754

IEEE TRANSACTIONS ON RELIABILITY, VOL. 59, NO. 4, DECEMBER 2010

A Memetic Algorithm for Multi-Level
Redundancy Allocation

Zai Wang, Student Member, IEEE, Ke Tang, Member, IEEE, and Xin Yao, Fellow, IEEE

Abstract—Redundancy allocation problems (RAPs) have
attracted much attention for the past thirty years due to its
wide applications in improving the reliability of various engi-
neering systems. Because RAP is an NP-hard problem, and exact
methods are only applicable to small instances, various heuristic
and meta-heuristic methods have been proposed to solve it.
In the literature, most studies on RAPs have been conducted for
single-level systems. However, real-world engineering systems usu-
ally contain multiple levels. In this paper, the RAP on multi-level
systems is investigated. A novel memetic algorithm (MA) is
proposed to solve this problem. Two genetic operators, namely
breadth-first crossover and breadth-first mutation, and a local
search method are designed for the MA. Comprehensive experi-
mental studies have shown that the proposed MA outperformed
the state-of-the-art approach significantly on two representative
examples.

Index Terms—Evolutionary algorithms, memetic algorithms,
multi-level systems, redundancy allocation.

ACRONYMS
RAP Redundancy Allocation Problem
MLRAP Multi-Level Redundancy Allocation Problem
MA Memetic Algorithm
GA Genetic Algorithm
HGA Hierarchical Genetic Algorithm
NOTATIONS
R,,s the reliability of a system
Coys the cost of a system

Manuscript received August 30, 2009; revised February 09, 2010 and March
17, 2010; accepted March 17, 2010. Date of publication July 26, 2010; date
of current version November 30, 2010. This work was partially supported by
EPSRC Grant EP/D052785/1 on “SEBASE: Software Engineering By Auto-
mated Search,” National Natural Science Foundation of China Grant U0835002,
and the Fund for Foreign Scholars in University Research and Teaching Pro-
grams under Grant BO7033. Associate Editor: G. Levitin.

Z. Wang and K. Tang are with the Nature Inspired Computation and Ap-
plications Laboratory (NICAL), School of Computer Science and Technology,
University of Science and Technology of China, Hefei, 230027, China (e-mail:
wangzai @mail.ustc.edu.cn; ketang @ustc.edu.cn).

X. Yao is with the Nature Inspired Computation and Applications Laboratory
(NICAL), School of Computer Science and Technology, University of Science
and Technology of China, Hefei, 230027, China, and also with the CERCIA,
School of Computer Science, University of Birmingham, Birmingham, B15
2TT, U.K. (e-mail: x.yao@cs.bham.ac.uk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TR.2010.2055927

U; the sth unit, where a unit can refer to a system, a
subsystem or a component

Ui,m the mth child unit of U;

R; the reliability of U;

C; the cost of U;

x; the redundancy of U;

x a set of design variables x;

R(x) the reliability of a system or subsystem defined by

design variables x

C(x) the cost of a system or subsystem defined by design
variables x

Ai;m the additional cost parameter of the mth child unit
of U;, which is at the second lowest level of the
system

n; the number of child units of U;

U’ the jth redundant unit of mth child unit of U;

R!, the reliability of U},

C,Lﬁj’m the cost of Ui{m

Zim the redundancy of U; ,,

I. INTRODUCTION

O maximize the reliability of a system, which is typically
T comprised of a number of components, either the compo-
nent reliability can be enhanced, or redundant components can
be added in parallel [1], [2]. In many real-world problems, the
reliability of components utilized to construct a system are fixed,
thus the only way to improve the system reliability is to increase
the redundancy of utilized components. However, increasing the
redundancy of components requires more resources. Thus, it is
always important to optimally allocate redundancy to compo-
nents under some resource constraints. This problem is referred
to as the redundancy allocation problem (RAP) [3]. The RAP
is one of the most important reliability optimization problems
with regards to improving the reliability of real-world systems
in the design phase. It has attracted many researchers in the past
several decades due to reliability’s critical importance in various
kinds of systems, such as electrical systems, mechanical system,
and software systems [1], [2].
The most commonly studied configuration of RAPs is a par-
allel-serial system with s-independent subsystems, as illustrated
in Fig. 1 [1], [2]. The components in each subsystem are in

0018-9529/$26.00 © 2010 IEEE

WANG et al.: MEMETIC ALGORITHM FOR MULTI-LEVEL REDUNDANCY ALLOCATION 755

o) [[
AL

T
B

n; n; s

Fig. 1. The structure of a general parallel-serial system.

