness did not show any particular

correlation with the original test suite size.

This initial empirical study was subsequently extended [165]. For the Siemens suite,

the results of the HGS heuristic were compared to random reduction by measuring

the fault detection effectiveness of randomly reduced test suites. Random reduction

was performed by randomly selecting, from the original test suite, the same number of

test cases as in the reduced version of the test suite. The results showed that random

reduction produced larger decreases in fault detection effectiveness. To summarise the

results for the Siemens suite, the test suite minimisation technique produced savings in

test suite size, but at the cost of decreased fault detection effectiveness; however, the

reduction heuristic showed better fault detection effectiveness than the random reduction

technique.

Rothermel et al. also expanded the previous empirical study by including the larger

program, space [165]. The reduction in size observed in the test suites of space confirmed

the findings of the previous empirical study of the Siemens suite; the size reduction

2.2. TEST SUITE MINIMISATION 49

effectiveness formed a logarithmic trend, plotted against the original test suite size,

similar to the programs in the Siemens suite. More importantly, the reduction in fault

detection effectiveness was less than those of the Siemens suite programs. The average

reduction in fault detection effectiveness of test suites reduced by the HGS heuristic was

8.9%, while that of test suites reduced by random reduction was 18.1%.

Although the average reduction in fault detection effectiveness is not far from that

reported for the WHLP study in the case of space, those of the Siemens suite differed

significantly from both the WHLP study and the WHLM study, which reported that

the application of the minimisation technique did not have significant impact on fault

detection effectiveness. Rothermel et al. [165] pointed out the following differences be-

tween these empirical studies as candidates for the cause(s) of the contradictory findings,

which is paraphrased as follows:

1. Different subject programs: the programs in the Siemens suite are generally larger

than those studied in both the WHLM and the WHLP study. Difference in program

size and structure certainly could have impact on the fault detection effectiveness.

2. Different types of test suites: the WHLM study used test suites that were not

coverage-adequate and much smaller compared to test suites used by Rothermel et

al. The initial test pools used in the WHLM study also did not necessarily contain

any minimum number of test cases per covered item. These differences could have

contributed to less redundancy in test suites, which led to reduced likelihood that

test suite minimisation will exclude fault-revealing test cases.

3. Different types of test cases: the test suites used in the WHLM study contained

a few test cases that detected all or most of the faults. When such strong test

cases are present, reduced versions of the test suites may well show little loss in

fault-detection effectiveness.

4. Different types of faults: the faults studied by Rothermel et al. were all Quartile-I

50 CHAPTER 2. LITERATURE SURVEY

faults according to the definition of the WHLM study, whereas only 41% of the

faults studied in the WHLM study belonged to the Quartile-I group. By having

more ‘easy-to-detect’ faults, the test suites used in the WHLM study could have

shown less reduction in fault-detection effectiveness after test suite minimisation.

Considering the two contradicting empirical results, it is natural to conclude that the

question of evaluating the effectiveness of the test suite minimisation technique is very

hard to answer in general and for all testing scenarios. The answer depends on too many

factors such as the structure of the SUT, the quality of test cases and test suites, and

the types of faults present. This proliferation of potential contributory factors makes it

very difficult to generalise any empirical result.

The empirical studies from WHLM, WHLP and Rothermel et al. all evaluated the

effectiveness of test suite minimisation in terms of two metrics: percentage size reduction

and percentage fault detection reduction. McMaster and Memon noticed that neither

metric considers the actual role each testing requirement plays on fault detection [135].

Given a set of test cases, TC, a set of known faults, KF and a set of testing requirements,

CR, fault correlation for a testing requirement i ∈ CR to fault k ∈ KF is defined as

follows:

|{j ∈ TC|j covers i} ∩ {j ∈ TC|j detects k}|
|{j ∈ TC|j covers i}|

The expected probability of finding a given fault k after test suite minimisation is

defined as the maximum fault correlation of all testing requirements with k. From this,

the probability of detecting all known faults in KF is the product of expected probability

of finding all k ∈ KF . Since CR is defined by the choice of minimisation criterion, e.g.

branch coverage or call-stack coverage, comparing the probability of detecting all known

faults provides a systematic method of comparing different minimisation criteria, without

depending on a specific heuristic for minimisation. The empirical evaluation of McMaster

2.3. TEST CASE SELECTION 51

and Memon compared five different minimisation criteria for the minimisation of test

suites for GUI-intensive applications: event coverage (i.e. each event is considered as a

testing requirement), event interaction coverage (i.e. each pair of events is considered

as a testing requirement), function coverage, statement coverage and call-stack coverage

proposed in [134]. While call-stack coverage achieved the highest average probability

of detecting all known faults, McMaster and Memon also found that different faults

correlate more highly with different criteria. This analysis provides valuable insights

into the selection of minimisation criterion.

Yu et al. considered the effect of test suite minimisation on fault localisation [228].

They applied various test suite minimisation techniques to a set of programs, and mea-

sured the impact of the size reduction on the effectiveness of coverage-based fault local-

isation techniques. Yu et al. reported that higher reduction in test suite size, typically

achieved by statement coverage-based minimisation, tends to have a negative impact

on fault localisation, whereas minimisation techniques that maintains higher level of

redundancy in test suites have negligible impact.

2.3 Test Case Selection

Test case selection, or the regression test selection problem is essentially similar to the

test suite minimisation problem; both problems are about choosing a subset of test cases

from the test suite. The key difference between these two approaches in the literature is

whether the focus is upon the changes in the SUT. Test suite minimisation is often based

on metrics such as coverage measured from a single version of the program under test.

By contrast, in regression test selection, test cases are selected because their execution

is relevant to the changes between the previous and the current version of the SUT.

To recall Definition 2, T ′ ideally should contain all the faults-revealing test cases in T ,

i.e., the test cases that will reveal faults in P ′. In order to define this formally, Rothermel

52 CHAPTER 2. LITERATURE SURVEY

and Harrold introduced the concept of a modification − revealing test case [169]. A

test case t is modification-revealing for P and P ′ if and only if P (t) 6= P ′(t). Given the

following two assumptions, it is possible to identify the fault-revealing test cases for P ′

by finding the modification-revealing test cases for P and P ′.

• P -Correct-for-T Assumption : It is assumed that, for each test case t ∈ T ,

when P was tested with t, P halted and produced the correct output.

• Obsolete-Test-Identification Assumption : It is assumed that there exists an

effective procedure for determining, for each test case t ∈ T , whether t is obsolete

for P ′.

From these assumptions, it is clear that every test case in T terminates and produces

correct output for P , and is also supposed to produce the same output for P ′. Therefore,

a modification-revealing test case t must be also fault-revealing. Unfortunately, it is not

possible to determine whether a test case t is fault-revealing against P ′ or not because

it is undecidable whether P ′ will halt with t. Rothermel considers a weaker criterion for

the selection, which is to select all modification-traversing test cases in T . A test case t

is modification-traversing for P and P ′ if and only if :

1. it executes new or modified code in P ′, or

2. it formerly executed code that has been deleted in P ′

Rothermel also introduced the third assumption, which is the Controlled-Regression-

Testing assumption.

• Controlled-Regression-Testing Assumption : When P ′ is tested with t, all

factors that might influence the output of P ′, except for the code in P ′, are kept

constant with respect to their states when P was tested with t.

2.3. TEST CASE SELECTION 53

Given that the Controlled-Regression-Testing assumption holds, a non-obsolete test

case t can thereby be modification-revealing only if it is also modification-traversing for

P and P ′. Now, if the P -Correct-for-T assumption and the Obsolete-Test-Identification

assumption hold along with the Controlled-Regression-Testing assumption, then the fol-

lowing relation also holds between the subset of fault-revealing test cases, Tfr, the subset

of modification-revealing test cases, Tmr, the subset of modification-traversing test cases,

Tmt, and the original test suite, T :

Tfr = Tmr ⊆ Tmt ⊆ T

Rothermel and Harrold admitted that the Controlled-Regression-Testing assump-

tion may not be always practical, since certain types of regression testing may make

it impossible to control the testing environment, e.g. testing of a system ported to

different operating system [171]. Other factors like non-determinism in programs and

time dependencies are also difficult to control effectively. However, finding the subset of

modification-traversing test cases may still be useful approach in practice, because Tmt is

the closest approximation to Tmr that can be achieved without executing all test cases.

In other words, by finding Tmt, it is possible to exclude those test cases that are guaran-

teed not to reveal any fault in P ′. The widely used term, safe regression test selection, is

based on this concept [167]. A safe regression test selection technique is not safe from all

possible faults; however, it is safe in a sense that, if there exists a modification-traversing

test case in the test suite, it will definitely be selected.

Based on Rothermel’s formulation of the problem, it can be said that test case

selection techniques for regression testing focus on identifying the modification-traversing

test cases in the given test suite. The details of the selection procedure differ according to

how a specific technique defines, seeks and identifies modifications in the program under

test. Various techniques have been proposed using different criteria based on, among

54 CHAPTER 2. LITERATURE SURVEY

others, data flow analysis [71, 76, 81, 197], CFGs (Control Flow Graphs) [167, 168, 170,

173], PDGs (Program Dependence Graphs), SDGs (System Dependence Graphs) [10],

program slices [4], and symbolic execution [224]. The following subsections describe these

in more detail, highlighting their strengths and weaknesses.

2.3.1 Integer Programming Approach

One of the earliest approaches to test case selection was presented by Fischer and Fis-

cher et al. who used Integer Programming (IP) to represent the selection problem for

testing FORTRAN programs [59, 60]. Lee and He implemented a similar technique [118].

Fischer first defined a program segment as a single-entry, single exit block of code whose

statements are executed sequentially. Their selection algorithm relies on two matrices

that describe the relation between program segments and test cases, as well as between

different program segments.

For a program with m segments and n test cases, the IP formulation is given as

the problem of finding the decision vector,< x1, . . . , xn >, that minimises the following

objective function, Z :

Z = c1x1 + c2x2 + . . .+ cnxn

subject to :

a11x1 + a12x2 + . . .+ a1nxn ≥ b1

a21x1 + a22x2 + . . .+ a2nxn ≥ b2

· · ·

am1x1 + am2x2 + . . .+ amnxn ≥ bm

2.3. TEST CASE SELECTION 55

The decision vector, < x1, . . . , xn >, represents the subset of selected test cases; xi

is equal to 1 if the ith test case is included; 0 otherwise. The coefficients, c1, . . . , cn,

represent the cost of executing each corresponding test case; Fischer et al. used the

constant value of 1 for all coefficients, treating all test cases as being equally expensive.

The test case dependency matrix, a11, . . . , amn represents the relations between test cases

and the program segments. The element aij is equal to 1 if the ith program segment is

executed by the test case j; 0 otherwise.

After deriving the series of inequalities, the set of bk values are determined by using

a reachability matrix that describes the program segments that are reachable from other

segments. Using this, if one knows the modified segments, it is possible to get all the

segments that are reachable from the modified segments, which need to be tested at least

once. The integer programming formulation is completed by assigning 1 to the b values

for all the segments that need to be tested. The inequality, ai1x1 + . . .+ainxn ≥ bi, thus

ensures that at least one included test case covers the program element reachable from

a change.

Hartmann and Robson implemented and extended a version of Fischer’s algorithm in

order to apply the technique to C [83–85]. They treat subroutines as segments, achieving

subroutine coverage rather than statement coverage.

One weakness in Fischer’s approach is its inability to deal with control-flow changes in

P ′. The test case dependency matrix, a11, . . . , amn, depends on the control-flow structure

of the program under test. If the control-flow structure changes, the test case dependency

matrix can be updated only by executing all the test cases, which negates the point of

applying the selection technique.

2.3.2 Data-flow Analysis Approach

Several test case selection techniques have been proposed based on data-flow analysis [71,

76, 81, 197]. Data-flow analysis based selection techniques seek to identify new, modified

56 CHAPTER 2. LITERATURE SURVEY

or deleted definition-use pairs in P ′, and select test cases that exercise these pairs.

Harrold and Soffa presented data-flow analysis as the testing criterion for an in-

cremental approach to unit testing during the maintenance phase [81]. Taha, Thebaut,

and Liu built upon this idea and presented a test case selection framework based on

an incremental data-flow analysis algorithm [197]. Harrold and Soffa developed both

intra-procedural and inter-procedural selection techniques [76, 82]. Gupta et al. applied

program slicing techniques to identify definition-use pairs that are affected by a code

modification [71]. The use of slicing techniques enabled identification of definition-use

pairs that need to be tested without performing a complete dataflow analysis, which is

often very costly. Wong et al. combined data-flow selection approach with coverage-based

minimisation and prioritisation to further reduce the effort [219].

One weakness shared by all data-flow analysis-based test case selection techniques

is the fact that they are unable to detect modifications that are unrelated to data-

flow change. For example, if P ′ contains new procedure calls without any parameter, or

modified output statements that contain no variable uses, data-flow techniques may not

select test cases that execute these.

Fisher II et al. applied the data-flow based regression test selection approach for

test re-use in spreadsheet programs [61]. Fisher II et al. proposed an approach called

What-You-See-Is-What-You-Test (WYSIWYT) to provide incremental, responsive and

visual feedback about the testedness of cells in spreadsheets. The WYSIWYT framework

collects and updates data-flow information incrementally as the user of the spreadsheet

makes modifications to cells, using Cell Relation Graph (CRG). Interestingly, the data-

flow analysis approach to re-test spreadsheets is largely free from the difficulties that

the approach has used to test procedural programs, because spreadsheet programs are

purely based on data-flow and not on control-flow information. This makes spreadsheet

programs an ideal candidate for a data-flow analysis approach.

2.3. TEST CASE SELECTION 57

2.3.3 Symbolic Execution Approach

Yau and Kishmoto presented a test case selection technique based on symbolic execu-

tion of the SUT [224]. In symbolic execution of a program, the variables’ values are

treated as symbols, rather than concrete values [2]. Yau and Kishimoto’s approach can

be thought of as an application of symbolic execution and input partitioning to the test

case selection problem. First, the technique statically analyses the code and specifica-

tions to determine the input partitions. Next, it produces test cases so that each input

partition can be executed at least once. Given information on where the code has been

modified, the technique then identifies the edges in the control flow graph that lead to

the modified code. While symbolically executing all test cases, the technique determines

test cases that traverse edges that do not reach any modification. The technique then

selects all test cases that reach new or modified code. For the symbolic test cases that

reach modifications, the technique completes the execution of those; the real test cases

that match these symbolic test cases should be retested.

While it is theoretically powerful, the most important drawback of the symbolic

execution approach is the algorithmic complexity of the symbolic execution. Yau and

Kishmoto acknowledge that symbolic execution can be very expensive. Pointer arithmetic

can also present challenging problems for symbolic execution based approaches.

2.3.4 Dynamic Slicing Based Approach

Agrawal et al. introduced a family of test case selection techniques based on different

program slicing techniques [4]. An execution slice of a program with respect to a test case

is what is usually referred to as an execution trace; it is the set of statements executed

by the given test case. A dynamic slice of a program with respect to a test case is the

set of statements in the execution slice that have an influence on an output statement.

Since an execution slice may contain statements that do not affect the program output,

a dynamic slice is a subset of an execution slice. For example, consider the program

58 CHAPTER 2. LITERATURE SURVEY

 S1: read(a,b,c);
 S2: class : scalene;
 S3: if a = b or b = a
 S4: class := isosceles;
 S5: if a * a = b * b + c * c
 S6: class := right
 S7: if a = b and b = c
 S8: class := equilateral
 S9: case class of:
S10: right : area = b * c / 2;
S11: equilateral : area = a * 2 * sqrt(3) / 4;
S12: otherwise : s := (a + b + c) / 2;
S13: area := sqrt(s * (s-a) * (s-b) * (s-c));
S14: end;
S15: write(class, area);

Figure 2.1: Example triangle classification program taken from Agrawal et al. [4]. Note
that it is assumed that the input vector is sorted in descending order. It contains two
faults. In S3, b = a should be b = c. In S11, a * 2 should be a * a.

Testcase Input Output

a b c class area

T1 2 2 2 equilateral 1.73
T2 4 4 3 isosceles 5.56
T3 5 4 3 right 6.00
T4 6 5 4 scalene 9.92
T5 3 3 3 equilateral 2.60
T6 4 3 3 scalene 4.47

Table 2.3: Test cases used with the program shown in Figure 2.1, taken from Agrawal et
al. [4]. Note that T5 detects the fault in S11, because the value for area should be 3.90.
Similarly, T6 detects the fault in S3, because the value for class should be isosceles.

shown in Figure 2.1. It contains two faults in line S3 and S11 respectively. The execution

slice of the program with respect to test case T3 in Table 2.3 is shown in Figure 2.2.

The dynamic slice of the program with respect to test case T1 in Table 2.3 is shown in

Figure 2.3.

In order to make the selection more precise, Agrawal et al. proposed two additional

slicing criteria: a relevant slice and an approximate relevant slice. A relevant slice of

a program with respect to a test case is the dynamic slice with respect to the same

test case together with all the predicate statements in the program that, if evaluated

2.3. TEST CASE SELECTION 59

 S1: read(a,b,c);
 S2: class : scalene;
 S3: if a = b or b = a
 S4: class := isosceles;
 S5: if a * a = b * b + c * c
 S6: class := right
 S7: if a = b and b = c
 S8: class := equilateral
 S9: case class of:
S10: right : area = b * c / 2;
S11: equilateral : area = a * 2 * sqrt(3) / 4;
S12: otherwise : s := (a + b + c) / 2;
S13: area := sqrt(s * (s-a) * (s-b) * (s-c));
S14: end;
S15: write(class, area);

Figure 2.2: Execution slice of program shown in Figure 2.1 with respect to test case T3

in Table 2.3, taken from Agrawal et al. [4]

 S1: read(a,b,c);
 S2: class : scalene;
 S3: if a = b or b = a
 S4: class := isosceles;
 S5: if a * a = b * b + c * c
 S6: class := right
 S7: if a = b and b = c
 S8: class := equilateral
 S9: case class of:
S10: right : area = b * c / 2;
S11: equilateral : area = a * 2 * sqrt(3) / 4;
S12: otherwise : s := (a + b + c) / 2;
S13: area := sqrt(s * (s-a) * (s-b) * (s-c));
S14: end;
S15: write(class, area);

Figure 2.3: Dynamic slice of program shown in Figure 2.1 with respect to test case T1

in Table 2.3, taken from Agrawal et al. [4]

60 CHAPTER 2. LITERATURE SURVEY

 S1: read(a,b,c);
 S2: class : scalene;
 S3: if a = b or b = a
 S4: class := isosceles;
 S5: if a * a = b * b + c * c
 S6: class := right
 S7: if a = b and b = c
 S8: class := equilateral
 S9: case class of:
S10: right : area = b * c / 2;
S11: equilateral : area = a * 2 * sqrt(3) / 4;
S12: otherwise : s := (a + b + c) / 2;
S13: area := sqrt(s * (s-a) * (s-b) * (s-c));
S14: end;
S15: write(class, area);

Figure 2.4: Relevant slice of program shown in Figure 2.1 with respect to test case T4

in Table 2.3, taken from Agrawal et al. [4]

differently, could have caused the program to produce different output. An approximated

relevant slice is a more conservative approach to include predicates that could have

caused different output; it is the dynamic slice with all the predicate statements in the

execution slice. By including all the predicates in the execution slice, an approximated

relevant slice caters for the indirect references via pointers. For example, consider the

correction of S3 in the program shown in Figure 2.1. The dynamic slice of T4 does not

include S3 because the class value of T4 is not affected by any of the lines between S3

and S8. However, the relevant slice of T4, shown in Figure 2.4, does include S3 because

it could have affected the output when evaluated differently.

The test suite and the previous version of the program under test are preprocessed

using these slicing criteria; each test case is connected to a slice, sl, constructed by one

of the four slicing criteria. After the program is modified, test cases for which sl contains

the modified statement should be executed again. For example, assume that the fault

in S11, detected by T5, is corrected. The program should be retested with T5. However,

T3 need not be executed because the execution slice of T3, shown in Figure 2.2, does

not contain S11. Similarly, assume that the fault in S3, detected by T6, is corrected.

The program should be retested with T6. The execution slice technique selects all six

2.3. TEST CASE SELECTION 61

test cases, T1 to T6, after the correction of the fault in S3 because the execution slices

of all six test cases include S3. However, it is clear that T1 and T3 are not affected by

the correction of S3; their class values are overwritten after the execution of S3. The

dynamic slicing technique overcomes this weakness. The dynamic slice of T1 is shown in

Figure 2.3. Since S3 does not affect the output of T1, it is not included in the dynamic

slice. Therefore, the modification of S3 does not necessitate the execution of T1.

Agrawal et al. first build their technique on cases in which modifications are restricted

to those that do not alter the control flow graph of the program under test. As long as

the control flow graph of the program remains the same, their technique is safe and can

be regarded as an improvement over Fischer’s integer programming approach. Slicing

removes the need to formulate the linear programming problem, reducing the effort

required from the tester. Agrawal et al. later relaxed the assumption about static control

flow graph in order to cater for modifications in the control flow graph of the SUT. If a

statement s is added to P , now the slice sl contains all the statements in P that uses the

variables defined in s. Similarly, if a predicate p is added to P , the slice sl contains all

the statements in P that are control-dependent on p. This does cater for the changes in

the control flow graph to some degree, but it is not complete. For example, if the added

statement is a simple output statement that does not define or use any variable, then

this statement can still be modification-revealing. However, since the new statement does

not contain any variable, its addition will not affect any of the existing slices, resulting

in an empty selection.

2.3.5 Graph-Walk Approach

Rothermel and Harrold presented regression test case selection techniques based on graph

walking of Control Dependence Graphs (CDGs), Program Dependence Graphs (PDGs),

System Dependence Graphs (SDGs) and Control Flow Graphs (CFGs) [167, 170, 172,

173]. The CDG is similar to PDG but lacks data dependency relations. By performing a

62 CHAPTER 2. LITERATURE SURVEY

depth-first traversal of the CDGs of both P and P ′, it is possible to identify points in a

program through which the execution trace reaches the modifications [167]. If a node in

the CDG of P is not lexically equivalent to the corresponding node in the CDG of P ′,

the algorithm selects all the test cases that execute the control-dependence predecessors

of the mismatching node. The CDG based selection technique does not cater for inter-

procedural regression test case selection; Rothermel and Harrold recommend application

of the technique at the individual procedural level.

Rothermel and Harrold later extended the graph walking approach to use PDGs for

intra-procedural selection, and SDGs for inter-procedural selection [170]. A weakness of

the CDG based technique is that, due to the lack of data dependence, the technique will

select test cases that execute modified definitions but not the actual uses of a variable. If

the modified definition of a variable is never used, it cannot contribute to any different

output, and therefore its inclusion is not necessary for safe regression testing. PDGs

contain data dependence for a single procedure; SDGs extend this to a complete program

with multiple procedures. By using these graphs, Rothermel and Harrold’s algorithm is

able to check whether a modified definition of a variable is actually used later.

Rothermel and Harrold later presented the graph walking approach based on CFGs [173].

The CFG-based technique essentially follows the approach introduced for the CDG-based

technique, but on CFGs rather than on CDGs. Since CFG is a much simpler represen-

tation of the structure of a program, the CFG-based technique may be more efficient.

However, the CFG lacks data dependence information, so the CFG based technique may

select test cases that are not capable of producing different outputs from the original

programs as explained above. The technique has been evaluated against various com-

binations of subject programs and test suites [174]. Ball improved the precision of the

graph walk approach with respect to branch coverage [8].

For example, consider Figure 2.5. The algorithm performs a depth-first traversal of

two CFGs at the same time. When it visits S3 and S3’, the child nodes S4 and S4’ are

2.3. TEST CASE SELECTION 63

 twovisits(x)
 {
P1 if(x=0)
S2 goto L1
 else
 L1:
S3 print("1")
 endif
S4 exit
 }

 twovisits'(x)
 {
P1' if(x=0)
S2' goto L1
 else

S3' print("1")
 endif
S4' exit
 L1:
S5' print("2")
 }

entry

S4

exit

S3S2

P1

entry

S4'

exit

S3'S2'

P1'

S5'

T F T F

Figure 2.5: Example of CFG-based graph walking algorithm, taken from Rothermel and
Harrold [173]. The algorithm detects a modification when comparing S2 and S2’. Since
their child nodes are not lexically equivalent to each other, there is a modification. The
algorithm then selects all test cases that previously traversed the edge between S2 and
S3.

lexically equivalent to each other. However, when it visits S2 and S2’, the child nodes S3

and S5’ are lexically different from each other. The algorithm selects all the test cases

that previously traversed the edge between S2 and S3 in the original program.

Rothermel et al. extended the CFG-based graph walk approach for object-oriented

software using the Interprocedural Control Flow Graph (ICFG) [175]. The ICFG con-

nects methods using call and return edges. Harrold et al. adopted a similar approach for

test case selection for Java software, using the Java Interclass Graph as representation

(JIG) [79]. Xu and Rountev later extended this technique to consider AspectJ programs

by incorporating the interactions between methods and advices at certain join points

into the CFG [223]. Zhao et al. also considered a graph representation of AspectJ pro-

grams to apply a graph walk approach for RTS [231]. Beydeda and Gruhn extended the

graph walk approach by adding black-box data-flow information to the Class Control

Flow Graph (CCFG) to test object-oriented software [16].

Orso et al. considered using different types of graph representation of the system to

64 CHAPTER 2. LITERATURE SURVEY

improve the scalability of graph-walk approach [153]. Their approach first relied on a

high-level graph representation of SUT to identify the parts of the system to be further

analysed. The technique then used more detailed graph representation to perform more

precise selection.

One strength of the graph walk approach is its generic applicability. For example, it

has been successfully used in black-box testing of re-usable classes [132]. Martins and

Vieira captured the behaviours of a re-usable class by constructing a directed graph

called the Behavioural Control Flow Graph (BCFG) from the Activity Diagram (AD)

of the class. The BCFG is a directed graph, G = (V,E, s, x), with vertices V , edges E,

a unique entry vertex s and an exit vertex x. Each vertex contains a label that specifies

the signature of a method; each edge is also labelled according to the corresponding

guards in AD. A path in G from s to x represents a possible life history of an object.

By mapping changes made to the object to its BCFG and applying the graph walking

algorithm, it is possible to select test cases based on the behavioural difference between

two versions of the same object. Note that, though, this approach requires traceability

between the behavioural model and the actual test cases, because test cases are selected,

not based on their structural coverage, but based on their behavioural coverage measured

on BCFG. Activity diagrams have also been directly used for RTS by Chen et al. [29].

Orso et al. used a variation of the graph walk approach to consider an RTS technique

based on meta-data and specifications obtained from software components [151, 152].

They presented two different techniques based on meta-data: code-based RTS using

component meta-data and specification-based RTS using component meta-data. For

code-based RTS, it was assumed that each software component was capable of provid-

ing structural coverage information, which was fed into the graph walk algorithm. For

specification-based RTS, the component specification was represented in UML state-

chart diagrams, which were used by the graph walk algorithm.

The graph walk algorithm has also been applied to test web services, despite the

2.3. TEST CASE SELECTION 65

challenges that arise from the distributed nature of web services [127, 181–183, 199].

Several different approaches have been introduced to overcome these challenges. Lin et

al. adopted the JIG-based approach after transforming the web services to a single-JVM

local application [127]. Ruth et al. collected a coarse-grained CFG from developers of

each web service that forms a part of the entire application [181–183]. Finally, Tarhini

et al. utilised Timed Labeled Transition System (TLTS), which is a coarse-grained rep-

resentation of web services that resembles a labelled state machine [199].

2.3.6 Textual Difference Approach

Volkolos and Frankl proposed a selection technique based on the textual difference be-

tween the source code of two versions of SUT [208, 209]. They identified modified parts

of SUT by applying the diff Unix tool to the source code of different versions. The

source code was pre-processed into canonical forms to remove the impact of cosmetic

differences. Although their technique operates on a different representation of SUT, its

behaviour is essentially very similar to that of the CFG based graph-walk approach.

2.3.7 SDG Slicing Approach

Bates and Horwitz proposed test case selection techniques based on program slices from

Program Dependency Graphs (PDGs) [10]. Bates and Horwitz approach the regression

test selection problem in two stages. First, all the test cases that can be reused for

P ′ need to be identified. Bates and Horwitz introduce the definition of an equivalent

execution pattern. If statements s and s′ belong to P and P ′ respectively, s and s′ have

equivalent execution patterns if and only if all of the following hold:

1. For any input file on which both P and P ′ terminate normally, s and s′ are exercised

the same number of times.

2. For any input file on which P terminates normally but P ′ does not, s′ is exercised

66 CHAPTER 2. LITERATURE SURVEY

at most as many times as s is exercised.

3. For any input file on which P ′ terminates normally but P does not, s is exercised

at most as many times as s′ is exercised.

Using program slicing, Bates and Horwitz categorize statements into execution classes.

Statement s from P and s′ from P ′ belong to the same execution class if and only if any

test that exercises s will also exercise s′.

Now, a statement s′ in P ′ is affected by the modification if and only if one of the

following holds:

1. There is no corresponding statement s in P .

2. The behaviour of s′ is not equivalent to the corresponding statement s in P .

Equivalent behaviour is determined by PDG slice isomorphism; if the PDG slice of

two statements are isomorphic, then those statements share an equivalent behaviour. For

each affected statement in P ′, reusable test cases are selected based on the information

retrieved from the identification stage.

While Bates and Horwitz’s technique selects test cases for modified or newly added

statements in P ′, it does not select tests that exercise statements that are deleted from

P , and therefore is not safe.

Binkley [17] presented a technique based on System Dependence Graph (SDG) slic-

ing, which extends Bates and Horwitz’s intra-procedural to inter-procedural test case

selection. Binkley introduced the concept of common execution patterns, which corre-

sponds to the equivalent execution patterns of Bates and Horwitz.

2.3.8 Path Analysis

Benedusi et al. applied path analysis for test case selection [15]. They construct exemplar

paths from P and P ′ expressed in an algebraic expression. By comparing two sets of

2.3. TEST CASE SELECTION 67

exemplar paths, they classified paths in P ′ as new, modified, cancelled, or unmodified.

Test cases and the paths they execute in P are known; therefore, they selected all the

test cases that will traverse modified paths in P ′.

One potential weakness of the path analysis approach of Benedusi et al. lies not in

path analysis itself, but in the potentially over-specific definition of ‘modification’ used

in the post-analysis selection phase. No test cases are selected for the paths that are

classified to be new or cancelled. However, new or cancelled paths denote modifications

that represent differences between P and P ′; test cases that execute new or cancelled

paths in P ′ may be modification-revealing. As presented, therefore, the path analysis

approach is not safe.

2.3.9 Modification-based Technique

Chen et al. introduced a testing framework called TestTube, which utilises a modification-

based technique to select test cases [31]. TestTube partitions the SUT into program enti-

ties, and monitors the execution of test cases to establish connections between test cases

and the program entities that they execute. TestTube also partitions P ′ into program

entities, and identifies program entities that are modified from P . All the test cases that

execute the modified program entities in P should be re-executed.

TestTube can be thought of as an extended version of the graph walk approach. Both

techniques identify modifications by examining the program source code, and select test

cases that will execute the modified parts. TestTube extends the CDG-based graph walk

technique by introducing program entities that include both functions and entities that

are not functions, i.e. variables, data types, and pre-processor macros. Any test case

that executes modified functions will be selected. Therefore, TestTube is a safe test case

selection technique.

One weakness of TestTube is pointer handling. By including variable and data types

68 CHAPTER 2. LITERATURE SURVEY

as program entities, TestTube requires that all value creations and manipulations in a

program can be inferred from source code analysis. This is only valid for languages with-

out pointer arithmetic and type coercion. As a result, TestTube makes assumptions such

as all pointer arithmetic is well-bounded. If these assumptions do not hold then safety

cannot be guaranteed.

2.3.10 Firewall Approach

Leung and White introduced and later implemented what they called a firewall technique

for regression testing of system integration [122, 123, 216, 217]. The main concept is

to draw a firewall around the modules of the system that need to be retested. They

categorise modules into the following categories:

• No Change : module A has not been modified, NoCh(A).

• Only Code Change : module A has the same specification but its code has been

modified, CodeCh(A).

• Spec Change : module A has modified specifications, SpecCh(A).

If a module A calls a module B, there exist 9 possible pairings between the states

of A and B. The integration between A and B can be ignored for regression testing if

NoCh(A) ∧NoCh(B), leaving 8 pairings. If both A and B are modified either in code

or in specifications, the integration tests between A and B should be executed again as

well as the unit tests of A and B; this accounts for 4 of the remaining 8 pairings. The

other 4 pairings are cases in which an unchanged module calls a changed module, or vice

versa; these pairs form the boundary for integration testing, i.e. the so-called firewall.

By considering modules as the atomic entities, Leung and White maintained a very

conservative approach to test case selection. If a module has been modified, any test

2.3. TEST CASE SELECTION 69

case that tests the integration of the modified module should be selected. Therefore,

all modification-traversing test cases will be selected. However, their technique may

also select other test cases that execute the modified module, but are not modification-

traversing in any way. Leung and White also noted that, in practice, the test suite for

system integration is often not very reliable. The low reliability means that it is more

likely that there may still exist a fault-revealing test case that does not belong to the test

suite, and therefore cannot be selected. Note that it is always a risk that a fault-revealing

test case exists outside the given test suite in any type of testing, not only in integration

testing. What Leung and White pointed out was that such a risk can be higher in system

integration testing due to the generally low quality of test suites.

The Firewall approach has been applied to Object-Oriented programs [113, 215, 218]

and GUIs [214]. Firewall approach has also been successfully applied to RTS for black-

box Commercial Off-the-Shelf (COTS) components. Zheng et al. applied the firewall

technique of Leung and White based on the information extracted from the deployed

binary code [232–235]. Skoglund and Runeson applied the firewall approach to a large-

scale banking system [190].

2.3.11 Cluster Identification

Laski and Szemer presented a test case selection technique based on analysis of the

CFG of the program under test [115]. Their technique identifies single-entry, single-exit

subgraphs of CFG called clusters. Given a program P and its modified version P ′,

• each cluster in P encapsulates some modifications to P ,

• there is a unique cluster in P ′ that corresponds to the cluster in P , and

• when clusters in each graph are replaced by single nodes, there is a one-to-one

correspondence between nodes in both graphs.

70 CHAPTER 2. LITERATURE SURVEY

program P1
var a,b:real
 begin
1 read(a);
2 if a < 0
3 then b := -a
4 else b := a;
5 write(a,b)
6 end

program P2
var a,b:real
 begin
1 read(a);
2 b := abs(a);
3 write(a,b)
4 end

1 read(a)

2 if a<0

3

b:=-a

4
b:=a

5 write(a,b)

6 exit

1

2

5 write(a,b)

6
exit

read(a)

MOD

MOD

Figure 2.6: Example of isomorphism between reduced CFGs, taken from Laski and Sze-
mer [115]. Program P2 is a modified version of P1. Note that the modification made to
P2 is enclosed in MOD cluster.

The CFGs of the original program and the modified program are reduced using a

set of operators such as node collapse and node removal. During the process, if the

counterpart of a node from the CFG of the original program cannot be found in the

CFG of the modified program, this node is labelled as ‘MOD’, indicating a modification

at the node. Eventually, all the modifications will be enclosed in one or more MOD

cluster nodes. As with other test case selection techniques, their technique requires that

the tester records the execution history of each test case in the test suite. Once clustering

is completed, test case selection is performed by selecting all the test cases for which the

corresponding execution path enters any of the MOD clusters.

For example, consider Figure 2.6. Program P2 is a modified version of P1. By collaps-

ing nodes 2, 3, and 4 into a MOD cluster, the CFGs of two programs become isomorphic.

Any test case that enters MOD with P1 also enters MOD in P2 and vice versa. Note that MOD

in P1 is considered to be single-entry/single-exit by the inclusion of a dummy merging

node (the solid black node). The modification made to P1 is enclosed in the MOD cluster.

If a test case has an execution trace that enters MOD, it should be selected.

2.3. TEST CASE SELECTION 71

The strength of the cluster identification technique is that it guarantees to select all

modification-traversing test cases regardless of the type of the modification, i.e. addi-

tion or deletion of statements and control structures. However, since the clusters can

encapsulate much larger areas of the SUT than the scope of actual modification, the

technique may also select test cases that are not modification-traversing. In this sense

the approach sacrifices precision in order to achieve safety.

2.3.12 Design-based Approach

Briand et al. presented a black-box, design level regression test selection approach for

UML-based designs [21, 22]. Assuming that there is traceability between the design

and regression test cases, it is possible to perform regression test selection of code-

level test cases from the impact analysis of UML design models. Briand et al. formalised

possible changes in UML models, and classified the relevant test cases into the categories

defined by Leung and White [121]: obsolete, retestable and reusable. They implemented

an automated impact analysis tool for UML and empirically evaluated it using both

student projects and industrial case studies.

The results showed that the changes made to a model can have a widely variable

impact on the resulting system, which, in turn, yield varying degrees of reduction of

effort in terms of the number of selected test cases. However, Briand et al. noted that

the automated impact analysis itself can be valuable, especially for very large systems,

such as the cruise control and monitoring system they studied. The UML use-cases of

the model of the system had 323,614 corresponding test cases. UML-based models have

been also considered by Dent et al. [39], Pilskalns et al. [156] and Farooq et al. [56] for

regression test selection; Le Traon et al. [117] and Wu and Offutt [222] considered the

use of UML models in the wider context of regression testing in general. Muccini et al.

considered the RTS problem at the software architecture level, although they did not

use UML for the representation [144, 145].

72 CHAPTER 2. LITERATURE SURVEY

Test Case Fault revealed by test case

1 2 3 4 5 6 7 8 9 10

A x x
B x x x x
C x x x x x x x
D x
E x x x

Table 2.4: Example test suite with fault detection information, taken from Elbaum et
al [53]. It is clearly beneficial to execute test case C first, followed by E.

2.4 Test Case Prioritisation

Test case prioritisation seeks to find the ideal ordering of test cases for testing, so that

the tester obtains maximum benefit, even if the testing is prematurely halted at some

arbitrary point. The approach was first mentioned by Wong et al. [220]; however, it was,

in that work, only applied to test cases that were already selected by a test case selection

technique. Subsequently, Harrold proposed the approach in more general context [78],

which was empirically evaluated by Rothermel et al. [177].

For example, consider the test suite described in Table 2.4. Note that the example

depicts an ideal situation in which fault detection information is known. The goal of

prioritisation is to maximise early fault detection. It is obvious that the ordering A-B-

C-D-E is inferior to B-A-C-D-E. In fact, any ordering that starts with the execution

of C-E is superior to those that do not, because the subsequence C-E detects faults as

early as possible; should testing be stopped prematurely, this ensures that the maximum

possible fault coverage will have been achieved.

Note that the problem definition concerns neither versions of the program under

test nor exact knowledge of modifications. Ideally, the test cases should be executed in

the order that maximises early fault detection. However, fault detection information is

typically not known until the testing is finished. In order to overcome the difficulty of

knowing which tests reveal faults, test case prioritisation techniques depend on surro-

2.4. TEST CASE PRIORITISATION 73

gates, hoping that early maximisation of a certain chosen surrogate property will result

in maximisation of earlier fault detection. In a controlled regression testing environ-

ment, the result of prioritisation can be evaluated by executing test cases according to

the produced ordering and measuring the fault detection rate.

2.4.1 Coverage-based Prioritisation

Structural coverage is a metric that is often used as the prioritisation criterion [49, 53, 54,

129, 163, 177, 178]. The intuition behind the idea is that early maximisation of structural

coverage will also increase the chance of early maximisation of fault detection. Therefore,

while the goal of test case prioritisation still remains as a higher fault detection rate, the

prioritisation techniques actually aim to maximise early coverage.

Rothermel et al. reported empirical studies of several prioritisation techniques [177,

178]. They applied the same algorithm with different fault detection rate surrogates. The

considered surrogates were: branch-total, branch-additional, statement-total, statement-

additional, Fault Exposing Potential (FEP)-total, and FEP-additional.

The branch-total approach prioritises test cases according to the number of branches

covered by individual test cases, while branch-additional prioritises test cases according

to the additional number of branches covered by individual test cases. The statement-

total and statement-additional approaches do the same thing with the number of pro-

gram statements instead of branches. Algorithmically, ‘total’ approaches are essentially

instances of greedy algorithms whereas ‘additional’ approaches are essentially instances

of additional greedy algorithms.

The FEP of a test case is measured using program mutation. Program mutation

introduces a simple syntactic modification to the program source, producing a mutant

version of the program [27]. This mutant is said to be killed by a test case if the test

case reveals the difference between the original program and the mutant. Given a set

of mutants, the mutation score of a test case is the ratio of mutants that are killed

74 CHAPTER 2. LITERATURE SURVEY

Figure 2.7: Average Percentage of Fault Detection : higher APFD values mean higher
average fault detection rate [53].

by the test case to the total kill-able mutants. The FEP-total approach prioritises test

cases according to the mutation score of individual test cases, while the FEP-additional

approach prioritises test cases according to the additional increase in mutation score

provided by individual test cases. Note that FEP criterion can be constructed to be at

least as strong strong as structural coverage; to kill a mutant, a test case not only need

to achieve the coverage of the location of mutation but also to execute the mutated part

with a set of test input that can kill the mutant. In other words, coverage is necessary

but not sufficient to kill the mutant.

It is important to note that all the ‘additional’ approaches may reach 100% realisation

of the utilised surrogate before every test case is prioritised. For example, achieving 100%

branch coverage may not require all the test cases in the test suite, in which case none

of the remaining test cases can increase the branch coverage. Rothermel et al. reverted

to the ‘total’ approach once such condition is met.

The results were evaluated using the Average Percentage of Fault Detection (APFD)

metric. Higher APFD values denote faster fault detection rates. When plotting the per-

centage of detected faults against the number of executed test cases, APFD can be

calculated as the area below the plotted line, as shown in Figure 2.7 taken from Elbaum

2.4. TEST CASE PRIORITISATION 75

et al. [53]. Figure 2.7 shows the APFD values of orderings of the test suite described in

Table 2.4. After the execution of the subsequence C-E, a 100% fault detection is achieved

and the ordering of the remaining test cases does not affect the APFD value.

More formally, let T be the test suite containing n test cases and let F be the set of

m faults revealed by T . For ordering T ′, let TFi be the order of the first test case that

reveals the ith fault. The APFD value for T ′ is calculated as following [51]:

APFD = 1− TF1 + . . .+ TFm
nm

+
1

2n

Note that, while APFD is commonly used to evaluate test case prioritisation tech-

niques, it is not the aim of test case prioritisation techniques to maximise APFD. Max-

imisation of APFD would be only possible when every fault that can be detected by

the given test suite is already known. This would imply that all test cases have been

already executed, which would nullify the need to prioritise. APFD is computed after

the prioritisation only to evaluate the performance of the prioritisation technique.

Rothermel et al. compared the proposed prioritisation techniques to random priori-

tisation, optimal prioritisation, and no prioritisation, using the Siemens suite programs.