parallel, and a subsystem ¢ is functioning if at least one of its
n; components is operational. For parallel-serial systems, an
RAP is always formulated as a nonlinear integer programming
problem with the objective to maximize the system reliability
under some constraints, such as cost, volume, and weight. In
early times, RAPs were relatively simple as all the components
of a subsystem were considered to be of the same type. Later,
progress was made by considering different types of compo-
nents in one subsystem. This extension significantly increased
the difficulty of RAPs. When an RAP was studied on parallel-se-
rial systems, the redundancy could just be allocated to the com-
ponents, which means that the basic structures of the parallel-se-
rial systems were fixed. In other words, systems considered in
this scenario only have a single level. Hence, the performance
(e.g., reliability) of a system can be directly calculated based
on the properties of components at the lowest level. However,
real-world systems, such as communication systems, computing
systems, control systems, and critical power systems, usually
contain multiple levels. In these systems, the entire system is
at the top level (system level), and the components are at the
lowest level, while subsystems are at the levels between the en-
tire system and the components. In a multi-level system, the en-
tire system, subsystems, and components are all called units;
and redundancy can be allocated to any level [4]. Fig. 2 illus-
trates a schematic diagram of a four-level system. An RAP with
a multi-level system is referred to as a multi-level redundancy
allocation problem (MLRAP). Specifically, the MLRAP inves-
tigated in this paper is formulated based on multi-level serial
systems with the following assumptions [5].
¢ Assumption 1: For a unit that is not at the lowest level,
its child units are in serial, and the number of these child
units is fixed. (E.g. when a real system based on the con-
figuration shown in Fig. 2 is constructed, every redundant
unit Uy must have three child units Uy, Uy, and Uy 3, and
these three child units are in serial.)
* Assumption 2: The redundancy can be allocated to the
units on any level.
* Assumption 3: The quality (reliability, cost) of each com-
ponent is predefined. If one unit is not a component, its
reliability, and cost are calculated based on its child units.

The RAP has been proved to be an NP-hard problem [6].
Thus, how to find effective approaches to it is a hot topic.
There are many approaches proposed to cope with RAPs,
including exact methods [7]-[10], max-min approaches [11],

System
-~ level ~ -— 777

Subsystem
levels ~ "= -

Component
level '~

Fig. 2. The structure of a tri-level system.

[12], dynamic programming [13], [14], heuristic methods [15],
[16], and meta-heuristic algorithms [17]-[26]. Among them,
meta-heuristic methods, especially genetic algorithms (GAs),
are widely, successfully utilized due to their robustness, and
strong ability of global search, even though sometimes they
are time-consuming. Comprehensive literature reviews on RAP
have been carried out in [1], [2]. From these reviews, it can be
observed that, in spite of its importance in the real world, the
MLRAP has rarely been investigated, and few approaches [5],
[27], [28] have been proposed. In [27], Levitin proposed an al-
gorithm based on a GA framework with a universal generating
function technique for the system survivability evaluation. This
method aims to solve multi-level protection cost minimization
problems subject to survivability constraints. Later, Yun and
Kim [28] proposed a restricted multi-level redundancy alloca-
tion model, and addressed a tri-level RAP using a customized
GA. However, the customized GA employs a fixed-length
vector to represent the solution to the MLRAP, and thus redun-
dancy is required to be allocated to only one unit in a direct
line, which is defined as a set of units from the system-level
unit down to one component unit. Though both methods [27],
[28] were designed to cope with MLRAPs, they were based
on strong assumptions or rigid rules that do not accord with
reality. Recently, Kumar et al. [5] re-formulated MLRAPs so
that redundancy allocation can be carried out at any level of
a multi-level system. In this work, a solution to an MLRAP
was represented by a hierarchical structure, and a simple GA
was adopted to tackle the MLRAP involved. Although the
hierarchical genetic algorithm (HGA) in [5] has been shown
to be effective via empirical studies, its effectiveness on the
MLRAP can still be improved significantly.

In this paper, a novel memetic algorithm (MA) is proposed
for MLRAPs. As an emerging area of evolutionary computa-
tion, MAs are population-based meta-heuristic search methods
that combine global search strategies with local search heuris-
tics [29]. MAs have been reported to not only converge to high
quality solutions, but also search more efficiently than conven-
tional GAs. The success of MAs have been demonstrated on a
wide variety of real-world problems [30]. Compared to conven-
tional GAs, there are two key issues for the success of MAs.
One is an appropriate balance between global and local search,
and the other is a cost effective coordination of local search.
Hence, the local search procedure, which is usually designed

756

[]

Unir| | Uniz| -+ ‘ Uiy,

Fig. 3. A general multi-level serial system.

| Uiz | | Uiz | ‘ Uizn,,

to utilize the domain knowledge of the problem, plays one of
the most important roles in MAs. In our paper, based on the
hierarchical genotype representation of the variables employed
in [5], two new breadth-first-search genetic operators (breadth-
first-search crossover, and breadth-first-search mutation), and
a novel problem-specific local search operator are proposed.
Then, the newly proposed genetic operators, and the local search
operator, are incorporated into the MA framework; and a new
MA is developed for MLRAPs. The proposed MA is compared
with HGA on two multi-level systems. Experimental results
show that the newly proposed MA outperformed HGA on both
multi-level systems.

The rest of this paper is organized as follows. Section II in-
troduces the background of this work, including the formula-
tion of MLRAPs, and the hierarchical genotype representation
for MLRAPs. Section III proposes our new memetic algorithm
(MA). Then, empirical comparisons between the MA and HGA
are presented in Section IV. Section V concludes this paper.

II. BACKGROUND

A. Problem Formulation

We define the parts of a multi-level serial system hierarchi-
cally as the entire system at the topmost level, the subsystems
at lower levels, and the components at the lowest level. The
system, subsystems, and components are all referred to as units.
Each unit except a component has a fixed number of serial units
at the immediately lower level, which are called its child units.
Each unit except the system unit relates to a unique unit at
the immediately higher level, which is called its parent unit.
Fig. 3 illustrates an example of multi-level serial systems. In this
figure, U; is a system unit containing n; serial child units (U7
to Uiy,). Similarly, Uyq has ni; serial child units, represented
as Uq11 to Ui1p,, . This structure applies to all of the units ex-
cept for the component units.

Given a multi-level serial system, the redundancy allocation
procedure starts from the system level, and moves to the compo-
nent level. One is allowed to replicate any unit in the system, and
the original unit and its replicated units are combined together
in parallel. Fig. 4 describes an example of redundancy alloca-
tion on a bi-level serial system, which consists of a system unit
U1, and two child units Uy7 and Ujo. After allocating redun-
dancy to this system, the redundancy of U; is two. Under the
parent unit Ull, the redundancy of Uy, and Uss are three, and

IEEE TRANSACTIONS ON RELIABILITY, VOL. 59, NO. 4, DECEMBER 2010

Children-units of

Parent unit at Uy at the 2" level

system level

The symbol means the
serial relationship

Redundancy allocation
at parent-unit U;

U The symbol means the
Sys parallel relationship

The interpretation Redundant units of U,
system of the above

redundancy allocation

Redundant units of U;;

U, U/
[T] 12

Fig. 4. An example of redundancy allocation on a bi-level serial system. Uij_ m
represents the jth redundant unit of mth child unit of U; .

one, respectively. Under the parent unit UZ, the redundancy of
U11, and U;2 are both two. The corresponding final system is
illustrated at the bottom of Fig. 4.

In a multi-level serial system, the reliability of the units at the
lowest level (i.e., components) are predefined. For each unit at
a higher level, its reliability can be calculated based on its child
units directly. Assume a unit U; has n; child units, and denote
the redundancy of a child unit U; ,,, as x; ,,. The reliability of
U; can be calculated with (1).

r=1] |1- H (1-RL.) ()
m=1 j=1

Using (1), the reliability of the units at the second lowest level
can be calculated on the basis of the components. Then the re-
liability of the entire system can be calculated by repeating this
procedure. For example, the reliability of the final system given
in Fig. 4 is

3
Ropo= 1= (1= | 1=T] (1-8{,) | (R1.)

(1—12{,1) 1—H (1—12{72)

Jj=1

@

WANG et al.: MEMETIC ALGORITHM FOR MULTI-LEVEL REDUNDANCY ALLOCATION

757

'U,‘

| l{'l/r | U | |U”
I p B 1 -1
Ui 1 Uiz | Uja D/zj : Uz i Ussz |
(a)
Un
Ui
:}'— Uiz
Ui
77 - Un
Ui —{ Uns |
(b)
| n=1
| %=1
| k=1
U, l
———
=2 n=3
x, = |
x, =2
Uy v, U
=25, =1 n=2 Xy =2| n=2
|
s |
My =l|xp=1] k=2 Xin =2 k=1
] - [
Ui Uns Ui s Ui Ui
k=2 k=1 k=2 k=2

k=1 k=1

Fig. 5. An example of the hierarchical representation scheme on a tri-level ser
on (a); (c) hierarchical representation.

The cost of the system is another important issue in the re-
liability optimization field. It is usually considered as the con-
straint in the design phase of a system (i.e., the total cost of a
system should not exceed a predefined value). In a traditional
RAP, the cost of a system is simply the aggregate of the cost
of each component in the system. However, in a multi-level
system, additional costs need to be taken into account to reflect
the hierarchical structure. Specifically, such additional cost is
introduced in the second lowest level, and the cost of a unit U;
in a multi-level serial system can thus be calculated as

Tim

>yl

if U; is not at the

m=1 j=1

C; = e second lowest level (3)
o> O+ A, if U s at the
m=1j=1

second lowest level

For example, the cost of the final system in Fig. 4 is

3
Coys = Z Ci,+ A+ Cla+ A2
j=1
2 . 2 .
+ Z Ci,+ A’ + Z Cio+ A2’ 4)

i=1 i=1

(©)

ial system: (a) basic configuration; (b) system based on the redundancy allocation

Let x be the variable of an MLRAP, consisting of all the z; ,,
that state the redundancy of all the units in the system. The
MLRAP studied in this paper is formally defined as

Maximize : Rgys = R(x)
s.t. Csys = C(x) < Cy
1<zm < p;i ©)

where () is the maximum cost allowed, and p; is the prede-
fined maximum redundancy of U;.

B. Solution Representation

When applying conventional GAs to an optimization
problem, a solution is usually represented as a fixed-length
vector. Each element of it corresponds to the value of a decision
variable (e.g., the redundancy of a unit). That means the number
of decision variables is fixed during the problem-solving
process. In an MLRAP, the number of decision variables may
vary due to the changes of the redundancy allocated to a unit.
For this reason, a hierarchical structure was proposed in [5] to
represent a solution to an MLRAP. This representation scheme
does not restrict the number of decision variables to a fixed
value, and is capable of representing all possible solutions to the
MLRAP. Its advantages can be observed from [5]. Therefore,
it is employed in the work here.

758

1: Initialization: Generate an initial population

2: while stopping criteria are not satisfied do

3: Evaluate all individuals in the population

4: Evolve a new population using evolutionary operators
5: for Each individual do

6: Perform local search around it with probability P
7. end for

8: end while

Fig. 6. General framework of MA.