Optimal prioritisation is possible because the experiment was performed in a controlled

environment, i.e. the faults were already known. The results show that all the proposed

techniques produce higher APFD values than random or no prioritisation. The surro-

gate with the highest APFD value differed between programs, suggesting that there is

no single best surrogate. However, on average across the programs, the FEP-additional

approach performed most efficiently, producing APFD value of 74.5% compared to the

88.5% of the optimal approach. It should still be noted that these results are dependent

on many factors, including the types of faults used for evaluation and types of mutation

used for FEP, limiting the scope for generalisation.

Elbaum et al. extended the empirical study of Rothermel et al. by including more

76 CHAPTER 2. LITERATURE SURVEY

programs and prioritisation surrogates [53]. Among the newly introduced prioritisation

surrogates, function-coverage and function-level FEP enabled Elbaum et al. to study

the effects of granularity on prioritisation. Function-coverage of a test case is calculated

by counting the number of functions that the test case executes. Function-level FEP is

calculated, for each function f and each test case t, by summing the ratio of mutants

in f killed by t. Elbaum et al. hypothesised that approaches with coarser granularity

would produce lower APFD values, which was confirmed statistically.

Jones and Harrold applied the greedy-based prioritisation approach to Modified Con-

dition/Decision Coverage (MC/DC) criterion [99]. MC/DC is a ‘stricter form’ of branch

coverage; it requires execution coverage at condition level. A condition is a Boolean

expression that cannot be factored into simpler Boolean expressions. By checking each

condition in decision predicates, MC/DC examines whether each condition indepen-

dently affects the outcome of the decision [32]. They presented an empirical study that

contained only an execution time analysis of the prioritisation technique and not an

evaluation based on fault detection rate.

Srivastava and Thiagarajan combined the greedy-based prioritisation approach with

regression test selection [194]. They first identified the modified code blocks in the new

version of the SUT by comparing its binary code to that of the previous version. Once the

modified blocks are identified, test case prioritisation is performed using greedy-based

prioritisation, but only with respect to the coverage of modified blocks.

Do and Rothermel applied coverage-based prioritisation techniques to the JUnit test-

ing environment, a popular unit testing framework [40]. The results showed that priori-

tised execution of JUnit test cases improved the fault detection rate. One interesting

finding was that the random prioritisation sometimes resulted in an APFD value higher

than the untreated ordering, i.e. the order of creation. When executed in the order of

creation, newer unit tests are executed later. However, it is the newer unit tests that have

higher chance of detecting faults. It turns out that random prioritisation could exploit

2.4. TEST CASE PRIORITISATION 77

Hardware Operating System Network Connection Memory

Desktop MS Windows Dial-up 256MB
Laptop Linux DSL 512MB
Smartphone Mac OS X Cable 1GB

Table 2.5: Example testing environment factors

this weakness of untreated ordering in some cases.

Li et al. applied various meta-heuristics for test case prioritisation [126]. They com-

pared random prioritisation, hill climbing algorithm, a genetic algorithm, a greedy algo-

rithm, the additional greedy algorithm, and a two-optimal greedy algorithm. The greedy

algorithm corresponds to the total approaches outlined above, whereas the additional

greedy algorithm corresponds to the additional approaches outlined above. The two-

optimal greedy is similar to the greedy algorithm except that it considers two candidates

at the same time rather than a single candidate for the next order. They considered the

Siemens suite programs and the program space, and evaluated each technique based on

APBC (Average Percentage of Block Coverage) instead of APFD. The results showed

that the additional greedy algorithm is the most efficient in general.

2.4.2 Interaction Testing

Interaction testing is required when the SUT involves multiple combinations of different

components. For example, consider the testing environment described in Table 2.5. Each

column represents a component that can have one of multiple possible settings. These

are called factors. Each row in a column represents one possible setting. These are

called levels. From the factors listed in Table 2.5, 34 = 81 combinations arise. As the

system grows larger, exhaustive testing of all possible combinations of factors requires

exponentially more tests.

Instead of testing exhaustively, pair-wise interaction testing requires only that every

individual pair of interactions between different factors are included at least once in

78 CHAPTER 2. LITERATURE SURVEY

the testing process. In the example in Table 2.5, the number of combinations to test

is reduced from 81 to 9. The reduction grows larger as more factors and levels are

involved. More formally, the problem of obtaining interaction testing combinations can

be expressed as the problem of obtaining a covering array, CA(N ; t, k, v), which is an

array with N rows and k columns, v is the number of levels associated with each factor,

and t is the strength of the interaction coverage (2 in the case of pair-wise interaction

test).

Many approaches have been studied for the generation of interaction test suites,

some of which share the same basic principles of test case prioritisation. For example,

the greedy approach aims to find, one by one, the ‘next’ test case that will increase the

k-way interaction coverage the most [25, 35], which resembles the greedy approach to

test case prioritisation. However, the similarities are not just limited to the generation

of interaction test suite. Bryce and Colbourn assume that testers may value certain

interactions higher than others [23, 24]. For example, an operating system with a larger

user base may be more important than one with smaller user base. After weighting

each level value for each factor, they calculate the combined benefit of a given test by

adding the weights of each level value selected for the test. They present a Deterministic

Density Algorithm (DDA) that prioritises interaction tests according to their combined

benefit. Qu et al. compared different weighting schemes used for prioritising covering

arrays [158, 159].

Bryce and Memon also applied the principles of interaction coverage to the testing of

Event-Driven Software (EDS) [26]. EDS takes sequences of events as input, changes state

and output new event sequences. A common example would be GUI-based programs.

Bryce and Memon interpreted t-way interaction coverage as sequences that contain dif-

ferent combinations of events over t unique GUI windows. Interaction coverage based

prioritisation of test suites was compared to different prioritisation techniques such as

unique event coverage (the aim is to cover as many unique events as possible, as early as

2.4. TEST CASE PRIORITISATION 79

possible), longest to shortest (execute the test case with the longest event sequence first)

and shortest to longest (execute the test case with the shortest event sequence first). The

empirical evaluation showed that interaction coverage based testing of EDS can be more

efficient than the other techniques, provided that the original test suite contains higher

interaction coverage. Note that Bryce and Memon did not try to generate additional test

cases to improve interaction coverage; they only considered permutations of existing test

cases.

2.4.3 Prioritisation Approaches Based on Other Criteria

While the majority of existing prioritisation literature concerns structural coverage in

some form or other, there are prioritisation techniques based on other criteria [120, 193,

202, 226].

Distribution-based Approach Leon and Podgurski introduced distribution-based fil-

tering and prioritisation [120]. Distribution-based techniques minimise and prioritise test

cases based on the distribution of the profiles of test cases in the multi-dimensional pro-

file space. Test case profiles are produced by the dissimilarity metric, a function that

produces a real number representing the degree of dissimilarity between two input pro-

files. Using this metric, test cases can be clustered according to their similarities. The

clustering can reveal some interesting information. For example:

• Clusters of similar profiles may indicate a group of redundant test cases

• Isolated clusters may contain test cases inducing unusual conditions that are per-

haps more likely to cause failures

• Low density regions of the profile space may indicate uncommon usage behaviours

The first point is related to reduction of effort; if test cases in a cluster are indeed

very similar, it may be sufficient to execute only one of them. The second and third

80 CHAPTER 2. LITERATURE SURVEY

point are related to fault-proneness. Unusual conditions and uncommon behaviours are

by definition harder to reproduce than more common conditions and behaviours. There-

fore, the corresponding parts of the program are likely to be tested less than other, more

frequently used parts of the program. Assigning a high priority to test cases that exe-

cute these unusual behaviours may increase the chance of early fault detection. A good

example might be exception handling code.

Leon and Podgurski developed new prioritisation techniques that combine coverage-

based prioritisation with distribution-based prioritisation. This hybrid approach is based

on the observation that basic coverage maximisation performs reasonably well compared

to repeated coverage maximisation. Repeated coverage maximisation refers to the priori-

tisation technique of Elbaum et al. [53], which, after realising 100% coverage, repeatedly

prioritises test cases starting from 0% coverage again. In contrast, basic coverage maximi-

sation stops prioritising when 100% coverage is achieved. Leon and Podgurski observed

that the fault detection rate of repeated coverage maximisation is not as high as that of

basic coverage maximisation. This motivated them to consider a hybrid approach that

first prioritises test cases based on coverage, then switches to distribution-based priori-

tisation once the basic coverage maximisation is achieved. They considered two different

distribution-based techniques. The one-per-cluster approach samples one test case from

each cluster, and prioritises them according to the order of cluster creation during the

clustering. The failure-pursuit approach behaves similarly, but it adds the k closest neigh-

bours of any test case that finds a fault. The results showed that the distribution-based

prioritisation techniques could outperform repeated coverage maximisation.

Human-based Approach Tonella et al. combined Case-Based Reasoning (CBR) with

test case prioritisation [202]. They utilised a machine learning technique called boost-

ing, which is a framework to combine simple learners into a single, more general and

effective learner [65]. They adopted a boosting algorithm for ranking learning called

2.4. TEST CASE PRIORITISATION 81

Rankboost [66]. The algorithm takes a test suite, T , an initial prioritisation index, f ,

and a set of pair-wise priority relations between test cases, Φ, as input. The pair-wise

priority relation is obtained from comparisons of test cases made by the human tester.

The output is a ranking function H : T → R such that, with test cases t1 and t2, t1 ≺ t2

if H(t1) > H(t2). The ranking function H is then used to prioritise test cases.

They used the statement coverage metric and the cyclomatic complexity computed

for the functions executed by test cases as the initial prioritisation index. The test suite of

the space program was considered. In order to measure the human effort required for the

learning process, different test suite sizes were adopted, ranging from 10 to 100 test cases.

The results were compared to other prioritisation techniques including optimal ordering,

random prioritisation, statement coverage prioritisation, and additional statement cover-

age prioritisation (the latter two correspond to statement-total and statement-additional

respectively).

The results showed that, for all test suite sizes, the CBR approach was outperformed

only by the optimal ordering. The number of pair-wise relations entered manually showed

a linear growth against the size of test suites. Tonella et al. reported that, for test suites

of space with fewer than 60 test cases, the CBR approach can be more efficient than

other prioritisation techniques with limited human effort. Note that empirical evaluation

was performed based on an ideal user model, i.e. it was assumed that the human tester

always makes the correct decision when comparing test cases. One notable weakness of

this approach was that it did not scale well. The input from the human tester becomes

inconsistent beyond a certain number of comparisons, which in turn limits the size of

the learning samples for CBR.

This thesis introduces the use of clustering techniques to make the human-based

prioritisation approach more scalable. For more details, refer to Chapter 6.

Probabilistic Approach Kim and Porter proposed a history based approach to priori-

82 CHAPTER 2. LITERATURE SURVEY

tise test cases that are already selected by regression test selection [102]. If the number

of test cases selected by an RTS technique is still too large, or if the execution costs

are too high, then the selected test cases may have to be further prioritised. Since the

relevance to the recent change in SUT is assumed by the use of an RTS technique, Kim

et al. focus on the execution history of each test case, borrowing from statistical quality

control. They define the probabilities of each test case tc to be selected at time t as

Ptc,t(Htc, α), where Htc is a set of t timed observations {h1, . . . , ht} drawn from previous

runs of tc and α is a smoothing constant. Then the probability Ptc,t(Htc, α) is defined as

follows:

P0 = h1

Pk = αhk + (1− α)Pk−1 (0 ≤ α ≤ 1, k ≥ 1)

Different definitions of Htc result in different prioritisation approaches. For example,

Kim et al. define Least Recently Used (LRU) prioritisation by using test case execution

history as Htc with α value that is as close to 0 as possible. The empirical evaluation

showed that the LRU prioritisation approach can be competitive in a severely constrained

testing environment, i.e. when it is not possible to execute all test cases selected by an

RTS technique.

Mirarab and Tahvildari took a different probabilistic approach to test case prioritisa-

tion using Bayesian Networks [142]. The Bayesian Network model is built upon changes

in program elements, fault proneness of program elements and probability of each test

case to detect faults. Mirarab and Tahvildari extended the approach by adding a feedback

route to update the Bayesian Network as prioritisation progresses [143]. For example, if

a test case successfully detects a fault, there is a decrease in the probability for other

test cases to be selected in order to cover the same program element.

2.4. TEST CASE PRIORITISATION 83

History-based Approach Sherriff et al. presented a prioritisation technique based on

association clusters of software artefacts obtained by a matrix analysis called Singular

Value Decomposition (SVD) [189]. The prioritisation approach depends on three ele-

ments: association clusters, relationship between test cases and files and a modification

vector. Association clusters are generated from a change matrix using SVD; if two files

are often modified together as a part of a bug fix, they will be clustered into the same

association cluster. Each file is also associated with test cases that affect or execute it.

Finally, a new system modification is represented as a vector in which the value indicates

whether a specific file has been modified. Using the association clusters and the modifica-

tion vector, it is then possible to assign each file with a priority that corresponds to how

closely the new modification matches each test case. One novel aspect of this approach

is that any software artefact can be considered for prioritisation. Sherriff et al. noted

that the faults that are found in non-source files, such as media files or documentation,

can be as severe as those found in source code.

Requirement-based Approach Srikanth et al. presented requirement-based test case

prioritisation [193]. Test cases are mapped to software requirements that are tested by

them, and then prioritised by various properties of the mapped requirements, including

customer-assigned priority and implementation complexity. One potential weakness of

this approach is the fact that requirement properties are often estimated and subjective

values. Krishnamoorthi and Sahaaya developed a similar approach with additional met-

rics [112].

Model-based Approach Korel et al. introduced a model based prioritisation ap-

proach [106, 108, 110]. Their initial approach was called selective prioritisation, which

was strongly connected to RTS [108]. Test cases were classified into a high priority set,

TSH , and a low priority set, TSL. They defined and compared different definitions of

84 CHAPTER 2. LITERATURE SURVEY

high and low priority test case, but essentially a test case is assigned high priority if it is

relevant to the modification made to the model. The initial selective prioritisation pro-

cess consists of the random prioritisation of TSH followed by the random prioritisation

of TSL. Korel et al. developed more sophisticated heuristics based on the dependence

analysis of the models [106, 110].

Other Approaches The use of mutation score for test case prioritisation has been

analysed by Rothermel et al. along with other structural coverage criteria [177, 178].

Hou et al. considered interface-contract mutation for the regression testing of component-

based software and evaluated it with the additional prioritisation technique [90].

Sampath et al. presented the prioritisation of test cases for web applications [187].

The test cases are, in this case, recorded user sessions from the previous version of

the SUT. Session-based test cases are thought to be ideal for testing web applications

because they tend to reflect the actual usage patterns of real users, thereby making for

realistic test cases. They compared different criteria for prioritisation such as the number

of HTTP requests per test case, coverage of parameter values, frequency of visits for the

pages recorded in sessions and the number of parameter values. The empirical evaluations

showed that prioritised test suites performed better than randomly ordered test suites,

but also that there is not a single prioritisation criterion that is always best. However, the

2-way parameter-value criterion, the prioritisation criterion that orders tests to cover all

pair-wise combinations of paramenter-values between pages as soon as possible, showed

the highest APFD value for 2 out of 3 web applications that were studied.

Fraser and Wotawa introduced a model-based prioritisation approach [64]. Their pri-

oritisation technique is based on the concept of property relevance [63]. A test case is

relevant to a model property if it is theoretically possible for the test case to violate

the property. The relevance relation is obtained by the use of a model-checker, which

is used as the input to the greedy algorithm. While they showed that property-bsed

2.4. TEST CASE PRIORITISATION 85

prioritisation can outperform coverage-based prioritisation, they noted that the perfor-

mance of property-based prioritisation is heavily dependent on the quality of the model

spicification.

A few techniques and analyses used for test suite minimisation or regression test

selection problem have been also applied to test case prioritisation. Rummel et al. intro-

duced a prioritisation technique based on data-flow analysis by treating each du pair as

a testing requirement to be covered [179]. Smith et al. introduced a prioritisation tech-

nique based on a call-tree model, which they also used for test suite minimisation [191].

They prioritised test cases according to the number of call-tree paths covered by each

test case. Jeffrey and Gupta prioritised test cases using relevant slices [96], which was

also used for regression test selection [4]. Each test case was associated with output

statements, from which relevant slices were calculated. Then test cases were prioritised

according to the sum of two elements: the size of the corresponding relevant slice and

the number of statements that are executed by the test case but do not belong to the

relevant slice. Both elements were considered to correlate to the chance of revealing a

fault introduced by a recent change.

2.4.4 Cost-Aware Test Case Prioritisation

Unlike test suite minimisation and regression test selection, the basic definition of test

case prioritisation does not involve filtering out test cases, i.e. it is assumed that the tester

executes the entire test suite following the order given by the prioritisation technique.

This may not be feasible in practice due to limited resources. A number of prioritisation

techniques addressed this problem of the need to be cost-aware [42, 54, 210, 225].

With respect to cost-awareness, the basic APFD metric has two limitations. First, it

considers all faults to be equally severe. Second, it assumes that every test case costs the

same in resources. Elbaum et al. extended the basic APFD metric to APFDc so that the

metric incorporates not just the rate of fault detection but also the severity of detected

86 CHAPTER 2. LITERATURE SURVEY

Fault

ID 1 2 3 4 5 6 7 8 9 10
Severity 1 1 1 1 1 1 1 1 3 3

Testcase Time

A x x 1
B x x x x 1
C x x x x x x x 6
D x 1
E x x x 1

Table 2.6: Example test suite with execution time and fault severity information. The
original test suite is taken from Elbaum et al. [53]. Note that the test case C detects
most faults at the cost of taking 6 times longer than other test cases. Also note that the
faults detected by the test case E have higher severity values than the others. This leads
to different prioritisation to a non cost-cognizant approach.

faults and the expense of executing test cases [54]. Whereas the x-axis and y-axis in

Figure 2.7 show the number of executed test cases and the number of detected faults

respectively, they denote the sum of execution costs of test cases and the sum of fault

severity values of detected faults in an APFDc plot. An ordering of test cases according

to the APFDc metric detects severer faults earlier.

More formally, let T be the set of n test cases with costs t1, . . . , tn, and let F be the

set of m faults with severity values f1, . . . , fm. For ordering T ′, let TFi be the order of

the first test case that reveals the ith fault. APFDc of T ′ is calculated as following:

APFDc =

∑m
i=1 (fi × (

∑n
j=TFi

tj − 1
2 tTFi))∑n

i=1 ti ×
∑m

i=1 fi

For example, consider the test suite described in Table 2.6. The fault detection in-

formation is the same as one shown in Table 2.4, but it additionally contains the fault

severity information and test case execution time. Figure 2.8 shows how APFDc is cal-

culated for the orderings of C-E-A-B-D and E-C-A-B-D from the test suite in Table 2.6.

The APFDc value for E-C-A-B-D is 77.5%, which is higher than the APFDc value of

C-E-A-B-D, 59.5%. Note that C-E-A-B-D is deemed to be better than E-C-A-B-D by

2.4. TEST CASE PRIORITISATION 87

●

●

● ● ● ●

0 20 40 60 80 100

0
20

40
60

80
10

0

Percentage of Execution Time

P
er

ce
nt

ag
e

of
 T

ot
al

 F
au

lt
S

ev
er

ity
 D

et
ec

te
d

● E−C−A−B−D
C−E−A−B−D

Comparison of C−E−A−B−D and E−C−A−B−D w.r.t. APFDc

Figure 2.8: APFDc plot of C-E-A-B-D and E-C-A-B-D from the test suite shown in
Table 2.6. C detects 7 faults, but collectively they are not as severe as the 3 faults
detected by E. E also takes shorter time to execute than C.

the non cost-cognizant approach in Figure 2.7 (Section 2.4.1). However, using the cost-

cognizant approach, E-C-A-B-D is favoured over C-E-A-B-D.

Elbaum et al. applied random ordering, additional statement coverage prioritisation,

additional function coverage prioritisation and additional fault index prioritisation tech-

niques to space, which contains faults discovered during the development stage. They

adopted several different models of test case cost and fault severity, including uniform

values, random values, normally distributed values and models taken from the Mozilla

open source project. The empirical results achieved by synthetically adding cost severity

models to space. This enabled them to observe the impact of different severity and cost

models. They claimed two practical implications. With respect to test case cost, they

proposed the use of many small test cases rather than a few large test cases. Clearly

the number of possible prioritisations is higher with a test suite that contains many

small test cases, compared to one with a small number of large test cases. It was also

claimed that having different models of fault severity distribution can also impact the

88 CHAPTER 2. LITERATURE SURVEY

efficiency of testing. This is only true when the prioritisation technique considers the

fault detection history of previous tests.

Elbaum et al. compared two different severity distribution models: linear and expo-

nential. In the linear model, the severity values grow linearly as the severity of faults

increase, whereas they grow exponentially in the exponential model. If the previous fault

detection history correlates to the fault detection capability of the current iteration of

testing, the exponential model ensures that test cases with a history of detecting severer

faults are executed earlier.

Walcott et al. presented a time-aware prioritisation technique [210]. Time-aware pri-

oritisation does not prioritise the entire test suite; it aims to produce a subset of test

cases that are prioritised and can be executed within the given time budget. More for-

mally, it is defined as following:

Given: A test suite, T , the collection of all permutations of elements of the power

set of permutations of T , perms(2T), the time budget, tmax, a time function time :

perms(2T)→ R, and a fitness function fit : perms(2T)→ R:

Problem: Find the test tuple σmax ∈ perms(2T) such that time(σmax) ≤ tmax and

∀σ′ ∈ perms(2T) where σmax 6= σ′ and time(σ′) ≤ tmax, fit(σmax) > fit(σ′).

ß

Intuitively, a time-aware prioritisation technique selects and prioritises test cases at

the same time so that the produced ordered subset yields higher fault detection rates

within the given time budget. They utilised a genetic algorithm, combining selection

and prioritisation into a single fitness function. The selection component of the fitness

function is given higher weighting so that it dominates the overall fitness value produced.

The results of the genetic algorithm were compared to random ordering, reverse ordering

2.4. TEST CASE PRIORITISATION 89

Figure 2.9: Comparison of different heuristics to the reference Pareto-frontier obtained
from the test suite of schedule using exhaustive search, taken from Yoo and Har-
man [225]. The solid line represents the trade-off between code coverage and cost of test
case execution.

and the optimal ordering. The results showed that time-aware prioritisation produces

higher rates of fault detection compared to random, initial, and reverse ordering. How-

ever, they did not compare the time-aware prioritisation to the existing, non time-aware

prioritisation techniques. Note that non time-aware prioritisation techniques can also be

executed in ‘time-aware’ manner by stopping the test when the given time budget is

exhausted.

While Yoo and Harman studied test suite minimisation [225], their multi-objective

optimisation approach is also relevant to the cross-cutting concern of cost-awareness.

By using multi-objective optimisation heuristics, they obtained a Pareto-frontier which

represents the trade-offs between the different criteria including cost. Figure 2.9 is such

an example obtained from the test suite of the Siemens suite program, schedule. Two

observations are of interest. First, the reference Pareto-frontier obtained from exhaustive

search reveals that full code coverage can be achieved with lower cost compared to greedy

90 CHAPTER 2. LITERATURE SURVEY

prioritisation. Second, the reference Pareto-frontier contains more decision points than

that produced by greedy prioritisation. When there is a constraint on cost, the knowledge

of Pareto-frontier can therefore provide the tester with more information to achieve

higher coverage. The tester can then prioritise the subset selected by observing the

Pareto-frontier.

The cost-constraint problem has also been analysed using Integer Linear Program-

ming (ILP) [91, 230]. Hou et al. considered the cost-constraint in web service testing [91].

Users of web services are typically assigned with a usage quota; testing a system that

uses web services, therefore, has to consider the remaining quota for each web service.

The ILP approach was later analysed in more generic context using execution time of

each test as cost factor [230].

Do and Rothermel studied the impact of time constraints on the cost-effectiveness

of existing prioritisation techniques [42]. In total six different prioritisation approaches

were evaluated: original order, random order, total block coverage, additional block

coverage, Bayesian Network approach without feedback, Bayesian Network approach

with feedback. They considered four different time constraints, each of which allows

{25%, 50%, 75%, 100%} of time required for the execution of all test cases. Each pri-

oritisation approach was evaluated under these constraints using a cost-benefit model.

The results showed that, although time constraints affect techniques differently, it is

always beneficial to adopt some prioritisation when under time constraints. The original

ordering was always affected the most severely.

2.5 Meta-Empirical Studies

Recently, the meta-empirical study of regression testing techniques has emerged as a

separate subject in its own right. It addresses cross-cutting concerns such as cost-benefit

analysis of regression testing techniques and the studies of evaluation methodology for

2.5. META-EMPIRICAL STUDIES 91

these techniques. Both studies seek to provide more confidence in efficiency and effec-

tiveness of regression testing techniques. Work in these directions are still in early stages

compared to the bodies of work available for minimisation, selection or prioritisation

techniques. However, these studies are expected to make significant contributions to-

wards the technology transfer.

Empirical evaluation of any regression testing technique is inherently a post-hoc pro-

cess that assumes the knowledge of a set of known faults. Without the a-priori knowledge

of faults, it would not be possible to perform a controlled experiment of comparing dif-

ferent regression testing techniques. This poses a challenge to the empirical evaluation

of techniques, since the availability of fault data tends to be limited [5].

Andrews et al. performed an extensive comparison between real faults and those

seeded by mutation [5]. One concern when using mutation faults instead of real faults

is that there is no guarantee that the detection of mutation faults can be an accurate

predictor of the detection of real faults. After considering various statistical data such

as the ratio and distribution of fault detection, Andrews et al. concluded that mutation

faults can indeed provide a good indication of the fault detection capability of the test

suite, assuming that mutation operators are carefully selected and equivalent mutants

are removed. However, they also note that, while mutation faults were not easier to detect

than real faults, they were also not harder to detect. Do and Rothermel extended this

study by focusing the comparison on the result of test case prioritisation techniques [43,

45]. Here, they considered whether evaluating prioritisation techniques against mutation

faults produces results different from evaluating against hand seeded faults. Based on

the comparison of these two evaluation methods, it was concluded that mutation faults

can be safely used in place of real or hand-seeded faults.

Although it was not their main aim, Korel et al. made an important contribution

to the empirical evaluation methodology of regression testing techniques through the

empirical evaluation of their prioritisation techniques [106, 108, 110]. They noted that,

92 CHAPTER 2. LITERATURE SURVEY

in order to compare different prioritisation techniques in terms of their rate of fault

detection, they need to be evaluated using all possible prioritised sequences of test cases

that may be generated by each technique. Even deterministic prioritisation algorithms,

such as the greedy algorithm, can produce different results for the same test suite if some

external factors change; for example, if the ordering of the initial test suite changes, there

is a chance that the greedy algorithm will produce a different prioritisation result. Korel

et al. argued, therefore, that the rate of fault detection should be measured in average

across all possible prioritised sequences. They introduced a new metric called Most Likely

average Position (MLP), which measures the average relative position of the first test

case that detects a specific fault.

Elbaum et al. extended the empirical studies of prioritisation techniques with the

Siemens suite and space [53] by performing statistical analysis of the variance in APFD [49].

The APFD values were analysed against various program, change, and test metrics. Pro-

gram metrics included mean number of executable statements, mean function size across

all functions, etc. Change metrics included number of functions with at least one changed

statement, number of statements inserted or deleted, etc. Test metrics included number

of tests in the test suite, percentage of tests reaching a changed function, mean number

of changed functions executed by a test over a test suite, etc. The aim was to identify

the source of variations in results. They reported that the metrics that reflected nor-

malised program characteristics (such as mean function size across the program) and

characteristics of test suites in relation to programs (such as mean percentage of func-

tions executed by a test over a test suite) were the primary contributors to the variances

in prioritisation. While they reported that this finding was not the anticipated one, it

showed that the prioritisation results are the product of closely coupled interactions

between programs under test, changes and test suites.

Empirical evaluation of different techniques can benefit from a shared evaluation

framework. Rothermel and Harrold presented a comparison framework for RTS tech-

2.5. META-EMPIRICAL STUDIES 93

niques [169], which was used to compare different RTS techniques [171]. While minimi-

sation and prioritisation techniques lack such a framework, certain metrics have been

used as a de facto standard evaluation framework. Rate of reduction in size and rate

of reduction in fault detection capability have been widely used to evaluate test suite

minimisation techniques [18, 77, 94, 95, 133, 134, 176, 191, 198, 220, 221]. Similarly,

Average Percentage of Fault Detection (APFD) [53] has been widely used to evaluate

prioritisation techniques [40, 43, 45, 49–51, 53, 64, 91, 96, 120, 142, 143, 163, 164, 178,

179, 202, 210, 226, 230].

Rothermel et al. studied the impact of test suite granularity and test input grouping

on the cost-effectiveness of regression testing [163, 164]. They first introduced the concept

of test grains, which is the smallest unit of test input that is executable and checkable.

Test cases are constructed by grouping test grains. Based on this, they defined test suite

granularity as the number of test grains in a test case, and test input grouping as the way

test grains are added to each test case, e.g. randomly or grouped by their functionality.

They reported that having a coarse grained test suite did not significantly compromise

the fault detection capability of the test suite, but resulted in decreased total execution

time. The savings in execution time can be explained by the fact that a coarse grained

test suite contains fewer test cases, thereby reducing the set-up time and other overheads

that occur between execution of different test cases. However, they did not consider the

cost of the test oracle. It is not immediately obvious whether the cost of a test oracle

would increase or decrease as the test suite granularity increases. This oracle cost could

affect the overall cost-effectiveness.

Kim et al. studied the impact of test application frequency to the cost-effectiveness

of RTS techniques [103, 104]. Their empirical studies showed that the frequency of re-

gression test application has a significant impact on cost-effectiveness of RTS techniques.

They reported that RTS techniques tend to be more cost-effective when the frequency

of test application is high. It implies that only small amount of changes are made be-

94 CHAPTER 2. LITERATURE SURVEY

tween tests, which makes RTS more effective. However, as intervals between tests grows,

changes are accumulated and RTS techniques tend to select more and more test cases,

resulting in low cost-effectiveness. One interesting finding is that, as intervals between

tests grows, random re-testing tends to work very well. With small testing intervals, the

random approach fails to focus on the modification. As testing intervals increase, more

parts of SUT need to be re-tested, improving the effectiveness of the random approach.

Elbaum et al. studied the impacts of changes in terms of the quantitative nature of

modifications [50]. They investigated how the cost-effectiveness of selection and priori-

tisation techniques is affected by various change metrics such as percentage of changed

lines of code, average number of lines of code changed per function, etc. Their empirical

analysis confirmed that the differences in these metrics can make a significant impact

to the cost-effectiveness of techniques. However, they also reported that simple size of

change, measured in lines of code, was not a predominant factor in determining the cost-

effectiveness of techniques. Rather, it was the distribution of changes and the ability of

test cases to reach these changes.

Elbaum et al. also presented a technique for selecting the most cost-effective priori-

tisation technique [52]. They applied a set of prioritisation techniques to the same set of

programs, and analysed the resulting APFD metric values. Different techniques perform

best for different programs; they applied the classification tree technique to predict the

best-suited technique for a program. Note that the term ‘cost-effectiveness’ in this work

means the efficiency of a prioritisation technique measured by the APFD metric; the

computational cost of applying these techniques was not considered.

Rosenblum and Weyuker introduced a coverage-based cost-effective predictor for RTS

techniques [162]. Their analysis is based on the coverage relation between test cases

and program entities. If each program entity has a uniformly distributed probability of

being changed in the next version, it is possible to predict the average number of test

cases to be selected by a safe RTS technique using coverage relation information. They

2.5. META-EMPIRICAL STUDIES 95

evaluated their predictor with the TestTube RTS tool [31], using multiple versions of

the KornShell [19] and an I/O library for Unix, SFIO [111], as subjects. Their predictor

was reasonably accurate; for example, it predicted an average of 87.3% of the test suite

to be selected for KornShell, when TestTube selected 88.1%. However, according to the

cost model of Leung and White [124], the cost of coverage analysis for RTS per test

case was greater than the cost of execution per test case, indicating that TestTube was

not cost-effective. Harrold et al. introduced an improved version of the cost-effective

predictor of Rosenblum et al. for more accurate cost-effectiveness prediction of version-

specific RTS [80]. They evaluated their predictor using TestTube and another RTS tool,

DejaVu [173].

Modelling the cost-effectiveness of regression testing techniques has emerged as an es-

sential research topic as any analysis of cost-effectiveness should depend on some model.

Leung and White introduced an early cost-model for regression testing strategies and

compared the cost models of the retest-all strategy and the selective retesting strat-

egy [124]. Malishevsky et al. presented detailed models of cost-benefit trade-offs for

regression testing techniques [129]. They applied their models to the regression testing

of bash, a popular Unix shell [160], with different ratio values of f
e+c , where f is the

cost of omitting one fault, e is the additional cost per test and c is the result-validation

cost per test. The results implied that if a regression testing technique does not consider

f , it may overestimate the cost-effectiveness of a given technique. The cost model of

Malichevsky et al. has been extended and evaluated against the prioritisation of JUnit

test cases [47]. Smith and Kapfhammer studied the impact of the incorporation of cost

into test suite minimisation [192]. Existing minimisation heuristics including HGS [77],

delayed greedy [198] and 2-optimal greedy algorithm [126] were extended to incorporate

the execution cost of each test case. Do and Rothermel considered the impact of time

constraints on selection and prioritisation techniques across multiple consecutive versions

of subject programs to incorporate software life-cycle factors into the study [44].

96 CHAPTER 2. LITERATURE SURVEY

Reflecting the complexity of regression testing process, cost-effectiveness models of-

ten need to be sophisticated in order to incorporate multiple variables [44, 47, 129, 192].

However, complexity can be a barrier to uptake. Do and Rothermel introduced an ap-

proach based on statistical sensitivity analysis to simplify complicated cost models [46].

Their approach fixed certain cost factors that were deemed to be the least significant

by the sensitivity analysis. The empirical evaluation showed that, while certain levels of

simplification can still preserve the accuracy of the model, over-simplification may be

risky.

Chapter 3

Multi-Objective Test Case

Management

3.1 Introduction

In real world testing, there are often multiple test criteria. For example, different types

of testing, such as functional testing and structural testing, require different testing

criteria [77]. There also can be cases where it is beneficial for the tester to consider

multiple test criteria because the single most ideal test criterion is simply unobtainable.

For example, testers face the problem that real fault detection information cannot be

known until regression testing is actually finished. Code coverage is one possible surrogate

test adequacy criterion that is used in place of fault detection, but it is not the only one.

Because one cannot be certain of a link between code coverage and fault detection it

would be natural to supplement coverage with other test criteria, for example, past fault

detection history.

Of course, the quality of the test data is not the only concern. Cost is also one of the

essential criteria, because the whole purpose of test case selection and prioritisation is to

achieve more efficient testing in terms of the cost. One important cost driver, considered

97

98 CHAPTER 3. MULTI-OBJECTIVE TEST CASE MANAGEMENT

by other researchers [130, 210] is the execution time of the test suite.

In order to provide automated support for the selection of regression test data it

therefore seems appropriate that a multi-objective approach is required that is capable

of taking into account the subtleties inherent in balancing many, possibly competing

and conflicting objectives. Existing approaches to regression test case selection (and

prioritisation) have been single objective approaches that have sought to optimise a

single objective function.

There has been recent work on a two objective formulation of test case prioritisa-

tion problem [130], that takes account of coverage and cost, using a single objective of

coverage per unit cost. However, this approach conflates the two objectives into a single

objective. Where there are multiple competing and conflicting objectives the optimisa-

tion literature recommends the consideration of a Pareto optimal optimisation approach

[36, 196]. Such a Pareto optimal approach is able to take account of the need to balance

the conflicting objectives, all of which the software engineer seeks to optimise.

This chapter1 presents the multi-objective formulation of the test suite minimisa-

tion problem, showing how multiple objectives can be optimised using a Pareto efficient

approach. Such an approach is believed to be well suited to test case management prob-

lem, because it is likely that a tester will want to optimise several possible conflicting

constraints. The multi-objective formulation of test suite minimisation is instantiated in

two empirical studies.

The rest of the chapter is organised as follows. Section 3.2 presents the existing

single-objective paradigm. Section 3.3 introduces the multi-objective formulation of

1This chapter is an extended version of the author’s ISSTA paper: S. Yoo and M. Harman, Pareto-
Efficient Multi-Objective Test Case Selection. Proceedings of the 2007 International Symposium on Soft-
ware Testing and Analysis (ISSTA), London, UK, pages 140-150, 2007.

3.2. SINGLE OBJECTIVE PARADIGM 99

3.2 Single Objective Paradigm

3.2.1 Test Suite Minimisation

The aim of test suite minimisation is to reduce the number of test cases that are required

to achieve the given set of test requirements. More formally,

Test Suite Minimisation

Given: a test suite T = {t1, t2, . . . , tn} and a set of test requirementsR = {r1, r2, . . . , tm}

Problem: to find the smallest T ′ such that T ′ ⊂ T , ∀r ∈ R(T ′ satisfies r).

One possible candidate for the test requirements R is structural coverage. However,

this formulation does not consider the cost of execution for the selected subset. In cost-

cognizant formulation of test suite minimisation, each test case has associated cost of

execution. The goal is to reduce test suite T to T ′ that satisfies the test requirements R

while minimising the total cost of T ′. This is essentially a weighted set cover problem:

Weighted Set Cover Problem

Given: a universe U with n elements, a set S of m subsets of U with

cost1, . . . , costm

Problem: to find C such that C ⊆ S,
⋃
Si∈C Si = U , and

∀S′ ⊆ S[
⋃
S′
i∈S′

S′i = U →
∑

Si∈C costi ≤
∑

S′
i∈S′ costi]

Both the non-weighted and weighted version of set cover problem is known to be

NP-hard [69]. Previous work did not consider the cost for test suite minimisation, and

relied on heuristics for the non-weighted set cover problem [77, 89]. This thesis considers

the use of greedy algorithm, which is known to have an approximation level of ln(n) for

weighted set cover problem.

100 CHAPTER 3. MULTI-OBJECTIVE TEST CASE MANAGEMENT

3.2.2 Greedy Algorithm & Approximation Level

Algorithm 1: Outline of additional greedy algorithm

AdditionalGreedy(U , S)
(1) C ← φ // covered elements in U
(2) repeat
(3) j ← mink(costk/|Sk − C|)
(4) add Sj to solution
(5) C = C

⋃
Sj

(6) until C = U

The additional greedy algorithm is illustrated in Algorithm 1. Let U be the universe,

{e1, . . . , en}; S the set containing S1, . . . , Sm, the subsets of U such that
⋃
i Si = U ;

cost1, . . . , costm the cost of each subset in S. Without loss of generality, it is assumed

that there exists a subset S′ ⊂ S that covers U completely. Through line (4) of Algo-

rithm 1, the additional greedy algorithm picks Sj ∈ S according to the density of the set,

costj/|Sj −C|. The minimum density corresponds to the maximum increase in coverage

per cost in each iteration.

It is possible to show that results from the additional greedy algorithm are within

lnn of the optimal cost [97].

Theorem 1 (Additional Greedy Approximation).

Total cost of the maximum coverage obtained by additional greedy algorithm is within

lnn of the optimal cost, OPT .

Proof. Let us assume that the elements in U are covered in order of {e1, e2, . . . , en}, with

ties resolved arbitrarily. Let hj be the index of the set picked in iteration j, and Cj be

the set of elements covered in iterations 1 to j.

Now, in jth iteration, Shj will cover a set of elements, S′hj = Shj −Cj−1. Now, let us

define p(e) as follows:

∀e ∈ S′hj , p(e) = costhj/|S
′
hj
|

3.2. SINGLE OBJECTIVE PARADIGM 101

From the definition, it follows that:

∑
e∈U p(e) = cost of all elements covered

Now, let ei be covered in iteration j, which implies that {ei, ei+1, . . . , en} does not

belong to Cj−1. Since OPT is the optimal cost for the maximum coverage, there is a

solution of cost OPT that covers these elements, implying that there exists a set with

density of OPT/(n− i+ 1). Therefore it follows that:

costhj/|S
′
hj
| ≤ OPT/(n− i+ 1)

which leads us to:

p(ei) ≤ OPT/(n− i+ 1)

From p(ei) ≤ OPT/(n− i+ 1), it can be concluded that:

∑
e∈U

p(e) ≤ OPT · (1

n
+

1

n− 1
+ . . .+ 1) ≤ OPT ·Hn ≤ OPT lnn

Therefore the total cost of the solution obtained by the additional greedy algorithm

is within lnn of the optimal cost. �

The theoretical analysis that the additional greedy algorithm shows that the algo-

rithm can produce a good approximation for the 2-objective test suite minimisation

presented in Section 3.2. However, Section 3.3 also illustrates that there is a room for

improvement between the optimal Pareto frontier of multi-objective test suite minimi-

sation and the approximation obtained by the greedy approach.

102 CHAPTER 3. MULTI-OBJECTIVE TEST CASE MANAGEMENT

3.3 Multi Objective Paradigm

This section introduces the multi-objective formulation of test case selection. Section 3.3.1

introduces the Pareto optimal formulation of the test case selection problem. Section 3.3.2

explores the theoretical properties of the two objective greedy algorithm, while sec-

tion 3.3.3 shows the relationship between multi-objective selection and prioritisation.

3.3.1 Pareto Optimality

Pareto optimality is a notion from economics with broad range of applications in game

theory and engineering [67]. The original presentation of the Pareto optimality is that,

given a set of alternative allocations and a set of individuals, allocation A is an improve-

ment over allocation B only if A can make at least one person better off than B, without

making any other worse off.

Based on this, the multi-objective optimisation problem can be defined as to find a

vector of decision variables x, which optimises a vector of M objective functions fi(x)

where i = 1, 2, . . . ,M . The objective functions are the mathematical description of the

optimisation criteria, which are often in conflict with each other.

Without the loss of generality, let us assume that fi is to be maximised, where

i = 1, 2, . . . ,M . A decision vector x is said to dominate a decision vector y (also written

x � y) if and only if their objective vectors fi(x) and fi(y)satisfies:

fi(x) ≥ fi(y)∀i ∈ {1, 2, . . . ,M}; and

∃i ∈ {1, 2, . . . ,M}|fi(x) > fi(y)

All decision vectors that are not dominated by any other decision vectors are said

to form the Pareto optimal set, while the corresponding objective vectors are said to

form the Pareto frontier. Now the multi-objective optimisation problem can be defined

3.3. MULTI OBJECTIVE PARADIGM 103

as follows:

Multi Objective Optimisation

Given: a vector of decision variables, x, and a set of objective functions, fi(x) where

i = 1, 2, . . . ,M

Problem: maximise {f1(x), f2(x), . . . , fM (x)} by finding the Pareto optimal set over

the feasible set of solutions.

Identifying the Pareto frontier is particularly useful in engineering because the de-

cision maker can use the frontier to make a well-informed decision that balances the

trade-offs between the objectives.

The multi-objective test case selection problem is to select a Pareto efficient subset

of the test suite, based on multiple test criteria. It can be defined as follows:

Multi Objective Test Suite Minimisation

Given: a test suite, T , a vector of M objective functions, fi, i = 1, 2, . . . ,M .

Problem: to find a subset of T , T ′, such that T ′ is a Pareto optimal set with respect

to the objective functions, fi, i = 1, 2, . . . ,M .