Fig. 5 illustrates an example of the hierarchical representa-
tion scheme on a tri-level serial system. The basic structure of
the system is given in Fig. 5(a). A system obtained after redun-
dancy allocation is shown in Fig. 5(b), and is represented in the
hierarchical structure in Fig. 5(c). For each unit in the figure,
three types of variables are given in the box associated with it.
Here, k stands for the redundancy allocated to it, and n stands
for the number of its child units. A variable in the form of zf ,,
represents the redundancy allocated to the mth child unit of the
eth redundant unit of U;. In other words, the variables x{ ,, are
to be optimized in an MLRAP. Because the units at the lowest
level (i.e., the component level) have no child unit, only the re-
dundancy allocated to themselves are given.

III. PROPOSED MEMETIC ALGORITHM

An MA consists of two types of operators: the genetic op-
erator for global exploration, and the local search operator for
exploitation. Without loss of generality, the framework of MA
is summarized by Fig. 6.

A. Fitness Function

How to evaluate the quality of a solution is one of the most im-
portant issues in an MA. Because an MLRAP is formulated as a
constrained optimization problem, violations to the constraints
must be considered together with the value of objective func-
tions when evaluating a solution. In the literature, there are many
useful constraint handling methods such as penalty techniques,
repair techniques, separation techniques, and hybrid techniques
[31], [32]. In this work, a penalty function proposed by Gen and
Cheng [31] is employed. Concretely, the fitness function f(x)
for evaluating the quality of a solution during the search process
of our MA is defined by the form

f(x) = R(x) x 9(x), (6)

1(x) is a penalty function that measures the extent of the
solution violating the constraints. It always lies in the region of
[1]. The larger the value of 1)(x), the less the solution violates
the constraints.

IEEE TRANSACTIONS ON RELIABILITY, VOL. 59, NO. 4, DECEMBER 2010

B. Initial Population

To initialize our MA, a population of solutions (usually called
individuals in the literature of MA) need to be generated first.
These initial solutions are randomly generated. Like the calcu-
lation of the reliability of a system, an individual is generated
in an iterative manner. This procedure starts from the system
level. Given a multi-level serial system, an integer k is first gen-
erated randomly as the redundancy of the system unit. Assume
each system unit consists of 7 child units. Then n X k integers
need to be generated as the redundancy of the units at the second
level. Repeating this procedure until the second lowest level, an
individual will be obtained.

C. Genetic Operators

In [5], two genetic operators (i.e., crossover, and mutation)
were proposed for the hierarchical solution representation. At
each iteration of the algorithm, a unit in the hierarchical repre-
sentation needs to be selected. Then, the two operators will be
applied to this unit. Hence, the performance of the algorithm
largely depends on how this unit is selected. When applying the
crossover operator in [5] to two solutions, a unit will be selected
only when the redundancy of its parent unit in the two solutions
are the same. This approach makes it possible that some units
will never be selected, while crossover is applicable to the other
units at the same level. However, from the system design view-
point, the units at the same level should be treated equally, re-
gardless of the status of their parent units. Therefore, two new
genetic operators are proposed in our paper. Both of them treat
the units at the same level equally.

Crossover between two individuals is conducted through
three steps. First, an intermediate level between the system
and component levels is chosen based on some predefined
probability. A higher level is assigned with a higher probability
of being selected. After that, a unit at the selected level of
each individual is chosen randomly. Finally, the chosen units,
and their lower structures are exchanged to generate two new
individuals. In the above second step, all units at the same level
have the same probability of being selected for crossover; such
a strategy is similar to the breadth-first search process. Hence,
it is named the breadth-first crossover (BFC). Fig. 7 illustrates
the final step of the crossover. In this case, the crossover occurs
at the second level.

The mutation operator of our MA is named the breadth-first
mutation operator (BFM). It also contains three steps, but is ap-
plied to a single individual. The first two steps are similar to
those of the crossover operator. First, an intermediate level is
selected. Then, a unit at this level is selected randomly. After
that, the redundancy of the selected unit is replaced by a ran-
domly generated integer. Because changing the redundancy of
a unit will change the structure at the lower levels, the redun-
dancy of the units involved in the changed structure is finally
re-generated following the procedures used for generating ini-
tial individuals. Fig. 8 presents an example of BFM on an in-
dividual P;. The first unit on the second level is selected as a
mutation node, and the redundancy of it (k = 2) is changed by
a randomly generated integer number (k = 3). Then, the lower

WANG et al.: MEMETIC ALGORITHM FOR MULTI-LEVEL REDUNDANCY ALLOCATION

} | |

T T)
X =2 | =1

T g d =21 =
X =l| =1 jes Xm=4| k=1 X =2 | X =1 2

e [] [ie] []

759

Crossover

Fig. 7. An example of crossover operator between two parents (P; and Ps).

structure of this unit is reconstructed. In this way, a new indi-
vidual Pj is obtained. Note that when the redundancy of a unit
is changed, the corresponding decision variable in its parent unit
should also be updated.

D. Local Search Method

As mentioned before, local search is an important procedure
in an MA. In our MA, because both BFC and BFM explore
the solution space globally for promising areas, local search is
indispensable to carry out exploitation (i.e., local refinement)
once a promising area is reached. Specifically, local search in
our MA is implemented in three steps.

First, an individual is selected from the population, and local
search is carried out based on it. Concretely, prior to the local
search, all individuals are evaluated by the metric

V(%) = Fx)

o)’ N

Then, the individual with the largest y(x) is chosen for car-
rying out local search. The rationale behind this strategy is that,
for an MLRAP, it is desired that the optimal system be of the
highest reliability, while satisfying the constraints on the cost.
The smaller the cost, the better. Hence, the ratio of the reliability
to cost serves as a natural metric of the potential of an individual.

Second, the local search operator is applied to the selected
individual. As can be demonstrated by the descriptions of BFC
and BFM in the hierarchical structure, modifications to a unit
at higher levels are likely to result in more significant changes
to the structure of the whole system. Local search, however, re-
quires modifying the structure of the system slightly. Hence, our
local search operator only works on the component level (i.e.,
the lowest level). Assume the selected individual corresponds
to a system consisting of n components. The local search op-
erator randomly selects ten pairs of components. For each pair,
the redundancy of the components are modified following the
schemes presented in Alg. 1. During the local search, a newly
generated individual is preserved in a temporary archive if it
does not violate the cost constraint. Otherwise, it is discarded.

Finally, all the new individuals preserved in the local search
process are combined with the current population. All indi-
viduals in this combined population are then sorted in the
descending order with respect to their fitness, which can be
calculated using (6). The top individuals survive into the next
generation, and the others are discarded. The pseudo-code of
the local search procedure is presented in Alg. 1.

Alg. 1. Pseudo-Code of the local search procedure on an
individual x

760

; n=1
Tl kel
x=2 | n=3
x5=1
-"lls=2 k1
r--——=—=—7— -‘-___I |
| =2 x =l [P2 ay =2 = b= = 2
| xp=1| x5, =1 k=2 I | xp=2 k=1 Xn=2 | x5, =1 k=2
| | l
| |
| |
| |
| 1] [] []) [z] 2] [ier] [t]

Pl
y n=1
X, =1 -
% =3 | p=g
X, =1
"':x=2 k=L
B — |
5 2 =alll T 5| n= =
I =1 | xq =1 x5, =2 ["2 I Xy =2 | 12 iy =1 [xg =1 2
. 1 1 2
: %o =3| X =1 ¥l =1 | 4y | T2=2| ey x=2 | 3=l | oy
[| l
| |
| |
N E R E R 2] [
Lo i o o e ' e e s’ J
'
P,

Fig. 8. An example of mutation operator on P;.

1: Randomly select ten pairs of components of x, denoted as
{(co1, co2), (11, €12), - - -, (cor, co2) }-

2: Initialize an archive A = ¢. This archive will be used to
store the feasible solutions obtained by local search.

3: for :=0:9 do

4: Decrease the redundancy of each components by 1 (i.e.,
k(ci1) = k(cin) — Lor k(ci2) = k(ci2) — 1) to get two new
individuals x;; and x;».

5: Increase the redundancy of component ¢;; by 1, and
decrease the redundancy of component c¢;5 by 1, then obtain a
new individual x;3.

6:Increase the redundancy of component ¢;5 by 1, and decrease
the redundancy of component c;; by 1, then obtain a new
individual x;4.

7: Check whether the four new individuals violate the cost
constraint, and include the ones satisfying the constraint into A.

end for
Output A.

Pseudo-Code of the local search procedure on an individual x.

IEEE TRANSACTIONS ON RELIABILITY, VOL. 59, NO. 4, DECEMBER 2010

E. Summary of the Proposed MA

To summarize, the proposed MA starts by initializing a popu-
lation of individuals. Then, new individuals are generated itera-
tively. At each generation, the BFC, and BFM operators are first
applied to the current population of individuals, generating a set
of new individuals. Then, local search is applied to a number of
these new individuals to further improve them. After that, all
the individuals generated by BFC, BFM, and local search are
combined with the current population, and the best part of them
are selected to survive into the next generation. This process is
repeated for a predefined number of generations, and the best
individual in the final population will be the final solution to the
MLRAP. The pseudo-code of the MA is presented in Alg. 2,
where psize, csize, and msize are three parameters to be pre-
defined. Variable psize is the population size; csize, and msize
are the number of individuals to which the crossover, and muta-
tion will be applied, respectively.

Alg. 2. Pseudo-Code of Our MA.

1: Set the parent population X = ¢, the offspring population
C = ¢, and the generation counter ¢ = 0.

2: Initialize the population X with psize individuals
X = {X17X27 s 7Xpsizs}~

3:while ¢ < %,,4, (maximum generation number) do

4: Evaluate the population X, and sort X based on the their
fitness.

5: fori=1:csize/2 do

6: Select two individuals x,,,, and x,, from X, where
X, 1s randomly selected from the top ten individuals in X, and
X, is randomly selected from the other individuals.

7 Apply BFC to x,,,, and x,, to generate two offsprings
x!.,and x/,.

8: Include x/,,, and x/, into C.

9: end for

10: for j =1 : msize do

11: Randomly select one individual x,,, from X.
12: Apply BFM to x,,, to generate an offspring x/,,.
13: Include x/,, into C.

14: end for

15: Sort all the individuals in C with respect to (7), and
select the individual with the largest y(x).

16: Apply the local-search operator to the selected
individual.

17: Include the feasible solutions obtained in the local
search into C.

18: Combine X and C, evaluate this combined population,
and select the psize best individuals as the new X.

WANG et al.: MEMETIC ALGORITHM FOR MULTI-LEVEL REDUNDANCY ALLOCATION 761

g
U
]

U]JI U]JJ

U131 UI 32

[] [] []]
| U1111| l Uniiz| | Unizi | Ul | Ui l Uiz l Ulzzz

| UIZZI

Fig. 10. The basic multi-level configuration of Problem-B.