The objective functions are the mathematical descriptions of test criteria concerned.

A subset t1 is said to dominate t2 when the decision vector for t1 ({f1(t1), . . . , fM (t1)})

dominates that of t2. The resulting subset of the test suite, T ′, has several benefits in

regards to the regression testing, as shown in Section 3.3.2.

3.3.2 Properties of 2-Objective Coverage Based Minimisation

Here we instantiate the two objective formulation with code coverage as a measure of

test adequacy and execution time as a measure of cost. Thus, code coverage becomes

104 CHAPTER 3. MULTI-OBJECTIVE TEST CASE MANAGEMENT

one of the two objectives, and it should be maximised for a given cost. Time is the other

objective, which should be minimised for a given code coverage.

In this instantiation of the problem, should there exist a subset of test suite S with

coverage C and execution time T on the Pareto frontier, it means that:

• T1. No other subset of S can achieve more coverage than C without spending

more time than T .

• T2. No other subset of S can finish in less time than T while achieving a coverage

that is equal to or greater than C.

This is the implication of Pareto optimality. Rather than obtaining a single answer

that approximates the global optimum in the search space for a single objective, we

obtain a set of points, each of which denotes one possible way of balancing the two

objectives in a globally optimal way. Each member of the Pareto frontier is therefore a

candidate solution to the problem, upon which it is not possible to improve.

In the single objective formulation of test suite minimisation, greedy algorithms have

been used to maximise coverage. The greedy approach starts with an empty test set as

the ‘current solution’ and iteratively adds a test case which gives the most coverage of

those that remain. A variant, additional greedy, improves on this by adding to the current

solution the test case that gives the best additional coverage to the current solution. Each

addition by the greedy algorithm of a new test case to the ‘current solution’ denotes a

candidate element of the Pareto frontier.

Greedy algorithms have proved effective for the single objective formulation, so they

make a sensible starting point for the consideration of the multi-objective formulation.

In order to optimise both coverage and cost, the additional greedy algorithm will need

to be formulated to measure not coverage, but coverage per unit time. This produces a

single objective cost cognizant variant of the greedy algorithm, similar to that used by

Malishevsky et al. for the single objective prioritisation problem [130].

3.3. MULTI OBJECTIVE PARADIGM 105

Suppose that the additional greedy algorithm has chosen a test case t that covers a set

of structural elements, s. Let Cov(s) be the coverage of test case t and let Time(t) be the

execution time of t. Assume that the selection of t increases the coverage by ∆Cov(s). By

definition, there is no single test case t′ (which would cover s′) that the algorithm could

have chosen, such that ∆Cov(s′) > ∆Cov(s) and Time(t′) ≤ Time(t) (otherwise the

algorithm would have picked t′). Therefore, the selection of a test case made by the two

objective cost cognizant additional greedy algorithm cannot be improved upon by the

addition of another single case. However, this leaves open the possibility that there may

be a set of test cases that, taken together, could have produced a better approximation

to the Pareto front.

Let us consider the case of the basic greedy algorithm that selects one test case at

a time. It turns out that any selection of a test case made by the additional greedy

algorithm can only be improved with respect to T2. It is not possible to improve on the

selection made by the additional greedy algorithm with respect to T1. This observation

is stated and proved more formally below.

Proposition 1 (Partial Optimality).

The selection of a test case made by the additional greedy algorithm cannot be improved

upon with respect to T1.

Proof. Suppose the contrary. That is, let t1 be a test case that covers a set of structural

elements, s1. Suppose there also exists a pair of test cases, t2 and t3, covering s2 and s3

respectively, that together improve upon t1 by achieving more coverage without spending

more time. By definition, we have

∆Cov(s2)

Time(t2)
<

∆Cov(s1)

Time(t1)
and

∆Cov(s3)

Time(t3)
<

∆Cov(s1)

Time(t1)
(3.1)

because, otherwise, the additional greedy algorithm would not have selected t1. From

this, it follows that

106 CHAPTER 3. MULTI-OBJECTIVE TEST CASE MANAGEMENT

Time(t1) · (∆Cov(s2) + ∆Cov(s3)) < ∆Cov(s1) · (Time(t2) + Time(t3)) (3.2)

However, in order for t2 and t3 to be collectively a better choice than t1 we require

t2 and t3 to achieve higher increase in coverage, taking no longer than t1. That is,

∆Cov(s2 ∪ s3) > ∆Cov(s1) (3.3)

and

Time(t2) + Time(t3) ≤ Time(t1) (3.4)

Combining step 3.2 and step 3.4, we get: ∆Cov(s2) + ∆Cov(s3) < ∆Cov(s1). Now,

because code coverage is a set theoretic concept, it is not possible for the coverage of

the union to be greater than the sum of the coverage of the parts. Therefore we have:

∆Cov(s2 ∪ s3) ≤ ∆Cov(s2) + ∆Cov(s3). By transitivity, ∆Cov(s2 ∪ s3) < ∆Cov(s1),

which contradicts step 3.3, so we must conclude that it is not possible to dominate the

selection made by the additional greedy algorithm by breaking T1.

Program Points Exec. Time

t1 X X X X X X X X 4
t2 X X X X X X X X X 5
t3 X X X X 3
t4 X X X X X 3

Table 3.1: An example of a test suite where the additional greedy algorithm produces
suboptimal minimisation of test cases

However it is possible to construct an example that shows that the additional greedy

algorithm does not produce solutions that are Pareto efficient with respect to T2. Such

3.3. MULTI OBJECTIVE PARADIGM 107

an example is shown in Table 3.1. The first choice of the additional greedy algorithm

will be t1, which has the additional coverage per unit time value of 0.8
4 = 0.2 (T2, T3, T4

each has 0.18, 0.13̃, and 0.16̃). The second choice will be t2 with the additional coverage

per unit time value of 0.2
5 = 0.04, whereas t3 and t4 each has 0.03̃ and 0. At this point,

the algorithm achieves 100% coverage in 9 units of time. However, the same amount of

coverage is also achievable in 8 units of time by selecting t2 and t3, so the subset {t2, t3}

dominates the subset {t1, t2}.

It is indeed possible to extend the greedy approach to consider a pair of test cases,

rather than a single test case, at a time, to overcome this problem. This formulation of

the greedy approach is often called a 2-way greedy algorithm. Then, however, it would

be possible to construct another counter-exmple that consists of a set of 3 test cases.

Eventually, for n test cases, an n-way greedy approach is required to ensure its Pareto-

optimality with respect to T2. However, the n-way greedy approach would be identical

to an exhaustive search, which is not practical.

Furthermore, though the additional greedy algorithm may produce points that are

Pareto efficient with respect to T1, it does not produce a complete Pareto frontier. The

existence of t4 in the above example demonstrates this. According to the additional

greedy algorithm, the first decision point chosen for this example would be the subset

of {t1}, which achieves 80% coverage in 4 units of time. The subset {t1} is on the

Pareto frontier because no other test case can achieve 80% coverage in 4 units of time.

However, the subset of {t4} is also on the Pareto frontier, because no other test case

can achieve 50% coverage in 3 units of time. This point {t4} on the Pareto frontier is

ignored by the additional greedy algorithm. As we will see in the next subsection, this

issue is important, because it is necessary to produce the most complete approximation

to the Pareto front possible in order to exploit the relationship between multi-objective

selection and prioritisation.

108 CHAPTER 3. MULTI-OBJECTIVE TEST CASE MANAGEMENT

Figure 3.1: Comparison between the Pareto frontier and the results of the additional
greedy algorithm from the test data shown in Table 3.1

3.3.3 The Relationship Between Multi Objective Minimisation and

Prioritisation

While they are formally different concepts, test suite minimisation and test case priori-

tisation problems are closely related to each other. Test case prioritisation concerns the

most ideal ordering of a given test suite. Since it only changes the order of a given test

suite, it is not capable of producing an efficient test case scheduling when the available

time is shorter than the total time required by the test suite, assuming that the test

suite can be executed in its entirety.

Figure 3.1 shows the result that the additional greedy algorithm produces with the

test data shown in Table 3.1, along with the real Pareto frontier of the test data. If the

budget allows 9 units of time for the testing, the result of the additional greedy algorithm

can be applied with a final coverage of 100%. Now suppose that the budget allows only

6 units of time. From the result of the additional greedy algorithm, the next feasible

solution is to execute just T1, achieving 80% coverage. However, the Pareto frontier tells

us that the subset of T2 can be executed in 5 units of time, achieving 90% coverage.

It also shows us that a coverage of 100% is achievable in only 8 units of time. It also

3.4. EMPIRICAL STUDIES 109

reveals that, should the budget allow only 3 units of time, it is still possible to achieve

50% coverage by executing T4.

The benefit of knowing the existence of {T2, T3} and {T4} as candidate selections of

test cases becomes clear under the assumption that there is a cost constraint, i.e., testing

budget. Prioritisation techniques make no such assumption; they assume that whatever

ordering of test cases they produce can be executed in its entirety. However, there can

be situations when the exact amount of the available budget is known before the testing

begins. Test case prioritisation techniques cannot optimise the testing process in such a

situation, because they are not capable of selecting test cases. In order to construct an

efficient test sequence under cost constraint, an appropriate subset of test cases should

be selected first. This subset can subsequently be prioritised in order to achieve the ideal

ordering among the selected test cases. This way, test case selection and prioritisation

techniques can be used in combination in order to achieve more efficient regression

testing.

3.4 Empirical Studies

This section explains the experiments conducted to explore the two and three objective

formulations of the multi-objective selection problem. Sections 3.4.1 and 3.4.2 set out

the research questions and subjects studied. Section 3.4.3 describes the objectives to be

optimised. Section 3.4.4 describes the algorithms studied, while Section 3.4.5 explains

the mechanisms by which these algorithms will be evaluated in the two empirical studies.

3.4.1 Research Questions

The first three research questions can be answered quantitatively using the approaches

described in Section 3.4.5. The last research question is more qualitative in nature.

• RQ1: Do the situations theoretically predicted in Section 3.3.2 arise in practice?

110 CHAPTER 3. MULTI-OBJECTIVE TEST CASE MANAGEMENT

That is, does there exist a situation in which the greedy algorithm can be out–

performed by solutions that achieve identical coverage in less time? Do there exist

situations where the Pareto efficient approaches produce more points on the Pareto

front than the greedy algorithm?

• RQ2: How well do the greedy and search–based algorithms perform compared to

each other and to the global optimum for the 2-objective formulation?

• RQ3: How well do the greedy and search–based algorithms perform compared to

each other for the 3-objective formulation?

• RQ4: What can be said about the shape of the Pareto frontiers, both approximated

and optimal? What insights do they reveal concerning the tester’s dilemma as to

how to balance the trade-offs between objectives?

3.4.2 Subjects

A total of 5 programs were studied: a part of the Siemens suite, including printtokens,

printtokens2, schedule and schedule2, and the program space from the European

Space Agency. These programs range from 374 to 6,199 lines of code, and include a real

world application. The software artifacts were obtained from Software-artifact Infras-

tructure Repository (SIR) [41].

Each program has a large number of available test suites. Four test suites were

randomly selected for each program; therefore a total of 20 test suites were used as

input to the multi-objective Pareto optimisation. The size of the programs and their

test suites are shown in Table 3.2.

3.4.3 Objectives

It is not the aim of this thesis to enter into a discussion concerning which objectives are

more important for regression testing. We simply note that, irrespective of arguments

3.4. EMPIRICAL STUDIES 111

Program Lines of Code Average Test Suite Size

printtokens 726 16
printtokens2 570 17
schedule 412 8
schedule2 374 8
space 6199 153

Table 3.2: Test suite size of subject programs studied in Section 3.4

about their suitability, coverage and fault histories are likely candidate objectives for

assessing test adequacy and that execution time is one realistic measure of effort.

For the two objective formulation, statement coverage and computational cost of

test cases will be used as objectives. The additional objective used in the three objective

formulation is the past fault detection history. Each software artifact used in this chapter

has several seeded faults (taken from the data available on the SIR [41]), which are

associated with the test cases that reveal them. Using this information, it is possible to

assign past fault coverage to each test case subset, which corresponds to how many of

the known, past faults in the previous version this subset would have revealed.

Physical execution time of test cases is hard to measure accurately. It involves many

external parameters that can affect the physical execution time; different hardware,

application software and operating system. In particular, any measurement of execution

time is likely to be affected by aspects of the environment unconnected to the the choice

of test cases. Such factors include concurrent execution, caching and other low-level

processor optimisations.

Here we circumvent these issues by using the software profiling tool, Valgrind, which

executes the program binary code in an emulated, virtual CPU [147]. The computational

cost of each test case was measured by counting the number of virtual instruction codes

executed by the emulated environment. Valgrind was created to allow just this sort of

precise and unequivocal assessment of computational effort; it allows us to argue that

112 CHAPTER 3. MULTI-OBJECTIVE TEST CASE MANAGEMENT

these counts are directly proportional to the cost of the test case execution.

3.4.4 Algorithms

Two different Pareto efficient genetic algorithms, NSGA-II and its variation were used.

NSGA-II is a multi-objective genetic algorithm developed by Deb et al. [38]. The output

of NSGA-II is not a single solution, but the final state of the Pareto frontier that the

algorithm has constructed. Pareto optimality is used in the process of selecting individ-

uals. This leads to the problem of selecting one individual out of a non-dominated pair.

NSGA-II uses the concept of crowding distance to make this decision; crowding distance

measures how far away an individual is from the rest of the population. NSGA-II tries

to achieve a wider Pareto frontier by selecting individuals that are far from the others.

NSGA-II is based on elitism; it performs the non-dominated sorting in each generation in

order to preserve the individuals on the current Pareto frontier into the next generation.

A novel variation of NSGA-II, called vNSGA-II, was also developed and implemented.

Two major modifications to NSGA-II were made for vNSGA-II. First, the algorithm

uses a group of sub-populations that are separate from each other, in order to achieve

wider Pareto frontiers. When performing a pairwise tournament selection on individuals

that form a non-dominated pair, each of the sub-populations slightly prefers different

objectives so that the Pareto frontier can be advanced in all the directions. vNSGA-II

also extends the elitism of NSGA-II by keeping a best-so-far record of the Pareto frontier

separate from the sub-populations.

Two Greedy Algorithms were also implemented. For the two objective formulation,

the cost cognizant version of the additional greedy algorithm was implemented. For the

three objective formulation, the three objectives were combined into a single objective

according to the classical weighted-sum approach. With M different objectives, fi with

i = 1, 2, . . . ,M , the weighted-sum approach calculates the single objective, f ′, as follows:

3.4. EMPIRICAL STUDIES 113

f ′ =
M∑
i=1

(wi · fi),
M∑
i=1

wi = 1

Both the additional code coverage per until time and additional past fault coverage

per unit time were combined using coefficients of 0.5 and 0.5, thereby giving equal

weighting to each objective.

3.4.5 Evaluation Mechanisms

The difficulty of evaluating Pareto frontiers lies in the fact that the absolute frame

of reference is the real Pareto frontier, which by definition, is impossible to know a

priori. Instead, a reference Pareto frontier can be constructed and used when comparing

different algorithms with respect to the Pareto frontiers they produce. The reference

frontier represents the hybrid of all approaches, combining the best of each. It is one of

the advantages of Pareto optimality that results for various approaches can be combined

in this way.

More formally, let us assume that we have N different Pareto frontiers, Pi with

i = 1, 2, . . . , N . A reference Pareto frontier, Pref , can be formulated as follows. Let P ′

be the union of all Pi with i = 1, 2, . . . , N . Then:

Pref ⊂ P ′, (∀p ∈ Pref)(@q ∈ P ′)(q � p)

For the programs from the Siemens suite, the search spaces were sufficiently small to

allow us to perform an exhaustive search to locate the true Pareto frontier. This allows

us to compare the results from the algorithms to the globally optimal solution in these

cases. For the program space this was not possible, so the reference Pareto frontier was

formed as described.

One of the methods to compare Pareto frontiers is to look at the number of solutions

that are not dominated by the reference Pareto frontier. By definition, Pref is not dom-

114 CHAPTER 3. MULTI-OBJECTIVE TEST CASE MANAGEMENT

inated by any of the N different Pareto frontiers, because it consists of the best parts

of the different Pareto frontiers. However, each of N different Pareto frontiers may be

partly dominated by Pref . Therefore, these N different Pareto frontiers can be compared

with each other by counting the number of solutions that are not dominated by Pref in

each Pareto frontier.

Another meaningful measurement is the size of each Pareto frontier. Achieving wider

Pareto frontiers is one of the important goals of Pareto optimisation. This is particularly

of concern in engineering application, because a wider Pareto frontier means a larger

number of alternatives available to the decision maker.

Both the number of non-dominated solutions and the size of Pareto frontiers were

measured and statistically analysed using Welch’s t-test. Welch’s t-test is a statistical

hypothesis test for two groups with different variance values. It tests the null hypothesis

that the means of two normally distributed groups are equal. In the context of this

chapter, the null hypothesis is that with two different algorithms, the mean values of

the number of solutions that are not dominated by the reference Pareto frontier are

equivalent. For these tests the α level was set to 0.95. Significant p − values suggest

that the null hypothesis should be rejected in favour of the alternative hypothesis, which

states that one of the algorithm produces a larger number of non-dominated solutions.

NSGA-II and vNSGA-II algorithms were both executed 20 times for each test suite

to account for their inherent randomness. Both algorithms use single-point crossover and

bit-flip mutation. NSGA-II is configured with the recommended setting of {population =

100, and maximum fitness evaluation = 25, 000} for the Siemens suite. vNSGA-II uses

three different sub-population groups of {population = 300, and maximum iteration

= 250} for the Siemens suite. For space, both algorithm use the setting of {population =

1, 500 and {maximum iteration = 180}. In the case of vNSGA-II, this means three sub-

populations with 500 individuals.

3.5. RESULTS AND ANALYSIS 115

3.5 Results and Analysis

The results for the 2-objective formulation for the five different subjects are shown in

Figure 3.2. The figures are provided for illustration and qualitative evaluation only. For

complete quantitative data, see Table 3.3.

In particular, it should be noted that the lines connecting the data points are drawn

merely in order to aid the visual comprehension of the plot; no meaning can be ascribed

concerning the results that may or may not exist along these lines, apart from the points

plotted. In case with vNSGA-II and NSGA-II, a single result was chosen out of the 20

experiments in order to produce readable images. The variance in their complete results

over 20 runs can be seen in Table 3.3.

The results from the programs from the Siemens suite confirm the theoretical argu-

ment set out in Section 3.3.1; there do exist data points that achieve the same amount

of coverage as the additional greedy algorithm, but in less time. The size of Pareto fron-

tiers produced by the Pareto efficient genetic algorithms are larger than those produced

by the additional greedy algorithm, giving more information to the tester. In all four

smaller programs, the Pareto efficient genetic algorithms produce subsets of test cases

that can be executed in fewer than 200 units of cost, something for which the additional

greedy algorithm is incapable. These results provide a positive answer to RQ1.

It can also be observed that NSGA-II is capable of identifying the entire reference

frontier, producing the exhaustive result. The results from vNSGA-II are not always

exhaustive, but they still outperform the additional greedy algorithm.

However, the result for the (larger) program space shows the contrary; the additional

greedy algorithm performs very well, dominating the rest of the algorithms. NSGA-II,

which is very competitive with the smaller programs, manages to produce results that

are close to those produced by the additional greedy algorithm but none of the points

on its approximation to the Pareto frontier dominates those found by the additional

116 CHAPTER 3. MULTI-OBJECTIVE TEST CASE MANAGEMENT

Figure 3.2: Plot of the Pareto frontier for the two objective formulation. With the Siemens
suite, the results from the additional greedy algorithm are dominated by the reference
Pareto frontier obtained by an exhaustive search, which NSGA-II is also capable of
finding. However, in the zoomed plot for the program space, it can be observed that the
additional greedy algorithm dominates the rest of the algorithms.

3.5. RESULTS AND ANALYSIS 117

greedy algorithm. vNSGA-II partly dominates NSGA-II, but its results are still inferior

to those of the additional greedy algorithm. The good performance of the additional

greedy algorithm suggests that the existing test case prioritisation techniques are capable

of producing solutions that are strongly Pareto efficient. This is a very attractive finding,

given the computations efficiency of the greedy algorithms, compared to the alternatives.

These findings provide a mixed message for the answer to RQ2. The data show

that the additional greedy algorithm may be dominated by the Pareto efficient genetic

algorithms, but also that, for some programs the additional greedy algorithm produces

the best results. This suggests that for optimal quality test data selection it may be

advisable to combine the results from greedy and evolutionary algorithms. This is one

of the attractive aspects of the Pareto efficient approach; results from several algorithms

can be merged to form a single Pareto front that combines the best of all approaches.

Figure 3.3 shows the results for the three objective formulation. The 3D plots display

the solutions produced by the weighted-sum additional greedy algorithm (depicted by a

line in the figures), and the reference Pareto frontier (depicted by square–shaped points).

The weighted-sum additional greedy algorithm produces very strong results because the

line can be seen to connect the data points forming the reference Pareto frontier, meaning

that the solutions from the weighted-sum and additional greedy algorithm form a part

of the reference Pareto frontier (which is later confirmed by a statistical analysis).

These results suggest that the answer to RQ3 is also mixed. Even where there

are more than 2 objectives, the greedy approach is capable of reasonable performance.

Therefore, a combination of results may be appropriate. Of course, these findings will

depend upon the three objectives chosen. More work is required to experiment with

other objectives. It is not possible to extrapolate from these results to conclude than

the additional greedy algorithm will perform well for any 3 objective instantiation of the

multi-objective test case selection problem. For example, the strong results that we have

been able to obtain may be a result of the relative sparseness of the fault history data,

118 CHAPTER 3. MULTI-OBJECTIVE TEST CASE MANAGEMENT

Figure 3.3: Plot of the Pareto frontier for the three objective formulation. The solid line
connects the results from weighted-sum additional greedy, while all the shown points
correspond to the reference Pareto frontier, which is a surface in 3d.

3.5. RESULTS AND ANALYSIS 119

which may favour the additional greedy approach.

In order to provide a more concrete quantitative analysis of the answers to RQ2

and RQ3, we compare the results obtained using tests for statistical significance. For

the Siemens suite programs, NSGA-II shows the best performance by producing the

entire reference Pareto frontier. The results from NSGA-II for the Siemens suite are also

very stable; the variance in the size of the Pareto frontier produced by NSGA-II is 0.

On the other hand, the results from vNSGA-II show some variance, and therefore are

compared to the additional greedy algorithm using the t-test analysis with the confidence

level of 95% and using the null hypothesis that there is no difference in the results for

n̄vNSGA−II and n̄AdditionalGreedy and the alternative hypothesis that n̄vNSGA−II is greater

than n̄AdditionalGreedy. The observed p − values for these t–tests are significant at the

95% level, confirming the alternative hypothesis.

However, the weighted-sum additional greedy algorithm produces the best result with

space. For the analysis of vNSGA-II results from space, the alternative hypothesis is

that n̄vNSGA−II is smaller than n̄AdditionalGreedy. The observed p−values are significant

at the 95% level, confirming the alternative hypothesis. For some test suites of space,

the results were constant, making the t-test inapplicable. For the program space, the

Pareto frontiers produced by NSGA-II are completely dominated by the results from the

additional greedy algorithm.

Both of the genetic algorithms produce much wider Pareto frontiers than the addi-

tional greedy algorithm, which is expected because they are designed to produce Pareto

frontiers. However, in terms of the number of solutions that are not dominated by the

reference frontier, statistical analysis confirms the results shown in Figure 3.2 and 3.3.

With smaller programs, NSGA-II performs significantly better than the others in both

two and three objective formulations, while space shows the contrary. However, the

higher deviation observed in the results of vNSGA-II with test suite T2 of space suggest

that both the random nature of the genetic algorithm and the composition of a par-

120 CHAPTER 3. MULTI-OBJECTIVE TEST CASE MANAGEMENT

ticular test suite may affect the result; further research on wider range of subjects will

confirm or refute this.

Turning to the last research question, RQ4, a more qualitative analysis is required.

This is made possible by the visualisations of the solutions plotted in Figures 3.2 and

3.3. It can be seen that the shapes of the lines and the reference Pareto frontiers are

relatively similar to each other across all programs, suggesting a similar relationship

between coverage and fault detection for these programs. The shape is an interesting

observation on the relation between the code coverage and past fault coverage, because

it seems to illustrate a relatively strong correlation between the two objectives. Such a

correlation may suggest that the concerned faults are not concentrated in a limited part

of the code. There also appear to exist a point on the line in every program, where the

rate of increase in the fault coverage changes. Such elbow points are considered important

in the study of Pareto optimality. They indicate points of particular interest where the

balance of trade-offs inherent between the objectives.

In the case of test suite minimisation, the location of this elbow point may tell us

the percentage of faults that require certain amount of code coverage to be detected.

The selections below the elbow point generally contain smaller numbers of test cases,

which results in the limited fault detection capability; once a sufficient amount of cost is

available, combinations of test cases can be picked up, which improves the rate of the past

fault coverage. These results provide evidence to suggest a ‘critical mass’ phenomenon

in test case selection. These observations form a partial answer to RQ4, but more data

is required to see whether this critical mass phenomenon is generic to test case selection,

or whether it is merely an artefact of the set of programs that have been chosen to be

studied.

3.5. RESULTS AND ANALYSIS 121

2 Objectives

Program Suite
vNSGA-II NSGA-II Additional Greedy

n̄ σ p Avg. Size n̄ σ Avg. Size n̄ σ Size

printtokens

T1 13.00 2.51 3.5e-16 16.75 23.00 0.00 23.00 2.00 0.00 10.00
T2 14.15 2.08 6.0e-13 21.30 33.00 0.00 33.00 8.00 0.00 11.00
T3 13.70 3.61 4.3e-08 18.20 30.00 0.00 30.00 8.00 0.00 10.00
T4 10.15 2.16 2.4e-14 13.40 19.00 0.00 19.00 2.00 0.00 8.00

printtokens2

T1 9.05 2.85 9.9e-18 12.55 24.00 0.00 24.00 4.00 0.00 6.00
T2 14.00 1.97 1.0e-12 16.00 25.00 0.00 25.00 7.00 0.00 7.00
T3 7.75 1.52 3.1e-13 9.40 14.00 0.00 14.00 2.00 0.00 5.00
T4 8.60 1.96 1.2e-09 11.90 24.00 0.00 24.00 4.00 0.00 7.00

schedule

T1 8.90 1.59 2.6e-14 9.00 11.00 0.00 11.00 2.00 0.00 6.00
T2 11.95 1.47 < 2.2e-16 12.00 15.00 0.00 15.00 2.00 0.00 7.00
T3 10.30 1.13 6.5e-15 10.30 12.00 0.00 12.00 5.00 0.00 5.00
T4 10.45 1.47 < 2.2e-16 10.70 13.00 0.00 13.00 2.00 0.00 6.00

schedule2

T1 7.75 0.91 < 2.2e-16 7.75 9.00 0.00 9.00 2.00 0.00 5.00
T2 12.70 1.49 < 2.2e-16 13.15 17.00 0.00 17.00 4.00 0.00 6.00
T3 8.70 1.38 3.6e-15 8.70 11.00 0.00 11.00 2.00 0.00 6.00
T4 8.40 1.19 5.2e-16 8.45 10.00 0.00 10.00 2.00 0.00 6.00

space

T1 1.40 1.56 < 2.2e-16 99.50 0.00 0.00 55.55 117.00 0.00 117.00
T2 1.05 0.22 < 2.2e-16 107.55 0.00 0.00 54.15 118.00 0.00 118.00
T3 1.00 0.00 N/A 94.90 0.00 0.00 55.55 92.00 0.00 119.00
T4 1.00 0.00 N/A 104.45 0.00 0.00 54.25 120.00 0.00 121.00

Table 3.3: Average number of solutions that are not dominated by the reference Pareto
frontier(n̄), standard deviation(σ), and the size of Pareto frontier for the two objective
formulation

122 CHAPTER 3. MULTI-OBJECTIVE TEST CASE MANAGEMENT

3 Objectives

Program Suite
vNSGA-II NSGA-II Weighted-sum Greedy

n̄ σ p Avg. Size n̄ σ Avg. Size n̄ σ Size

printtokens

T1 11.95 3.02 1.6e-04 15.20 23.00 0.00 23.00 9.00 0.00 9.00
T2 25.25 4.78 2.5e-12 39.60 65.65 1.42 66.70 9.00 0.00 11.00
T3 20.80 3.30 9.0e-13 26.70 51.00 0.00 51.00 9.00 0.00 9.00
T4 13.55 2.78 6.0e-14 21.25 33.00 0.00 33.00 2.00 0.00 8.00

printtokens2

T1 21.75 4.84 1.6e-12 27.70 55.00 0.00 55.00 5.00 0.00 7.00
T2 28.40 5.37 3.1e-13 35.20 59.75 0.64 60.60 8.00 0.00 8.00
T3 14.40 2.54 3.6e-12 16.15 24.00 0.00 24.00 6.00 0.00 6.00
T4 17.45 3.50 1.2e-10 25.40 48.00 0.00 48.00 8.00 0.00 8.00

schedule

T1 12.05 1.82 3.2e-12 12.50 16.00 0.00 16.00 6.00 0.00 6.00
T2 16.90 2.25 2.1e-14 18.20 23.00 0.00 23.00 7.00 0.00 7.00
T3 12.80 1.32 1.2e-15 13.20 16.00 0.00 16.00 6.00 0.00 6.00
T4 14.20 1.32 < 2.2e-16 14.45 18.00 0.00 18.00 6.00 0.00 6.00

schedule2

T1 11.20 0.95 < 2.2e-16 11.40 14.00 0.00 14.00 5.00 0.00 5.00
T2 21.30 2.18 < 2.2e-16 22.30 29.00 0.00 29.00 6.00 0.00 6.00
T3 12.00 1.62 3.0e-14 12.45 16.00 0.00 16.00 5.00 0.00 5.00
T4 11.50 1.19 4.2e-16 11.60 14.00 0.00 14.00 5.00 0.00 6.00

space

T1 1.50 1.82 < 2.2e-16 268.65 0.00 0.00 119.20 118.00 0.00 118.00
T2 19.05 23.50 2.3e-14 263.30 0.00 0.00 119.95 119.00 0.00 122.00
T3 1.00 0.00 N/A 208.55 0.00 0.00 96.10 114.00 0.00 119.00
T4 2.80 3.65 < 2.2e-16 183.15 0.00 0.00 88.80 67.00 0.00 122.00

Table 3.4: Average number of solutions that are not dominated by the reference Pareto
frontier(n̄), standard deviation(σ), and the size of Pareto frontier for the three objective
formulation

3.6. CONCLUSIONS 123

3.5.1 Threats to Validity

Threats to internal validity concern the factors that might have affected the multi-

objective optimisation techniques used in the study. One potential concern involves the

accuracy of the instrumentation of the subject software, e.g. the correctness of the cov-

erage information. To address this, a professional and commercial software tool (Can-

tata++ from IPL ltd. [1]) was used to collect code coverage information. The fault cover-

age information was extracted from SIR - a well-managed software archive [41]. Precisely

determined computational cost was used in place of the physical execution time in order

to raise the precision of the cost information using the Valgrind profiler [147].

Another potential internal threat comes from the selection and optimisation of the

meta-heuristic techniques themselves. No particular algorithm is known to be effective

for the multi-objective test case selection problem. However the genetic algorithm used in

this study is known to be effective for a wide range of multi-objective problems [33, 37],

and can serve as a basis for the future research.

Welch’s t-test, which is used in the empirical study, assumes a parametric distribution

of the samples. While the exact distribution of the sample (the number of points on the

Pareto frontier) is not known, it will approximate a normal distribution with a sufficiently

large sample size according to the central limit theorem [161].

Threats to external validity concern the conditions that limit generalisation from the

result. The primary concern for this study is the representativeness of the subjects that

were studied. This threat can be addressed only by additional research using a wider

range of software artifacts and optimisation techniques.

3.6 Conclusions

This chapter introduced the concept of Pareto efficient multi-objective optimisation to

the problem of test suite minimisation. It described the benefits of Pareto efficient multi-

124 CHAPTER 3. MULTI-OBJECTIVE TEST CASE MANAGEMENT

objective optimisation, and presented an empirical study that investigated the relative

effectiveness of three algorithms for Pareto efficient multi-objective test suite minimisa-

tion. The empirical results obtained reveal that greedy algorithms (which perform well

for single objective formulations) are not always Pareto efficient in the multi-objective

paradigm, motivating the study of meta-heuristic search techniques.

Chapter 4

Test Suite Latency

4.1 Introduction

Test suite minimisation aims to reduce the number of test cases that need to be applied,

while retaining identical or near-identical satisfaction of a chosen test adequacy crite-

rion. Test suite minimisation is increasingly important, because of the tendency for test

suite size to grow over time [70]. This growth in test suite size comes from a variety of

sources, including the use of capture replay tools, improvements in test data generation

techniques and procedures for capturing customer–created test cases arising from their

use of deployed software. Test suite minimisation provides a mechanism for managing the

size of the test suite when there are insufficient resources available to apply all available

test cases during a period of testing activity.

For example, a large IBM middleware product has a test suite of 20,000 test cases

which take 10 days to run [227]. IBM has an automatic regression test selection mech-

anism that chooses, for each regression test, a subset of the test cases to run. The

algorithm first determines the relevant tests given the code that was changed. However,

it then needs to further minimize within these selected test cases in order to achieve a

test set that can be executed within the time available (which is normally eight to twelve

125

126 CHAPTER 4. TEST SUITE LATENCY

hours).

IBM’s experience with repeated application of test suite minimisation for multiple

iterations revealed a problem: minimised test suites have a tendency to ‘wear out’. That

is, some of the test cases execute parts of the code that have not changed (as well as parts

that have). However, for deterministic software systems, repeated execution of unchanged

sections of code with the same input cannot, by definition, reveal any new faults provided

that the rest of the environment do not change. As the number of previously used test

cases increases, the test suite ‘wears out’ its ability to reveal additional faults. The more

a test suite contains test cases that have already been executed on previous versions of

the system, the less the test suite is likely to reveal.

In order to avoid wear out, minimisation strategies can be adapted to select different

subsets of the test pool to form a new test suite to be applied at each regression cycle. It

is trivial to adapt test minimisation algorithms to avoid re-selection of previously used

test cases, thereby yielding a novel minimised test suite on each iteration. However, at

each iteration, the algorithm may achieve lower coverage because it cannot re-use test

cases that have already been executed. Some parts of the system may have very few

available test cases that are able to cover them. This raises an important question: How

many times can a test pool allow repeated reduction that results in a novel set of test

cases?

This thesis introduces the term latency to capture this property. The more a test

suite allows for selection of novel minimised test suites, the higher is its latency. The use

of word ‘latency’ is overloaded in computer science, imbuing it with possible associations

that are unwanted in the context of this work. The dictionary definition of the word is

the one intended in this thesis:

Latent("leit@nt) a. Hidden, concealed; present or existing, but not manifest, exhib-

ited, or developed [3].

4.2. PROBLEM STATEMENT 127

The rest of the chapter1 is organised as follows. Section 4.2 presents formal defini-

tions and theoretical results that underpin the subsequent empirical studies. Section 4.3

presents an empirical study of test suite latency for open source programs. Section 4.4

introduces the strategy and algorithms for combining test suite reduction and gener-

ation, which is evaluated in Section 4.5. Section 4.6 discusses the potential threats to

validity, and Section 4.7 concludes.

4.2 Problem Statement

Test suite minimisation (sometimes reduction) is the problem of selecting a subset of

a given test suite in order to reduce the effort required to execute the test cases [171].

Throughout this chapter, the remaining unselected test cases are referred to as the ‘re-

tained’ set, since they may be retained for subsequent selections. Some test suite quality

metrics, for example structural code coverage, monotonically decrease as the number of

retained test cases decreases. A test suite minimisation technique is said to be mono-

tonically decreasing with respect to a quality metric, if the repeated application of the

minimisation technique results in monotonically decreasing values of the quality metric.

The latency of a test suite is defined as the maximum number of times a minimisation

technique can be applied to the retained portion of the test suite before the quality

metric falls below a predefined threshold level. The definitions below formalise these

concepts, facilitating theoretical study of monotonicity and latency.

Let S be the initial test suite available for testing. Let S be the set of all subsets of

S.

Definition 4. Test Suite Minimisation Procedure

1This chapter is an extended version of the author’s SBST paper: S. Yoo, M. Harman and S. Ur,
Measuring and Improving Latency to Avoid Test Suite Wear Out, Proceedings of the 2009 International
Workshop on Search-Based Software Testing, Denver, CO, USA, pages 101-110, 2009. Best Paper Award.

128 CHAPTER 4. TEST SUITE LATENCY

A test suite minimisation procedure τ is a relation in S ↔ (S × S) such that s τ

(a, r) ⇒ a ∪ r = s. If additionally ∀s. s τ (a, r) ⇒ a ∩ r = ∅, then τ is said to be

non-overlapping.

Thus, a minimisation procedure τ is a relation, where s τ (a, r) means that when

procedure τ is applied to a test suite s, the subset a of s is applied to the program under

test, while the set r is retained for subsequent regression testing. If a∩ r 6= ∅ then some

of the selected test cases will be reused in subsequent selections.

Definition 5. Applied Test Cases

App is a function in (S ↔ S × S)→ (S → S) such that s App(τ) a⇔ s τ (a, r)

Definition 6. Retained Test Cases

Ret is a function in (S ↔ S × S)→ (S → S) such that s Ret(τ) r ⇔ s τ (a, r)

App(τ) is the projection of a procedure τ onto the used portion of the test suite;

Ret(τ) is the projection of a procedure τ onto the retained portion of the test suite.

Definition 7. Repeated Minimisation

Repeated minimisation from s using τ over n times (n ≥ 1) is denoted by τn and defined

as follows:

τ1 = τ

s τn+1 (a, r) iff s τn (a′, r′) and r′ τ (a, r)

Repeated minimisation is an iterative procedure of applying a minimisation technique

τ to the retained portion of the test suite from the previous minimisation.

Definition 8. Quality Metric

A quality metric µ is a function in S → R that measures the quality of a set of test cases.

If additionally ∀s′ ⊆ s. µ(s′) ≤ µ(s), then µ is said to be monotonically decreasing.

4.2. PROBLEM STATEMENT 129

Definition 9. µ-Optimality

A test suite minimisation τ is µ-optimal if and only if ∀s. µ(App(τ(s))) = max{µ(s′)|s′ ⊆

s}.

Proposition 2. If µ is monotonically decreasing then a non-overlapping µ-optimal τ is

guaranteed to be monotonically decreasing with respect to µ, that is,

µ(App(τn+1(s))) ≤ µ(App(τn(s))).

proof Let a and r be sets of test cases such that s τn (a, r). By definition of τ ,

App(τn+1(s)) = App(τ(r)) and App(τn(s)) = App(τ(a ∪ r)). By definition of mono-

tonically decreasing µ, r ⊆ a ∪ r ⇒ µ(r) ≤ µ(a ∪ r). By definition of µ-optimality,

µ(App(τ(r))) = µ(r) and µ(App(τ(a ∪ r))) = µ(a ∪ r). Therefore µ(App(τn+1(s))) ≤

µ(App(τn(s))).

For a test suite minimisation procedure τ that is monotonically decreasing with

respect to a quality metric µ, the latency of a given test suite, s, against τ is defined as

follows.

Definition 10. Latency

A latency measure, λ, is a function in

(S → R)→ R→ (S ↔ (S × S))→ S → N

λµατs = largest n such that µ(Ret(τ)ns) ≥ α

That is, the latency λµατs of a test suite s with respect to a quality metric µ and

threshold quality for adequacy α and a test suite minimisation procedure τ is the largest

number of times the procedure τ can be repeatedly applied to the retained portion of

s before the quality (as measured by µ) falls below α. A test suite with a higher λ

value is capable of providing multiple disjoint subsets of test cases with a quality metric

value above the threshold, which makes the test suite more latent. If a test suite satisfies

its given testing requirements (such as full branch coverage), then its measured latency

130 CHAPTER 4. TEST SUITE LATENCY

should be at least 1. However, it would be advantageous to achieve λ value of 2 or higher

so that the tester can have multiple test case subsets that achieve the same testing

requirements.

4.3 Monotonicity & Overlap Study

The research questions for the monotonicity and overlap empirical study are: RQ1.

Monotonicity Measurement: Are there test suites with poor latency? How does

the monotonically decreasing property of quality metrics manifest itself in real world

programs and their test suites? RQ2. Overlap Effect: How much increase in latency

can be achieved by loosening the non-overlapping constraint so that some test cases are

allowed to be reused across consecutive test suite minimisations?

The ideal criterion for test suite minimisation is the highest possible fault detection

capability. However, the fault detection information is not available before the testing

finishes. As a result, structural code coverage is often used as a readily available sur-

rogate. Each test case is said to cover different parts of the program, e.g., statements,

branches or blocks, that it executes.

Proposition 3. Structural code coverage is a monotonically decreasing quality metric.

The proof is trivial in this case: it is not possible to increase the code coverage achieved

by a test suite by removing a test case.

From Section 4.2, coverage is a monotonically decreasing quality metric. This means

that any non-overlapping coverage-optimal test suite minimisation technique also yields

a monotonically decreasing coverage quality metric.

This study uses the widely studied additional greedy algorithm as the test suite

minimisation technique [53, 54, 130, 178]. Maximising coverage achieved by testing is

a set cover problem. The goal of test suite minimisation is to have the smallest set of

test cases that covers the entire program. Greedy algorithms are known to be efficient,

4.3. MONOTONICITY & OVERLAP STUDY 131

producing solutions to set cover problems of size n that are within lnn of the global

optimum [97].

Proposition 4. The additional greedy algorithm is a non-overlapping µ-optimal test

suite minimisation procedure when µ(s) is the coverage achieved by s.

proof: The non-overlapping property of the additional greedy algorithm is obvious

by the definition of the algorithm. For the µ-optimality, assume the contrary, that is,

∃s′ ⊂ s.µ(s′) > µ(App(τ(s))). Since code coverage is monotonically decreasing, s′ ⊆ s⇒

µ(s′) ≤ µ(s). Therefore µ(App(τ(s))) < µ(s′) ≤ µ(s), which means that there exists a

test case, t, such that t ∈ s, t /∈ App(τ(s)), µ(App(τ(s))) < µ({t} ∪App(τ(s))). However,

such t cannot exist if τ is the additional greedy algorithm; otherwise the algorithm would

have chosen t after choosing the subset App(τ(s)). Therefore, the additional greedy

algorithm must be µ-optimal when µ measures code coverage.

Note that other non-greedy minimisation techniques may not be monotonically de-

creasing. While repeated application of any minimisation approach to a finite test suite

must ultimately result in zero coverage, this does not mean that coverage will necessarily

decrease monotonically.

4.3.1 Experimental Design

Six program test suites have been analysed for their level of latency. The programs were

retrieved from Software-artifact Infrastructure Repository(SIR) along with test suites

for each program [41]. The size of programs and test suites are shown in Table 4.1.

The programs are analysed for levels of latency against the greedy test suite min-

imisation. The quality metric µ of the selected subsets is the statement coverage that

each selected subset achieves, since this is one of the weakest coverage criteria; if even

statement coverage latency cannot be achieved then clearly there is a need for latency

improvement. Coverage information was obtained using gcov profiler tool from gcc.

132 CHAPTER 4. TEST SUITE LATENCY

Program Lines of code Test suite size

printtokens 726 17
flex 15,297 567
grep 15,633 806
gzip 8,889 213
sed 19,737 370
space 6,199 156

Table 4.1: Test suite sizes of subject programs studied in Section 4.3

It should be noted that the test suites analysed were not necessarily created with

repeated selection of test cases in mind. Therefore the observations that the coverage

drops quickly is not a reflection on the overall quality of the test suites studied. However,

the results do illustrate the problem that can be raised when repeated selection is not

considered at test suite generation time.

One potential method addressing coverage degradation is to allow a certain level

of test case overlap between minimisations. This allows consecutive minimisations to

share test cases that may contribute to high quality metric value of the selected subset.

Test suites which can retain coverage potency by allowing a degree of overlap can only

be said to be ‘weakly’ latent, because some test case re-use is allowed, as determined

by the overlap level. To explore the degree to which overlap allows increased coverage,

four different levels of overlap are analysed, each allowing {10%, 30%, 50%, 70%} reuse

between test suite minimisations. The reusable test cases are determined randomly. The

latency analysis is performed 30 times for each test suite with average results presented.

4.3.2 Results and Analysis

Figure 4.1 shows the result of the latency analysis. As the additional greedy algorithm

is repeatedly applied to the test suite, the maximum coverage achieved monotonically

decreases, providing an answer to RQ1. The rate of decrease is generally higher in the

region of early iterations, showing that each test suite contains a small number of test

4.3. MONOTONICITY & OVERLAP STUDY 133

0 20 40 60 80

0
20

40
60

80
10

0

Times that reduction technique has been applied

A
ve

ra
ge

 m
ax

im
um

 s
ta

te
m

en
t c

ov
er

ag
e(

%
)

●

●
●

● ●

● ● ●
● ● ●

●
● ● ● ● ● ● ● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ●

● ●

● ●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

flex
grep
sed
space
gzip
printtokens

Figure 4.1: Latency Analysis with No Overlap : The greedy test suite minimisation
technique is repeatedly applied to test suites, with no overlap between repeated minimi-
sations. Notice that only 4 minimisations are possible for the program space and that
coverage drops dramatically for all test suites considered.

134 CHAPTER 4. TEST SUITE LATENCY

cases that cover the hard-to-reach regions of the programs.

Two programs in particular, printtokens and space, show an interesting contrast

to other programs. The very first iteration on printtokens and space achieves over

94% and 92% of coverage separately, which is higher than that achieved for any of the

other programs. This means that, as long as the tester is concerned with obtaining only

a single set of test cases to execute, printtokens and space have very satisfactory test

suites. However, the coverage of both programs deteriorates very quickly with repeated

minimisations. Should the tester want more than a single ‘once and for all’ test set, then

each consecutive minimisation from the test suite will necessarily lead to the re-execution

of a great many test cases. This shows that even a test suite that achieves high level of

test adequacy can be vulnerable to low latency.

Note that coverage also drops to a low level for flex and grep. However, repeated

achievement of this low level coverage is possible with novel test cases at each selection.

In terms of novelty of testing, flex also happens to have the test suite that yields the

largest number of different test case subsets.

Table 4.2 shows the latency level of each program with threshold α separately set to

0.05 and 0.1 below that of the first selection, which is denoted by q. The test suite for

grep shows the highest latency, while the test suites for space and gzip do not yield

more than a single test case subset above the given threshold values.

Program λ, α = q − 0.05 λ, α = q − 0.1

printtokens 2 2
flex 1 3
grep 3 11
gzip 1 1
sed 1 3
space 1 1

Table 4.2: Degree of latency with α = q − {0.05, 0.1}

Figure 4.1 showed that coverage drops dramatically as repeated minimisations are

4.4. LATENCY ENHANCEMENT STRATEGY 135

made. In this figure no overlap was permitted, ensuring that each new minimisation

enjoys an entirely fresh set of test cases. This requirement for 100% ‘freshness’ could be

the cause of the dramatic drop in coverage, suggesting that a more relaxed approach,

allowing some overlap, may improve coverage. This is the motivation for RQ2 which

concerns the effects (on coverage achievable) of various levels of overlap allowance.

Figure 4.2 shows how the latency of test suites changes when different percentages of

the selected test cases are allowed to be reused after each application of the minimisation

technique. The results plotted in Figure 4.2 are average values of coverage achieved by

each of 30 executions. The allowance of overlap affects the test suites of printtokens

and space positively, resulting in slower degradation of coverage. However, it is inter-

esting to observe that even allowing 70% of the selected test cases to overlap between

minimisations does not affect the latency of test suites for other programs in any no-

ticeable way. Overall, the results from the overlapping formulation of the analysis show

that coverage decreases dramatically even when overlaps are allowed, which provides an

answer to RQ2.

4.4 Latency Enhancement Strategy

The results in Section 4.3.2 show that even allowing high levels of overlapping does

not improve test suite latency noticeably. This motivates the consideration of ways of

enhancing latency. In order to propose a simple and efficient method of enhancing low

latency of test suites, the present study raises the following question: if there are known

test cases that are effective at achieving coverage, are there different but similar test

cases that achieve the same coverage? More formally, given a set of test cases, a, such

that s τ (a, r) and µ(a) satisfies the testing criteria, is it realistic to assume that there

may exist a′ such that a′ is similar to a and µ(a′) = µ(a)?

If so, then the enhancement of low latency of a test suite can benefit from knowledge

136 CHAPTER 4. TEST SUITE LATENCY

1 2 3 4 5

0.
70

0.
80

0.
90

1.
00

Times that reduction technique has been applied

A
ve

ra
ge

 m
ax

im
um

 s
ta

te
m

en
t c

ov
er

ag
e(

%
)

●

●

●

●

●

●

●

●

10% Overlap
30% Overlap
50% Overlap
70% Overlap
No Overlap

printtokens, Latency Analysis with Overlap

0 20 40 60

0.
4

0.
5

0.
6

0.
7

0.
8

Times that reduction technique has been applied

A
ve

ra
ge

 m
ax

im
um

 s
ta

te
m

en
t c

ov
er

ag
e(

%
)

●

●

●

●
●

●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●

●
●●●●●●●●●●●●●●●●●

●
●●●●

●
●●●●●●●●●●●

●●
●

●●
●

●

●

●

●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●

●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●

●

●

●

10% Overlap
30% Overlap
50% Overlap
70% Overlap
No Overlap

flex, Latency Analysis with Overlap

0 10 20 30 40 50

0.
3

0.
4

0.
5

0.
6

0.
7

Times that reduction technique has been applied

A
ve

ra
ge

 m
ax

im
um

 s
ta

te
m

en
t c

ov
er

ag
e(

%
)

●

●
●

● ●

●
● ●

● ● ●
●

● ● ● ● ● ● ● ●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ●

● ●
●

●

●
● ●

●

●
●

●●
●●●●●●

●
●●●●●●●●●●●●

●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●

●
●●

●

●

10% Overlap
30% Overlap
50% Overlap
70% Overlap
No Overlap

grep, Latency Analysis with Overlap

0 10 20 30 40 50

0.
2

0.
3

0.
4

0.
5

0.
6

Times that reduction technique has been applied

A
ve

ra
ge

 m
ax

im
um

 s
ta

te
m

en
t c

ov
er

ag
e(

%
)

●

●

● ● ●

●

● ● ● ● ● ● ● ● ●
● ●

● ● ● ● ● ● ● ●
● ●

●

●

●
●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

10% Overlap
30% Overlap
50% Overlap
70% Overlap
No Overlap

gzip, Latency Analysis with Overlap

0 5 10 15 20 25 30 35

0.
3

0.
4

0.
5

0.
6

0.
7

Times that reduction technique has been applied

A
ve

ra
ge

 m
ax

im
um

 s
ta

te
m

en
t c

ov
er

ag
e(

%
)

●

●

●

●

●
● ● ● ● ●

●
● ● ● ● ● ● ● ● ●

●
●

●
●

● ● ● ● ● ●

●

●

●
●

●

●

●

●
●

●
● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
● ● ●

●

●

10% Overlap
30% Overlap
50% Overlap
70% Overlap
No Overlap

sed, Latency Analysis with Overlap

1 2 3 4 5

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Times that reduction technique has been applied

A
ve

ra
ge

 m
ax

im
um

 s
ta

te
m

en
t c

ov
er

ag
e(

%
)

●

●

●

●

●

●

●

●

●

●

10% Overlap
30% Overlap
50% Overlap
70% Overlap
No Overlap

space, Latency Analysis with Overlap

Figure 4.2: Weak Latency Analysis (With Overlapping Test Subsets Allowed) : As more
test cases are re-used by allowing a higher level of overlapping, test suites of printtokens
and space show some achievement of weak latency. However, even allowing overlapping
does not noticeably affect other programs. This can be seen because coverage profiles
are almost identical regardless of overlap allowance.

4.4. LATENCY ENHANCEMENT STRATEGY 137

of a. That is, the existing test cases can be used to seed an automated search for addi-

tional test cases that also satisfy the testing criteria. This chapter considers two search

algorithms, a hill climbing algorithm and an estimation of distribution algorithm, and

compares them to unguided random test data generation. Hill climbing is a local search

technique that will seek solutions near to the existing test cases in the space of possible

test inputs. EDA (Estimation of Distribution Algorithm) is a global search technique

that will consider solutions that are sampled from probabilistic distributions centered

around the existing test cases.

4.4.1 Combined Reduction & Generation Strategy

Figure 4.3 shows how test data generation techniques work in conjunction with test

suite minimisation techniques in order to enhance low latency of a test suite. A test

suite minimisation technique selects the best subset according to a quality metric µ,

which is set to branch coverage in the empirical study present in the chapter. This forces

the enhancement strategy to ‘work harder’ because branch coverage subsumes statement

coverage. These selected model test cases are fed into a test data generation technique,

which seeks to generate new test cases that are different from the model test cases but

still achieve the same quality metric value. The generated test cases are then added to

the test suite for the next iteration.

Both the hill climbing algorithm and EDA work in conjunction with the additional

greedy algorithm in order to repair a low latency test suite. Additional greedy algorithm

selects the best subset according to a quality metrics µ, which is set to code coverage in

the feasibility study present in the chapter. These model test cases are fed into test data

generation techniques; the hill climbing algorithm and the estimation of distribution

algorithm try to generate new test cases that are different from the model test cases, but

still achieves the same quality metrics. The generated test cases are then added back to

the test suite for the next iteration.

138 CHAPTER 4. TEST SUITE LATENCY

Test Suite Minimisation

Model
Test

Cases

Generation
New Test

Cases

Input

Output

Input

Output

Added

Figure 4.3: Latency Enhancement Overview

A single fitness function is used to guide both search algorithms, facilitating com-

parison. Let t be the individual test case the fitness of which is being measured, and

t′ be the original test case for which t seeks to mimic the behaviour. Let ∆µ(t, t′) be

the difference in quality metrics between two test cases, and ∆d(t, t
′) be the distance

between the input vectors of two test cases.

∆µ(t, t′) = |µ({t})− µ({t′})|

∆d(t, t
′) = distance(t, t′)

The fitness value of the test case t, f(t), is defined as follows:

f(t) =

∆d(t, t

′) if ∆µ(t, t′) = 0 ∧∆d(t, t
′) > 0

0 if ∆µ(t, t′) = 0 ∧∆d(t, t
′) = 0

−∆µ(t, t′) if ∆µ(t, t′) > 0 ∧∆d(t, t
′) > 0

If t is the same as t′, the fitness function returns 0. However, if t is different from t′

yet still achieves the same quality metric (∆µ(t, t′) = 0), then t is guaranteed to receive a

fitness value higher than 0, thereby encouraging the solution to move farther away from

t′. Finally, if t is different from t′ but has lower quality metric, t is guaranteed to receive

4.4. LATENCY ENHANCEMENT STRATEGY 139

a fitness value lower than 0, but encouraged to reduce the difference in quality metric.

It should be noted that, with this particular search problem, finding the global opti-

mum is not as important as finding as many qualifying solutions as possible. From the

definition of the fitness function, qualifying solutions will be the test cases with fitness

values higher than 3.

4.4.2 Hill Climbing

The hill climbing algorithm is one of the simplest local search algorithms [180], which is

shown in Algorithm 2. The algorithm requires a definition of ‘neighbouring solutions’ for

a given problem. The algorithm starts the search from a random solution, and considers

neighbouring solutions. If a neighbour has higher fitness than the current position, the

algorithm climbs to the fitter neighbour. This is repeated until there is no fitter neigh-

bour, at which point the algorithm has reached one of the local optima in the search

space. The steepest ascent hill climbing algorithm moves to the neighbour with the high-

est fitness, whereas the first ascent hill climbing algorithm moves to the first neighbour

it considers with higher fitness than the current solution.

Algorithm 2: Hill Climbing Algorithm

(1) x← a random solution
(2) while true
(3) N ← neighbours of x
(4) if ∃x′ s.t. x′ ∈ N ∧ fitness(x′) > fitness(x)
(5) x← x′

(6) else
(7) break
(8) return x

For the latency enhancement study, the algorithm is modified to start from the known

test case. Neighbouring solutions are defined as test cases that contain a single input

variable that differs from the known test cases. These are created by either adding or

subtracting a predefined amount to each input variable of the known test case, which

140 CHAPTER 4. TEST SUITE LATENCY

results in 2n neighbouring solutions for a test case with an input vector of length n.

One way of escaping local optima is to restart the algorithm with a different starting

solution whenever the algorithm reaches a local optimum. However, in the version used

in the study, the starting solution is set to the known test case in order to explore the

input space near the known test case. To avoid deterministic behaviour, the algorithm

used in the study adopts a random first ascent ; the algorithm considers the neighbouring

solutions in random order and moves to the first neighbour with higher fitness, which

introduces randomness to the algorithm. Since the goal of the search is to explore the

search space around the known test cases rather than finding the global optimum, the

inability to escape local optima is thought to be less critical so long as the algorithm

retains the ability to explore the neighbouring solutions.

4.4.3 Estimation of Distribution Algorithm

EDAs (Estimation of Distribution Algorithms) were first introduced in the field by

Mühlenbein and Paaß [146]. They have been previously applied to software test data

generation [185, 186] by Sagarna et al. The biggest difference between EDA and other

evolutionary computation heuristics is that EDA does not rely on cross-over and mu-

tation operators in order to generate new individual solutions. Instead, the individual

solutions forming the population of the next generation are generated from a sampling

of probability distribution, estimated from the previous generation.

Algorithm 3: Estimation of Distribution Algorithm

(1) P0 ← generate initial population randomly
(2) while stopping criterion is not met
(3) Si−1 ← select fitter individuals from Pi−1
(4) Ei−1 ← probability distribution of Si−1
(5) Pi ← sample Ei−1

Algorithm 3 shows the top level view of EDA. The algorithm starts by randomly

generating the individual solutions that form the initial population. During the following

4.5. ENHANCEMENT & EFFICIENCY STUDY 141

iterations, the algorithm first selects fitter individual solutions, guided by a predefined

fitness function. Based on the selected individual solutions, the algorithm then estimates

the probability distribution of the individuals. The next generation of individual solutions

are sampled from the estimated probability distribution.

As in the case with the hill climbing algorithm, the estimation of distribution algo-

rithm is modified in order to benefit from the knowledge of existing test cases. The initial

population is not generated randomly; instead, Gaussian distributions are formed around

the input variables of the known test cases (with mean values equal to the known values)

and the initial population is sampled from these Gaussian distributions. By controlling

the variance in the Gaussian distributions, it is possible to set the range of exploration

around the known test cases.

4.5 Enhancement & Efficiency Study

The research questions for the enhancement and efficiency empirical study are: RQ3.

Enhancing Latency: Can latency be improved by algorithms that implement the pro-

posed combination of minimisation and generation?

RQ4. Assessing Efficiency: How efficient is the proposed approach to enhancing

latency of test suites? Which search algorithm performs best for the proposed approach?

4.5.1 Subject Programs

A set of well-known benchmark programs for structural test data generation techniques

is used. These are described in Table 4.3.

Triangle1 is an implementation of the widely used program that determines whether

the given three numeric values, each representing the length of a segment, can form a

triangle. Triangle1 is used by Michael and McGraw in their study of test data genera-

tion [140]. Triangle2 is an alternative implementation of the same program by Sthamer

142 CHAPTER 4. TEST SUITE LATENCY

Program Branches Search Space

triangle1 20 296

triangle2 26 296

remainder 18 264

complexbranch 22 2192

Table 4.3: Subject programs for the latency enhancement study

who also studied test data generation for remainder, a program that calculates the re-

mainder of the division of two integer input [195]. Finally, complexbranch is a program

specifically created as a challenge for test data generation techniques [211]. It contains

several branches that are known to be hard to cover. For all programs, the search space

is both large and non-trivial.

The initial test suites for the subject programs are generated such that 100% branch

coverage is achieved. The initial test suites for the studied programs were generated by

branch-by-branch approach. Programs were instrumented for the measurement of branch

coverage. For each branch in the program, a single test case was generated to make the

predicates both true and false. This is standard practice in search based test data

generation [139].

4.5.2 Experimental Design

The comparison between the hill climbing algorithm and EDA is performed by allowing

both algorithms 3,000 fitness evaluations. Both algorithms are also compared to ran-

dom test data generation technique, which generates 3,000 random test cases. All three

algorithms are executed 30 times to factor out their inherent stochastic properties.

The fitness function described in Section 4.4.1 is used for both algorithms in order to

facilitate comparison. The distance in quality metric for a single test case is measured by

the Hamming distance between two binary strings that correspond to the code coverage

of each test case. The distance between two test cases is measured by simply taking

4.5. ENHANCEMENT & EFFICIENCY STUDY 143

the Euclidean distance between two input vectors, which are numeric for all programs

studied.

Following Korel [105], the neighbours in the hill climbing algorithm are generated

by adding and subtracting 1 to each input variable in the current test case. Since the

fitness function encourages the solution to move farther away from the original test case,

it is possible that the algorithm exhausts the given fitness evaluations while moving

arbitrarily farther away from the original test case. Therefore, the search is restricted to

10 ascents from the original test case.

The maximum number of ascents that the hill climbing algorithm can take for a single

test case is limited to 10 times, because it is possible for the algorithm to exhaust all

the given fitness evaluations for the generation of a single test case for which arbitrarily

large number of ascents is allowed. For example, if the algorithm is considering a test

case (x, y) which makes the predicate (x == 10) to be true and the original test case

is (10, 0), it is possible to increase the fitness value by moving y away from 0 to either

−231 or 231− 1, exhausting the fitness evaluations on the way. The restriction is applied

only for the comparison of different algorithms.

For the initial Gaussian distributions that are used for the initialisation of EDA, the

standard deviation values are set to 3 for all input variables. The population size is set

to 30. The algorithm terminates under two conclusions: 1) the population converges; or

2) the total number of generations processed exceeds 100.

4.5.3 Results and Analysis

Figure 4.4 shows the result of the attempts to enhance low latency of test suites by

generating additional test cases with the algorithms described above. Each algorithm

is executed 30 times, resulting in 30 different enhanced test suites. For each enhanced

test suite, the additional greedy algorithm is applied repeatedly in order to measure the

quality metric (the branch coverage), with the average plotted in Figure 4.4. It should

144 CHAPTER 4. TEST SUITE LATENCY

●

●●●●●●●●●●●●●●●●●●
●

●
●

●

●
●

●

●
●

●
●

●
●●●●●

●

●
●

0 10 20 30 40 50 60

0
20

40
60

80
10

0

Times that reduction technique has been applied

A
ve

ra
ge

 m
ax

im
um

 b
ra

nc
h

co
ve

ra
ge

(%
)

●●●
●

●

●

Triangle1

●

●

Hill Climbing
EDA
Random
Original

●

●●●●●●●●●●●●●●●
●

●

●●●
●●

●

●

●

0 10 20 30 40 50 60

0
20

40
60

80
10

0
Times that reduction technique has been applied

A
ve

ra
ge

 m
ax

im
um

 b
ra

nc
h

co
ve

ra
ge

(%
)

●

●
●

●

●

●
●●●●

Triangle2

●

●

Hill Climbing
EDA
Random
Original

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●
●●

●

●

0 10 20 30 40 50 60

0
20

40
60

80
10

0

Times that reduction technique has been applied

A
ve

ra
ge

 m
ax

im
um

 b
ra

nc
h

co
ve

ra
ge

(%
)

●

●●●●

●

Remainder

●

●

Hill Climbing
EDA
Random
Original

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●

●

●

●
●●●

●●●

0 10 20 30 40 50 60

0
20

40
60

80
10

0

Times that reduction technique has been applied

A
ve

ra
ge

 m
ax

im
um

 b
ra

nc
h

co
ve

ra
ge

(%
)

●

●
●

●

●
●●●●●

ComplexBranch

●

●

Hill Climbing
EDA
Random
Original

Figure 4.4: Results of latency enhancement : Each algorithm is given an identical budget
of fitness evaluations for fair comparison of results. This budget allows the random search
to produce suites that allow more minimisations to be made for a given budget. However,
as can be seen, these suites are not as latent as those produced by the Hill Climber. The
EDA can sometime outperform both Hill Climber and EDA in the coverage achieved
by the first few minimisations, but it is the most expensive of the approaches, and the
latency of its suites diminishes most rapidly.

4.5. ENHANCEMENT & EFFICIENCY STUDY 145

be noted that the latency rates, λ(coverage)(0)(greedy), are different at each execution

of EDA and the hill climbing algorithm due to their inherent stochastic property. The

results plotted in Figure 4.4 include only up to min(λ(coverage)(0)(greedy)) minimisa-

tions indicating worst case performance. On the other hand, the results for the random

test data generation are plotted only up to 50 minimisations. The solid line with N

represents the latency of the original test suites.

The results from the hill climbing algorithm show that the enhancement strategy

has improved the latency for all four programs, which answers RQ3. For remainder

and complexbranch, the hill climbing algorithm manages to enhance the latency of test

suites so that 100% branch coverage is maintained across consecutive minimisations.

For triangle1 and triangle2, the enhanced test suites fail to maintain 100% branch

coverage but their coverage drops much more slowly than both that of the original test

suite and those enhanced by other algorithms.

The reason why the hill climbing algorithm cannot maintain 100% branch coverage

for triangle1 and triangle2 can be found in the semantics of the programs. The

program triangle1 contains a branch that determines whether the given 3 integers

form an equilateral triangle. The definition of the neighbours used in the hill climbing

algorithm prevents any generation of fitter neighbour for this branch. This is because

the algorithm changes only a single input at a time to generate neighbouring solutions,

preventing itself from reproducing a test case that corresponds to an equilateral triangle

from another. However, from the original test case that forms an equilateral triangle,

EDA generates three Gaussian distributions with the same mean value, which results in

high probability of generating another test case that forms an equilateral triangle.

The program triangle2 contains, apart from the branch that determines an equi-

lateral triangle, branches that determine whether the triangle is a right-angled triangle

or not. Both algorithms will explore around the original test case (a, b, c) such that

a2 + b2 = c2. Neither the Gaussian distributions nor the neighbourhood definition used

146 CHAPTER 4. TEST SUITE LATENCY

with the hill climbing algorithm is appropriate for finding an alternative test case that

satisfies the condition.

The results for the program remainder are interesting because the random test

data generation manages to maintain quality metric of 87.5% branch coverage. The

remaining 12.5% branch coverage is controlled by two different predicates in the program

that require either of the two input variable (a, b) to be equal to 0. The hill climbing

algorithm shows the most successful performance because the neighbours are generated

by changing a single input variable at a time, retaining the critical input value. On the

other hand, the results from EDA show that the algorithm fails to retain the critical

input value.

It is interesting to observe that the result of the random test data generation tech-

nique forms a flat plateau at different levels for different programs. This confirms findings

of previous studies that show random test data generation can achieve a certain level of

coverage, but cannot exceed this [139]. It should be also noted that, being a population-

based evolutionary algorithm, EDA spends much larger amount of fitness evaluations

in order to produce a single test case. This explains why the plotted lines for EDA are

much shorter than those of other algorithms.

Program λ̄random σrandom λ̄EDA σEDA λ̄HC σHC pH1 pH2 pH3

triangle1 1.00 0.00 4.57 1.01 18.37 3.56 < 2.2e-16 < 2.2e-16 < 2.2e-16
triangle2 1.00 0.00 1.00 0.00 1.00 0.00 N/A N/A N/A
remainder 1.00 0.00 1.13 0.35 32.60 3.89 < 2.2e-16 0.0217 < 2.2e-16

complexbranch 1.00 0.00 1.00 0.00 20.67 2.66 < 2.2e-16 < 2.2e-16 < 2.2e-16

Table 4.4: Statistical analysis of latency enhancement strategy : The results of this anal-
ysis confirm statistically what can be seen visually in Figure 4.4; that the Hill Climbing
is the most effective at enhancing the latency of test suites to which it was applied.

Table 4.4 shows the statistical analysis of the results shown in Figure 4.4. For each

enhanced test suite s, the latency of enhanced test suites are evaluated by measuring

the latency level λ(coverage)(0.90)(greedy)s, which means the largest number of times

4.6. THREATS TO VALIDITY 147

the additional greedy algorithm can be applied to the enhanced test suites before the

branch coverage of the outcome of the additional greedy algorithm falls below 90%.

The λ levels of three algorithms are compared pair-wise using one-tailed Welch’s

t-test with the significance level of 95%. Welch’s t-test is an adaptation of t-test for two

samples having different variance values. It tests the null hypothesis that the means of

two normally distributed groups are equal. In the context of the study, the null hypothesis

is that the λ levels achieved by different algorithms are are equal to each other. Three

alternative hypothesis are formed as follows: H1. λ levels of EDA are greater than those of

the random test data generation; H2. λ levels of the hill climbing algorithm are greater

than those of the random test data generation; and H3. λ levels of the hill climbing

algorithm are greater than those of EDA.

Apart from triangle2 for which all three algorithms fail to increase λ above 1.0,

the observed p-values for both H2 and H3 are significant at the 95% confidence level,

confirming the alternative hypothesis that the λ levels of the hill climbing algorithm are

higher than those of the random test data generation. The observed p-values for H1 for

triangle1 and remainder are also significant at the 95% confidence level, confirming

the alternative hypothesis that the λ levels of EDA are higher than those of the random

test data generation. Overall, the statistical analysis of the results suggests that the hill

climbing algorithm is the most effective algorithm among the three algorithms studied.

This answers RQ4.

4.6 Threats to Validity

Threats to internal validity concern the factors that might have affected both the em-

pirical study of latency measurement (Section 4.3) and empirical study of enhancement

strategy (Section 4.5). For the empirical study of latency measurement, one potential

concern involves the accuracy of the instrumentation of the subject programs. To ad-

148 CHAPTER 4. TEST SUITE LATENCY

dress this, a well-tested and widely used open source profiler and compiler tool (gcov

& gcc respectively) were used to collect the code coverage. The analysed test suites are

retrieved from a well-managed and widely-used software archive [41]. For the empirical

study of enhancement strategy, the potential internal threat comes from the selection

and configuration of the search algorithms utilised in the chapter. Since the test data

generation approach adopted in the study is a novel one, no algorithm is known to be

effective for the problem. Both algorithms are chosen for their ability to search near the

known solutions, and their strengths and weaknesses for certain types of branches are

discussed in Section 4.5.3.

The empirical study uses Welch’s t-test to evaluate different techniques. As described

in Section 3.5.1, Welch’s t-test assumes a parametric distribution of the samples. The

exact distribution of the sample for this empirical study is not known; however, it will

approximate a normal distribution with a sufficiently large sample size according to the

central limit theorem [161].

Threats to external validity concern the conditions that limit generalisation from

the result. The primary concern for the study is the representativeness of the programs

used in the feasibility because they are small benchmark programs. However, the sizes

of search space for the programs are large and nontrivial. The programs also have suc-

cessfully served as benchmarks for previous work on structural test data generation

techniques [140, 195, 211]. Additional research will address the concern by considering

additional programs.

4.7 Conclusions

This chapter introduced the concept of latency in test suites, providing theoretical for-

mulations and empirical results for latency measurements and enhancement. In order to

enhance low latency of test suites, the chapter introduced a test data generation tech-

4.7. CONCLUSIONS 149

nique based on the exploration of the search space around existing selected test cases.

The strategy combines test data generation techniques with test suite minimisation tech-

niques. The enhancement strategy study performed on benchmark programs shows that

the proposed approach is capable of improving the latency of test suites.

150 CHAPTER 4. TEST SUITE LATENCY

Chapter 5

Test Data Augmentation for

On-Demand Regression Testing

5.1 Introduction

The latency enhancement strategy outlined in Chapter 4 proposes a novel approach to

regression testing. The strategy essentially depends on a method of generating new test

data from the known and existing data. If the cost of this method is low enough, we

can envision an entirely new way of performing regression testing that is free from the

woes of low latency: an on-demand regression testing. In on-demand regression testing,

the tester does not maintain a large pool of test cases with the expectation that the

redundancy in the test suite will help fault detection. Instead, the tester keeps a small

but essential set of test cases that individually satisfy one or a few of the testing goals.

An iteration of the overall regression testing process is performed by generating a new

set of test cases from this core pool of test data whenever required. In other words, the

tester keeps a small number of high-value test cases as templates, which are then used

to generate actual test data for regression testing.

This approach eliminates the need for the redundancy in the managed test suite,

151

152 CHAPTER 5. ON-DEMAND REGRESSION TESTING

while still preserving high level of latency throughout multiple iterations of regression

testing. In fact, the latency of the on-demand test suite is only limited by the size of

valid input space defined by the semantics of the SUT. The proposed approach does

not necessarily have to replace the current approach of maintaining a test suite across

iterations; two approaches can be combined to allow the tester a mixture of known test

data and novel data generated on-demand.

The idea of using existing test data in order to generate additional test data renders

itself very well to search-based software testing, because most meta-heuristic algorithms

that have been used for test data generation require one or more initial solutions to

start the search from. While the idea of test data augmentation may apply to other

forms of automated test data generation, this chapter focuses on search-based test data

augmentation in order to introduce concrete algorithms for augmentation and to eval-

uate the proposed augmentation approach against existing approaches to automated

‘from scratch’ test data generation. The chapter also focuses on structural test ade-

quacy, though, once again, this focus serves merely to allow us to introduce concrete

instantiations of the idea of test data augmentation; the existing structurally adequate

test data is augmented with additional structurally adequate test data.

Like other forms of automated test data generation, current approaches to search-

based test data generation start from a blank sheet of paper. That is, they assume that

no test cases exist. Based on the execution of an instrumented version of the program

under test, structural search-based testing seeks to find test cases that cover certain paths

of interest (as measured by the instrumentation). The measurement of the difference

between a path traversed and a desired path provide the fitness function value that is

used to guide the search. As well as structural testing [68, 75, 98, 138], search-based

approaches have been applied to functional testing [203, 206], and verification of non-

functional properties [157, 212, 213]. However, in every case, the search starts from

scratch, assuming no previous test data exist. Where there are already test data, these

5.1. INTRODUCTION 153

might be exploited with the potential to both reduce subsequent test data generation

effort and to improve its effectiveness. It is this potential of existing test data that is

explored in this chapter.

This chapter introduces test data augmentation, a technique that generates test

data by exploiting the existing test data. In the context of regression testing, the term

augmentation was used to represent the problem of generating additional test cases that

will test the newly added features of the System Under Test (SUT) [79]. Here, we use

the term simply to represent the process of adding additional test cases to an existing

test suite to improve its fault detection capability, without assuming any change to SUT.

But why do we want to generate additional test cases if there already exists a test suite?

There can be various reasons. Since testing can only reveal existence of faults and not

the lack of them, executing additional test cases can only increase the confidence in the

program under test. Empirical research in test case management techniques has also

shown that it is desirable to have certain level of redundancy in testing [165, 166, 176].

Additional test suites can be also beneficial for verification of fault fixes or statistical

estimation of program reliability.

The proposed test data augmentation technique uses meta-heuristic search to search

for a test case that behaves in the same way as, but with different test input from, the

original test case. This is achieved by applying a series of a pre-defined set of modification

operators to the original test case. Each modification operator applies some changes to

the original test case while preserving a certain aspect of the original test case. The new

test case is included in the new test suite if it shows the same behaviour as the original

test case. Here the same behaviour means the same contribution to test objectives. For

example, for structural testing the new and modified test case should also achieve the

same coverage as the original test case.

This chapter introduces a novel search-based test data augmentation algorithm and

presents the results of an empirical comparison with one of the state-of-art test data

154 CHAPTER 5. ON-DEMAND REGRESSION TESTING

generation techniques. Both the efficiency and the effectiveness of two techniques are

evaluated. The results are promising; savings in the cost as large as two orders of magni-

tude can be observed. With a suitable configuration, test data augmentation can generate

an additional test suite that achieves the same structural coverage as the original test

suite. Furthermore, having the new test suites generated by test data augmentation

technique proves to be beneficial both quantitatively and qualitatively. First, it tends

to allow for higher mutation score, showing the benefits of having additional test suites.

More interestingly, the mutation faults detected by test data augmentation technique are

different from those that are detected by the original test suite and the ones generated

by a state-of-art search-based test data generation technique; the details of the results

from mutation testing are discussed in Secton 5.6.3.

The rest of the chapter1 is organised as follows. Section 5.2 discusses background

material on test data generation. Section 5.3 presents the motivation for test data aug-

mentation and the research questions. Section 5.4 illustrates the proposed search-based

test data augmentation technique in detail. Section 5.5 describes experimental setup

used for the empirical study. Section 5.6 presents the empirical evaluation of the pro-

posed technique. Section 5.7 interprets the empirical results. Section 5.8 presents a case

study with real world subjects. Section ?? discusses the potential threats to validity.

Finally, Section 5.10 concludes and lists directions for future work.

5.2 Background

Automatic test data generation using meta-heuristic search techniques has been a pro-

ductive area of research in recent years. Manual test data generation, sill widely used

in the industry, is very costly and laborious. The application of meta-heuristic search

1This chapter is an extended version of the author’s STVR paper: S. Yoo and M. Harman, Test Data
Augmentation: Generating New Test Data from Existing Test Data. Software Testing, Verification and
Reliability, under revision.

5.2. BACKGROUND 155

techniques to test data generation presents a promising possibility of automating the

process. Various meta-heuristics including hill climbing, simulated annealing and ge-

netic algorithms have been applied to testing problems with objectives such as structural

coverage, specification-based testing, and non-functional properties [139].

(1) read(x)
(2) read(y)
(3) if x == y then print x
(4) else print x - y

Search-based test data generation is a form of dynamic testing. The program under

test has to be instrumented according to the test objectives, e.g. structural coverage or

execution time. The meta-heuristic search aims to find test data that meets the testing

objectives by executing the instrumented program for the evaluation of the fitness of a

candidate solution. The combination of program execution and search algorithm dates

back to Miller and Spooner [141]. They produced a straight version of the program

under test for each path, converting predicates to constraints. Solving these constraints

produces a test input that executes the chosen path. Later, Korel extended the idea for

Pascal programs using a hill climbing local search algorithm [105]. Korel formalised a

concept called branch distance. Branch distance of a predicate measures how close it is

to being evaluated as true. Once instrumented for branch distance, a branch can be

resolved in a way that is desirable for the test objective by optimising the distance. For

example, suppose that we want to execute the true branch of the predicate in line (3)

of the following program. The branch distance for the predicate x == y is calculated as

|x − y|. This forms the fitness function for a test input. That is, any test input to the

program, t = (x, y), is evaluated using f(t) = |x−y| in order to reach the true branch in

line (3). It is then possible to apply a variety of meta-heuristic optimisation techniques

to minimise or maximise the fitness function. In the example program, minimising the

156 CHAPTER 5. ON-DEMAND REGRESSION TESTING

fitness function will produce a test input t = (x, y) such that |x − y| = 0, i.e., the one

that will execute the true branch.

The branch distance concept is a generic approach to structural testing and can be

used with other meta-heuristic search techniques such as simulated annealing [204, 205],

genetic algorithms [9, 20, 140, 155, 211], Estimation of Distribution Algorithm (EDA)

and scatter search [185, 186]. Search-based test data generation has been applied to

testing of non-functional properties such as worst-case execution time [157, 212] and

dynamic memory consumption [114].

Several techniques were developed in order to overcome problems in search-based test

data generation, e.g., large search space and challenging search landscape. Input domain

reduction tries to reduce the size of the search space by putting constraints to test input

using symbolic execution [148], or slicing the program under test so that irrelevant test

inputs are removed [74]. Testability transformation tries to transform search landscape

into one that is friendlier to automated test data generation [87, 109, 137]. For example,

removing a flag variable can transform a large plateau into a landscape with gradient.

Test data are generated from the transformed program, but applied to the original

program to test it.

The idea of using existing test cases for the generation of new ones is not entirely

new. Similar ideas have appeared previously in the literature. Baudry et al. presented the

bacteriologic algorithm for test case optimisation [11–13]. The bacteriologic algorithm

applies a series of mutations on an initial test suite, and incrementally evolves a test

suite that is deemed to be superior to the original one in terms of mutation score. The

algorithm is initialised with an existing test suite, in a manner similar to the test data

augmentation technique proposed in this chapter. Tlili et al. improved Evolutionary Real-

Time Testing (ERTT) by seeding the ERTT algorithm for the Worst-Case Execution

Time analysis with a test suite that achieves high structural coverage [201]. Without

the seeding approach, some parts of the source code were never executed during the

5.3. PROBLEM STATEMENT 157

search. The seeding approach helped the ERTT algorithm to generate more reliable

WCET solutions that execute the larger parts of the program under test. The differences

between these algorithms and the technique proposed in this chapter will be discussed

in Section 5.4.5.

5.3 Problem Statement

5.3.1 Motivations for Search-based Test Data Augmentation

This chapter presents a search-based test data generation that uses the knowledge of

existing test data. We call the proposed approach test data augmentation; it aims to

augment existing test data with alternatives derived from those already available. In

many cases, it is not unrealistic to assume that a tester in a software organisation already

has some test data. Why do we want more test data when we already have some? Since

testing can only reveal the existence of a fault, not the lack of it, repeated testing can

only raise the confidence in the correctness of the program under test. Having a low-cost

method of generating additional test data from existing data can be beneficial in many

ways. It may prevent the program under test becoming over-fitted to existing set of

test data. It may be helpful when the tester wants to gain statistical confidence in the

correctness of the program behaviour.

The knowledge of existing test data can make the generation of the new test data less

expensive. Consider the simplified visualisation of a fitness landscape in Figure 5.1. The

x-axis represents all the possible test data in the input domain; the y-axis depicts the

possible fitness values for some unspecified test objective. The image in the left shows

how the traditional search-based test data generation techniques work; they start with

a random test data and try to find a qualifying solution by optimising on the fitness

function. The image on the right shows how we can exploit the knowledge of existing

test data to generate additional test data. Assuming that there exist a small window of

158 CHAPTER 5. ON-DEMAND REGRESSION TESTING

Input Domain

Fi
tn

es
s

Qualifying fitness level

Final solution

Input Domain

Fi
tn

es
s

Qualifying fitness level

Existing solution

Figure 5.1: The top image illustrates the way in which traditional search-based test data
generation techniques work. Meta-heuristic search techniques start from one or more ran-
dom solutions, and try to obtain a qualifying solution by optimising the fitness function.
The bottom image shows how the test data augmentation works. Since a qualifying so-
lution is already known, meta-heuristic search is applied to explore regions of the search
space that are close to the qualifying solution.

qualifying test data around the one that we already have found, we can expect to find

additional test data, near the existing one, that also qualify.

A meta-heuristic search similar to the one depicted on the right side of Figure 5.1

has two major advantages compared to other meta-heuristic optimisation. The shape

of search landscape becomes less problematic since the search starts from a point with

sufficient fitness value. Similarly, the size of search landscape becomes less problematic

since the search only needs to explore the regions of search space that are close to the

existing solution.

This chapter presents a search-based test data augmentation technique, which for-

5.3. PROBLEM STATEMENT 159

mulates test data augmentation as a search around the existing test data. In order to

perform search-based test data augmentation, the following elements need to be defined:

• Neighbourhood: in order to search near the existing test data, we have to define

what constitute the near-neighbours that we will search through.

• Search Radius: given a definition of near-neighbours, how far from the existing

test data should we search?

Once the definition of near-neighbours and the search distance is fixed, the proposed

search-based test data augmentation proceeds following the algorithm outlined in Algo-

rithm 4. While Algorithm 4 is based on a local search technique, the same idea can be

applied to other meta-heuristic search techniques.

Algorithm 4: Outline of search-based test data augmentation

(1) currentSol = existingSol
(2) while within the search radius
(3) if near neighbours of currentSol contains a qualifying solution

newSol
(4) currentSol = newSol
(5) else
(6) break
(7) return currentSol

5.3.2 Problem Statement

Depending on the program under test and the relevant test objective, there may or may

not exist a ‘window of qualification’ as described in Section 5.3.1. The definition of being

“near” to the existing test data also plays an important role in deciding whether such

a window of qualification exists. In general, there is no particular reason to believe that

it always exists. Indeed, a counter example can be found by considering the predicate

160 CHAPTER 5. ON-DEMAND REGRESSION TESTING

x == 0. Only the test data that has 0 as the value of x can qualify if we are trying

to make the predicate true. Therefore, the thesis presents the proposed approach as

a complimentary alternative to existing techniques, not as a replacement, and aims to

observe the trade-off between two different approaches. Indeed, the proposed approach

to test data generation assumes the existence of a known set of test data, which has to

be generated using some other techniques including manual test data generation.

This chapter evaluates test data augmentation in terms of efficiency and effective-

ness across different input domain, with comparison to Iguana, a state-of-the-art tool

for search-based test data generation [136]. The first research question concerns the ef-

ficiency of the proposed technique. Efficiency is measured by counting the number of

times that the program under test has to be executed in order to generate a set of test

data that meets test objectives.

RQ1. Efficiency : How efficient is test data augmentation, compared to search-

based test data generation, across different input domains?

The second and third research questions concern the effectiveness of test data aug-

mentation, in terms of branch coverage and mutation score respectively.

RQ2. Coverage: How much branch coverage does test data augmentation technique

achieve?

RQ3. Mutation Faults: How high a mutation score does test data augmentation

technique achieve?

Finally, we parameterise the definition of neighbouring solutions, search radius, and

the size of the input domain and observe how much impact they have on efficiency and

effectiveness of the proposed approach.

5.4. SEARCH-BASED TEST DATA AUGMENTATION 161

RQ4. Settings: What variance in effectiveness and efficiency is observed for differ-

ent set-up of neighbourhood and search radius?

5.4 Search-based Test Data Augmentation

For the introduction of the proposed test data augmentation technique and the first em-

pirical study, we confine our discussion to test data augmentation of numerical test input

composed as a vector of integers. This allows us to have clear and intuitive definitions.

However, the proposed approach can be applied to other types of test input provided

that suitable definitions of ‘nearness’ and ‘search radius’ can be constructed. The case

study in Section 5.8 presents how search-based test data augmentation technique can

be applied to programs that require more sophisticated input type such as strings and

arrays.