19: SetC = ¢.
20: Sett =t + 1.
21:end while

22:The best individual in X is the final solution.

IV. EMPIRICAL STUDIES

In this section, the performance of our MA is evaluated on
two MLRAP examples. The results are compared with HGA
[5], which is the most recent algorithm in the literature. The
structures of the two multi-level serial systems are illustrated in
Figs. 9 and 10. The first system is comprised of three levels, and
the second consists of four levels. For both systems, the redun-
dancy that can be allocated to a single unit is between one and
five. That is, five choices are available for each unit. Hereafter,
the MLRAP for the first system is referred to as Problem-A, and
the MLRAP for the second system is referred to as Problem-B.
Both of them have been used in [5] to evaluate the performance
of HGA.

A. Experimental Design, and Results on Problem-A

Both HGA, and our MA involve a number of control param-
eters to be set in advance. Because HGA has been studied on
both Problem-A, and Problem-B, the parameter settings used in
[5] were used directly in our experiments. Specifically, the pop-
ulation size was set to 100, the maximum generation was 500,
the crossover rate was set to 0.8, and the mutation rate was set to
0.05. To make a fair comparison, the same population size, and
maximum generation numbers were used in our MA. At each

TABLE I
THE INPUT DATA OF THE BASIC MULTI-LEVEL SYSTEMS ON
Problem-A, AND Problem-B

Problem-A Problem-B
Unit Reliability Cost A Unit Reliability Cost A
Ui 0.9000 5 3 Uynin 0.9000 7 4
Uii2 0.9500 6 4 Uiii2 0.8000 6 4
Upis 0.8500 5 4 Uri2a 0.7500 8 4
Usoy 0.9000 6 4 Usy22 0.9500 5 4
Ujao 0.8500 7 4 Uia11 0.7000 9 4
Uiz, 0.9000 8 3 Ui212 0.9000 6 4
Uisz 0.8000 7 4 U221 0.8500 5 4
U222 0.8000 8 4
1

2z ;

= 0.95f 4.

Q

=

©

an

IS

[

@

> 09

(]

——Our MA
---HGA
0.85

0 100 200 300 400 500
Generation Number

Fig. 11. Convergence plot of HGA and our MA on Problem-A.

generation, 50, and 10 offsprings were generated by crossover,
and mutation operators, respectively. This setting was obtained
on the basis of some preliminary experiments. As will be shown
by the experimental results, these parameter settings works well
on most test instances. Hence, we recommend them as default
settings.

1) Single Case Study: In this experiment, the aim is to eval-
uate the convergence behavior of our MA on a case study. Be-
cause HGA has also been studied from this perspective in [5],
the same settings were used in our experiment. That is, the cost
constraint value (Cp) was set to 300, and the parameters of
the components of the system are given in Table I. The system
parameters of the other units can be calculated following the
method described in Section II. The best solution obtained in
each generation was recorded, and the reliability of the cor-
responding system was calculated. The convergence curve of
both MA, and HGA can thus be plotted in Fig. 11, where the
x-axis represents the number of generations, and the y-axis rep-
resents the system reliability. Both methods converged rather
fast (within 100 generations), and the solution obtained by our
MA was significantly better than that obtained by HGA.

2) Performance Over Different Constraint Values: The pre-
vious sub-section only provides a case study on which the MA
outperformed HGA, and it is insufficient to draw a more gen-
eral conclusion. Hence, further comparisons between the two
methods under different conditions by varying the cost con-
straint values were carried out. To be specific, 20 cost constraint
values were sampled between the interval 150 to 340. All the

762

IEEE TRANSACTIONS ON RELIABILITY, VOL. 59, NO. 4, DECEMBER 2010

TABLE II
RESULTS OF THE PROPOSED MA, AND HGA ON Problem-A WITH DIFFERENT CONSTRAINT VALUES, WHERE “BEST SOLUTIONS” INDICATE THE BEST
SOLUTION FOUND FROM 10 RUNS, AND “OVERALL PERFORMANCE” INDICATES THE AVERAGES OVER THE 10 RUNS

Best Solutions Overall Performance
Cost
HGA MA HGA MA
Detailed Solutions
Reliability ~ Cost | Reliability ~ Cost [(@1) (ene2s) Mean Variance | Mean Variance
Constraint
(T2 1213) (T 121 2122) (T131 2 132)]