The proposed search-based test data augmentation is based on the hill climbing

algorithm, but there is one important difference between the proposed technique and

the ‘normal’ hill climbing algorithm (and test data generation techniques that are based

on hill climbing). The hill climbing algorithms adopt random restart in order to escape

local optima; test data augmentation assumes that the existing test data belong to

global optima, and, therefore, always starts from a global optimum that corresponds to

the existing test data. Note that there may exist more than one globally optimal solution

in a search-based test data generation problem. For example, suppose the goal of a given

search-based test data generation problem is to cover the true branch of the predicate

x > 3. Any value of x that is greater than 3 will cover the branch, and therefore will

qualify as a globally optimal solution.

Since the lack of randomness can inhibit the variety of resulting solutions, the second

162 CHAPTER 5. ON-DEMAND REGRESSION TESTING

difference is introduced. In hill climbing algorithms, the move towards the next candi-

date solution (climb) can be made in a few different ways including first-ascent, where

the algorithm moves to the first neighbouring solution that has higher fitness than the

current solution, and steepest-ascent, where the algorithm moves to the neighbouring so-

lution with highest fitness. However, both approaches behave deterministically when the

starting point is fixed. Therefore, the proposed test data augmentation adopts random-

first-ascent, where the algorithm examines the neighbouring solutions in a random order

and moves to the first neighbouring solution with a higher fitness than the current solu-

tion.

5.4.1 Neighbouring Solutions and Interaction Level

In search-based test data generation, neighbouring solutions of a given solution are de-

fined as the solutions that have the minimal difference from the original. For example,

for integer input domain, neighbouring solution of an integer i is often defined to be

{i− 1, i + 1}. This study formulates the process of obtaining neighbouring solutions as

an application of a set of modification operators, which is a natural extension of existing

methods.

This study utilises four modification operators. Following Korel, the first and second

modification operators are defined as λx.x+1 and λx.x−1 [105]. When applied to integer

values, these two operators generate test inputs that are shifted from the original. The

third and the fourth modification operators are λx.x ∗ 2 and λx.dx/2e. These operators

generate test inputs that are scaled from the original.

Finally, we define interaction level as the number of variables that are modified at

the same time. We borrow the concept of ‘interaction’ from interaction testing, which

is a test for interaction of different configurations [34, 159]. If a modification operator is

applied to a test input vector of size m with interaction level of i, it means all

 m

i

5.4. SEARCH-BASED TEST DATA AUGMENTATION 163

possible combinations of variables will be modified by the operator at the same time,

resulting in a neighbouring solution set of size no bigger than

 m

i

.

For example, suppose that an integer input vector (2, 3, 1) is modified with the

described modification operators using interaction level of 2. With λx.x + 1 we get

{(3, 4, 1), (3, 3, 2), (2, 4, 2)}. With λx.x − 1 we get {(1, 2, 1), (1, 3, 0), (2, 2, 0)}. Similarly,

λx.x∗2 and λx.dx/2e result in {(4, 6, 1), (4, 3, 2), (2, 6, 2)} and {(1, 1, 1), (1, 3, 0), (2, 1, 0)}

respectively. The final neighbouring solution set is the union of four sets: {(3, 4, 1), (3, 3, 2),

(2, 4, 2), (1, 2, 1), (1, 3, 0), (2, 2, 0), (4, 6, 1), (4, 3, 2), (2, 6, 2), (1, 1, 1), (2, 1, 0)}.

Modification operators and interaction level allows flexible approach towards the

generation of neighbouring solutions. In existing search-based test data generation, the

neighbouring solutions are explored to improve the fitness value. In test data augmen-

tation, neighbouring solutions are generated from an existing solutions that already

qualifies for the given objective. Therefore, the neighbouring solutions should aim to

preserve certain properties found in the original solution. For example, consider a pred-

icate x * 2 = y and a test input (x, y) = (3, 6). Applying λx.x + 1 and λx.x − 1 with

any interaction level results in different resolution of the predicate. However, applying

λx.x ∗ 2 with interaction level of 2 results in (x, y) = (6, 12), which still resolves the

predicate as true.

From the combined use of modification operators and interaction level, we can draw

an analogy between the test data augmentation technique and mutation testing. In

mutation testing, the program under test is mutated to simulate actual faults. In test

data augmentation, the processed is reversed by modifying the test cases rather than the

program. The constraint for mutation testing is that the mutants should be executable,

whereas the constraint for test data augmentation is that the new test case remains an

eligible test case for the program.

164 CHAPTER 5. ON-DEMAND REGRESSION TESTING

5.4.2 Search Radius

Search radius is defined as the upper limit to the number of modifications that can be

applied to the original test case. The number of modifications has to have an upper

limit so that the cost of the search process can be controlled. For example, suppose

we are modifying a test input vector (x, y) = (2, 1) in order to resolve the predicate

x > y to true, with interaction level of 1. A successful chain of modifications might, for

example, consist of applying λx.x + 1 repeatedly to x until the value of x reaches the

maximum possible value within the input domain, MAX. The algorithm will evaluate

every candidate solution in {(x, 1)|2 ≤ x ≤MAX} by executing the program under test

MAX − 1 times. This may be too costly. By having an upper limit to the number of

modifications, it is possible to control the size of the search area, and thereby the cost

of the search.

However, within the predefined search radius, the proposed test data augmentation

technique is encouraged to move away from the original test data as far as possible. The

intuitive underlying assumption is that, when the program under test has already been

tested with the existing set of test data, the set of additional test data is most valuable

when it is as different from the original set as possible, while still fulfilling the criteria.

We call this the distance-value assumption.

5.4.3 Fitness Function

The proposed search-based test data augmentation technique uses a novel fitness function

for test data generation. Since it assumes that an existing test input that meets the test

objective is available, the new fitness function aims not to decrease the fitness below the

qualifying level, rather than to increase the fitness above the qualifying level.

Let t be the individual test input, the fitness of which is being measured, and t′ be

the original test input known to meet the test objective. Let µ be the measurement of

quality of testing in terms of meeting the test objective. Let ∆µ(t, t′) be the difference

5.4. SEARCH-BASED TEST DATA AUGMENTATION 165

in quality metric between two test inputs:

∆µ(t, t′) = |µ({t})− µ({t′})|

Since this study only considers programs that require numeric test input vector, the

Euclidian distance between vectors are used for ∆d. Similarly ∆d(t, t
′) be the distance

between the input vectors of two test cases.

∆d(t, t
′) = the distance between t and t′

It may be difficult to measure the difference in µ quantitatively; this study utilises the

hamming distance between two binary strings that represent the branch coverage record

of t and t′ for ∆µ. Hamming distance is the number of bits that need to be flipped in

order to transform one binary string into another. Here, lower hamming distance means

that t and t′ cover similar branches in the program under test. Without losing generality,

we define the fitness function to be maximised, i.e. higher fitness values are better. Based

on these, the fitness value of the test case t, f(t), is defined as follows:

f(t) =

∆d(t, t

′) if ∆fR(t, t′) = 0 ∧∆d(t, t
′) > 0

0 if ∆fR(t, t′) = 0 ∧∆d(t, t
′) = 0

−∆µ(t, t′) if ∆fR(t, t′) > 0 ∧∆d(t, t
′) > 0

If t is the same as t′, the fitness function returns 0. However, if t is different from t′

yet still achieves the same quality metric (∆µ(t, t′) = 0), then t is guaranteed to receive

a positive fitness value, guiding the search towards t. Because of ∆d(t, t
′), the search is

encouraged to move farther away from t′. Finally, if t is different from t′ but has lower

quality metric, t is guaranteed to receive a negative fitness value, thereby ensuring that

the search never escapes the window of qualification.

166 CHAPTER 5. ON-DEMAND REGRESSION TESTING

It should be noted that, with this particular search problem, finding the global opti-

mum is not as important as finding as many qualifying solutions as possible. From the

definition of the fitness function, qualifying solutions will be the test inputs with positive

fitness values.

Algorithm 5: Test data augmentation algorithm

Input: A test suite containing existing test inputs, S, the fitness func-
tion, f , search radius, r, and a set of modification operators, M , and the
interaction level, i
Output: A new set of test inputs, S′

(1) S′ ← {}
(2) foreach t ∈ S
(3) finalSol← null
(4) currentSol← t
(5) count← 0
(6) while count < r
(7) nextSol← null
(8) N ← generateNeighbours(M, currentSol)
(9) while true
(10) remove a randomly selected neighbour, n, from N
(11) if f(n) > f(currentSol)
(12) nextSol← n
(13) break
(14) if size(N) == 0
(15) nextSol← null
(16) break
(17) if nextSol == null
(18) break
(19) else
(20) currentSol← nextSol
(21) count← count+ 1
(22) if finalSol 6= t
(23) S′ ← S′ ∪ {finalSol}
(24) return S′

5.4.4 Algorithm

The pseudo-code of test data augmentation algorithm used in this chapter is shown in

Algorithm 5. The main loop in line (2) iterates over each existing test input in the given

5.4. SEARCH-BASED TEST DATA AUGMENTATION 167

test suite, S. After initialisation in lines from (3) to (5), the inner loop in line (6) initiates

the search process. In line (8), the algorithm generates the set of neighbouring solutions,

N , by calling GenerateNeighbours(M, currentSol). The loop in line (9) repeats until

there is no neighbouring solution in N . If the algorithm finds a neighbouring solution

with higher fitness value than currentSol, finalSol is updated and the algorithm exits

the loop. If N runs out of solutions, nextSol is marked as null and the loop in line (8)

exits. If nextSol equals null in line (17), it means that none of the neighbouring solutions

in N had higher fitness value than currentSol, in which case the loop in line (6) exits

even if count ≥ r. Otherwise, currentSol is updated with the non-null nextSol and next

move begins. The loop in line (6) will eventually exit when count becomes equal to r.

Finally, if the algorithm has found finalSol that is not null, it is added to the new test

suite, S′.

Algorithm 6: GenerateNeighbours() subroutine

Input: An existing test input vector, t, and a set of modification opera-
tors, M , and the interaction level, i
Output: A set of neighbouring solutions, N
(1) N ← {}
(2) foreach operator op in M
(3) foreach each combination C of i variables out of t
(4) newNeighbour ← copy(t)
(5) foreach variable v in C
(6) update newNeighbour by replacing the value of v with

op(v)
(7) N ← N ∪ {newNeighbour}
(8) return N

The psuedo-code of the subroutine that generates neighbouring solutions is shown

in Algorithm 6. The loop in line (2) iterates over all modification operators available.

Each of these operators is applied to

 m

i

 combinations of input variables, which are

stored in newNeighbour. The variables not in the given combination remain the same

as t since newNeighbour is initialised with t in line (4).

168 CHAPTER 5. ON-DEMAND REGRESSION TESTING

A precise formulation of average computational complexity for the algorithm is prob-

lematic, due to the inherent probabilistic nature of the algorithm. For example, it is not

always possible to determine the probability of a neighbouring solution having a higher

fitness value than the current solution. However, it is possible to obtain the exact up-

per bound for the worst-case execution time. Let S be the existing test suite, which

contains test cases that are input vectors of size m. Let M be the set of modification

operators, i the interaction level, and r the search radius. For each test case in S, the

algorithm considers up to

 m

i

 neighbouring solutions, which can be repeated for r

times at maximum. For each consideration, |M | operators are applied. Therefore, the

upper bound for the worst-case execution time is calculated as following:

O(|S| ·

 m

i

 · |M | · r)
5.4.5 Differences to Existing Techniques

The idea of initialising a meta-heuristic algorithm with a set of known solutions is shared

between the search-based test data augmentation technique and other existing techniques

such as the bacteriologic algorithm by Baudry et al. [11–13] or the seeded Evolutionary

Real-Time Testing [201]. However, these algorithms differ from the proposed technique

in one important aspect, which is preservation of the behaviour of the original test data.

The bacteriologic algorithm does not consider the behaviour of individual test cases,

because its fitness function evaluates test cases only collectively. With the proposed test

data augmentation technique, it is possible to generate a specific test cases that follows

the exactly same execution trace of the original test case while still being different from

the original. The seeded ERTT algorithm does not preserve the behaviour of individual

test cases, because it uses one property (structural coverage) as a starting point to evolve

and improve another (WCET). Unlike the test data augmentation technique, therefore,

5.5. EXPERIMENTAL DESIGN 169

the resulting test data are not guaranteed to achieve the same level of structural coverage.

Another difference is how these two algorithms generate candidate solutions. The

bacteriologic algorithm only uses a syntax tree based mutation, and the seeded ERTT

uses selection, crossover, and mutation operators. On the other hand, the test data

augmentation technique uses a set of modification operators, which allows for more

flexibility to tailor the augmentation process for the semantics of the program under

test.

The overall approach advocated in this chapter is also very general, and is not con-

strained to any particular algorithm. That is, the chapter introduces the idea that testing

does not start, ab initio, with no existing test data. There will often be some existing

test inputs and it may make sense to start the test data generation process from any

such initial cases.

5.5 Experimental Design

This section sets out the experimental design for the empirical study that evaluates the

proposed test data augmentation technique.

5.5.1 Iguana : Hill Climbing Test Data Generation

The proposed test data augmentation technique is compared to a well known search-

based test data generation tool called Iguana (hereby referred to IG) [136]. IG uses an

advanced version of hill climbing called alternating variable method. Each input variable

in the test input is taken and adjusted, while other variables are kept constant. First the

algorithm performs what is called an exploratory phase, in which the algorithm makes a

probe movement to neighbouring solutions. If one of the probe movements turns out to be

successful, i.e. produces higher fitness, then the algorithm enters what is called a pattern

phase. In the pattern phase, the previous move is repeated in the same direction (adding

170 CHAPTER 5. ON-DEMAND REGRESSION TESTING

or subtracting to the same variable) while doubling the distance in each iteration. If such

a move produces a solution with lower fitness than current solution, then the algorithm

switches back to exploratory phase with the next input variable. This method ensures

that the algorithm reaches local or global optima quickly.

IG produces test suites that achieve branch coverage, i.e. every branch in the program

under test is evaluated to both true and false. Given a program under test, it targets

each branch in the program sequentially and tries to generate a single test input that

executes the branch. If it cannot generate a test input within set number of fitness

evaluations, the search is terminated. This study utilise the default maximum fitness

evaluation setting, which is to spend 50,000 fitness evaluations maximum per branch.

It should be noted that IG also contains test data generation toolkits that are based

on genetic algorithms. However, since the proposed test data augmentation is based on

a hill climb algorithm, the comparison is made only to the hill climb based test data

generation toolkit of IG.

5.5.2 Subject Programs

A set of well-known benchmark programs for structural test data generation techniques

is used: two versions of the triangle program, remainder and complexbranch. Each

program contains from 18 to 26 branches, which, though small, provides non-trivial

branch coverage possibilities. These programs take 2 to 6 input variables. Triangle1 is

an implementation of the widely used program that determines whether the given three

numeric values, each representing the length of a segment, can form a triangle. It is also

the example program shown in Algorithm 7. Triangle1 is used by Michael and McGraw

in their study of test data generation [140]. Triangle2 is an alternative implementation

of the same program by Sthamer who also studied test data generation for remainder,

a program that calculates the remainder of the division of the two integers input [195].

Finally, complexbranch is a program specifically created as a challenge for test data

5.5. EXPERIMENTAL DESIGN 171

generation techniques [211]. It contains several branches that are known to be hard to

cover.

One of the subject programs, remainder, constantly caused IG to consume large

enough memory to halt with 32bit integer input domain. This is not a weakness of

search-based test data generation, but rather an outcome of internal design decisions

within IG. As a result, experiments regarding remainder do not use 32bit integer input

domain and only use 8bit and 16bit integer domain.

5.5.3 Input Domain

Since one of the restrictions inherent in existing test data generation techniques is the

restriction in size of the input domain, the proposed test data augmentation technique is

tested against different input domain sizes to see if it can cope better with a significantly

large input domain than traditional techniques. Both IG and the proposed technique

were executed for three different input domain sizes : 8bit integers, [-128, 127], 16bit

integers, [-32,768, 32,767], and 32bit integers, [-2,147,483,648, 2,147,483,647]. Combined

with the number of input variables for the subject programs, this results in search spaces

ranging in sizes from 224 to 2192. Both techniques are evaluated in terms of efficiency

and effectiveness against different input domains.

5.5.4 Original Test Suites and Mutation Faults

The initial test suites used by the test data augmentation technique have been manually

generated for each subject program and each input domain so that 100% branch coverage

is achieved. For each branch in the subject programs, a single test input was generated

to make the predicates both true and false. This is standard practice in search-based

test data generation [139].

Apart from branch coverage, mutation score was used as a measure of effectiveness.

Mutation faults are based on the notion of mutation testing, where the adequacy of test

172 CHAPTER 5. ON-DEMAND REGRESSION TESTING

Mutation Operator Description

AORB Replace basic binary arithmetic ops.
AORS Replace short-cut binary arithmetic ops.
AOIU Insert basic arithmetic ops.
AOIS Insert short-cut arithmetic ops.
AODU Delete basic unary arithmetic ops.
AODS Delete short-cut arithmetic ops.
ROR Replace relational ops.
COR Replace conditional ops.
COD Delete unary conditional ops.
COI Insert unary conditional ops.
LOR Replace unary logic ops.
LOI Insert unary logic ops.
LOD Delete unary logic ops.
ASRS Replace short-cut assignment ops.

Table 5.1: A list of mutation operators used in this chapter.

cases is evaluated by introducing simple syntactic modifications to the program [27]. If

a test case reveals this modification, it kills the mutant program. The mutation score of

a test case is the total number of mutation faults that the test case has killed. A test

case with higher mutation score is assumed to have a higher chance of detecting real

faults, which is observed in several empirical studies of mutation testing for procedural

languages [62, 149].

A well known mutation testing tool, muJava, was applied to the subject programs [128].

The types of mutation operators used in the study are described in Table 5.1. Application

of these mutation operators produced 203, 241, 324, and 499 mutants for triangle1,

triangle2, remainder, and complexbranch respectively. Sets of test data generated by

different techniques were analysed against these mutants.

It should be noted that the mutation faults studied in the study may contain equiv-

alent mutants, i.e. mutants that are semantically identical to the original program. The

equivalent mutants raise serious problems for mutation testing. However, since equiva-

lent mutants cannot be killed by the original test suite nor enhanced test suites, they do

5.6. RESULTS AND ANALYSIS 173

not affect the validity of the findings of the current experiment; their existence can only

strengthen the null hypothesis.

5.5.5 Evaluations

To cater for the inherent randomness in both techniques, each individual experiment

was repeated for 20 times. By default, the interaction level was set to 1, similar to the

alternating variable method, while search radius was restricted to 10. RQ1 is answered

by comparing the average number of fitness evaluations required for the generation of

a new set of test data between the two techniques across different input domains. RQ2

and RQ3 are answered by comparing the average branch coverage and average mutation

score between the two techniques across different input domains.

RQ4 is answered by comparing efficiency and effectiveness measurements of the test

data augmentation technique against itself using different settings. In the first set of

experiments for RQ4, we change the interaction level from 1 to the size of the input

vector, while keeping other experimental factors constant, and observe effectiveness and

efficiency. In the second set of experiments for RQ4, we change the search radius from 1

to 10, while keeping other experimental factors constant, and make the same observation.

5.6 Results and Analysis

5.6.1 Efficiency Evaluation

Figure 5.2 shows the efficiency measurement of the IG test data generation technique

and test data augmentation technique (hereby denoted as TA) against the subject pro-

grams. The x-axis represents different input domains. The y-axis, which is in logarithmic

scale, represents average number of fitness evaluations required for the generation of a

new set of test data for each program. In general, test data augmentation is not much

worse than IG (remainder), or much more efficient than IG triangle1, triangle2,

174 CHAPTER 5. ON-DEMAND REGRESSION TESTING

8bit 16bit 32bit

triangle1 − fitness evaluations, i=1, r=10

1
10

0
10

00
0

IG
TA

8bit 16bit 32bit

triangle2 − fitness evaluations, i=1, r=10

1
10

0
10

00
0

IG
TA

8bit 16bit

remainder − fitness evaluations, i=1, r=10

1
5

10
50

50
0 IG

TA

8bit 16bit 32bit

complexbranch − fitness evaluations, i=1, r=10

1
10

10
0

10
00

IG
TA

Figure 5.2: Comparisons of efficiency between test data augmentation and test data
generation (using Iguana), across different input domains. The vertical axis is in loga-
rithmic scale. Plots represent the average number of fitness evaluations required for the
generation of a new set of test data. Apart from remainder, test data augmentation
always requires a smaller number of fitness evaluations in order to generate a set of test
data, which is statistically confirmed at 95% significance level. With triangle1 and
triangle2, the differences are more than two orders of magnitude.

5.6. RESULTS AND ANALYSIS 175

Subject Programs Input Domain n̄IG σ2nIG
n̄TA σ2nTA

p-value

triangle1 8bit 16030.00 110408634.00 531.30 1618.54 < 10−6

triangle1 16bit 373900.00 2043159037.00 525.30 766.85 < 10−6

triangle1 32bit 452000.00 10559180.00 585.40 2132.99 < 10−6

triangle2 8bit 9008.00 25917844.00 497.35 731.71 < 10−6

triangle2 16bit 129200.00 695019728.00 769.10 769.10 < 10−6

triangle2 32bit 158700.00 10490236.00 679.85 755.61 < 10−6

remainder 8bit 196.30 1833.06 302.50 197.00 1.0
remainder 16bit 342.80 1119.36 295.55 163.94 0.0002
complexbranch 8bit 894.40 72117.63 600.60 1918.15 0.0006
complexbranch 16bit 2053.00 380509.10 584.30 1219.27 < 10−6

complexbranch 32bit 6564.00 10241196.00 886.40 5452.04 < 10−6

Table 5.2: Average number of fitness evaluations (n̄) and variance (σn) for TA and IG.

and complexbranch). With triangle1 and triangle2, the gain in efficiency is more

than two orders of magnitude. More importantly, the gain increases as the input domain

grows larger. While the test data augmentation technique shows relatively constant level

of efficiency, test data generation technique does not cope well with larger input domains.

Table 5.2 presents the statistics observed in Figure 5.2 in more detail with statistical

testing. Since there is no evidence to believe that the number of fitness evaluations

required has a normal distribution, we use one-sided sign-test, which does not make

assumptions about the probabilistic distribution of the population. The null hypothesis

is that n̄IG and n̄TA has the same value. The alternative hypothesis is that n̄IG is greater

than n̄TA. The confidence level is 95%. For all cases except remainder with 8bit input

domain, the resulting p-values indicates significant results. Therefore, we accept the

alternative hypotheses for these cases. However, the alternative hypothesis is rejected

for remainder with 8bit input domain. Therefore, we accept the null hypothesis. Overall,

this answers RQ1 positively. The statistical analysis shows that there is a significant

gain in efficiency for most cases when test data augmentation is used. The amount of

gain in efficiency can be as large as two orders of magnitude. It should also be noted that

the cost of TA tends to be consistent across different input domains, whereas the cost

176 CHAPTER 5. ON-DEMAND REGRESSION TESTING

Subject Programs Input Domain c̄IG σ2cIG c̄TA σ2cTA

triangle1 8bit 1.00 0.00 0.94 0.00
triangle1 16bit 0.91 0.00 0.94 0.00
triangle1 32bit 0.83 0.00 0.94 0.00
triangle2 8bit 1.00 0.00 0.82 0.00
triangle2 16bit 0.90 0.00 0.82 0.00
triangle2 32bit 0.86 0.00 0.82 0.00
remainder 8bit 1.00 0.00 1.00 0.00
remainder 16bit 1.00 0.00 1.00 0.00
complexbranch 8bit 1.00 0.00 1.00 0.00
complexbranch 16bit 1.00 0.00 1.00 0.00
complexbranch 32bit 0.98 0.00 1.00 0.00

Table 5.3: Average branch coverage (c̄) and variance (σc) for TA and IG.

of IG tends to increase as the input domain grows larger. This is due to the fact that

IG always has to cope with the whole input domain, starting with a random solution,

whereas TA can focus on the small region around the original solution defined by the

radius parameter.

5.6.2 Effectiveness Evaluation: Coverage

We turn to RQ2 and investigate the branch coverage achieved by IG and TA. Figure 5.3

shows average branch coverage achieved by both techniques. The x-axis represents the

different input domains. The y-axis represents average branch coverage achieved by both

techniques across 20 executions. TA achieves 100% branch coverage for remainder and

complexbranch for all input domains. However, it fails to achieve 100% branch coverage

for triangle1 and triangle2, although it achieves a constant level of coverage. IG

achieves 100% branch coverage for all subject programs in 8bit input domain, but the

coverage decreases as the input domain grows larger.

Table 5.3 presents the statistics observed in Figure 5.3 in more detail. Note that

variances are all 0, meaning that all 20 executions achieved the same branch coverage

with both techniques. Therefore, statistical hypothesis testing is not performed. For

5.6. RESULTS AND ANALYSIS 177

8bit 16bit 32bit

triangle1 − branch coverage, i=1, r=10

0
20

40
60

80
10

0 IG
TA

8bit 16bit 32bit

triangle2 − branch coverage, i=1, r=10

0
20

40
60

80
10

0 IG
TA

8bit 16bit

remainder − branch coverage, i=1, r=10

0
20

40
60

80
10

0 IG
TA

8bit 16bit 32bit

complexbranch − branch coverage, i=1, r=10

0
20

40
60

80
10

0

IG
TA

Figure 5.3: Comparisons of effectiveness between IG and TA, across different input do-
mains, in terms of branch coverage. Plots represent average branch coverage achieved by
both techniques. For triangle1 and triangle2, IG shows decreasing branch coverage
as the input domain grows larger, suggesting a possible lack of scalability. TA does not
achieve 100% for these programs, but maintains the same branch coverage across differ-
ent input domains. Both techniques achieve 100% branch coverage for remainder with
all 20 executions. IG fails to achieve 100% branch coverage for complexbranch in 32bit
integer domain. Note that the plotted coverage is the coverage achieved by the newly
generated test suite alone; the original test suites were not included.

178 CHAPTER 5. ON-DEMAND REGRESSION TESTING

triangle1 and triangle2, TA shows constant branch coverage for all input domains,

whereas IG cannot maintain constant branch coverage as input domain grows. In fact,

with the appropriate setting, TA can achieve 100% branch coverage (this will be discussed

in Section 5.6.4). Both techniques achieve 100% branch coverage for remainder with all

20 executions. Both techniques achieve 100% branch coverage for complexbranch with

the exception of IG with 32bit input domain. This provides a partially positive answer

for RQ2. When the input domain is sufficiently large, TA can be as effective as, or

more effective than IG, in terms of branch coverage. For smaller input domains, we still

observe an attractive trade-off between efficiency and effectiveness.

5.6.3 Effectiveness Evaluation : Mutation Score

Figure 5.4 shows average mutation score achieved by both techniques. In order to jus-

tify the need for additional test suite, the mutation score of original test suites is

also included. If executing the additional test suite increases the mutation score sig-

nificantly, the cost of generating and executing the additional test suite may be justified.

For remainder and complexbranch, both IG and TA mostly achieve either mutation

score similar to the original, or higher than the original. The results for triangle1 and

triangle2 form an interesting contrast. Note that for both programs, IG and TA failed

to achieve full coverage as input domain grows larger. This has a significant impact on

mutation score in case with triangle2. Lower coverage leads to lower mutation score

because certain mutants are never covered. With triangle1, IG is also similarly affected

by the lack of full coverage. However, TA shows relatively constant mutation score with

triangle1 across input domain even though it fails to achieve full coverage.

Table 5.4 presents the statistics observed in Figure 5.4. In order to compare the mu-

tation score of IG and TA, hypothesis testing is performed. Without any assumption

about the population distribution, the one-sided sign test is performed with 95% sig-

nificance level. The p-value represents the results of sign test between mIG and m̄TA.

5.6. RESULTS AND ANALYSIS 179

8bit 16bit 32bit

triangle1 − mutation score, i=1, r=10

0
20

40
60

80
10

0
12

0
14

0 OR
IG
TA

8bit 16bit 32bit

triangle2 − mutation score, i=1, r=10

0
50

10
0

15
0

20
0

25
0

30
0

OR
IG
TA

8bit 16bit

remainder − mutation score, i=1, r=10

0
50

10
0

15
0

20
0

25
0

30
0

35
0

OR
IG
TA

8bit 16bit 32bit

complex − mutation score, i=1, r=10

0
10

0
20

0
30

0
40

0
50

0

OR
IG
TA

Figure 5.4: Comparisons of effectiveness between IG and TA across different input do-
mains, in terms of mutation score. In order to test whether the additional set of test data
improves the quality of testing, the mutation score of original test suites are included
(OR). Plots represent either the mutation score (OR) or average mutation score (IG and
TA). With triangle2, the lack of full coverage significantly affects both IG and TA.
For other programs, TA is as effective as, or more effective than OR and IG in terms of
mutation score.

180 CHAPTER 5. ON-DEMAND REGRESSION TESTING

Subject Programs Input Domain mOR m̄IG σ2mIG
m̄TA σ2mTA

p-value

triangle1 8bit 124 132.10 51.67 133.35 36.34 0.5000
triangle1 16bit 125 118.46 75.31 124.80 10.06 0.0898
triangle1 32bit 125 86.00 370.32 125.00 0.42 < 10−6

triangle2 8bit 216 217.90 2.20 120.50 2.79 1.0000
triangle2 16bit 216 157.05 1158.79 120.10 3.67 1.0000
triangle2 32bit 217 126.35 0.56 118.00 1.58 1.0000
remainder 8bit 265 262.95 6.68 266.80 3.01 0.0037
remainder 16bit 255 260.75 5.99 264.00 0.00 0.0002
complexbranch 8bit 414 413.45 8.16 412.20 2.69 0.9283
complexbranch 16bit 415 411.95 7.63 415.10 0.62 < 10−4

complexbranch 32bit 411 412.60 2.04 412.20 0.69 0.8950

Table 5.4: Average mutation score (m̄) and variance (σm) for TA and IG. The column
mOR represents the mutation score achieved by the original test suite used by TA. The
p-value represents the results of the one-sided sign test between mIG and m̄TA. The
null hypothesis is that m̄IG is equal to m̄TA. The alternative hypothesis is that m̄TA

is greater than m̄IG. The alternative hypothesis is accepted for triangle1 with 32bit
input domain, remainder for all input domains, and complexbranch with 32bit input
domain.

The null hypothesis is that m̄IG is equal to m̄TA. The alternative hypothesis is that

m̄TA is greater than m̄IG. The result is mixed; none of the two techniques dominates

the other across all experiments. The alternative hypothesis is accepted for triangle1

with 32bit input domain, remainder for all input domains, and complexbranch with

32bit input domain. For other experiments, the results from two techniques either show

no statistically significant difference or dominance by IG. However, considering the sig-

nificantly lower cost of TA, this still provides an attractive trade-off between efficiency

and effectiveness.

While mutation score is one possible measure of testing effectiveness, it does not

consider the fact that different test suites kill different sets of mutation faults. In order to

make a detailed comparison between the original test suite and the test suites generated

by IG and TA, the mutation faults are classified according to the test suite that killed

them. If, during the 20 executions, a mutation fault is killed by a test suite at least once,

5.6. RESULTS AND ANALYSIS 181

OR

TA

IG

40 0

0

0 31
8

123 1

triangle1 8bit, i=1, r=10

OR

TA

IG

66 1

0

10 1
1

124
0

triangle1 16bit, i=1, r=10

OR

TA

IG

75 1

0

0 2
1

124
0

triangle1 32bit, i=1, r=10

OR

TA

IG

20 0

0

0 3
2

120
96

triangle2 8bit, i=1, r=10

OR

TA

IG

21 0

0

2 1
1

120
96

triangle2 16bit, i=1, r=10

OR

TA

IG

21 90

0

0 1
2

120
7

triangle2 32bit, i=1, r=10

OR

TA

IG

25 0

0

1 4
0

265 0

remainder 8bit, i=1, r=10

OR

TA

IG

30 0

0

0 9
1

255
0

remainder 16bit, i=1, r=10

OR

TA

IG

76 0

0

0 3
6

413
1

complexbranch 8bit, i=1, r=10

OR

TA

IG

77 0

0

0 3
4

415 0

complexbranch 16bit, i=1, r=10

OR

TA

IG

80 0

0

0 4
4

411
0

complexbranch 32bit, i=1, r=10

Figure 5.5: Venn diagrams classifying mutation faults according to the test suites that
killed them. Note that for all experiments, |TA− OR| > 0, i.e. test data augmentation
has made an improvement in mutation score for all experiments. IG has also made
an improvement that is as good as or better than TA for all experiments. However,
considering Section 5.6.1, TA still provides an attractive trade-off between efficiency and
effectiveness.

182 CHAPTER 5. ON-DEMAND REGRESSION TESTING

the fault is classified as being killed by the test suite. This results in Venn diagrams

shown in Figure 5.5. The set OR, TA, and IG represents the mutation faults that were

killed by each technique respectively. Note that both |TA − OR| and |IG − OR| are

greater than 0 for all experiments. Considering that the original test suites did achieve

100% branch coverage, this signifies that achieving structural coverage is not always a

sufficient testing requirement. It therefore justifies the generation of an additional test

suite, which TA can perform very efficiently. For triangle2 with 8bit and 16bit input

domains, TA fails to kill 96 mutation faults that are killed by OR and IG. This is due to

the lack of complete coverage observed in Section 5.6.2. For all other experiments, TA

kills at least more than half of the mutants in the set IG − OR. Indeed, |TA − OR| is

greater than |IG−OR| for triangle1 with 16bit integer input domain and remainder

with 8bit integer input domain. Combining this with the gain in efficiency observed in

Section 5.6.1, it provides an evidence that there exists an attractive trade-off between

efficiency and effectiveness for TA. Overall this provides a positive answer to RQ3.

5.6.4 Settings: Impact of Interaction Level

Now we turn to the first part of RQ4 and observe the impact of different interaction

levels on efficiency and effectiveness. The minimum possible interaction level is 1; with 0

interaction level, it is not possible to generate a new test input. The maximum possible

interaction level for triangle1, triangle2, remainder and complexbranch is 3, 3, 2,

and 6 respectively, i.e. the size of test input vector for these programs. The input domain

is fixed at 8bit integers. The search radius is fixed at 10.

Figure 5.6 shows the change in the average number of fitness evaluations against

different interaction levels. The interaction level determines the number of neighbouring

solutions that TA considers in a single iteration. With a test input vector of size m and

interaction level i, the number of neighbouring solutions is bounded by

 m

i

. The

5.6. RESULTS AND ANALYSIS 183

● ●

●

1 2 3 4 5 6

0
50

0
10

00
15

00

Interaction Level

F
itn

es
s

E
va

lu
at

io
ns

●
●

Average Fitness Evaluations, i=[1,6], r=10

●

●

triangle1
triangle2
remainder
complexbranch

Figure 5.6: Plot of average number of fitness evaluations against interaction level. The
number of neighbouring solutions is bounded depending on the size of test input vec-
tor and interaction level. A higher number of neighbouring solutions generally results
in a higher number of fitness evaluations, i.e. more candidate solutions to evaluate.
For triangle1 and triangle2, i = [1, 2] yields the most neighbouring solutions. For
complexbranch, i = 3 yields the most neighbouring solutions, but i = 4 results in most
fitness evaluations.

184 CHAPTER 5. ON-DEMAND REGRESSION TESTING

more neighbouring solution TA considers, the more fitness evaluations TA is likely to

spend. Based on this, we expect each plot to peak at the point that corresponds to the

pair of m and i that yields the maximum value

 m

i

:

• triangle1 : interaction level i = {1, 2} is expected to yields the most fitness

evaluations.

• triangle2 : interaction level i = {1, 2} is expected to yields the most fitness

evaluations.

• remainder : interaction level i = 1 is expected to yield more fitness evaluations

than i = 2.

• complexbranch : interaction level i = 3 is expected to yield the most fitness

evaluations.

The result shown in Figure 5.6 mostly confirms the expectations. For triangle1,

trioangle2, and remainder, the expectations are confirmed. However, for complexbranch,

the peak occurs at i = 4, not i = 3 as expected. This suggests that TA considered more

candidate solutions when i = 4, even though at each iteration it generates more neigh-

bouring solutions when i = 3. Therefore, the real impact comes not only from the number

of maximum possible neighbours, but also from the number of those that are within the

window of qualification. If the program under test allows sufficient number of neigh-

bouring solutions that qualify, the number of fitness evaluation of TA is more likely to

be limited by the search radius. On the other hand, if the program under test does not

allow sufficient neighbouring solutions that qualify, TA will spend large number of fitness

evaluations for disqualifying neighbouring solutions.

Figure 5.7 and Figure 5.8 observe effectiveness measures against interaction level in

terms of branch coverage and mutation score respectively. In Figure 5.7, both triangle1

5.6. RESULTS AND ANALYSIS 185

● ●

●

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Interaction Level

B
ra

nc
h

C
ov

er
ag

e

● ●

Average Branch Coverage, i=[1,6], r=10

●

●

triangle1
triangle2
remainder
complexbranch

Figure 5.7: Plot of average branch coverage against interaction level. Both triangle1

and triangle2 achieve full coverage when i = 3 due to certain branches that require the
interaction level of 3 in order to generate a qualifying solution. The branch coverage for
remainder is not affected by increasing interaction level. For complexbranch, increasing
interaction level actually reduces the average branch coverage achieved.

186 CHAPTER 5. ON-DEMAND REGRESSION TESTING

● ●
●

1 2 3 4 5 6

0
10

0
20

0
30

0
40

0
50

0
60

0

Interaction Level

M
ut

at
io

n
S

co
re

● ●

Average Mutation Score, i=[1,6], r=10

●

●

triangle1
triangle2
remainder
complexbranch

Figure 5.8: Plot of average mutation score against interaction level. Both triangle1

and triangle2 benefit from the increased branch coverage observed in Figure 5.7 when
i = 3. On the other hand, complexbranch suffers from the decreased coverage as the
interaction level increases. The mutation score of remainder is not affected.

5.6. RESULTS AND ANALYSIS 187

and triangle2 achieves full coverage when i = 3, complimenting the lack of full coverage

observed in Section 5.6.2. More importantly, TA achieves full coverage with i = 3, while

still remaining significantly more efficient than IG. Both programs contain branches that

require the modification of all input variables in order to generate another qualifying

solution. For triangle1, it is a branch that determines whether the given numbers form

an equilateral triangle. From a set of three numbers that form an equilateral triangle,

it is possible to generate alternative qualifying set of numbers when all three numbers

are modified at the same time, by one of the modification operators {λx.x + 1, λx.x −

1, λx.x ∗ 2, λx.dx/2e}. Similarly, triangle2 contains a branch that determines whether

the given numbers form a right angle triangle. The generation of an alternative qualifying

solutions is guaranteed only when i = 3 and only with the modification operator λx.x∗2.

This provides a justification for utilising modification operators that are more complex

than {λx.x+ 1, λx.x− 1}. With domain knowledge, it may be possible to generate more

complex but potentially more effective set of modification operators.

In Figure 5.8, it is possible to observe the positive impact of the increased branch

coverage. Both triangle1 and triangle2 show improved mutation score with i = 3.

The plot for complexbranch corresponds to the branch coverage of the program observed

in Figure 5.7. With less coverage, TA kills fewer mutants as interaction level increases.

For remainder, the increased interaction level has no significant impact on mutation

score.

5.6.5 Settings: Impact of Search Radius

Finally, we turn to the second part of RQ4 by observing the efficiency and effectiveness

of TA while changing the search radius. The interaction level is fixed at 1, and the input

domain is fixed at 8bit integers. TA is executed 20 times for each search radius value

from 1 to 10.

Figure 5.9 plots the average number of fitness evaluations and average branch cov-

188 CHAPTER 5. ON-DEMAND REGRESSION TESTING

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

0
20

0
40

0
60

0
80

0

Search Radius

F
itn

es
s

E
va

lu
at

io
ns

●
●

●
●

●
●

●
●

●
●

Average Fitness Evaluations, i=1, r=[1,10]

●

●

triangle1
triangle2
remainder
complexbranch

Figure 5.9: Plots of the average number of fitness evaluations against search radius. As
can be seen, the average number of fitness evaluations shows a strong linear correla-
tion to search radius; TA spends more fitness evaluations while trying to make more
modifications.

5.6. RESULTS AND ANALYSIS 189

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

12
4

12
6

12
8

13
0

13
2

Search Radius

M
ut

at
io

n
S

co
re

Average Mutation Score, i=1, r=[1,10]

● triangle1

2 4 6 8 10

11
8.

0
11

9.
0

12
0.

0
12

1.
0

Search Radius

M
ut

at
io

n
S

co
re

Average Mutation Score, i=1, r=[1,10]

triangle2

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

26
5.

5
26

6.
0

26
6.

5

Search Radius

M
ut

at
io

n
S

co
re

Average Mutation Score, i=1, r=[1,10]

● remainder

2 4 6 8 10

41
2.

5
41

3.
0

41
3.

5
41

4.
0

Search Radius

M
ut

at
io

n
S

co
re

Average Mutation Score, i=1, r=[1,10]

complexbranch

Figure 5.10: Plots of average mutation score against search radius. Except for
complexbranch, average mutation score shows an increasing trend, providing a par-
tial justification for TA to make as many modifications as possible. That is, the more
an additional test case is different from the original, the more valuable it is for these
programs.

190 CHAPTER 5. ON-DEMAND REGRESSION TESTING

Program ρ1 ρ2

triangle1 0.9991983 0.9279003
triangle2 0.9977082 0.8569495
remainder 0.9992023 0.7774765
complexbranch 0.9983878 -0.8378015

Table 5.5: The column of ρ1 shows the linear correlation coefficient between the search
radius and the average number of fitness evaluation. All four programs show a very
strong correlation. The column of ρ2 shows the linear correlation coefficient between the
search radius and the average mutation score. It shows a significant linear correlation
for triangle1, triangle2, and remainder. On the other hand, complexbranch shows
a negative correlation between the search radius and the average mutation score.

erage against search radius. For all subject programs, the average number of fitness

evaluations shows a very strong correlation to search radius, which is expected. As the

search radius increases, TA is allowed to make more modifications from the original

test input, thereby spending more fitness evaluations. However, the observed coverage

values remain constant at the maximum level that can be achieved for each program

under the given configuration. TA achieved full branch coverage for remainder and

complexbranch; it also covered all the branches in triangle1 and triangle2 except

for the ones discussed in Section 5.7.

Figure 5.10 shows plots of average mutation score against search radius. With the

exception of complexbranch, the observed trend is that average mutation score increases

as search radius increases. This provides a partial evidence to confirm the distance-value

assumption described in Section 5.4.2; that is, the more different an additional test

input is from the original test input, the more valuable it is. Table 5.5 shows linear

correlation coefficients between search radius and average fitness evaluations/average

mutation score. The coefficients confirm the visual trends observed in Figure 5.9 and

Figure 5.10.

5.7. DISCUSSION 191

5.7 Discussion

This section discusses factors that prevent IG from achieving full coverage for larger input

domains. For triangle1 and triangle2, IG fails to achieve full branch coverage when

the input domain is set to 16bit or 32bit integers. This is due to the data dependency

observed in both programs. The following is an excerpt from triangle1.

Algorithm 7: An implementation of triangle program

(1) read(i, j, k)
(2) tri = 0
(3) if i == j then tri += 1
(4) if i == k then tri += 2
(5) if j == j then tri += 3
(6) if tri == 0
(7) if i + j ≤ k or j + k ≤ i or i +k ≤ j
(8) tri = 4
(9) else
(10) tri = 1
(11) return tri
(12) . . .

The program takes three integers as input, and classifies the input according to the

type of triangle that can be formed with lengths of sides equal to the three integers.

Suppose that we are trying to make the predicate in line (6) false, which means tri

!= 0. According to Korel’s definition, the branch distance is calculated as−|tri−0| [105],

which should be minimised. The value of the variable tri is assigned between line (3) and

(5) based on the values of the program input, (i, j, k). Since the predicate in line (6)

is control-independent from the predicates in line (3), (4), and (5), the branch distance

of −|tri − 0| cannot guide the input vector. That is, changes made to the input vector

(i, j, k) do not correlate with the branch distance of the predicate in (6), except for

the very rare cases where the algorithm starts with a random input vector that is very

close to satisfying either one of the predicates in line (3), (4), and (5). This results in a

192 CHAPTER 5. ON-DEMAND REGRESSION TESTING

flat fitness landscape, thereby significantly weakening performance of any meta-heuristic

search technique. As a result, IG often fails to cover the false edge of the predicate in

line (6).

Compared to triangle1, triangle2 contains additional branches that determine

whether the given input forms a right-angle triangle. IG tends to fail to cover these

branches as the input domain grows larger. There is no data dependency involved as

in triangle1; the difficulty lies in the behaviour of alternating variable method called

over-shooting. In the exploratory phase, AVM doubles the amount of change with every

successful iteration. Eventually it over-shoots, i.e. the fitness value decreases due to an

excessive change. The excessiveness is exaggerated in this case because the input values

are squared in the predicate that determines the formation of a right-angle triangle.

Once it over-shoots, AVM switches to pattern phase and starts to change the next input

variable. If the desired solution is sufficiently hard to find, there is a chance that AVM

will keep over-shooting with oscillating fitness values. IG fails to achieve full branch

coverage for these predicates because it spends the allowed maximum fitness evaluations

while over-shooting.

Figure 5.6-5.8 and Figure 5.10 show that the reaction of complexbranch to changes

in interaction level and search radius is different from that of other subject programs.

The number of fitness evaluations does not peak at the interaction level we predicted.

Increasing interaction level does not seem to have a positive impact on either coverage

or mutation score. Finally, increasing search radius does seem to have a negative impact

on mutation score. Unlike triangle1 and triangle2, we could not identify a clear

reason why it behaves so differently. It does not contain the type of data dependency

observed in triangle1; the only notable difference between complexbranch and other

subject programs was the fact that complexbranch uses a switch statement, which

is essentially equivalent to nested if statements and should not present any particular

challenge. The differences may be caused by the fact that complexbranch has the largest

5.8. CASE STUDY 193

input domain among the subject programs, with complex branch predicates that are

specifically designed to make it hard to achieve full branch coverage.

5.8 Case Study

This section applies the test data augmentation technique to unit level testing of real

world examples that use more complex input data types.

5.8.1 Subject Programs

The case study considers two Java methods from real world Java libraries. The first

library is colt, which is an open source Java library for High Performance Scientific

and Technical Computing developed at European Organisation for Nuclear Research

(CERN). From the library, we choose int binarySearch(int[] list, int key, int

from, int to), which is an implementation of binary search algorithm. It searches the

integer array list for the integer key, starting from index from to to. The method

contains 5 branches. The second library is SIENA (Scalable Internet Event Notification

Architecture), which is an open source event notification framework. From the Java API

implementation, we choose int read number(byte[] buffer), which parses a number

from the string contained in byte array buffer, and determines the type of the num-

ber, i.e. integer, double, or unknown. The method contains 22 branches including one

unreachable branch. Since both methods take an array as input, the size of the search

space for potential input is unbounded.

5.8.2 Test Data Augmentation Technique

Test input for a dynamic data structure requires more sophisticated modification op-

erators than those used in Section 5.4.4. For binarySearch, we consider the following

modification opeartors. Given a test input of <int[] list, int key, int from, int

194 CHAPTER 5. ON-DEMAND REGRESSION TESTING

to>:

• Insert into list: inserts a random integer into the integer array. After insertion,

the array is sorted in order to meet the precondition of binary search.

• Replace key: replaces the value of key variable with a randomly chosen number

from list

• Increase/decrease from: increases or decreases the value of from variable by 1

• Increase/decrease to: increases or decreases the value of to variable by 1

For read number, we consider the following modification operators. Given a test

input of <byte[] buffer>:

• Insert into buffer: inserts a random ASCII character at a random position

• Delete from buffer : selects a random position in buffer and removes the value

at the position, which returns a shorter array

• Increase/decrease byte: selects a random byte in buffer and increases or de-

creases the stored value by 1

In order to apply any sophisticated set of test data generation tools to arbitrary real

world examples, it is not uncommon to find that some small modifications are required

relating to implementation details. The case studies upon which we report here are no

exception. Specifically, two minor modifications are required for the test data augmenta-

tion technique described in Section 5.4.4 in order to cater for the dynamic data structure.

First, Euclidean distance needs to be replaced with more generic distance metric. There

is some existing work on the generic distance measure between test inputs, but it is still

in its early stage and can be computationally expensive [57]. Instead of measuring the

distance between two test inputs, we consider the distance between two minimal string

representations of the test data and turn to weighted Levenshtein distance [125].

5.8. CASE STUDY 195

The basic Levenshtein distance is used to measure the distance between two arbi-

trary string. It is computed as the minimum number of operations needed to transform

one string into the other. The operations are insertion, removal, and replacement of a

single character. Algorithm 8 describes the dynamic programming approach to compute

Levenshtein distance.

Algorithm 8: Pseudo-code of basic Levenshtein Distance calculation algorithm

Input: Two strings, s[1..m] and t[1..n]
Output: Distance d in integer
(1) declare int d[0..m, 0..n]
(2) for i = 0 to m
(3) d[i, 0] := i
(4) for j = 0 to n
(5) d[0, j] := j
(6) for i = 1 to m
(7) for j = 1 to n
(8) if s[i - 1] = t[j - 1]
(9) cost := 0
(10) else
(11) cost := 1
(12) d[i, j] := min(d[i−1, j]+1, d[i, j−1]+1, d[i−1, j−1]+cost)
(13)
(14) return d[m, n]

We extend the basic definition of Levenshtein distance to obtain a weighted ver-

sion, by replacing cost:=1 in line 11 of Algorithm 8 with cost:=|s[i-1]-t[j-1]|,

i.e. the difference between byte representation of two characters at index i-1. This

enables us to rank the results of replacement operator according to the number of in-

cremental/decremental changes required for the replacement. For example, the distance

between “1,3” and “1,4” is shorter than the distance between “1,3” and “1,7”.

The second modification actually simplifies the algorithm described in Algorithm 5.

The modification operators used in the empirical study are deterministic, and so is

Algorithm 6, the algorithm that generates the neighbourhood solutions. However, some

of the new modification operators introduced in this section are inherently random,

196 CHAPTER 5. ON-DEMAND REGRESSION TESTING

which means the test data augmentation algorithm is likely to consider different set of

neighbourhood solutions with each restart of the hill climbing. Therefore, the algorithm

used in the case study adopts the steepest ascent hill climbing.

5.8.3 Iguana : Hill Climbing Test Data Generation

The results of the test data augmentation technique is compared to the Hill Climbing

algorithm based test data generating using Iguana tool. The specifications of the subject

programs require that special care is taken to use Iguana to generate test data for the

programs. For example, binarySearch takes <int[] list, int key, int from, int

to> as input. It is implied in the specification that variables from and to should contain

integers that can be index values of the array int[] list. However, this is not reflected

in the form of branch distance, preventing the Hill Climbing algorithm from receiving

any guidance for the values of from and to. Therefore, we have limited the length of

a list to 10 and adjusted the input domain for variable from and to to [0 . . . 9]. The

variable key, on the other hand, is used in a branch that determines whether the binary

search has found the key variable in the list. This enables the Hill Climbing algorithm

to receive guidance for the value of key. Finally, the contents of the integer array is

expected to be in a sorted order by the specification of the binary search. However,

there is no way to force Iguana to form a sorted array and the requirement is ignored as

a result. This leads to an interesting side-effect, which is discussed in Section 5.8.6.

In case of read number, the only constraint implied by the input specification is that

the byte array contains characters. Therefore, we have limited the input domain for each

character in the byte array to that of ASCII code, [0 . . . 255].

5.8.4 Original Test Suite and Mutation Faults

The original test suites were generated manually so that there exists one test case per

each branch in the program, which is covered by the test case. Therefore, the test suite for

5.8. CASE STUDY 197

Subject n̄IG σ2nIG
n̄TA σ2nTA

p-value

binarySearch 475.70 5136.85 556.20 940.84 1.0
read number 23,370.30 14,631,258.00 574.00 1,367.37 < 10−15

Table 5.6: Average number of fitness evaluations (n̄) and variance (σ2n) for TA and IG.

Subject cOR c̄IG σ2cIG c̄TA σ2cTA
p-value

binarySearch 100.00% 100.00% 0.00 100.00% 0.00 n/a
read number 95.54% 76.36% 75.25 95.23% 1.03 < 10−8

Table 5.7: Average branch coverage (c̄) and variance (σ2c) for TA and IG.

binarySearch contains 5 test cases, which collectively achieve 100% branch coverage.

The test suite for read number contains 21 test cases (22 branches, 1 unreachable).

Due to an unreachable branch in the code, the maximum branch coverage that can be

achieved from read number is 95.4%.

Mutation faults are generated by muJava mutation tool using the same set of mu-

tation operators shown in Table 5.1. This resulted in 61 executable mutants in case of

binarySearch and 190 executable mutants in case of read number.

5.8.5 Evaluations

In order to cater for the potential impact upon the result of the inherent randomness of

the search-based test data augmentation, the experiment for each subject is repeated for

20 times. For the case study, the interaction level of test data augmentation algorithm

is set to 1, i.e. only one input variable is modified for each neighbouring solution. The

search radius is set to 20. As in the empirical study, the efficiency of the technique is

measured by counting the number of fitness evaluations, whereas the effectiveness of the

technique is measured both by mutation score and by branch coverage. Iguana tool is

configured to spend the maximum of 3,000 fitness evaluations for a single branch before

moving on to the next branch.

198 CHAPTER 5. ON-DEMAND REGRESSION TESTING

5.8.6 Results and Analysis

Table 5.6 shows the statistical analysis of the average number of fitness evaluations

required by IG and TA for the generation of the additional test suite. For binarySearch,

IG turns out to be more efficient than TA, being contrary to the trend observed in smaller

programs. This is due to the fact that Iguana ignores the requirements that the input

array is sorted. When an unsorted array is given to a binary search algorithm, it is

very difficult for the search to be successful but it remains relatively easy to cover some

branches before terminating. For example, the first step of a binary search is to compare

the middle element of the array to the key variable to determine which one is bigger.

A random assignment of the array and the key variable will have an average of

50% chance of satisfying either branch of this step, which is an advantage for IG as it

assigned the initial values randomly. However, while they succeed in covering branches,

very few of the test cases generated by IG will conform to the normal behaviour of a

binary search. On the other hand, TA starts with a legitimate test suite, i.e. the array

elements are sorted. The definition of the fitness function in Section 5.4.3 requires that,

when generating an additional test case, TA should preserve the execution trace of the

original test case; that is, TA can only produce test cases that conform to the normal

behaviour of a binary search, because the manually generated original test suite does.

This limits the scope of acceptable modifications to the original test case, resulting in

suboptimal performance.

By contrast, the results for read number follow the trend observed in smaller pro-

grams. This is because read number shares the similar type of data dependency we

observed in triangle1. A few branches in read number contain predicates that depend

on either a variable that was assigned earlier or a return value of an external function.

For the same reason we discussed in Section 5.7, IG is vulnerable to this type of data

dependency in branch predicates. As a result, TA is more efficient than IG in case of

read number.

5.8. CASE STUDY 199

The average number of fitness evaluations required by IG and TA are compared using

one-sided t-test with the significance level of 95%. The null hypothesis is that there is

no difference between mean values of nIG and nTA. The alternative hypothesis is that

nIG > nTA. For binarySearch, the alternative hypothesis is rejected for the reason

described above. For read number, the alternative hypothesis is accepted.

Table 5.7 shows the average branch coverage achieved by the original test suite,

IG and TA respectively. For binarySearch, both technique reproduce the 100% branch

coverage of the original test suite with variance of 0. In read number, there exists a single

branch that is unreachable, making the highest achievable branch coverage 95.54%. The

average branch coverage achieved by TA almost reaches the highest possible value; in

fact, TA successfully reaches 95.54% branch coverage 18 times out of the 20 runs, as

can be observed in the relatively small variance. On the other hand, the average branch

coverage achieved by IG is 76.36%, with higher variance than TA.

The average branch coverage achieved by IG and TA are compared using one-sided

t-test with the significance level of 95%. The null hypothesis is that there is no difference

between mean values of cIG and cTA. The alternative hypothesis is that cTA > cIG. The

results from binarySearch does not require the t-test as both samples are essentially

uniform and equal to each other. For read number, the alternative hypothesis is accepted

at 95% significance level.

Figure 5.11 shows the average mutation score achieved by IG and TA, compared

to the original mutation score. Plots for IG and TA show the average mutation score

from 20 runs. While both IG and TA achieve a higher mutation score than the original

test suite, TA shows the highest mutation score in both programs. Table 5.8 shows the

statistical analysis of the mutation score results in detail. The mutation scores of IG and

TA are compared using one-sided t-test. The null hypothesis is that there is no difference

between mean values of mIG and mTA. The alternative hypothesis is that mIG < mTA.

While m̄IG is less than m̄IG for binarySearch, the observed p-value narrowly rejects

200 CHAPTER 5. ON-DEMAND REGRESSION TESTING

OR
IG
TA

0
10

20
30

40

Average mutation score for binarySearch

OR
IG
TA

0
20

40
60

80
10

0
12

0
14

0

Average mutation score for read_number

Figure 5.11: Average mutation score for OR, TA and IG. For both binarySearch and
read number, TA scores the highest mutation score on average.

Subject mOR m̄IG σ2mIG
m̄TA σ2mTA

p-value

binarySearch 42.00 43.65 7.78 45.00 6.63 0.07
read number 148.00 122.70 418.64 150.00 5.68 < 10−5

Table 5.8: Average number of fitness evaluations (n̄) and variance (σ2n) for TA and IG.

the alternative hypothesis, i.e. there is no statistically significant difference between m̄IG

and m̄IG. The observed p-value for read number confirms the alternative hypothesis, i.e.,

TA achieves a higher mutation score than IG with statistical significance.

In order to make a detailed comparison between the original test suite and the test

suites generated by IG and TA, we classify the mutation faults according to the test

suite that killed it. Figure 5.12 shows the resulting Venn diagrams for the results of

mutation testing. If, during the 20 executions, a mutation fault is killed by a test suite

at least once, the fault is classified as being killed by the test suite. The diagram for

binarySearch shows that, although there is no statistically significant difference between

mutation scores of IG and TA, two techniques kill different set of mutation faults. The

5.9. THREATS TO VALIDITY 201

OR

TA

IG

9 0

0

2 6
2

42
0

binarysearch read_number

OR

TA

IG

34 0

4

2 3
3

144 0

Figure 5.12: Venn diagrams classifying mutation faults according to the test suites that
killed them.

diagram for read number also shows that TA is capable of detecting a set of mutation

faults that are not detected by other techniques. Finally, it can be observed that, as with

the empirical studies in Section 5.6, both |TA−OR| and |IG−OR| are greater than 0,

confirming the added value of executing additional test cases.

5.9 Threats to Validity

Threats to internal validity concern the factors that might have affected the comparison

of IG and TA. The two techniques are so inherently different from each other that the

comparison at algorithmic level may not be sound. However, should a tester want a new

and additional test suite, the only available state-of-the-art solution is to adopt existing

test data generation technique and hope that it will generate a completely new test

suite. One alternative is to modify existing search-based test data generation technique

to be existing test suite aware. The modified fitness function will measure not only branch

distance based fitness, but also the distance from the existing test data. However, this can

only add more complexity to traditional search-based test data generation techniques.

Both techniques are inherently stochastic, which may affect the comparison. The

experiments are repeated for 20 times to cater for the stochastic nature, and the results

are verified with statistical testing. For some experiments, the observed measurements

202 CHAPTER 5. ON-DEMAND REGRESSION TESTING

are consistent and show little variance.

With TA, the quality of the original test suite can affect the quality of the new test

suite generated by TA. The original test suites are manually generated for each input

domain with the sole purpose of achieving full branch coverage. That is, other testing

concerns such as boundary values or mutation score are not considered. However, there

still exists a chance that the original test suites are biased.

As described in Section 3.5.1, Welch’s t-test assumes a parametric distribution of the

samples. While the exact distribution of the sample is not known in this empirical study,

it will approximate a normal distribution with a sufficiently large sample size according

to the central limit theorem [161].

Threats to external validity concerns the factors that limit generalisation of the

results. One issue is the representativeness of the subject programs, which are relatively

small-scale examples. It cannot be guaranteed that the observed results of this study

will extrapolate to larger-scale real world programs. This can be addressed only by

further study with larger programs. However, the subject programs have been utilised

as benchmarks for test data generation techniques [140, 195, 211]. They also provide non-

trivial search space in combination with different input domains. Another issue concerns

the selection of the test data generation technique for the comparison. This chapter

compares the proposed search-based test data augmentation technique to a hill climbing

based AVM (Alternating Variable Method). Other test data generation techniques may

produce different results. However, AVM has been known to be as much as, or even

better than other search techniques such as genetic algorithms, for certain classes of test

data generation problems [73].

Threats to construct validity arise when the measurements in the experiments do not

capture the concepts that they are supposed to represent. The efficiency measure is a

count of fitness evaluations, which equals the number of times the program under test is

executed. It does not consider other costs of testing such as generating and checking test

5.10. CONCLUSIONS 203

oracles. However, as test data augmentation is applied to larger programs, the execution

time of the program under test is at least one of the major elements that account for the

cost of testing for any type of dynamic testing. Similarly, the effectiveness measure used

in this chapter may not capture the real effectiveness of a test suite; its fault detection

capability. However, structural coverage and mutation score has been widely used as

successful surrogate of fault detection capability in software testing literature [45, 140,

149, 195, 211]. Also, the testing process can benefit from the existence of an alternative

test suite even when it does not detect any additional faults. For example, the estimation

of program reliability when no fault is detected can benefit from alternative test suites.

5.10 Conclusions

This chapter proposed a novel approach to regression testing called on-demand regression

testing. In on-demand regression testing, the tester generates, in each regression cycle, a

novel set of test data that still satisfy the testing goal, using the existing test data as a

starting point. This approach ensures that the latency of the regression testing process

remains high, while preventing the test suite from growing too large. The key to this

approach is a low cost method of generating new test data from existing data while still

maintaining their capability of satisfying the testing goals.

The chapter introduced and evaluated a search-based test data augmentation tech-

nique, which is a novel method of generating test data from existing test data. Test data

augmentation is based on two observations. First, it is beneficial to generate additional

test data even if test data are already available. Second, if there are existing test data,

generating additional test data can be much more efficient when it utilises the knowledge

of existing test data.

This chapter introduces a search-based test data augmentation algorithm and instan-

tiates it with structural coverage testing criteria. The proposed algorithm is empirically

204 CHAPTER 5. ON-DEMAND REGRESSION TESTING

compared in terms of its efficiency and effectiveness to a state-of-art test data generation

technique. The results show that there exists an attractive trade-off between efficiency

and effectiveness of test data augmentation. The cost can be reduced by two orders of

magnitude for some cases, while achieving competitive structural coverage and mutation

score. Test data augmentation is less affected by the size of input domain compared to

existing test data generation techniques that suffer with significantly large input domain.

Chapter 6

Incorporating Expert Knowledge

To Test Case Prioritisation

6.1 Introduction

Test case prioritisation seeks to find an efficient ordering of test case execution for regres-

sion testing. The ideal ordering of test case execution is one that reveals faults earliest.

Since the nature and location of actual faults are generally not known in advance, test

case prioritisation techniques have to rely on available surrogates for prioritisation cri-

teria. Structural coverage, requirement priority and mutation score have all previously

been utilised as criteria for test case prioritisation [43, 53, 193]. However, there is no

single prioritisation criterion whose results dominate the others.

One potentially powerful way to enhance a prioritisation criterion is to utilise domain

expert judgement by asking the human tester to compare the importance of different

test cases. A competent human tester can provide rich domain knowledge about the

System Under Test (SUT), including knowledge about logical effects of recent changes

and rationale behind the existing test cases. Human guidance may also be required in

order to take account of the many implicit, unstated reasons that the tester may have

205

206 CHAPTER 6. EXPERT KNOWLEDGE IN TEST CASE MANAGEMENT

for favouring one test case over another. If this human guidance is not accounted for,

the tester may reject the proposed order suggested by a prioritisation algorithm.

Prioritisation involving human judgement is not new. The Operations Research com-

munity has developed techniques including the Analytic Hierarchy Process (AHP) algo-

rithm [184] that help decision makers to prioritise tasks. However, prioritisation tech-

niques that involve humans present scalability challenges. A human tester can provide

consistent and meaningful answers to only a limited number of questions, before fatigue

starts to degrade performance. Previous empirical studies show that the largest num-

ber of pair-wise comparisons a human can make consistently is approximately 100 [7].

Unfortunately, useful test suites often contain many test cases, potentially requiring

considerably more than 100 comparisons.

To address this problem, this study uses clustering algorithms to reduce the cost of

human-interactive prioritisation. In our approach, the human tester prioritises, not the

individual test cases, but clusters of ‘similar’ test cases. With a very simple clustering

technique, such as agglomerative hierarchical clustering [86], it is possible to generate

an arbitrary number of clusters. This allows for control of the number of comparisons

presented to the human tester. The reduced number of required comparisons makes it

feasible to apply expert-guided prioritisation techniques to much larger data sets. The

chapter presents results on the scalability potential of this clustering approach.

The AHP-based prioritisation technique is empirically compared to coverage-based

prioritisation techniques using the APFD (Average Percentage of Fault Detection) met-

ric. In order to model various possible human behaviours, we introduce an error model.

This allows us to empirically explore the robustness of our approach in the presence of

varying degrees of human ‘bias’ (giving guidance that draws the algorithm away from

fault finding test cases). The results show that AHP-based prioritisation is robust; it can

outperform coverage-based prioritisation even when the human tester provides mislead-

ing answers to comparison questions.

6.2. CLUSTERING BASED PRIORITISATION 207

The rest of the chapter1 is organised as follows. Section 6.2 introduces the cluster-

based prioritisation technique used in the study. Section 6.3 describes the Analytic Hi-

erarchy Process and the user model that is used by the empirical evaluation. Section 6.4

explains the details of the empirical study, the results of which are presented in Sec-

tion 6.5. Section 6.6 presents related work and Section 6.7 concludes.

6.2 Clustering Based Prioritisation

6.2.1 Motivation

A pair-wise comparison approach for prioritisation requires O(n2) comparisons. While

redundancy may make pair-wise comparison very robust, the high cost has prevented it

from being applied to test case prioritisation. For example, AHP has been well studied

in the Requirements Engineering field. The maximum number of comparisons a human

can make consistently is approximately 100 [7]; above this threshold, inconsistency grows

significantly, leading to reduced effectiveness.

In order to require less than 100 pair-wise comparisons, the test suite could contain

no more than 14 test cases. Considering the scale of real world testing projects, the

scalability issue presents a significant challenge. For example, suppose there are 1,000

test cases to prioritise; the total number of required pair-wise comparisons would be

499,500. It is clearly unrealistic to expect a human tester to provide reliable responses

for such a large number of comparisons.

This study aims to reduce the number of comparisons required for the pair-wise

comparison approach through the use of clustering. Instead of prioritising individual

test cases, clusters of test cases are prioritised using techniques such as AHP. From the

prioritised clusters, the ordering between individual test cases is then generated.

1This chapter is an extended version of the author’s ISSTA paper: S. Yoo, M. Harman, P. Tonella
and A. Susi, Clustering Test Cases To Achieve Effective & Scalable Prioritisation Incorporating Expert
Knowledge. Proceedings of the 2009 International Symposium on Software Testing and Analysis (ISSTA),
Chicago, USA, pages 201-211.

208 CHAPTER 6. EXPERT KNOWLEDGE IN TEST CASE MANAGEMENT

6.2.2 Clustering Criterion

The clustering process partitions objects into different subsets so that objects in each

group share common properties. The clustering criterion determines which properties

are used to measure the commonality. When considering test case prioritisation, the

ideal clustering criterion would be the similarity between the faults detected by each

test case. However, this information is inherently unavailable before the testing task

is finished. Therefore, it is necessary to find a surrogate for this, in the same way as

existing coverage-based prioritisation techniques turn to surrogates for fault-detection

capabilities.

In this study we utilise dynamic execution traces of each test case as a surrogate for

the similarity between features tested. Execution of each test case is represented by a

binary string. Each bit corresponds to a statement in the source code. If the statement

has been executed by the test case, the digit is 1; otherwise it is 0. The similarity between

two test cases is measured by the distance between two binary strings using Hamming

distance.

Algorithm 9: Agglomerative Hierarchical Clustering

Input: A set of n test cases, T
Output: A dendrogram, D, representing the clusters
(1) Form n clusters, each with one test case
(2) C ← {}
(3) Add clusters to C
(4) Insert n clusters as leaf node into D
(5) while there is more than one cluster
(6) Find a pair of clusters with minimum distance
(7) Merge the pair into a new cluster, cnew
(8) Remove the pair of test cases from C
(9) Add cnew to C
(10) Insert cnew as a parent node of the pair into D
(11) return D

6.2. CLUSTERING BASED PRIORITISATION 209

6.2.3 Clustering Method

We use a simple agglomerative hierarchical clustering technique. Its pseudo-code is de-

scribed in Algorithm 9 below:

The resulting dendrogram is a tree structure that represents the arrangement of

clusters. Figure 6.1 shows an example dendrogram. It is possible to generate k clusters

for any k in [1, n] by cutting the tree at different heights.

BA C D E F

AB

CD

CDE

CDEF

ABCDEFk = 1 {ABCDEF}

k = 2 {AB,CDEF}

k = 3 {AB,CDE,F}

k = 4
{AB,CD,E,F}

k = 5
{AB,C,D,E,F}

k = 6
{A,B,C,D,E,F}

Figure 6.1: An example dendrogram from agglomerative hierarchical clustering. Cutting
the tree at different height produces different number of clusters.

6.2.4 Interleaved Clusters Prioritisation

Prioritisation of a clustered test suite is a different problem from the traditional test

case prioritisation problem. Two separate layers of prioritisation are required in order to

prioritise a clustered test suite. Intra-cluster prioritisation is prioritisation of test cases

that belong to the same cluster, whereas inter-cluster prioritisation is prioritisation of

clusters. This chapter introduces the Interleaved Clusters Prioritisation (ICP) process

that uses both layers of prioritisation.

It would be more advantageous to interleave clusters of test cases than to execute

210 CHAPTER 6. EXPERT KNOWLEDGE IN TEST CASE MANAGEMENT

an entire cluster before executing the next. The latter approach would result in repeat-

edly executing similar parts of SUT before the prioritisation technique chooses the next

cluster; if these test cases reveal similar sets of faults, the rate of fault detection would

be less than ideal because the prioritisation technique will reveal a similar set of faults

repeatedly. The former approach will avoid this by switching clusters whenever it chooses

the next test case.

In ICP, intra-cluster prioritisation is performed first. Based on the results of intra-

cluster prioritisation, each cluster is assigned a test case that represents the cluster.

Using these representatives, ICP performs inter-cluster prioritisation. The final step is

to interleave prioritised clusters using the results of both intra- and inter-cluster priori-

tisation.

More formally, suppose a test suite TS is clustered into k clusters, C1, . . . , Ck. Af-

ter intra-cluster prioritisation, we obtain ordered sets of test cases, OC1, . . . , OCk. Let

OCi(j) be the jth test case in cluster OCi. Each ordered set OCi is then represented

by OCi(1) in the inter-cluster prioritisation, which will produce OOC, an ordered set

of OCi(1 ≤ i ≤ k). Let OOCi be the ith cluster in OOC. The interleaving process is

described in pseudo-code in Algorithm 10.

Algorithm 10: Interleaved Clusters Prioritisation

Input: An ordered set of k ordered clusters, OOC
Output: An ordered set of test cases, OTC
(1) OTC =<>
(2) i← 1
(3) while OOC is not empty
(4) Append OOCi(1) to OTC
(5) Remove OOCi(1) from OOCi
(6) if OOCi is empty then Remove OOCi from OOC
(7) i← (i+ 1) mod k
(8) return OOC

For example, given OOC =<< t3, t1 >,< t4, t2 >,< t5 >>, the result of Algo-

rithm 10 will be a sequence of test cases, < t3, t4, t5, t1, t2 >. Note that ICP does not

6.2. CLUSTERING BASED PRIORITISATION 211

presume any specific choice of prioritisation technique. Any existing test case prioritisa-

tion technique can be used for either intra-cluster or inter-cluster prioritisation.

0 20 40 60 80 100

0
10

00
20

00
30

00
40

00
50

00

Number of Clusters

N
um

be
r

of
 T

ot
al

 P
ai

r−
w

is
e

C
om

pa
ris

on
s

C(n,k), n=100, k=[1,100]

Figure 6.2: Plot of average number of pair-wise comparisons required for k cluster-based
prioritisation of 100 test cases.

6.2.5 Cost of Pair-wise Comparisons

Since pair-wise comparisons require human intervention, the cost of any pair-wise com-

parison approach largely depends on the number of comparisons required. When the

pair-wise comparison approach is used both for intra- and inter-cluster prioritisation,

the number of comparisons required for ICP is the sum of the cost of intra-cluster pri-

oritisation and inter-cluster prioritisation. Given a test suite of size n clustered into k

clusters, each cluster contains n
k test cases on average. The average number of com-

parisons for intra-cluster prioritisation is k · 12
n
k (nk − 1). The number of comparisons of

inter-cluster prioritisation is computed simply as k(k−1)
2 . Therefore, the average total cost

of pair-wise ICP for a test suite of size n and k clusters, C(n, k), is k(k−1)
2 + k ·

n
k
(n
k
−1)
2 .

For all positive n, there exists a specific value of k that minimises C(n, k). Figure 6.2

212 CHAPTER 6. EXPERT KNOWLEDGE IN TEST CASE MANAGEMENT

illustrates C(n, k) when n = 100 and 1 ≤ k ≤ n. The maximum cost, with no clustering,

is 4,950 comparisons. With clustering, the minimum cost is 381 when k = 17. While the

reduction is by an order of magnitude, the minimum cost of 381 is still too expensive

for a human tester to consider.

To further reduce the cost, ICP used in the chapter is hybridised so that intra-cluster

prioritisation uses the traditional coverage-based greedy prioritisation algorithm. The hu-

man tester is only involved with inter-cluster prioritisation. The cost of hybrid approach

is, therefore, only the number of comparisons required for inter-cluster prioritisation,

which is C(n, k) = k(k−1)
2 . To ensure that fewer than 100 comparisons are required, we

use hybrid-ICP with k = 14 throughout the study, which results in 91 comparisons.

6.2.6 Suitability Test

ICP is most effective when the result of clustering is semantically significant, i.e. test cases

that execute similar parts of SUT belong to the same cluster. As k decreases, the semantic

significance of clustering is also diminished, since eventually the clustering algorithm will

start to place semantically different test cases in the same cluster. Therefore, hybrid ICP

with k = 14 may not work well with every test suite/SUT combination.

Since any form of human involvement in test case prioritisation is a significant com-

mitment, applying hybrid ICP to a combination of test suite and SUT that is not suitable

would be a waste of resources. A decision is required as to whether it is worth applying

the hybrid ICP. To support this decision making process, we propose an automated suit-

ability test that does not require human judgement. The test is an automated ICP, fully

based on structural coverage. Both intra- and inter-cluster prioritisation is performed

based on structural coverage. It also uses fault detection information using faults that

belong to the AR (Already Revealed) fault set. If the result of the test is not worse

than traditional coverage-based prioritisation techniques, it would confirm that cluster-

ing is not detrimental to the performance of ICP, in which case replacing inter-cluster

6.3. ANALYTIC HIERARCHY PROCESS 213

prioritisation with the pair-wise comparison approach is likely to have a positive impact

on the rate of fault detection with the unknown faults that belong to the TBR (To Be

Revealed) fault set.

6.3 Analytic Hierarchy Process

6.3.1 Definition

In order to prioritise n items, AHP requires all possible pair-wise comparisons between n

items. Comparisons are represented using the scale of preference described in Table 6.1.

pij Preference

1 i is equally preferable to j
3 i is slightly preferable over j
5 i is strongly preferable over j
7 i is very strongly preferable over j
9 i is extremely preferable over j

Table 6.1: Scale of preference used in the comparison matrix of AHP

Java C python

Expected
completion time Performance Skill

Selection of
programming

language

Figure 6.3: An example hierarchy between comparison criteria for AHP

Note that the preference relation is not necessarily transitive. The decision maker is

214 CHAPTER 6. EXPERT KNOWLEDGE IN TEST CASE MANAGEMENT

entitled to give answers such as A � B,B � C and C � A. In other words, pik is not

necessarily equal to pij · pjk. This lack of transitivity in the preference relation allows

AHP to cope with inconsistencies given by the decision maker. However, these inconsis-

tencies are mitigated by the high redundancy available due to multiple comparisons. By

definition, the scale is a ratio-based measurement. That is, given pij , pji is defined as

1
pij

.

The result of comparisons are combined in an n by n matrix, M . Naturally, M(i, i) =

1(1 ≤ i ≤ n). For the rest:

∀i(1 ≤ i ≤ n)∀j(1 ≤ j ≤ n ∧ i 6= j),M(i, j) = pij

The priority weighting vector E is the eigenvector of a matrix M ′, which is calculated

from M by normalising over the columns. E is calculated by taking the average across

rows of M ′:

M ′(i, j) =
M(i, j)∑

1≤k≤nM(i, k)

Ei =

∑
1≤k≤nM(k, i)

n

It is also possible to construct a hierarchy of multiple criteria [184]. To illustrate how

this hierarchical AHP is achieved, suppose that AHP is used to select the programming

language that will be used to implement a system. Management cares about expected

completion time, performance of implemented system and programmers’ skill in each

language. If the candidate languages are {Java, C, Python}, then the hierarchy of criteria

is as in Figure 6.3. First, programming languages are evaluated against each criterion in

the middle level. This produces a set of priority weighting vectors, V . Second, the criteria

in the middle level are prioritised, i.e., the relative importance between completion time,

performance and skill level is determined using AHP. This produces another priority

6.3. ANALYTIC HIERARCHY PROCESS 215

weighting vector, E. The final weighting vector is calculated by calculating the weighted

sum of the vectors in V ; for each criterion, the weight is given by E.

6.3.2 User Model

The approach proposed in this study will be evaluated with respect to an ‘ideal user

model’ and more ‘realistic user’ model that simulates human errors. The ideal user

provides comparisons that are consistent with the real fault detection capability of test

cases. While this may be over-optimistic, it provides an upper limit on the effectiveness

of cluster-based test case prioritisation using AHP.

Since AHP allows the user to compare two entities with degrees of preference rather

than simple binary relations, the ideal user model needs to consider how to quantitatively

differentiate the relative importance of test cases. Previous work using human input for

test case prioritisation only required binary relations, which are obtained by checking

which test case detects more faults than the other. We derive varying degrees of relative

importance by checking how much difference there is between the number of faults

detected by two test cases.

Suppose two test cases tA and tB are being compared. Let nA be the number of faults

detected by tA, and nB by tB. The ‘ideal’ user model used in the study sets the scale of

preference between tA and tB, pAB, as shown in Table 6.2.

Condition pAB Description

nA = nB 1 Equal
nA > 0 and nB = 0 7 Very Strongly prefer tA
nA > 0, nB > 0, nA ≥ 3nB 9 Extremely prefer tA
nA > 0, nB > 0, nA ≥ 2nB 7 Very Strongly prefer tA
nA > 0, nB > 0, nA ≥ nB 5 Strongly prefer tA

pBA = 1
pAB

Table 6.2: Scale of preference for the ‘ideal user’ model used in Chapter 6

216 CHAPTER 6. EXPERT KNOWLEDGE IN TEST CASE MANAGEMENT

For a more realistic user model, we introduce a model of human error. Suppose that

test case tA and tB are being compared with the result of pAB. Let p′AB be the result

with error. There are eight types of errors; Table 6.3 shows all eight types of error.

Errors of type 1 and 2 occur when a human tester claims that two test cases are

equally important, when in fact one of them is more important than the other. Errors of

type 3 and 4 occur when a human tester claims that a test case is more important than

the other, when in fact it is the opposite. Errors of type 5 and 6 occur when a human

tester claims that a test case is more important than the other when in fact they are

equally important. Finally, errors of type 7 and 8 occur when a human tester correctly

claims the inequality relation between two test cases, but answers the ratio of relative

importance incorrectly. In order to only include errors that mean the human judgement

is definitely wrong, only errors of type 1 to 6 are considered in the empirical studies.

Type Original Error

1 pAB > 1 p′AB = 1
2 pAB < 1 p′AB = 1
3 pAB > 1 p′AB < 1
4 pAB < 1 p′AB > 1
5 pAB = 1 p′AB > 1
6 pAB = 1 p′AB < 1
7 pAB > 1 p′AB > 1 and p′AB 6= pAB
8 pAB < 1 p′AB < 1 and p′AB 6= pAB

Table 6.3: Classification of different types of errors that the human tester can make for
AHP

In order to avoid any bias, we use the simplest uniformly distributed error model.

Given an error rate e, which is a real number between 0 and 1, the model provides

a correct answer with probability 1 − e. With probability e, an error is introduced by

changing the result of the comparison to one of alternative results defined by the types

of errors with a uniformly distributed probability.

6.3. ANALYTIC HIERARCHY PROCESS 217

6.3.3 Hierarchy

AHP can deal with multiple prioritisation criteria if the user can specify relative impor-

tance between different criteria. In the proposed prioritisation technique, both a single

criterion hierarchy model and multiple criteria hierarchy model are utilised. The sin-

gle criterion hierarchy model requires only the comparisons from the human expert.

This model allows us to observe how well the proposed technique performs when expert

knowledge is used alone. However, the model may produce sub-optimal prioritisation

because comparisons only reveal information about the relative quantity of faults found

by test cases, not their location. For example, consider the test cases shown in Table 6.4.

The ideal human expert will make pair-wise comparisons t1 ≺ t2, t1 ≺ t3, and t2 ≺ t3.

Since these comparisons are consistent with each other, the sequence provided by AHP

is < t1, t2, t3 >. However, the optimal ordering is < t1, t3, t2 > because of the overlap in

detected faults between t1 and t2.

Test Case Branch 1 Branch 2 Branch 3 Branch 4
(Fault 1) (Fault 2) (Fault 3) (Fault 4)

t1 x x x
t2 x x
t3 x

Table 6.4: The optimal sequence is < t1, t3, t2 >. However, perfect pair-wise comparisons
will result in t1 ≺ t2, t1 ≺ t3, and t2 ≺ t3, which will produce the sub-optimal sequence
< t1, t2, t3 >.

To overcome this limitation of AHP, the hierarchical AHP model utilises two priori-

tisation criteria: expert knowledge obtained from pair-wise comparisons and coverage-

based prioritisation results. The user comparisons matrix is obtained using the AHP

procedure described above. The structural coverage matrix reflects the result of coverage-

based prioritisation. Given a result of statement coverage-based prioritisation, the cov-

erage matrix is filled by Algorithm 11. Note that if ti comes before tj in statement

218 CHAPTER 6. EXPERT KNOWLEDGE IN TEST CASE MANAGEMENT

coverage-based prioritisation, ptitj is set to preference scale of 3, which is weaker than

the values used by the user model as shown in Table 6.2. This is to ensure that the

comparisons based on statement coverage should not override the comparisons from the

human expert (i.e coverage-based comparisons are made in weaker terms than compar-

isons by the human expert).

Algorithm 11: Coverage Matrix Generator

Input: A set of n test cases, T = {t1, . . . , tn}, and an ordered set of
prioritised positions of each test case in T , O =< i1, . . . , in >, such that
ij = k means jth test case is tk
Output: An n by n coverage matrix, M
(1) for i = 1 to i ≤ n
(2) M [i][i] = 1.0 //equal
(3) for j = 1 to Oi − 1
(4) M [Oi][j] = 3 // slightly favour ti
(5) for j = Oi + 1 to n− 1
(6) M [Oi][j] = 1

3 //slightly favour tj

When using multiple criteria, AHP requires the human user to determine the relative

importance not only between entities that are being prioritised (i.e. test cases) but also

between criteria themselves (i.e. expert knowledge and statement-based prioritisation).

Using Table 6.1, this study applies a set of 9 different human-to-coverage preference val-

ues, p[H][C], {9, . . . , 1, . . . , 19}. The ICP with single criterion AHP model will be denoted

by ICPS ; ICP with hierarchical AHP model will be denoted by ICPM .

6.4 Experimental Set-up

6.4.1 Subjects

Table 6.5 shows the subject programs studied in this chapter. They range from 412 to

122,169 LOC. Each program and its test suite is taken from Software Infrastructure

Repository (SIR) [41].

printtokens and schedule are part of Siemens suite. SIR contains multiple test

6.4. EXPERIMENTAL SET-UP 219

Program Test Suite (Avg.) TS Size LOC

printtokens 4 317.00 726
schedule 4 225.25 412
space 4 158.50 6,199
gzip 1 212 5,680
sed 1 370 14,427
vim 1 975 122,169
bash 1 1061 59,846

Table 6.5: Program & test suite sizes of subject programs studied in Chapter 6

suites for these programs; four test suites are chosen randomly. space is an Array De-

scription Language (ADL) interpreter that was developed by European Space Agency.

From SIR, four test suites are chosen randomly. gzip, sed, vim and bash are widely

used Unix programs. Only one test suite is available for these programs. Coverage data

for the subject programs are generated using gcov, a widely used profiling tool for gcc.

6.4.2 Suitability Test Configuration

SIR contains versions with injected faults and the mapping from test cases to the faults

detected by each test case; for gzip, sed, vim and bash, it contains multiple consecutive

versions of the source code and corresponding fault detection information. Whenever

available, the empirical study for the suitability testing utilises two distinct, consecutive

versions of the program. The faults from the first version are used as AR (Already

Revealed), whereas the faults from the second version is used as TBR (To Be Revealed).

For printtokens, schedule and space, multiple versions of the source code are available

but there exists a single set of fault detection information for a single version. For these

programs, we randomly divide the known faults into the AR and TBR sets and re-use

the structural coverage recorded from the source code of the same version. Table 6.6

shows the size of group AR and TBR for each program respectively.