150 0.764087 148 0.800473 141 [(1H(122)212)(1111)(111D] 0.758664 2.64E-4 0.794405 2.53E-4
160 0.825487 152 0.840942 159 [(DHE22)(ATTTIDATT)(1112)] 0.814682 1.73E-4 0.839620 3.85E-4
170 0.846681 169 0.866762 170 [(DH121)(222)(1111)(22)] 0.836681 2.57E-4 0.860763 3.02E-4
180 0.861791 173 0.878124 179 [(DH22D212111)(1111)(22)) 0.853320 9.64E-5 0.876084 1.37E-4
190 0.873937 186 0.891501 189 [(D(121)(222)(1211)(22)]) 0.872088 8.42E-5 0.891501 0
200 0.889995 198 0.903187 198 [(DH21)(212111)(1211)(22)] 0.887392 8.32E-5 0.901123 7.32E-5
210 0.907725 208 0921117 208 [(D(112)(222)(22)(1122)]) 0.904971 1.53E-4 0.921117 0
220 0.919424 217 0.937125 220 [(1)(222)(111212)(1211)(1122)] 0.915212 6.92E-6 0.933345 1.49E-5
230 0.927116 225 0.944680 229 [(1)(122)(222)(2211)(1122)] 0.923866 7.73E-6 0.940280 8.25E-6
240 0.937243 239 0.957063 238 [(1)(222)(212111)(1122)(1122)] 0.934465 4.56E-5 0.956063 7.34E-6
250 0.947030 250 0.962800 249 [(1)(222)(212211)(1122)(1122)] 0.947030 0 0.959702 5.97E-5
260 0.952400 256 0.969355 256 [(1)(222)(222111)(2211)(2211)] 0.950043 2.39E-5 0.967522 2.46E-5
270 0.958907 267 0.973986 269 [(1)(232)(212212)(111111)(2212)] 0.954633 4.02E-5 0.970031 3.58E-5
280 0.964743 279 0.979184 278 [(1)(223)(222111)(2211)(111122)] 0.963582 1.35E-5 0.977263 2.65E-5
290 0.970363 285 0.982124 288 [(1)(223)(212212)(1122)(111122)] 0.968372 2.83E-5 0.979924 5.69E-5
300 0.973004 292 0.984909 299 [(1)(233)(111222)(111122)(221111)] 0.973004 0 0.984058 1.36E-5
310 0.976853 307 0.986322 310 [(1)(232)(111222)(112211)(2222)] 0.974927 3.05E-6 0.985073 3.34E-6
320 0.980995 316 0.989283 320 [(1)(232)(212212)(221111)(2222)] 0.978425 8.27E-5 0.989283 0
330 0.981885 328 0.989469 325 [(1)(223)(222212)(2212)(111122)] 0.980379 4.85E-5 0.989469 0
340 0.983592 337 0.992975 338 [(1)(232)(222212)(221111)(2222)} 0.982274 5.24E-6 0.992324 1.65E-6

system parameters were kept the same as the previous sub-sec-
tion. For each cost constraint value, both MA, and HGA were
applied 10 times. Table I summarizes the results of this exper-
iment. The columns headed “Best solutions” present the relia-
bility, and cost of the best solutions obtained by the MA, and
HGA in the 10 independent runs. The results in these columns
are also plotted in Fig. 12. In addition, the details of these best
solutions are also provided. Fig. 13 illustrates the system corre-
sponding to the best solution obtained with the cost constraint
value 150. The columns headed “Overall Performance” present
the average reliability of the solutions obtained in the 10 runs.
The corresponding variances are also given. Furthermore, the
Wilcoxon rank sum test (with a significance level 0.05) has
been employed to compare the overall performance of the two
methods. For each cost constraint value, the results that are sig-
nificantly better (i.e., the reliability of the system obtained) are
highlighted in boldface.

From Table II, and Fig. 12, it is clear that the proposed MA
outperformed HGA on all the 20 cases, in terms of both the
quality of the best solutions, and overall performance. In partic-
ular, the best solutions found by our MA are always better than
those found by HGA. The MA even achieved solutions with a
higher reliability but a lower cost on five cases (i.e., the cases
whose cost constraint values are 150, 240, 250, 280, and 330).

3) Comparison of Two Methods Using Different System
Parameters: The third experiment was conducted to examine
whether the advantage of the proposed MA holds over a variety
of different system parameters. Because the major system pa-
rameters of a multi-level serial system are the parameters of the
components, a set of test instances were randomly generated by

System Reliability

P S S S S S S ST S S S S S
140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340
Cost Constraint Value

Fig. 12. Comparison between the MA and HGA under different constraint
values on Problem-A.

Uiz:
Uiz:

Fig. 13. The detailed solution in the first line of Table II.

modifying the reliability of the components. Specifically, the
reliability of each component was randomly chosen from the
set {0.80, 0.85, 0.90, 0.95}. Ten test instances were obtained
in this way; and both the MA, and HGA were applied to
each instance for ten independent runs. The best results, and
average results over the ten runs are presented in Table III. The

WANG et al.: MEMETIC ALGORITHM FOR MULTI-LEVEL REDUNDANCY ALLOCATION

TABLE III
RESULTS OF THE PROPOSED MA, AND HGA ON Problem-A WITH
DIFFERENT SYSTEM PARAMETERS, WHERE “BEST SOLUTIONS”
INDICATE THE BEST SOLUTION FOUND FROM 10 RUNS, AND
“OVERALL PERFORMANCE” INDICATES THE AVERAGES
OVER THE 10 RUNS

Best Solutions Overall Performance
Case
HGA MA HGA MA
Number | Reliability — Cost | Reliability — Cost Mean Variance Mean Variance
1 0973004 292 | 0984909 299 | 0962134 T43E-4 | 0982537 L46E-5
2 0975782 293 | 0983661 293 | 0970384 4.60E-5 | 0.980023 3.25E-5
3 0.976467 300 | 0984903 297 | 0973712 948E-5 | 0981135 5.69E-5
4 0975613 293 | 0984186 298 | 0.970028 4.82E-5 | 0.983066 1.47E-6
5 0967198 294 | 0978494 300 | 0959832 8.78E-4 | 0972073 195E-5
6 0.982991 296 | 0991684 298 | 0973971 3.72E-4 | 0.987201 5.82E-4
7 0969423 292 | 0981200 300 | 0.959620 2.63E-4 | 0975923 6.92E-5
8 0974554 299 | 0983096 295 | 0970471 5.82E-4 | 0.983096 0
9 0950217 293 | 0970801 299 | 0938612 8.54E-3 | 0.966396 3.71E-5
10 0923802 299 | 0948863 298 | 0912242 3.82E-4 | 0.942201 6.92E-5
1_
| A S R e Y S P
| -~
091 /.
[
L |
- 0.8 ‘\ !
£ |
= J
207} [
= 1
)
T 06} |
|
e L
g0-5~(,’ ---HGA
2 i — Our MA
0.4 —/r.'
/i
[
0.3 /
)
02 " L L L L " I L 5
0 50 100 150 200 250 300 350 400 450 500
Generation Number
Fig. 14. Convergence plot of HGA, and our MA on Problem-B.