220 CHAPTER 6. EXPERT KNOWLEDGE IN TEST CASE MANAGEMENT

Program Size of AR Size of TBR Mult. Ver.

printtokens 3 4 No
schedule 4 5 No
space 18 20 No
gzip 2 3 Yes
sed 6 4 Yes
vim 4 3 Yes
bash 4 9 Yes

Table 6.6: Subject programs and the size of AR (Already Revealed) and TBR (To Be
Revealed) sets

6.4.3 Evaluation

The results of ICP are compared to the optimal ordering, OP , and statement coverage-

based ordering, SC. The optimal ordering is obtained by prioritising the test cases based

on the fault detection information. It is impossible to know fault detection record in

advance, and therefore, the optimal ordering is not available in the real world. Statement

coverage-based ordering is obtained by performing additional-statement prioritisation.

This method has been widely studied and known to produce reasonable results [53, 130].

In the first set of empirical studies, we evaluate ICP against OP and SC using

Average Percentage of Fault Detection (APFD) metric [51]. Let T be the test suite

containing n test cases and let F be the set of m faults revealed by T . For ordering T ′,

let TFi be the order of the first test case that reveals the ith fault. APFD value for T ′

is calculated as following:

APFD = 1− TF1 + . . .+ TFm
nm

+
1

2n

ICP experiments are performed with different values for user error rates ranging from

0.05 (user is wrong 5 times out of 100 on average) to 1.0 (user is always wrong) in steps

of 0.05.

6.4. EXPERIMENTAL SET-UP 221

6.4.4 Research Questions

This study considers the following research questions:

RQ1. Effectiveness: How much improvement in effectiveness is achieved by ICP

compared to the optimal ordering and coverage-based prioritisation?

RQ2. Configuration: When the human input is combined with other prioritisation

criteria such as structural coverage, what is the ideal configuration between human input

and other criteria?

In order to answer RQ1 and RQ2, we evaluate two different hybrid-ICP instances,

one with single hierarchy model AHP and the other with multiple hierarchy model AHP.

For RQ1, we measure the APFD of the produced ordering and compare it to those of

optimal ordering and statement coverage-based prioritisation. For RQ2, we execute the

hybrid ICP with multiple hierarchy model AHP. The secondary prioritisation criteria

is derived from statement coverage-based prioritisation using the algorithm shown in

Section 6.3.3. We measure APFD of the test case sequences obtained by using different

values of p[H][C] and compare these to those of optimal ordering and statement coverage-

based prioritisaiton. RQ1 and RQ2 are answered in Section 6.5.1.

The second part of the empirical studies deals with tolerance and suitability. Since

the quality of the results produced by the proposed technique depends directly on the

quality of the human user’s input, it is necessary to study how high the allowable level of

error rate can be while producing results that are better than coverage-based techniques.

RQ3. Tolerance: What is the highest human error rate that can be tolerated while

yielding performance superior to the coverage-based techniques?

222 CHAPTER 6. EXPERT KNOWLEDGE IN TEST CASE MANAGEMENT

For suitability study, we apply the automated suitability test to subject programs

and their test suites using the AR faults and see if the difference between ICP and

coverage-based prioritisation is consistent with the result of effectiveness and efficiency

studies.

RQ4. Suitability: How accurately does the automated suitability test predict the

successful result of ICP?

RQ3 is answered in the second part of the empirical study, by increasing the error

rate and observing the statistics of the results. RQ4 is answered by performing auto-

mated suitability test and comparing the results to those of effectiveness and efficiency

study. RQ3 and RQ4 are answered in Section 6.5.2.

6.5 Results and Analysis

Subject printtokens schedule

Test Suite 1 2 3 4 1 2 3 4

OP 0.995 0.995 0.997 0.995 0.991 0.995 0.993 0.993
ICPS 0.806 0.974 0.967 0.868 0.824 0.917 0.952 0.913
SC 0.930 0.992 0.972 0.960 0.806 0.865 0.782 0.844

Subject space gzip sed vim bash

Test Suite 1 2 3 4

OP 0.983 0.985 0.985 0.982 0.996 0.997 0.998 0.999
ICPS 0.948 0.933 0.930 0.927 0.996 0.905 0.903 0.144
SC 0.899 0.863 0.948 0.947 0.980 0.876 0.899 0.210

Table 6.7: APFD values obtained from ICPS and ideal user model compared to those
of the optimal ordering and the statement coverage-based prioritisation. Cells with grey
background represent the fact that ICPS outperformed statement coverage-based pri-
oritisation in terms of APFD.

6.5. RESULTS AND ANALYSIS 223

6.5.1 Effectiveness & Configuration

Table 6.7 shows the APFD values measured from the single-hierarchy model approach,

ICPS . The cells with grey background denote configurations that outperformed state-

ment coverage-based prioritisation in terms of APFD metric. The proposed technique

only outperforms coverage-based techniques with the right combination of program and

test suite. For example, suite 1 and suite 2 of space show improvement over SC, but

suite 3 and suite 4 do not. The clustering also has detrimental effect on the test suite

of bash; the APFD value produced by ICPS is lower than that of SC. Overall, out of

16 prioritisation problems, ICPS produces higher APFD than statement coverage-based

prioritisation for 9 cases. Note that these results assume the human input from the ideal

user and, therefore, the results are deterministic. The increases in APFD range from

0.5% to 21.8% with average increase of 6.5%. This provides an answer to RQ1.

Table 6.8 shows the results from the multiple-hierarchy model approaches, ICPM .

Each configuration uses different p[H][C] value to prioritise the criteria, i.e., comparisons

made by human expert and statement coverage-based prioritisation. One trend observed

in every prioritisation is that higher p[H][C] tends to produce higher APFD metric val-

ues. With a few exceptions, observed APFD values monotonically decrease as p[H][C]

decreases. This implies that the ideal configuration for the hybrid ICPM approach is to

set p[H][C] = 9, i.e. to favour the human judgement extremely. This provides an answer

to RQ2. With p[H][C] = 9, the increases in APFD range from 0.7% to 22% with average

increase of 6.4%.

6.5.2 Tolerance & Suitability

Now we turn to the second set of research questions. Regarding the tolerance study

and RQ3, Figure 6.4 and Figure 6.5 show how APFD values from ICPS and ICPS

deteriorate as error rate increases from 0.05 to 1.0. Comparing Figure 6.4 and Figure 6.5

with Table 6.7 and Table 6.8, test suites for which ICP does not achieve improvement

224 CHAPTER 6. EXPERT KNOWLEDGE IN TEST CASE MANAGEMENT

Subject printtokens schedule

Test Suite 1 2 3 4 1 2 3 4

OP 0.995 0.995 0.997 0.995 0.991 0.995 0.993 0.993

9 0.807 0.974 0.967 0.871 0.825 0.916 0.954 0.912
7 0.807 0.974 0.967 0.871 0.825 0.916 0.954 0.912
5 0.807 0.974 0.967 0.871 0.825 0.915 0.954 0.912

ICPM 3 0.807 0.974 0.966 0.871 0.825 0.914 0.952 0.912
p[H][C] 1 0.807 0.974 0.966 0.871 0.824 0.915 0.951 0.912

1/3 0.808 0.973 0.966 0.870 0.823 0.905 0.945 0.909
1/5 0.807 0.973 0.966 0.870 0.820 0.903 0.943 0.907
1/7 0.807 0.973 0.966 0.870 0.821 0.901 0.941 0.906
1/9 0.806 0.973 0.966 0.870 0.821 0.901 0.941 0.904

SC 0.930 0.992 0.972 0.960 0.806 0.865 0.782 0.844

Subject space gzip sed vim bash

Test Suite 1 2 3 4

OP 0.983 0.9852 0.985 0.982 0.996 0.997 0.998 0.999

9 0.946 0.938 0.931 0.927 0.996 0.905 0.905 0.144
7 0.946 0.939 0.931 0.926 0.996 0.905 0.905 0.144
5 0.947 0.939 0.931 0.926 0.996 0.905 0.905 0.144

ICPM 3 0.946 0.940 0.931 0.926 0.996 0.905 0.905 0.144
p[H][C] 1 0.946 0.939 0.930 0.923 0.996 0.905 0.904 0.144

1/3 0.943 0.937 0.929 0.920 0.991 0.902 0.904 0.144
1/5 0.943 0.936 0.928 0.920 0.988 0.902 0.904 0.144
1/7 0.943 0.936 0.928 0.919 0.987 0.902 0.904 0.144
1/9 0.943 0.935 0.928 0.919 0.985 0.902 0.904 0.144

SC 0.899 0.863 0.948 0.947 0.980 0.876 0.899 0.210

Table 6.8: APFD values obtained from ICPM with different p[H][C] values and ideal user
model, ranging from ‘extremely favours human expert’s judgement (9)’ to ‘extremely
favours coverage-based prioritisation (19)’.

6.5. RESULTS AND ANALYSIS 225

tend to be less resistant to increasing error rate. On the other hand, test suites for which

ICP is capable of making improvement over statement coverage-based prioritisation tend

to produce more robust APFD values as the error rate increases. The test suite for gzip

is capable of producing higher APFD values than statement coverage with error rates up

to 0.45. Surprisingly, test suites for schedule, sed, vim, and two test suites for space are

capable of producing higher APFD values than statement coverage with error rates up to

1.0, i.e. under the situation when the human expert always makes incorrect comparisons.

Figure 6.6 provides an explanation to this seemingly counter-intuitive phenomenon.

Figure 6.6 contains following three boxplots. In each subplot, Random shows APFD of

random ordering of test cases with no clustering; RCRP (Random Clustering Random

Prioritisation) shows APFD of randomised ICP with random clustering with k = 14 and

HCRP (Hierarchical Clustering Random Prioritisation) shows APFD of randomised

ICP with hierarchical clustering. The solid horizontal line represents APFD value of the

optimal ordering; the dotted horizontal line represents APFD value of the statement

coverage-based prioritisation. There exists a common trend between all programs for

which ICP produced successful improvement. For these programs, either the mean of

HCRP or the upper quartile observation of the box plot is higher than the APFD of

statement coverage-based prioritisation. It can be concluded that the clustering with

k = 14 works for the prioritisation of these programs and their test suites. Note that all

the prioritisation is performed randomly forHCRP . Our conjecture is that, for these pro-

grams, any prioritisation technique that performs better than a purely random approach

will eventually make an improvement over statement coverage-based prioritisation.

Table 6.9 confirms this conjecture, and provides an answer for RQ4. It compares

the result of the suitability test for faults in AR and TBR sets of each program with

the optimal ordering and the statement coverage-based prioritisation. Hierarchical Clus-

tering/Statement Prioritisation (HCSP) represents the ICP with statement coverage

prioritisation both for intra- and inter-cluster stage, combined with hierarchical agglom-

226 CHAPTER 6. EXPERT KNOWLEDGE IN TEST CASE MANAGEMENT

●●
●
●

●
●
●

●

●● ●

●

● ●●

●

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
75

0.
80

0.
85

0.
90

0.
95

A
P

F
D

printtokens suite1

●

●
● ●

●
●

●

●

●

●
●●

●●
●●

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

A
P

F
D

printtokens suite2

●●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●● ●

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

A
P

F
D

printtokens suite3

●

●
●
● ●

●●
●

●●●●

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
80

0.
85

0.
90

0.
95

1.
00

A
P

F
D

printtokens suite4

●●

●

●●

●

●●

●

●

●

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
70

0.
75

0.
80

0.
85

A
P

F
D

schedule suite1

●

●●

●

●

●●

●

●

●

●
●

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
86

0.
88

0.
90

0.
92

0.
94

A
P

F
D

schedule suite2

●

● ●
●

● ● ● ●

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

A
P

F
D

schedule suite3

●

●

● ●
●● ●● ●

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
80

0.
85

0.
90

0.
95

A
P

F
D

schedule suite4

●
●

●

●

●● ●

●

● ●
● ●

●● ●

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
85

0.
90

0.
95

1.
00

A
P

F
D

space suite1

●
●

●

●●

●

●

●
●

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
86

0.
88

0.
90

0.
92

0.
94

A
P

F
D

space suite2

●

0.05 0.15 0.25 0.35 0.45

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

A
P

F
D

space suite3

●

●

●
●

0.05 0.15 0.25 0.35 0.45
0.

90
0.

92
0.

94
0.

96
0.

98
1.

00

A
P

F
D

space suite4

● ●●●

●
●

●

●
●

●

●

●●

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

A
P

F
D

gzip

●

● ●

●

●● ●
● ●

●

●

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
86

0.
88

0.
90

0.
92

0.
94

A
P

F
D

sed

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
86

0.
88

0.
90

0.
92

0.
94

A
P

F
D

vim

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
P

F
D

bash

Figure 6.4: Boxplots of APFD values of ICPS configuration with error rate ranging
from 0.05 to 1.0 in steps of 0.05 on the x-axis. The y-axis shows the observed APFD
metric values. For each error rate value, experiments are repeated 30 times to cater for
the randomness in the error model. The horizontal dotted line shows the APFD value
of statement coverage-based prioritisation. Surprisingly, for the test suites for which
ICPS showed an improvement in Table 6.7, the mean APFD values tend to stay above
this dotted line, even when the error rate is above 0.5. In fact, with the exception of
schedule1 and gzip, even the error rate of 1.0 produces successful results for the test
suites for which ICPS showed an improvement in Table 6.7.

6.5. RESULTS AND ANALYSIS 227

● ●
●●

●
●

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
75

0.
80

0.
85

0.
90

0.
95

A
P

F
D

printtokens suite1

●
●
●
●
● ●

●

●●

● ● ●
●

●●

●

●

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

A
P

F
D

printtokens suite2

●

●● ● ●
●
●

●

● ●●

●

●
●

●

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

A
P

F
D

printtokens suite3

●
●

●
●● ● ● ●●●

● ●

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
85

0.
90

0.
95

1.
00

A
P

F
D

printtokens suite4

●
●
●●●●●
●
●●

●●●●

●

●

● ●
●

●● ●●

●

●

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
76

0.
78

0.
80

0.
82

0.
84

A
P

F
D

schedule suite1

●

●

●

● ●
●

●

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
80

0.
85

0.
90

0.
95

A
P

F
D

schedule suite2

●●

●
● ●

●● ●
●

●●

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

A
P

F
D

schedule suite3

●●●●

●
● ● ●●

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
80

0.
85

0.
90

0.
95

A
P

F
D

schedule suite4

●

●

● ●

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
85

0.
90

0.
95

1.
00

A
P

F
D

space suite1

● ●

●

●

●●

●

●●
●

●

●

●
●●●

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
86

0.
88

0.
90

0.
92

0.
94

A
P

F
D

space suite2

●
●

●● ●

●

●
● ●● ●

●

●

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
85

0.
90

0.
95

1.
00

A
P

F
D

space suite3

●

●

●

●●

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

A
P

F
D

space suite4

●●

●●●●

●

●

●
●

●●
●

●

●
●
●

●

●

●
●

●

●

●

● ●

●

●
●

●
●

●

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

A
P

F
D

gzip

●
●

●

● ● ●

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
86

0.
88

0.
90

0.
92

0.
94

A
P

F
D

sed

●
● ●●●

● ●●
●●
●● ● ● ●●

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
86

0.
88

0.
90

0.
92

0.
94

A
P

F
D

vim

0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
P

F
D

bash

Figure 6.5: Boxplots of APFD values of ICPM configuration with error rate ranging from
0.05 to 1.0 in steps of 0.05 on the x-axis. The y-axis shows the observed APFD metric
values. The trend observed in Figure 6.4 continues. However, it can also be observed that
the secondary prioritisation criteria (statement coverage) compliments human input.
APFD values show smaller variances compared to Figure 6.4 and, in some cases, more
tolerance in the presence of human error, for example, the case with test suite 1 of
schedule.

228 CHAPTER 6. EXPERT KNOWLEDGE IN TEST CASE MANAGEMENT

Random RCRP HCRP

0.
6

0.
7

0.
8

0.
9

1.
0

A
P

F
D

printtokens suite1

Random RCRP HCRP
0.

6
0.

7
0.

8
0.

9
1.

0

A
P

F
D

printtokens suite2

Random RCRP HCRP

0.
6

0.
7

0.
8

0.
9

1.
0

A
P

F
D

printtokens suite3

Random RCRP HCRP

0.
6

0.
7

0.
8

0.
9

1.
0

A
P

F
D

printtokens suite4

●

●

●

Random RCRP HCRP

0.
6

0.
7

0.
8

0.
9

1.
0

A
P

F
D

schedule suite1

●

●
●

●

●

Random RCRP HCRP

0.
6

0.
7

0.
8

0.
9

1.
0

A
P

F
D

schedule suite2

Random RCRP HCRP

0.
6

0.
7

0.
8

0.
9

1.
0

A
P

F
D

schedule suite3

●
●

●

●

●
●

Random RCRP HCRP

0.
6

0.
7

0.
8

0.
9

1.
0

A
P

F
D

schedule suite4

●●

●

Random RCRP HCRP

0.
6

0.
7

0.
8

0.
9

1.
0

A
P

F
D

space suite1

Random RCRP HCRP

0.
6

0.
7

0.
8

0.
9

1.
0

A
P

F
D

space suite2

●●

Random RCRP HCRP

0.
6

0.
7

0.
8

0.
9

1.
0

A
P

F
D

space suite3

Random RCRP HCRP

0.
6

0.
7

0.
8

0.
9

1.
0

A
P

F
D

space suite4

Random RCRP HCRP

0.
6

0.
7

0.
8

0.
9

1.
0

A
P

F
D

gzip suite1

Random RCRP HCRP

0.
6

0.
7

0.
8

0.
9

1.
0

A
P

F
D

sed suite1

Random RCRP HCRP

0.
2

0.
4

0.
6

0.
8

1.
0

A
P

F
D

vim suite1

Random RCRP HCRP

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
P

F
D

bash suite1

Figure 6.6: Boxplots of random prioritisation results. On the x-axis, ‘Random’ rep-
resents random prioritisation with no clustering; ‘RCRP’ represents random clustering
and random ICP; ‘HCRP’ represents hierarchical clustering and random ICP. The y-axis
shows the observed APFD metric values. For programs for which ICP performed well
in Section 6.5.1, HCRP partially outperforms statement coverage-based prioritisation
(represented by the dotted lines) even with random prioritisation.

6.5. RESULTS AND ANALYSIS 229

erative clustering of k = 14. No Clustering/Statement Prioritisation (NCSP) represents

traditional statement coverage-based prioritisation. Note that both configurations are

deterministic and can be automated. For the faults in the AR set, both NCSP and

HCSP are executed. If the result of HCSP is equal to or higher than that of NCSP,

the specific pair of SUT and test suite is said to pass the suitability test. A pass means

that the hierarchical clustering has a positive impact on statement coverage-based pri-

oritisation. Therefore, we expect that replacing statement coverage-based prioritisation

with techniques such as AHP will only improve the prioritisation of any SUT and test

suite that passed suitability test. This expectation is then checked using the TBR set

of faults. If ICPM produces higher APFD than NCSP for a pair of (SUT, test suite)

that passed suitability test, it can be said that the test produced a correct prediction.

Since the aim of the suitability test is to avoid wasting human effort, false positive tests

presents higher risk than false negative tests.

The results in Table 6.9 indicate the passed tests with grey background. For all 8 tests

that passed, the subsequent experiments with faults in the TBR set confirm the result

of suitability test. That is, ICPM produces higher APFD than statement coverage-based

prioritisation. There are two false negative results, marked with (*). Suite 2 of schedule

and vim do not pass the suitability test, but ICP does produce higher APFD than NCSP.

There is no false positive test result. The remaining 6 pairs of program/test suite do not

pass the suitability test, and the subsequent experiments with faults in the TBR set

confirm the correctness of the suitability test. In summary, RQ4 is answered positively

with 14 correct predictions (8 pass, 6 fail) out of 16 cases. The remaining two cases are

comparatively harmless false negatives.

6.5.3 Limitations & Threats to Validity

Threats to internal validity concern the factors that might have affected the performance

the proposed technique. The accuracy of execution trace data and fault detection data

230 CHAPTER 6. EXPERT KNOWLEDGE IN TEST CASE MANAGEMENT

Subject printtokens schedule

Test Suite 1 2 3 4 1 2 3 4

OP 0.995 0.995 0.998 0.995 0.991 0.995 0.993 0.993
NCSP AR 0.936 0.997 0.998 0.965 0.899 0.974 0.922 0.949
HCSP AR 0.736 0.976 0.998 0.896 0.984 0.970∗ 0.972 0.986
NCSP TBR 0.915 0.993 0.953 0.949 0.831 0.880 0.854 0.883
ICPM TBR 0.755 0.954 0.978 0.875 0.994 0.992 0.992 0.992

Subject space gzip sed vim bash

Test Suite 1 2 3 4

OP 0.983 0.985 0.985 0.982 0.996 0.997 0.998 0.999
NCSP AR 0.958 0.957 0.963 0.974 0.817 0.958 0.946 0.804
HCSP AR 0.964 0.977 0.941 0.939 0.831 0.959 0.890∗ 0.746
NCSP TBR 0.918 0.914 0.962 0.973 0.980 0.876 0.899 0.210
ICPM TBR 0.966 0.982 0.956 0.944 0.996 0.905 0.905 0.144

Table 6.9: Results of the suitability test. NCSP is the traditional statement coverage-
based prioritisation. HCSP is ICP with statement coverage prioritisation for both intra-
and inter-cluster prioritisation. If HCSP performs no worse than NCSP, the test passes,
i.e. ICP is expected to outperform NCSP with the faults in the TBR set. Cells with
grey background show passed tests with correct prediction; cells with white background
denote failed tests with correct prediction. The second test suite of schedule and the
test suite of vim produce false negative results (denoted by *).

6.6. RELATED WORK 231

can have a significant impact on the performance. To address this, the execution traces

were obtained using a widely used and well known compile/profiling tool, gcc and gcov.

Fault detection data were obtained from SIR [41].

Threats to external validity concern the conditions that limit generalisation of the

results. The novelty of the proposed technique lies in the combination of clustering

and pair-wise comparisons. This study uses the agglomerative hierarchical clustering for

the former and AHP for the latter, but other combinations of techniques may produce

different results. Different combinations of techniques should be studied in order to

address this concern. The representativeness of the test suites and subject programs is

another primary concern. However, the study studies programs with sizes ranging from

412 LoC to over 100KLoc. When multiple test suites are available, four different test

suites were randomly chosen to avoid any bias based on the choice of test suites.

6.6 Related Work

AHP has been widely adopted in various software engineering fields where the only

meaningful prioritisation criteria is often the human preference. Karlsson et al. applied

AHP to requirement prioritisation and empirically compared AHP with several different

techniques [101]. Finnie et al. applied AHP to project management and prioritised pro-

ductivity factors in software development [58]. Douligeris et al. applied AHP to evaluate

the Quality-of-Service (QoS) in telecommunication networks [48].

Previous work in the test case management field studied how human involvement can

improve the quality of test case prioritisation. Tonella et al. have successfully applied the

Case-Base Ranking (CBR) machine learning technique to test case prioritisation [202].

CBR tries to learn the ordering between the test cases from the additional information it

is given such as structural coverage. During the process, CBR presents the human tester

with a pair of test cases and asks which one is more important. It combines the human

232 CHAPTER 6. EXPERT KNOWLEDGE IN TEST CASE MANAGEMENT

input with the information originally available, and produces an ordering of test cases.

The empirical results show that prioritisation using CBR can outperform the existing

coverage-based prioritisation techniques.

While this study starts from the same assumption (that human involvement can im-

prove test case prioritisation), there are several significant differences from this previous

work. First, this study introduces clustering to deal with the high cost of AHP. Without

the reduction in effort, the cost of AHP has been considered inhibitive. Second, this

study introduces the error rate in the user model, and thereby provides more realistic

observation of the performance of the technique. Finally, the study introduces an auto-

mated assessment technique that determines whether human effort will be justified by

the expected results.

6.7 Conclusions

This chapter introduced the use of clustering for human interactive test case prioriti-

sation. Human interaction is achieved by using AHP, which is a widely used decision

making tool that has been previously adopted by the Requirements Engineering com-

munity. Clustering is applied to reduce the number of pair-wise comparisons required

by AHP, making it scalable to regression testing problems. The chapter introduced a

hybrid Interleaved Clusters Prioritisation technique to combine these two techniques.

The empirical studies show that the hybrid ICP algorithm can outperform the tradi-

tional coverage-based prioritisation for some programs, even when the human input is

erroneous. The chapter also presented an automated suitability test that can accurately

predict whether the hybrid ICP will make a positive improvement to the prioritisation

of a specific pair of SUT and test suite, ensuring that no human effort is wasted on

regression testing scenarios that are inappropriate for the technique.

Chapter 7

Conclusions

7.1 Summary of Achievements

The original aim of this thesis was to reformulate the existing regression testing tech-

niques with respect to the issues of multi-objectiveness, test suite redundancy and the

use of expert knowledge. Details of each objective were as follows:

1. To extend test case management problems and techniques by formulating multi-

objective versions of both so that multi-constraint based real world complexity can

be met; and

2. To introduce and evaluate a measurement of a form of “desirable” test suite re-

dundancy, called test suite latency, to allow a systematic view on the issue of

redundancy, and also to introduce an automated approach to latency enhance-

ment, called test data augmentation, so that testers can enjoy a rich pool of novel

test data at a low cost; and

3. To demonstrate how expert domain knowledge can be incorporated into existing

test case management techniques so that testers can guide the automated regression

testing process with human input without losing scalability.

233

234 CHAPTER 7. CONCLUSIONS

7.1.1 Multi-objective Test Case Management

Most of the existing test case management techniques are single-objective; that is, the

aim of the techniques is to maximise (or minimise) a singular property of the test suite.

However, regression testing is a complex process that often involves multiple criteria

and constraints. Existing techniques have tried to deal with the multiplicity of objec-

tives using classical optimisation approach such as sequential optimisation of objectives,

weighted sum of objectives, and combining two objectives in the form of ratio. While

these approaches produce a solution for the problems, they do not provide any insights

into the trade-offs between the multiple objectives, which are often more informative to

the tester than a single solution.

The concept of Pareto-optimality has originally been introduced in economics [67],

but now is extensively used in any domain that requires optimisation of multiple ob-

jectives. It allows us to observe the trade-offs between objectives in the form of a set

of non-dominating solutions. This thesis instantiates test suite minimisation as a multi-

objective optimisation problem using multiple objectives such as structural coverage,

cost of execution and fault history. Theoretical analysis of existing techniques shows

that multi-objective optimisation can provide more options for minimising test suites

to testers so that they can perform more efficient regression testing under certain con-

straints. The empirical study confirms the theoretical observation with real world exam-

ples and presents visualisation of the multi-objective solution space.

7.1.2 Test Suite Latency & On-demand Regression Testing

One of the important issues in test case management is the question of the necessity

of redundancy in test suites. In general, every novel test case brings more information

about the correctness of SUT and, therefore, the redundancy is desirable. In reality,

the tester has to balance the benefits of having a large and redundant test suite with

the cost of managing such a test suite. One of the things that have been missing from

7.1. SUMMARY OF ACHIEVEMENTS 235

the discussion on test suite redundancy is how to measure and express the redundancy.

Existing work in the literature often just identified the minimised subset of the test

suites, and labelled the rest as redundant. However, this does not provide a clear view

of the real redundancy as the quality of the rest of test suites can vary greatly.

This thesis presents a concept called test suite latency : a systematic measurement

of redundancy in test suites with respect to specific set of testing goals. This allows the

tester to observe the full, latent potential of the parts of test suites that are deemed to

be redundant. This observation can lead the tester to form an informed decision about

how much redundancy is cost-effective. The thesis also considers an automated strategy

of enhancing test suite latency suing the existing test data as a starting point.

The concept of on-demand regression testing takes the automated latency enhance-

ment strategy one step further. It is an approach to regression testing that is free from

limitations of having too large test suites. In this approach, test suites only serve as a

template from which additional test data can generated on-demand at a very low cost.

This ensures that the tester enjoys a set of novel test data each time the technique is

applied for regression testing, eliminating the risk of over-fitting the testing process to a

small set of test data. It may also be used in parallel to existing test case management

technique. Empirical study of real world examples shows that the proposed technique can

be significantly cheaper than existing test data generation technique, while maintaining

the fault detection capability.

7.1.3 Use of Expert Knowledge in Test Case Management

While automation of test case management is necessary due to the scalability issues, it

is unrealistic to expect any human tester to accept the result of an automated technique

without questions or objections. In fact, if the tester in question is very well experienced

in the testing of a given SUT, it would certainly be beneficial to utilise the expert

knowledge. However, the human tester is likely to wish to influence the decisions in test

236 CHAPTER 7. CONCLUSIONS

case management for many other reasons, even if the outcome becomes sub-optimal in

reality. Therefore, any test case management technique will benefit from allowing human

testers to have their own input to the process, either for the effectiveness and efficiency

of the technique or for the acceptance of the technique.

The main obstacle to the use of human knowledge in test case management is that

human input is not only very costly but its expression also tends to be highly inconsistent.

The key to the use of expert knowledge is to balance the benefits of human knowledge

with its cost. This thesis presents an instantiation of test case prioritisation that uses

human expert knowledge. The cost of human input is maintained to be manageable by

using a clustering technique to reduce the problem size. For the test case prioritisation,

the human tester only faces pair-wise comparison problems of a fixed and feasible size.

The results of the prioritisation of the clustered test suites are then extrapolated to

the original test suites using a novel prioritisation algorithm called Interleaved Clusters

Prioritisation (ICP).

The proposed prioritisation approach is empirically evaluated not only with respect

to ideal user model (a perfect tester who always knows which test case is more effective

than the others) but also more realistic user models with varying error rates (a tester

who will provide incorrect answers according to some given probability). The result of

this comparative analysis reveals, somewhat surprisingly, that particular pairs of SUT

and test suite are very resistant to human errors; in other words, clustering alone has a

positive impact on the effectiveness of the ICP. This observation forms the basis of the

automated test that determines whether expert knowledge based prioritisation will be

more effective than existing techniques or not.

7.2. SUMMARY OF FUTURE WORK 237

7.2 Summary of Future Work

7.2.1 Orchestrating Test Case Management with Test Data Generation

Automatic generation of test data has witnessed a burgeoning interest from the research

community; a wide range of techniques such as meta-heuristic search techniques and

symbolic execution has been successfully applied to the automatic test data generation

problem. However, the study of connecting test data generation with test case manage-

ment has been significantly overlooked so far. Since one technique aims to generate more

test data and the other aims to reduce the effort required for executing all the test cases,

there ought to exist a synergistic combination that can be obtained from orchestrating

the two techniques; one can provide valuable feedback to the other and vice versa.

The latency enhancement strategy and test data augmentation technique introduced

in this thesis can be viewed as one possible way of taking advantage of this potential

synergy between two domains; the information obtained from one domain is used to

reduce the cost of the other. However, it is possible to imagine a more sophisticated

and richer collaboration between two domains. For example, test data generation can

inform test case management techniques about the value of each test case estimated

from the way it was generated. Similarly, test case management can guide future test

data generation by providing the information about which parts of the program require

more test data, or which test cases have been successful at detecting faults.

7.2.2 Non-functional Testing and Test Case Management

A majority of existing test case management techniques rely upon structural information

about the SUT such as data flow analysis, CFG analysis, program slices and structural

coverage. The impact that non-functional property testing will have on test case man-

agement techniques has not been fully studied. Existing techniques were able to map the

problems in the test case management domain to well-formed abstract problems thanks

238 CHAPTER 7. CONCLUSIONS

to the properties of structural information. For example, test suite minimisation could

be mapped to the minimal hitting set problem or the set coverage problem precisely

because the techniques were based on the concept of ‘coverage’. Similarly, graph-walking

approaches to test case selection were made possible because the changes between dif-

ferent versions were defined by structural difference in CFGs.

Suppose the goals of test case management techniques were focused on non-functional

properties. What would be the minimised test suite that can test the power consumption

of an embedded system? How would test cases be prioritised to achieve an efficient and

effective stress testing of a web application? These questions remain largely unanswered

and may require approaches that are significantly different from existing paradigms.

7.2.3 Industrial Scale Adaptation & Tool Support

While various test case management techniques have reached a level of maturity in the

academic environment, the adoption by industry has been slow. This is evidenced by the

fact that a majority of the literature on the subject depends on a small set of programs

made available through Software Infrastructure Repository (SIR); so much so, in fact,

that there may be a risk of over-fitting the entire subject to these programs, their test

suites and fault information. This is partly due to the fact that any information related to

faults in a software system is extremely sensitive to corporations. Nonetheless, empirical

evaluation of test case management techniques in industrial scale is something that would

carry immense value to academic researchers.

Closely related to this is the issue of tool support. Without readily available tools

that implement test case management techniques, practical adoption will remain limited.

One potential difficulty of providing tool support is the fact that, unlike unit testing for

which there exists a series of frameworks based on the xUnit architecture, there is not a

common framework for the regression testing process in general. The closest to a common

ground for regression testing would be an Integrated Development Environment (IDE),

7.2. SUMMARY OF FUTURE WORK 239

such as Eclipse, with which the xUnit architecture is already integrated successfully.

A good starting point for test case management techniques may be the management

framework of unit test cases, built upon xUnit architecture and IDEs.

240 CHAPTER 7. CONCLUSIONS

Bibliography

[1] Cantata++ http://www.ipl.com/products/tools/pt400.uk.php.

[2] IEEE Standard Glossary of Software Engineering Terminology. IEEE Press, 10

Dec 1990.

[3] The Oxford English Dictionary. Oxford University Press, 2nd edition, April 2000.

[4] H. Agrawal, J. R. Horgan, E. W. Krauser, and S. A. London. Incremental regression

testing. In Proceedings of the International Conference on Software Maintenance

(ICSM 1993), pages 348–357. IEEE Computer Society, September 1993.

[5] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate tool

for testing experiments? In Proceedings of the 27th International Conference on

Software Engineering (ICSE 2005), pages 402–411. ACM Press, May 2005.

[6] Ricardo Anido, Ana R. Cavalli, Luiz Paula Lima Jr, and Nina Yevtushenko. Test

suite minimization for testing in context. Software Testing, Verification and Reli-

ability, 13(3):141–155, 2003.

[7] Paolo Avesani, Cinzia Bazzanella, Anna Perini, and Angelo Susi. Facing scalability

issues in requirements prioritization with machine learning techniques. In Proceed-

ings of the 13th IEEE International Conference on Requirements Engineering (RE

2005), pages 297–306. IEEE Computer Society, 2005.

241

242 BIBLIOGRAPHY

[8] Thomas Ball. On the limit of control flow analysis for regression test selection.

In Proceedings of the International Symposium on Software Testing and Analysis

(ISSTA 1998), pages 134–142. ACM Press, March 1998.

[9] André Baresel, David Wendell Binkley, Mark Harman, and Bogdan Korel. Evolu-

tionary testing in the presence of loop–assigned flags: A testability transformation

approach. In Proceedings of the International Symposium on Software Testing and

Analysis (ISSTA 2004), pages 108–118, July 2004.

[10] Samual Bates and Susan Horwitz. Incremental program testing using program de-

pendence graphs. In Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, pages 384–396. ACM Press, January

1993.

[11] Benoit Baudry, Franck Fleurey, Jean-Marc Jézéquel, and Yves Le Traon. Auto-

matic test case optimization: A bacteriologic algorithm. IEEE Software, 22(2):76–

82, 2005.

[12] Benoit Baudry, Franck Fleurey, Jean-Marc Jézéquel, and Yves Le Traon. From

genetic to bacteriological algorithms for mutation-based testing. Software Testing,

Verification, and Reliability, 15(2):73–96, 2005.

[13] Benoit Baudry, Franck Fleurey, and Yves Le Traon. Improving test suites for

efficient fault localization. In Proceedings of the 28th International Conference on

Software Engineering (ICSE 2006), pages 82–91. ACM Press, 2006.

[14] Boris Beizer. Software Testing Techniques. International Thomson Computer

Press, 2nd edition, 1990.

[15] P. Benedusi, A. Cmitile, and U. De Carlini. Post-maintenance testing based on

path change analysis. In Proceedings of the International Conference on Software

BIBLIOGRAPHY 243

Maintenance (ICSM 1988), pages 352–361. IEEE Computer Society Press, October

1988.

[16] S. Beydeda and V. Gruhn. Integrating white- and black-box techniques for class-

level regression testing. In Proceedings of the 25th IEEE International Computer

Software and Applications Conference (COMPSAC 2001), pages 357–362, 2001.

[17] D. Binkley. Reducing the cost of regression testing by semantics guided test case

selection. In Proceedings of the International Conference on Software Maintenance

(ICSM 1995), pages 251–260. IEEE Computer Society, 1995.

[18] J. Black, E. Melachrinoudis, and D. Kaeli. Bi-criteria models for all-uses test

suite reduction. In Proceedings of the 26th International Conference on Software

Engineering (ICSE 2004), pages 106–115, May 2004.

[19] Morris I. Bolsky and David G. Korn. The New KornShell Command and Program-

ming Language. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1995.

[20] Leonardo Bottaci. Instrumenting programs with flag variables for test data search

by genetic algorithms. In Proceedings of the Genetic and Evolutionary Computa-

tion Conference (GECCO 2002), pages 1337–1342. Morgan Kaufmann Publishers,

July 2002.

[21] L. C. Briand, Y. Labiche, K. Buist, and G. Soccar. Automating impact analysis

and regression test selection based on UML designs. In Proceedings of the Interna-

tional Conference on Software Maintenance (ICSM 2002), pages 252–261. IEEE

Computer Society, October 2002.

[22] L. C. Briand, Y. Labiche, and S. He. Automating regression test selection based

on UML designs. Journal of Information and Software Technology, 51(1):16–30,

2009.

244 BIBLIOGRAPHY

[23] Renee C. Bryce and Charles J. Colbourn. Test prioritization for pairwise interac-

tion coverage. In Proceedings of the ACM workshop on Advances in Model-Based

Testing (A-MOST 2005), pages 1–7. ACM Press, 2005.

[24] Renée C. Bryce and Charles J. Colbourn. Prioritized interaction testing for pair-

wise coverage with seeding and constraints. Journal of Information and Software

Technology, 48(10):960–970, 2006.

[25] Renée C. Bryce, Charles J. Colbourn, and Myra B. Cohen. A framework of greedy

methods for constructing interaction test suites. In Proceedings of the 27th Inter-

national Conference on Software Engineering (ICSE 2005), pages 146–155. ACM

Press, May 2005.

[26] Renée C. Bryce and Atif M. Memon. Test suite prioritization by interaction cover-

age. In Proceedings of the Workshop on Domain Specific Approaches to Software

Test Automation (DOSTA 2007), pages 1–7. ACM, September 2007.

[27] Timothy Alan Budd. Mutation analysis of program test data. PhD thesis, Yale

University, New Haven, CT, USA, 1980.

[28] Tsong Yueh Chen and Man Fai Lau. Dividing strategies for the optimization of a

test suite. Information Processing Letters, 60(3):135–141, 1996.

[29] Yanping Chen, Robert L. Probert, and D. Paul Sims. Specification-based regression

test selection with risk analysis. In Proceedings of the Conference of the Centre for

Advanced Studies on Collaborative research (CASCON 2002), page 1. IBM Press,

October 2002.

[30] Yanping Chen, Robert L. Probert, and Hasan Ural. Regression test suite reduction

using extended dependence analysis. In Proceedings of the 4th International Work-

shop on Software Quality Assurance (SOQUA 2007), pages 62–69. ACM Press,

September 2007.

BIBLIOGRAPHY 245

[31] Yih Farn Chen, D. Rosenblum, and Kiem-Phong Vo. Testtube: A system for

selective regression testing. In Proveedings of the 16th International Conference

on Software Engineering (ICSE 1994), pages 211–220. ACM PressM, May 1994.

[32] J.J. Chilenski and S.P. Miller. Applicability of modified condition/decision cover-

age to software testing. Software Engineering Journal, 9(5):193–200, Sep 1994.

[33] Carlos A. Coello Coello, David A. Van Veldhuizen, and Gary B. Lamont. Evolu-

tionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Pub-

lishers, New York, May 2002.

[34] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Exploiting constraint

solving history to construct interaction test suites. In Proceedings of the Testing:

Academic and Industrial Conference Practice and Research Techniques - MUTA-

TION (TAICPART-MUTATION 2007), pages 121–132. IEEE Computer Society,

2007.

[35] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Constructing interaction

test suites for highly-configurable systems in the presence of constraints: A greedy

approach. IEEE Transactions on Software Engineering, 34(5):633–650, 2008.

[36] Y. Collette and P. Siarry. Multiobjective Optimization: Principles and Case Stud-

ies. Springer, Oxford, UK, August 2004.

[37] Kalyanmoy Deb. Multi-Objective Optimization Using Evolutionary Algorithms.

Wiley, Chichester, UK, June 2001.

[38] Kalyanmoy Deb, Samir Agrawal, Amrit Pratab, and T. Meyarivan. A Fast Eli-

tist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization:

NSGA-II. In Proceedings of the Parallel Problem Solving from Nature VI Con-

ference, pages 849–858, Paris, France, 2000. Springer. Lecture Notes in Computer

Science No. 1917.

246 BIBLIOGRAPHY

[39] D. Deng, P.C.-Y. Sheu, and T. Wang. Model-based testing and maintenance.

In Proceedings of the 6th IEEE International Symposium on Multimedia Software

Engineering (MMSE 2004), pages 278–285, December 2004.

[40] H. Do, G. Rothermel, and A. Kinneer. Empirical studies of test case prioritization

in a junit testing environment. In Proceedings of 15th International Symposium on

Software Reliability Engineering (ISSRE 2004), pages 113–124. IEEE Computer

Society Press, Nov 2004.

[41] Hyunsook Do, Sebastian G. Elbaum, and Gregg Rothermel. Supporting controlled

experimentation with testing techniques: An infrastructure and its potential im-

pact. Empirical Software Engineering: An International Journal, 10(4):405–435,

2005.

[42] Hyunsook Do, Siavash Mirarab Mirarab, Ladan Tahvildari, and Gregg Rothermel.

An empirical study of the effect of time constraints on the cost-benefits of regression

testing. In Proceedings of the 16th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, pages 71–82. ACM Press, November 2008.

[43] Hyunsook Do and Gregg Rothermel. A controlled experiment assessing test case

prioritization techniques via mutation faults. In Proceedings of the 21st IEEE

International Conference on Software Maintenance (ICSM 2005), pages 411–420,

2005.

[44] Hyunsook Do and Gregg Rothermel. An empirical study of regression testing

techniques incorporating context and lifetime factors and improved cost-benefit

models. In SIGSOFT ’06/FSE-14: Proceedings of the 14th ACM SIGSOFT In-

ternational Symposium on Foundations of Software Engineering, pages 141–151.

ACM Press, November 2006.

[45] Hyunsook Do and Gregg Rothermel. On the use of mutation faults in empirical

BIBLIOGRAPHY 247

assessments of test case prioritization techniques. IEEE Transactions on Software

Engineering, 32(9):733–752, 2006.

[46] Hyunsook Do and Gregg Rothermel. Using sensitivity analysis to create simplified

economic models for regression testing. In Proceedings of the ACM SIGSOFT

International Symposium on Software Testing and Analysis (ISSTA 2008), pages

51–61. ACM Press, July 2008.

[47] Hyunsook Do, Gregg Rothermel, and Alex Kinneer. Prioritizing junit test cases: An

empirical assessment and cost-benefits analysis. Empirical Software Engineering,

11(1):33–70, 2006.

[48] C. Douligeris and I.J. Pereira. A telecommunications quality study using the

analytic hierarchy process. IEEE Journal on Selected Areas in Communications,

12(2):241–250, Feb 1994.

[49] S. Elbaum, D. Gable, and G. Rothermel. Understanding and measuring the sources

of variation in the prioritization of regression test suites. In Proceedings of the

Seventh International Software Metrics Symposium (METRICS 2001), pages 169–

179. IEEE Computer Society Press, April 2001.

[50] S. Elbaum, P. Kallakuri, A. Malishevsky, G. Rothermel, and S. Kanduri. Un-

derstanding the effects of changes on the cost-effectiveness of regression testing

techniques. Software Testing, Verification, and Reliability, 12(2), 2003.

[51] S. Elbaum, A.G. Malishevsky, and G. Rothermel. Test case prioritization: a family

of empirical studies. IEEE Transactions on Software Engineering, 28(2):159–182,

Feb 2002.

[52] Sebastian Elbaum, Gregg Rothermel, Satya Kanduri, and Alexey G. Malishevsky.

Selecting a cost-effective test case prioritization technique. Software Quality Con-

trol, 12(3):185–210, 2004.

248 BIBLIOGRAPHY

[53] Sebastian G. Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. Prioritizing

test cases for regression testing. In Proceedings of International Symposium on

Software Testing and Analysis (ISSTA 2000), pages 102–112. ACM Press, August

2000.

[54] Sebastian G. Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. Incorporating

varying test costs and fault severities into test case prioritization. In Proceedings

of the International Conference on Software Engineering (ICSE 2001), pages 329–

338. ACM Press, May 2001.

[55] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynam-

ically discovering likely program invariants to support program evolution. IEEE

Transactions on Software Engineering, 27(2):99–123, February 2001.

[56] Qurat-ul-ann Farooq, Muhammad Zohaib Z. Iqbal, Zafar I Malik, and Aamer

Nadeem. An approach for selective state machine based regression testing. In

Proceedings of the 3rd International Workshop on Advances in Model-based Testing

(A-MOST 2007), pages 44–52, New York, NY, USA, 2007. ACM.

[57] Robert Feldt, Richard Torkar, Tony Gorschek, and Wasif Afzal. Searching for

cognitively diverse tests: Towards universal test diversity metrics. In Proceedings

of the 1st Workshop on Search-Based Software Testing (SBST 2008), pages 178 –

186. IEEE Computer Society Press, April 2008.

[58] Gavin R. Finnie, Gerhard Wittig, and Doncho I. Petkov. Prioritizing software

development productivity factors using the analytic hierarchy process. The Journal

of Systems and Software, 22(2):129–139, August 1993.

[59] K.F. Fischer. A test case selection method for the validation of software main-

tenance modifications. In Proceedings of International Computer Software and

BIBLIOGRAPHY 249

Applications Conference, pages 421–426. IEEE Computer Society Press, Novem-

ber 1977.

[60] K.F. Fischer, F. Raji, and A. Chruscicki. A methodology for retesting modified

software. In Proceedings of the National Telecommunications Conference, pages

1–6, November 1981.

[61] Marc Fisher II, Dalai Jin, Gregg Rothermel, and Margaret Burnett. Test reuse

in the spreadsheet paradigm. In Proceedings of the International Symposium on

Software Reliability Engineering (ISSRE 2002), pages 257–268, November, 2002.

IEEE Computer Society.

[62] Phyllis G. Frankl, Stewart N. Weiss, and Cang Hu. All-uses vs mutation testing:

An experimental comparison of effectiveness. Journal of Systems Software, 38:235–

253, 1997.

[63] Gordon Fraser and Franz Wotawa. Property relevant software testing with model-

checkers. SIGSOFT Software Engineering Notes, 31(6):1–10, 2006.

[64] Gordon Fraser and Franz Wotawa. Test-case prioritization with model-checkers.

In SE’07: Proceedings of the 25th conference on IASTED International Multi-

Conference, pages 267–272, Anaheim, CA, USA, 2007. ACTA Press.

[65] Y. Freund and R. Schapire. A short introduction to boosting. Journal of Japanese

Society for Artificial Intelligence, 14(5):771–780, 1999.

[66] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An efficient boost-

ing algorithm for combining preferences. In Jude W. Shavlik, editor, Proceedings

of the 15th International Conference on Machine Learning (ICML 1998), pages

170–178. Morgan Kaufmann Publishers, July 1998.

[67] D. Fudenberg and J. Tirole. Game Theory, chapter 1. MIT Press, 1983.

250 BIBLIOGRAPHY

[68] Matthew J. Gallagher and V.Lakshmi Narasimhan. Adtest: A test data genera-

tion suite for ada software systems. IEEE Transactions on Software Engineering,

23(8):473–484, 1997.

[69] M. R. Garey and D. S. Johnson. Computers and Intractability: A guide to the

theory of NP-Completeness. W. H. Freeman and Company, 1979.

[70] Todd Graves, Mary Jean Harrold, Jung-Min Kim, Adam Porter, and Gregg Rother-

mel. An empirical study of regression test selection techniques. In Proceedings of

the 20th International Conference on Software Engineering (ICSE 1998), pages

188–197. IEEE Computer Society Press, April 1998.

[71] Rajiv Gupta, Mary Jean Harrold, and Mary Lou Soffa. An approach to regression

testing using slicing. In Proceedings of the International Conference on Software

Maintenance (ICSM 1992), pages 299–308. IEEE Computer Society Press, Novem-

ber 1992.

[72] Michael Harder, Jeff Mellen, and Michael D. Ernst. Improving test suites via

operational abstraction. In Proceedings of the 25th International Conference on

Software Engineering (ICSE 2003), pages 60–71. IEEE Computer Society, 2003.

[73] M. Harman and P. McMinn. A theoretical and empirical analysis of evolutionary

testing and hill climbing for structural test data generation. In Proceedings of the

International Symposium on Software Testing and Analysis (ISSTA 2007), pages

pp. 73–83. ACM Press, July 2007.

[74] Mark Harman, Youssef Hassoun, Kiran Lakhotia, Phil McMinn, and Joachim We-

gener. The impact of input domain reduction on search-based test data generation.

In Proceedings of the the 6th Joint Meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on The Foundations of Software

Engineering (ESEC-FSE 2007), pages 155–164. ACM, September 2007.

BIBLIOGRAPHY 251

[75] Mark Harman and Joachim Wegener. Evolutionary testing. In Genetic and Evo-

lutionary Computation (GECCO), New York, July 2002.

[76] M. J. Harrold and M. L. Soffa. Interprocedual data flow testing. In Proceed-

ings of the 3rd ACM SIGSOFT Symposium on Software Testing, Analysis, and

Verification (TAV3), pages 158–167. ACM Press, December 1989.

[77] M. Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. A methodology for con-

trolling the size of a test suite. ACM Transactions on Software Engineering and

Methodology, 2(3):270–285, 1993.

[78] Mary Jean Harrold. Testing evolving software. The Journal of Systems and Soft-

ware, 47(2–3):173–181, 1999.

[79] Mary Jean Harrold, James A. Jones, Tongyu Li, Donglin Liang, Alessandro Orso,

Maikel Pennings, Saurabh Sinha, and Steven Spoon. Regression test selection for

Java software. In ACM Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA 2001), pages 312–326. ACM Press, Octo-

ber 2001.

[80] Mary Jean Harrold, David S. Rosenblum, Gregg Rothermel, and Elaine J.

Weyuker. Empirical studies of a prediction model for regression test selection.

IEEE Transactions on Software Engineering, 27(3):248–263, 2001.

[81] Mary Jean Harrold and Mary Lou Soffa. An incremental approach to unit testing

during maintenance. In Proceedings of the International Conference on Software

Maintenance (ICSM 1998), pages 362–367. IEEE Computer Society Press, October

1988.

[82] Mary Jean Harrold and Mary Lou Soffa. An incremental data flow testing tool.

In Proceedings of the 6th International Conference on Testing Computer Software

(ICTCS 1989), May 1989.

252 BIBLIOGRAPHY

[83] J. Hartmann and D. J. Robson. Revalidation during the software maintenance

phase. In Proceedings of the International Conference on Software Maintenance

(ICSM 1989), pages 70–80. IEEE Computer Society Press, October 1989.

[84] J. Hartmann and D. J. Robson. Retest-development of a selective revalidation pro-

totype environment for use in software maintenance. In Proceedings of the Inter-

national Conference on System Sciences, volume 2, pages 92–101. IEEE Computer

Society Press, January 1990.

[85] Jean Hartmann and David J. Robson. Techniques for selective revalidation. IEEE

Software, 7(1):31–36, 1990.

[86] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statis-

tical Learning, chapter 14.3.12 Hierarchical clustering, pages 272–280. Springer,

2001.

[87] Robert Hierons, Mark Harman, and Chris Fox. Branch-coverage testability trans-

formation for unstructured programs. The Computer Journal, 48(4):421–436, 2005.

[88] J. R. Horgan and S. London. Data flow coverage and the C language. In Proceedings

of the Symposium on Testing, Analysis, and Verification (TAV4), pages 87–97.

ACM Press, October 1991.

[89] J.R. Horgan and S.A London. ATAC: A data flow coverage testing tool for c.

In Proceedings of the Symposium on Assessment of Quality Software Development

Tools, pages 2–10. IEEE Computer Society Press, June 1992.

[90] Shan-Shan Hou, Lu Zhang, Tao Xie, Hong Mei, and Jia-Su Sun. Applying interface-

contract mutation in regression testing of component-based software. In Proc.

23rd IEEE International Conference on Software Maintenance (ICSM 2007), pages

174–183, October 2007.

BIBLIOGRAPHY 253

[91] Shan-Shan Hou, Lu Zhang, Tao Xie, and Jia-Su Sun. Quota-constrained test-

case prioritization for regression testing of service-centric systems. In Proc. IEEE

International Conference on Software Maintenance (ICSM 2008), October 2008.

[92] Hwa-You Hsu and Alessandro Orso. MINTS: A general framework and tool for

supporting test-suite minimization. In Proceedings of the 31st International Con-

ference on Software Engineering (ICSE 2009), pages 419–429. IEEE Computer

Society, May 2009.

[93] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. Experiments

of the effectiveness of dataflow- and controlflow-based test adequacy criteria. In

Proceedings of the 16th International Conference on Software Engineering (ICSE

1994), pages 191–200. IEEE Computer Society Press, May 1994.

[94] D. Jeffrey and N. Gupta. Improving fault detection capability by selectively re-

taining test cases during test suite reduction. IEEE Transactions on Software

Engineering, 33(2):108–123, 2007.

[95] D. Jeffrey and Neelam Gupta. Test suite reduction with selective redundancy. In

Proceedings of the 21st IEEE International Conference on Software Maintenance

2005 (ICSM’05), pages 549–558, September 2005.

[96] Dennis Jeffrey and Neelam Gupta. Test case prioritization using relevant slices. In

Proceedings of the 30th Annual International Computer Software and Applications

Conference (COMPSAC 2006), pages 411–420, Washington, DC, USA, September

2006. IEEE Computer Society.

[97] David S. Johnson. Approximation algorithms for combinatorial problems. In

Proceedings of the 5th annual ACM Symposium on Theory of Computing (STOC

1973), pages 38–49. ACM Press, May 1973.

254 BIBLIOGRAPHY

[98] B.F. Jones, H.-H. Sthamer, and D.E. Eyres. Automatic structural testing using

genetic algorithms. The Software Engineering Journal, 11(5):299–306, 1996.

[99] James A. Jones and Mary Jean Harrold. Test-suite reduction and prioritization for

modified condition/decision coverage. In Proceedings of International Conference

on Software Maintenance (ICSM 2001), pages 92–101. IEEE Computer Society

Press, November 2001.

[100] Garrett Kent Kaminski and Paul Ammann. Using logic criterion feasibility to

reduce test set size while guaranteeing fault detection. In Proceedings of Interna-

tional Conference on Software Testing, Verification, and Validation 2009 (ICST

2009), pages 356–365. IEEE Computer Society, 2009.

[101] Joachim Karlsson, Claes Wohlin, and Björn Regnell. An evaluation of methods

for prioritizing software requirements. Information & Software Technology, 39(14-

15):939–947, 1998.

[102] Jung-Min Kim and Adam Porter. A history-based test prioritization technique for

regression testing in resource constrained environments. In Proceedings of the 24th

International Conference on Software Engineering (ICSE 2002), pages 119–129.

ACM Press, May 2002.

[103] Jung-Min Kim, Adam Porter, and Gregg Rothermel. An empirical study of re-

gression test application frequency. In Proceedings of the 22nd International Con-

ference on Software Engineering (ICSE 2000), pages 126–135. ACM Press, June

2000.

[104] Jung-Min Kim, Adam Porter, and Gregg Rothermel. An empirical study of re-

gression test application frequency. Software Testing, Verification, and Reliability,

15(4):257–279, 2005.

BIBLIOGRAPHY 255

[105] B. Korel. Automated software test data generation. IEEE Transactions on Soft-

ware Engineering, 16(8):870–879, 1990.

[106] B. Korel, G. Koutsogiannakis, and L.H. Tahat. Application of system models in re-

gression test suite prioritization. In Proceedings of IEEE International Conference

on Software Maintenance 2008 (ICSM 2008), pages 247–256, October 2008.

[107] B. Korel, L. Tahat, and B. Vaysburg. Model based regression test reduction using

dependence analysis. In Proceedings of the IEEE International Conference on Soft-

ware Maintenance (ICSM 2002), pages 214–225. IEEE Computer Society, October

2002.

[108] B. Korel, L.H. Tahat, and M. Harman. Test prioritization using system models. In

Proceedings of the 21st IEEE International Conference on Software Maintenance

(ICSM 2005), pages 559–568, September 2005.

[109] Bogdan Korel, Mark Harman, S. Chung, P. Apirukvorapinit, and R. Gupta. Data

dependence based testability transformation in automated test generation. In Pro-

ceedings of the 16th International Symposium on Software Reliability Engineering

(ISSRE 05), pages 245–254. IEEE Computer Society Press, November 2005.

[110] Bogdan Korel, George Koutsogiannakis, and Luay H. Tahat. Model-based test

prioritization heuristic methods and their evaluation. In Proceedings of the 3rd in-

ternational workshop on Advances in Model-based Testing (A-MOST 2007), pages

34–43. ACM Press, July 2007.

[111] David Korn and Kiem phong Vo. SFIO: Safe/Fast String/File IO. In Proceedings

of the Summer Usenix Conference 1991, pages 235–256, 1991.

[112] R. Krishnamoorthi and S. A. Sahaaya Arul Mary. Factor oriented requirement

coverage based system test case prioritization of new and regression test cases.

Information and Software Technology, 51(4):799–808, 2009.

256 BIBLIOGRAPHY

[113] David Chenho Kung, Jerry Gao, Pei Hsia, Jeremy Lin, and Yasufumi Toyoshima.

Class firewall, test order, and regression testing of object-oriented programs. Jour-

nal of Object–Oriented Programming, 8(2):51–65, May 1995.

[114] Kiran Lakhotia, Mark Harman, and Phil McMinn. A multi-objective approach to

search-based test data generation. In Proceedings of the 9th Annual Conference on

Genetic and evolutionary Computation (GECCO 2007), pages 1098–1105. ACM

Press, July 2007.

[115] J. Laski and W. Szermer. Identification of program modifications and its appli-

cations in software maintenance. In Proceedings of the International Conference

on Software Maintenance (ICSM 1992), pages 282–290. IEEE Computer Society

Press, November 1992.

[116] Man F. Lau and Yuen T. Yu. An extended fault class hierarchy for

specification-based testing. ACM Transactions on Software Engineering Method-

ology, 14(3):247–276, 2005.

[117] Y. Le Traon, T. Jeron, J.-M. Jezequel, and P. Morel. Efficient object-oriented

integration and regression testing. IEEE Transactions on Reliability, 49(1):12–25,

March 2000.

[118] J. A. N. Lee and Xudong He. A methodology for test selection. Journal of Systems

and Software, 13(3):177–185, 1990.

[119] Andreas Leitner, Manuel Oriol, Andreas Zeller, Ilinca Ciupa, and Bertrand Meyer.

Efficient unit test case minimization. In Proceedings of the 22nd IEEE/ACM

international conference on Automated Software Engineering (ASE 2007), pages

417–420. ACM Press, November 2007.

[120] David Leon and Andy Podgurski. A comparison of coverage-based and

distribution-based techniques for filtering and prioritizing test cases. In Proceedings

BIBLIOGRAPHY 257

of the IEEE International Symposium on Software Reliability Engineering (ISSRE

2003), pages pp. 442–456. IEEE Computer Society Press, November 2003.

[121] H. K. N. Leung and L. White. Insight into regression testing. In Proceedings

of Interntional Conference on Software Maintenance (ICSM 1989), pages 60–69.

IEEE Computer Society Press, October 1989.

[122] H. K. N. Leung and L. White. Insights into testing and regression testing global

variables. Journal of Software Maintenance, 2(4):209–222, 1990.

[123] H. K. N. Leung and L. White. A study of integration testing and software re-

gression at the integration level. In Proceedings of the International Conference

on Software Maintenance (ICSM 1990), pages 290–301. IEEE Computer Society

Press, November 1990.

[124] H. K. N. Leung and L. White. A cost model to compare regression test strategies.

In Proceedings of the International Conference on Software Maintenance (ICSM

1991), pages 201–208. IEEE Computer Society Press, October 1991.

[125] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and

reversals. Soviet Physics Doklady, 10:707–710, 1966.

[126] Zheng Li, Mark Harman, and Robert M. Hierons. Search Algorithms for Regression

Test Case Prioritization. IEEE Transactions on Software Engineering, 33(4):225–

237, 2007.

[127] Feng Lin, Michael Ruth, and Shengru Tu. Applying safe regression test selection

techniques to java web services. In Proceedings of the International Conference

on Next Generation Web Services Practices (NWESP 2006), pages 133–142. IEEE

Computer Society, September 2006.

258 BIBLIOGRAPHY

[128] Yu Seung Ma, Jeff Offutt, and Yong Rae Kwon. Mujava: an automated class

mutation system. Software Testing, Verification, and Reliability, 15(2):97–133,

2005.

[129] A. Malishevsky, G. Rothermel, and S. Elbaum. Modeling the cost-benefits tradeoffs

for regression testing techniques. In Proceedings of the International Conference

on Software Maintenance (ICSM 2002), pages 230–240. IEEE Computer Society

Press, 2002.

[130] Alexey G. Malishevsky, Joseph R. Ruthruff, Gregg Rothermel, and Sebastian

Elbaum. Cost-cognizant test case prioritization. Technical Report TR-UNL-

CSE-2006-0004, Department of Computer Science and Engineering, University of

Nebraska-Lincoln, March 2006.

[131] M. Marré and A. Bertolino. Using spanning sets for coverage testing. IEEE

Transactions on Software Engineering, 29(11):974–984, November 2003.

[132] Eliane Martins and Vanessa Gindri Vieira. Regression test selection for testable

classes. Lecture Notes in Computer Science : Dependable Computing - EDCC 2005,

3463/2005:453–470, 2005.

[133] Scott McMaster and Atif Memon. Call-stack coverage for gui test suite reduction.

IEEE Transactions on Software Engineering, 34(1):99–115, 2008.

[134] Scott McMaster and Atif M. Memon. Call stack coverage for test suite reduction. In

Proceedings of the 21st IEEE International Conference on Software Maintenance

(ICSM’05), pages 539–548, Washington, DC, USA, 2005. IEEE Computer Society.

[135] Scott McMaster and Atif M. Memon. Fault detection probability analysis for

coverage-based test suite reduction. In Proceedings of the 21st IEEE International

Conference on Software Maintenance (ICSM’07). IEEE Computer Society, Octo-

ber 2007.

BIBLIOGRAPHY 259

[136] Phil McMinn. IGUANA: Input generation using automated novel algorithms. A

plug and play research tool. Technical Report CS-07-14, Department of Computer

Science, University of Sheffield, 2007.

[137] Phil McMinn, David Binkley, and Mark Harman. Empirical evaluation of a nesting

testability transformation for evolutionary testing. ACM Transactions on Software

Engineering Methodology, 18(3), 2009. To appear July 2009.

[138] Phil McMinn, Mark Harman, David Binkley, and Paolo Tonella. The species per

path approach to search-based test data generation. In Proceedings of International

Symposium on Software Testing and Analysis (ISSTA 06), pages 13–24. ACM

Press, July 2006.

[139] Philip McMinn. Search-based software test data generation: A survey. Software

Testing, Verification and Reliability, 14(2):105–156, June 2004.

[140] C.C. Michael, G. McGraw, and M.A. Schatz. Generating software test data by evo-

lution. IEEE Transactions on Software Engineering, 27(12):1085–1110, December

2001.

[141] W. Miller and D. L. Spooner. Automatic generation of floating-point test data.

IEEE Transactions on Software Engineering, 2(3):223–226, 1976.

[142] Siavash Mirarab and Ladan Tahvildari. A prioritization approach for software

test cases based on bayesian networks. In Proceedings of the 10th International

Conference on Fundamental Approaches to Software Engineering, pages 276–290,

March/April 2007.

[143] Siavash Mirarab and Ladan Tahvildari. An empirical study on bayesian network-

based approach for test case prioritization. In Proceedings of International Con-

ference on Software Testing, Verification and Validation, pages 278–287. IEEE

Computer Society, April 2008.

260 BIBLIOGRAPHY

[144] Henry Muccini, Marcio Dias, and Debra J. Richardson. Reasoning about software

architecture-based regression testing through a case study. In Proceedings of the

29th International Computer Software and Applications Conference (COMPSAC

2005), volume 2, pages 189–195. IEEE Computer Society, 2005.

[145] Henry Muccini, Marcio Dias, and Debra J. Richardson. Software-architecture

based regression testing. Journal of Systems and Software, 79(10):1379–1396, Oc-

tober 2006.

[146] Heinz Mühlenbein and Gerhard Paaß. From recombination of genes to the estima-

tion of distributions I. Binary Parameters. In Proceedings of the 4th International

Conference on Parallel Problem Solving from Nature (PPSN IV), pages 178–187.

Springer-Verlag, September 1996.

[147] Nicholas Nethercote and Julian Seward. Valgrind: A program supervision frame-

work. In Proceedings of ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI 2007), pages 89–100. ACM Press, June 2007.

[148] A. Jefferson Offutt, Z. Jin, and Jie Pan. The dynamic domain reduction approach

to test data generation. Software Practice and Experience, 29(2):167–193, January

1999.

[149] A. Jefferson Offutt, Jie Pan, Kanupriya Tewary, and Tong Zhang. An experimental

evaluation of data flow and mutation testing. Software Practice and Experience,

26(2):165–176, February 1996.

[150] J. Offutt, J. Pan, and J. Voas. Procedures for reducing the size of coverage-based

test sets. In Proceedings of the 12th International Conference on Testing Computer

Software, pages 111–123, June 1995.

[151] A. Orso, M. J. Harrold, D. S. Rosenblum, G. Rothermel, M. L. Soffa, and H. Do.

Using component metadata to support the regression testing of component-based

BIBLIOGRAPHY 261

software. In Proceedings of the IEEE International Conference on Software Main-

tenance (ICSM 2001), November 2001.

[152] Alessandro Orso, Hyunsook Do, Gregg Rothermel, Mary Jean Harrold, and

David S. Rosenblum. Using component metadata to regression test component-

based software: Research articles. Software Testing, Verification, and Reliability,

17(2):61–94, 2007.

[153] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. Scaling regression testing

to large software systems. In Proceedings of the 12th ACM SIGSOFT International

Symposium on Foundations of Software Engineering (FSE 2004), pages 241–251.

ACM Press, October/November 2004.

[154] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization.

Courier Dover Publications, 1998.

[155] R. P. Pargas, M. J. Harrold, and R. R. Peck. Test-data generation using genetic

algorithms. Software Testing, Verification and Reliability, 9(4):263–282, December

1999.

[156] O. Pilskalns, G. Uyan, and A. Andrews. Regression testing uml designs. In Proceed-

ings of the 22nd IEEE International Conference on Software Maintenance (ICSM

2006), pages 254–264, September 2006.

[157] Hartmut Pohlheim and Joachim Wegener. Testing the temporal behavior of real-

time software modules using extended evolutionary algorithms. In Proceedings

of the Genetic and Evolutionary Computation Conference (GECCO 1999), pages

1795–1802. Morgan Kaufmann, July 1999.

[158] Xiao Qu, Myra B. Cohen, and Gregg Rothermel. Configuration-aware regression

testing: an empirical study of sampling and prioritization. In Proceedings of the

262 BIBLIOGRAPHY

ACM International Symposium on Software Testing and Analysis (ISSTA 2008),

pages 75–86. ACM Press, July 2008.

[159] Xiao Qu, Myra B. Cohen, and Katherine M. Woolf. Combinatorial interaction

regression testing: A study of test case generation and prioritization. In Proceedings

of IEEE International Conference on Software Maintenance (ICSM 2007), pages

255–264. IEEE Computer Society Press, October 2007.

[160] C. Ramey and B. Fox. Bash Reference Manual. O’Reilly and Associates, Se-

bastopol, CA, 2.2 edition, 1998.

[161] John Rice. Mathematical Statistics and Data Analysis. Duxbury Press, 2nd Ed.

1995.

[162] D.S. Rosenblum and E.J. Weyuker. Using coverage information to predict the

cost-effectiveness of regression testing strategies. IEEE Transactions on Software

Engineering, 23(3):Page(s):146 – 156, March 1997.

[163] G. Rothermel, S. Elbaum, A. Malishevsky, P. Kallakuri, and B. Davia. The impact

of test suite granularity on the cost-effectiveness of regression testing. In Proceed-

ings of the 24th International Conference on Software Engineering (ICSE 2002),

pages 130–140. ACM Press, May 2002.

[164] G. Rothermel, S. Elbaum, A. Malishevsky, P. Kallakuri, and X. Qiu. On test suite

composition and cost-effective regression testing. ACM Transactions on Software

Engineering and Methodology, 13(3):277–331, July 2004.

[165] G. Rothermel, M. Harrold, J. Ronne, and C. Hong. Empirical studies of test suite

reduction. Software Testing, Verification, and Reliability, 4(2):219–249, December

2002.

BIBLIOGRAPHY 263

[166] G. Rothermel, M. Harrold, J. von Ronne, C. Hong, and J. Ostrin. Experiments to

assess the costbenefits of test-suite reduction. Technical Report GIT-99-29, College

of Computing, Georgia Institute of Technology, 1999.

[167] G. Rothermel and M. J. Harrold. A safe, efficient algorithm for regression test

selection. In Proceedings of International Conference on Software Maintenance

(ICSM 2003), pages 358–367. IEEE Computer Society Press, September 1993.

[168] Gregg Rothermel. Efficient, Effective Regression Testing Using Safe Test Selection

Techniques. PhD thesis, University of Clemson, May 1996.

[169] Gregg Rothermel and Mary Jean Harrold. A framework for evaluating regression

test selection techniques. In Proceedings of the 16th International Conference on

Software Engineering (ICSE 1994), pages 201–210. IEEE Computer Society Press,

1994.

[170] Gregg Rothermel and Mary Jean Harrold. Selecting tests and identifying test

coverage requirements for modified software. In Proceedings of International Sym-

posium on Software Testing and Analysis (ISSTA 1994), pages 169–184. ACM

Press, August 1994.

[171] Gregg Rothermel and Mary Jean Harrold. Analyzing regression test selection

techniques. IEEE Transactions on Software Engineering, 22(8):529–551, August

1996.

[172] Gregg Rothermel and Mary Jean Harrold. Experience with regression test se-

lection. Empirical Software Engineering: An International Journal, 2(2):178–188,

1997.

[173] Gregg Rothermel and Mary Jean Harrold. A safe, efficient regression test selection

technique. ACM Transactions on Software Engineering and Methodology, 6(2):173–

210, April 1997.

264 BIBLIOGRAPHY

[174] Gregg Rothermel and Mary Jean Harrold. Empirical studies of a safe regression

test selection technique. IEEE Transactions on Software Engineering, 24(6):401–

419, 1998.

[175] Gregg Rothermel, Mary Jean Harrold, and Jeinay Dedhia. Regression test selection

for C++ software. Software Testing, Verification and Reliability, 10(2):77–109,

June 2000.

[176] Gregg Rothermel, Mary Jean Harrold, Jeffery Ostrin, and Christie Hong. An

empirical study of the effects of minimization on the fault detection capabilities of

test suites. In Proceedings of International Conference on Software Maintenance

(ICSM 1998), pages 34–43. IEEE Computer Society Press, November 1998.

[177] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold. Test

case prioritization: An empirical study. In Proceedings of International Conference

on Software Maintenance (ICSM 1999), pages 179–188. IEEE Computer Society

Press, August 1999.

[178] Gregg Rothermel, Roland J. Untch, and Chengyun Chu. Prioritizing test cases for

regression testing. IEEE Transactions on Software Engineering, 27(10):929–948,

October 2001.

[179] Matthew Rummel, Gregory M. Kapfhammer, and Andrew Thall. Towards the

prioritization of regression test suites with data flow information. In Proceedings

of the 20th Symposium on Applied Computing (SAC 2005). ACM Press, March

2005.

[180] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Pearson Education, 2003.

[181] M. Ruth, Sehun Oh, A. Loup, B. Horton, O. Gallet, M. Mata, and Shengru Tu.

Towards automatic regression test selection for web services. In Proceedings of the

BIBLIOGRAPHY 265

31st International Computer Software and Applications Conference (COMPSAC

2007), pages 729–736. IEEE Computer Society Press, July 2007.

[182] M. Ruth and Shengru Tu. Concurrency issues in automating rts for web services. In

Proceedings of the IEEE International Conference on Web Services (ICWS 2007),

pages 1142–1143. IEEE Computer Society Press, July 2007.

[183] Michael Ruth and Shengru Tu. A safe regression test selection technique for web

services. In Proceedings of the 2nd International Conference on Internet and Web

Applications and Services (ICIW 2007), pages 47–47. IEEE Computer Society

Press, May 2007.

[184] T.L. Saaty. The Analytic Hierarchy Process, Planning, Piority Setting, Resource

Allocation. McGraw-Hill, New York, NY, USA, 1980.

[185] R. Sagarna and J. A. Lozano. Scatter search in software testing, comparison

and collaboration with estimation of distribution algorithms. European Journal of

Operational Research, 169(2):392–412, March 2006.

[186] Ramón Sagarna, Andrea Arcuri, and Xin Yao. Estimation of distribution algo-

rithms for testing object oriented software. In Proceedings of the IEEE Congress

on Evolutionary Computation (CEC 2007), pages 438–444. IEEE Computer Soci-

ety Press, September 2007.

[187] Sreedevi Sampath, Renee C. Bryce, Gokulanand Viswanath, Vani Kandimalla,

and A. Gunes Koru. Prioritizing user-session-based test cases for web applications

testing. In Proceedings of the 1st International Conference on Software Testing

Verification and Validation (ICST 2008), pages 141–150. IEEE Computer Society,

April 2008.

[188] Patrick J. Schroeder and Bogdan Korel. Black-box test reduction using input-

output analysis. SIGSOFT Software Engineering Notes, 25(5):173–177, 2000.

266 BIBLIOGRAPHY

[189] Mark Sherriff, Mike Lake, and Laurie Williams. Prioritization of regression tests

using singular value decomposition with empirical change records. In Proceedings

of the The 18th IEEE International Symposium on Software Reliability (ISSRE

2007), pages 81–90, Washington, DC, USA, 2007. IEEE Computer Society.

[190] M. Skoglund and P. Runeson. A case study of the class firewall regression test

selection technique on a large scale distributed software system. In Proceedings of

International Symposium on Empirical Software Engineering (ISESE 2005), pages

74–83, November 2005.

[191] Adam Smith, Joshua Geiger, Gregory M. Kapfhammer, and Mary Lou Soffa. Test

suite reduction and prioritization with call trees. In Proceedings of the IEEE/ACM

International Conference on Automated Software Engineering (ASE 2007). ACM

Press, November 2007.

[192] Adam M. Smith and Gregory M. Kapfhammer. An empirical study of incorpo-

rating cost into test suite reduction and prioritization. In Proceedings of the 24th

Symposium on Applied Computing (SAC 2009). ACM Press, March 2009.

[193] H. Srikanth, L. Williams, and J. Osborne. System test case prioritization of new

and regression test cases. In Proceedings of International Symposium on Empirical

Software Engineering, pages 64–73, November 2005.

[194] Amitabh Srivastava and Jay Thiagarajan. Effectively prioritizing tests in devel-

opment environment. In Proceedings of the International Symposium on Software

Testing and Analysis (ISSTA 2002), pages 97–106. ACM Press, July 2002.

[195] Harmen Sthamer. The Automatic Generation of Software Test Data Using Genetic

Algorithms. PhD thesis, University of Glamorgan, 1996.

[196] F. Szidarovsky, M. E. Gershon, and L. Dukstein. Techniques for multiobjective

decision making in systems management. Elsevier, New York, 1986.

BIBLIOGRAPHY 267

[197] A. B. Taha, S. M. Thebaut, and S. S. Liu. An approach to software fault local-

ization and revalidation based on incremental data flow analysis. In Proceedings

of the International Computer Software and Applications Conference (COMPSAC

1989), pages 527–534. IEEE Computer Society Press, September 1989.

[198] Sriraman Tallam and Neelam Gupta. A concept analysis inspired greedy algorithm

for test suite minimization. SIGSOFT Software Engineering Notes, 31(1):35–42,

2006.

[199] A. Tarhini, H. Fouchal, and N. Mansour. Regression testing web services-based

applications. In Proceedings of ACS/IEEE International Conference on Computer

Systems and Applications (AICCSA 2006), pages 163–170. IEEE Computer Soci-

ety Press, August 2006.

[200] Gregory Tassey. The economic impacts of inadequate infrastructure for software

testing. Technical report, National Institute of Standards and Technology, May

2002.

[201] Marouane Tlili, Stefan Wappler, and Harmen Sthamer. Improving evolutionary

real-time testing. In Proceedings of the 8th Annual Conference on Genetic and

Evolutionary Computation (GECCO 2006), pages 1917–1924. ACM Press, July

2006.

[202] Paolo Tonella, Paolo Avesani, and Angelo Susi. Using the case-based ranking

methodology for test case prioritization. In Proceedings of the 22nd International

Conference on Software Maintenance (ICSM 2006), pages 123–133. IEEE Com-

puter Society, July 2006.

[203] N. Tracey, J. Clark, and K. Mander. Automated program flaw finding using sim-

ulated annealing. In Proceedints of International Symposium on Software Testing

and Analysis (ISSTA 1998), pages 73–81. ACM Press, March 1998.

268 BIBLIOGRAPHY

[204] N. Tracey, J. Clark, K. Mander, and J. McDermid. An automated framework

for structural test-data generation. In Proceedings of the 13th IEEE International

Conference on Automated Software Engineering (ASE 1998), pages 285–288. IEEE

Computer Society Press, October 1998.

[205] Nigel Tracey, John Clark, and Keith Mander. The way forward for unifying dy-

namic test-case generation: The optimisation-based approach. In International

Workshop on Dependable Computing and Its Applications (DCIA 1998), pages

169–180. IFIP, January 1998.

[206] Nigel Tracey, John Clark, John McDermid, and Keith Mander. A search-based

automated test-data generation framework for safety-critical systems, pages 174–

213. Springer-Verlag, New York, NY, USA, 2002.

[207] Boris Vaysburg, Luay H. Tahat, and Bogdan Korel. Dependence analysis in reduc-

tion of requirement based test suites. In Proceedings of the International Sympo-

sium on Software Testing and Analysis (ISSTA 2002), pages 107–111. ACM Press,

July 2002.

[208] F. Vokolos and P. Frankl. Pythia: A regression test selection tool based on text

differencing. In Proceedings of the International Conference on Reliability Quality

and Safety of Software Intensive Systems, May 1997.

[209] F.I. Vokolos and P.G. Frankl. Empirical evaluation of the textual differencing

regression testing technique. In Proceedings of the IEEE International Conference

on Software Maintenance (ICSM 1998), pages 44–53. IEEE Computer Society

Press, November 1998.

[210] Kristen R. Walcott, Mary Lou Soffa, Gregory M. Kapfhammer, and Robert S.

Roos. Time aware test suite prioritization. In Proceedings of the International

BIBLIOGRAPHY 269

Symposium on Software Testing and Analysis (ISSTA 2006), pages 1–12. ACM

Press, July 2006.

[211] Joachim Wegener, André Baresel, and Harmen Sthamer. Evolutionary test envi-

ronment for automatic structural testing. Information and Software Technology,

43(14):841–854, December 2001.

[212] Joachim Wegener and M. Grochtmann. Verifying timing constraints of real-time

systems by means of evolutionary testing. Real-Time Systems, 15(3):275 – 298,

November 1998.

[213] Joachim Wegener, Harmen Sthamer, Bryan F. Jones, and David E. Eyres. Testing

real-time systems using genetic algorithms. Software Quality, 6:127–135, 1997.

[214] L. White, H. Almezen, and S. Sastry. Firewall regression testing of gui sequences

and their interactions. In Proceedings of the IEEE International Conference

on Software Maintenance (ICSM 2003), pages 398–409. IEEE Computer Society

Press, September 2003.

[215] L. White and B. Robinson. Industrial real-time regression testing and analy-

sis using firewalls. In Proceedings of the 20th IEEE International Conference on

Software Maintenance (ICSM 2004), pages 18–27. IEEE Computer Society Press,

September 2004.

[216] L. J. White and H. K. N. Leung. A firewall concept for both control-flow and data-

flow in regression integration testing. In Proceedings of International Conference

on Software Maintenance (ICSM 1992), pages 262–271. IEEE Computer Society

Press, September 1992.

[217] L. J. White, V. Narayanswamy, T. Friedman, M. Kirschenbaum, P. Piwowarski,

and M. Oha. Test manager: A regression testing tool. In Proceedings of Interna-

270 BIBLIOGRAPHY

tional Conference on Software Maintenance (ICSM 1993), pages pages 338–347.

IEEE Computer Society Press, September 1993.

[218] Lee White, Khaled Jaber, Brian Robinson, and Václav Rajlich. Extended firewall

for regression testing: an experience report. Journal of Software Maintenance and

Evolution, 20(6):419–433, 2008.

[219] W. Eric Wong, Joseph R. Horgan, Saul London, and Hira Agrawal Bellcore. A

study of effective regression testing in practice. In Proceedings of the 8th In-

ternational Symposium on Software Reliability Engineering (ISSRE 1997), pages

264–275. IEEE Computer Society, 1997.

[220] W. Eric Wong, Joseph R. Horgan, Saul London, and Aditya P. Mathur. Effect

of test set minimization on fault detection effectiveness. Software Practice and

Experience, 28(4):347–369, April 1998.

[221] W. Eric Wong, Joseph R. Horgan, Aditya P. Mathur, and Alberto Pasquini. Test

set size minimization and fault detection effectiveness: A case study in a space

application. The Journal of Systems and Software, 48(2):79–89, October 1999.

[222] Ye Wu and J. Offutt. Maintaining evolving component-based software with UML.

In Proceedings of the 7th European Conference on Software Maintenance and

Reengineering (CSMR 2003), pages 133–142, March 2003.

[223] Guoqing Xu and Atanas Rountev. Regression test selection for AspectJ soft-

ware. In Proceedings of the 29th International Conference on Software Engineering

(ICSE 2007), pages 65–74. IEEE Computer Society, May 2007.

[224] S. S. Yau and Z. Kishimoto. A method for revalidating modified programs in the

maintenance phase. In Proceedings of International Computer Software and Ap-

plications Conference (COMPSAC 1987), pages 272–277. IEEE Computer Society

Press, October 1987.

BIBLIOGRAPHY 271

[225] Shin Yoo and Mark Harman. Pareto efficient multi-objective test case selection. In

Proceedings of International Symposium on Software Testing and Analysis (ISSTA

2007), pages 140–150. ACM Press, July 2007.

[226] Shin Yoo, Mark Harman, Paolo Tonella, and Angelo Susi. Clustering test cases

to achieve effective & scalable prioritisation incorporating expert knowledge. In

Proceedings of International Symposium on Software Testing and Analysis (ISSTA

2009), pages 201–211. ACM Press, July to appear.

[227] Shin Yoo, Mark Harman, and Shmuel Ur. Measuring and improving latency to

avoid test suite wear out. In Proceedings of the Interntional Conference on Software

Testing, Verification and Validation Workshop (ICSTW 2009), pages 101–110.

IEEE Computer Society Press, April 2009. Best paper award winner; To Appear.

[228] Yanbing Yu, James A. Jones, and Mary Jean Harrold. An empirical study of the

effects of test-suite reduction on fault localization. In Proceedings of the Inter-

national Conference on Software Engineering (ICSE 2008), pages 201–210. ACM

Press, May 2008.

[229] Andreas Zeller. Yesterday, my program worked. today, it does not. why? SIGSOFT

Software Engineering Notes, 24(6):253–267, 1999.

[230] Lu Zhang, Shan-Shan Hou, Chao Guo, Tao Xie, and Hong Mei. Time-aware test-

case prioritization using Integer Linear Programming. In Proceedings of the In-

ternational Conference on Software Testing and Analysis (ISSTA 2009), pages

212–222. ACM Press, July 2009.

[231] Jianjun Zhao, Tao Xie, and Nan Li. Towards regression test selection for aspect-

oriented programs. In Proceedings of the 2nd Workshop on Testing Aspect-Oriented

Programs (WTAOP 2006), pages 21–26. ACM Press, July 2006.

272 BIBLIOGRAPHY

[232] Jiang Zheng, Brian Robinson, Laurie Williams, and Karen Smiley. Applying re-

gression test selection for COTS-based applications. In Proceedings of the 28th

International Conference on Software Engineering (ICSE 2006), pages 512–522.

ACM Press, 2006.

[233] Jiang Zheng, Brian Robinson, Laurie Williams, and Karen Smiley. A lightweight

process for change identification and regression test selection in using cots com-

ponents. In Proceedings of the 5th International Conference on Commercial-off-

the-Shelf (COTS)-Based Software Systems (ICCBSS 2006), pages 137–146. IEEE

Computer Society, 2006.

[234] Jiang Zheng, Laurie Williams, and Brian Robinson. Pallino: automation to support

regression test selection for COTS-based applications. In Proceedings of the 22nd

IEEE/ACM international conference on Automated Software Engineering (ASE

2007), pages 224–233. ACM Press, November 2007.

[235] Jiang Zheng, Laurie Williams, Brian Robinson, and Karen Smiley. Regression test

selection for black-box dynamic link library components. In Proceedings of the

2nd International Workshop on Incorporating COTS Software into Software Sys-

tems: Tools and Techniques (IWICSS 2007), pages 9–14. IEEE Computer Society,

January 2007.