Wilcoxon rank sum test (with a significance level 0.05) was
employed to compare the two methods. For each instance, the
average result of the significantly better method is highlighted
in boldface. It is shown that the proposed MA also consistently
outperformed HGA in this scenario.

B. Experimental Design, and Results on Problem-B

The experiments on Problem-B were designed in exactly the
same way as those on Problem-A. That is, the proposed MA
was compared to HGA from three perspectives: a single case
study, the performance over different constraint values, and the
performance on test instances with different system parameters.
For the first experiment, the cost constraint value (Cy) was set
to 500 following the previous work [5], and the system parame-
ters are given in Table I. The maximum generation number was
set to 500 for both methods. The results of this experiment are
presented in Fig. 14. For the second experiment, 15 different
cost constraint values were sampled between the interval 200 to
900. The same system parameters as in Table I were used. The
results are presented in Table IV, and Fig. 15 in the same form as
Table II, and Fig. 12, respectively. For the third experiment, ten

763

System Reliability
o o
o Y o ©
[o2] o © (9]

e
3
o

o
3

0.65
200 250 300 350 400 450 500 550 600 650 700 750 800 850 900
Cost Constraint Value

Fig. 15. Comparison between the MA and HGA under different constraint
values on Problem-B.

TABLE IV
RESULTS OF THE PROPOSED MA, AND HGA ON Problem-B WITH
DIFFERENT CONSTRAINT VALUES, WHERE “BEST SOLUTIONS”
INDICATE THE BEST SOLUTION FOUND FROM 10 RUNS, AND
“OVERALL PERFORMANCE” INDICATES THE AVERAGES
OVER THE 10 RUNS

Best Solutions Overall Performance
Cost —
HGA MA HGA MA
Detailed Solutions
(1) (@ ze) (@mene) (2121 7122)
Reliability ~ Cost | Reliability Cost Mean Variance | Mean Variance
Constraint (zun zm2) (@ nn zuz2)
(@120 @ 1212) (122 T1222))
1(X(11)(22)22)
200 0656196 190 | 0708032 193 0613872 273E4 | 0652099 9.26F-4
ALHATDHERIDTD]
[1D(22)22)
250 0761348 244 | 0816424 250 0728640 3.59E-4 | 0755391 529E-4
ATH20(1121)(1122)]
HTH21X22)
300 0820286 300 | 0866775 300 0794485 284E-4 | 0837821 184E-4
(1212(22)2211)(1122))
1)(11)(32)22)
350 0879036 345 | 0938285 350 0848625 8.36E-5 | 0.896301 285E-5
(TN 2121)(2221)(2212))
[(HERD11)(32)
400 0894051 397 | 0938241 399 0873082 S62E-5 | 0913927 6.73E6
@2)(22)DAN(112211)2122)]
1O D22)(32)
450 0939884 449 | 0969320 438 0925863 295E-6 | 0.960071 254E-6
(2212)(2222)(222111)(2122)]
1()(1)(22)22)
500 0959363 493 | 0978447 492 0949327 374E-S | 0971538 48265
(2212)(2222)(2132)(2222)]
[t 3)
550 0969910 547 | 0986362 539 0964502 8.63E-6 | 0983201 7.74E-6
(2222)212121)222112)(111132)]
[(D(11)33)33)
600 0970285 583 | 0990953 597 0969342 482E-5 | 0988241 S38E-6
(122221)(212121)(222112)(221132)]
[1H(22)32)
650 0979855 644 | 0991272 643 0976292 285E-6 | 0990735 382E-6
(2222)(3222)(321121)(2232)]
1X11)(32)22)
700 0980132 694 | 0993212 699 0979821 184E-5 | 0992402 134E-5
(222222)(3222)(3222)(2223)]
[(H(11D)(33)32)
750 0987066 739 | 0994254 744 0982074 2.56E-6 | 0993225 1.82E-6
(222212)(322111)(222231)(1133))
1H(1DE3)GE2)
800 0987723 797 | 0994736 800 0986392 7.32E-6 | 0994736 0
(112222)(322112)(223231)(1133)]
1(1)(12)(33)(1232)
850 0988248 835 | 0998219 848 0987359 279E-6 | 0.996497 2.14E-6
(222222)(323211)(22)(1222)(122222)(1222)]
[(HD33)(1232)
900 0990542 897 | 0998399 883 0988321 462E-6 | 0997921 173E-7
(222222)(322221)(23)(2222)(2222)(1222))

test instances were generated by randomly setting the reliability
of each component to a value of the set {0.70, 0.75, 0.80, 0.85,
0.90}. Both the MA, and HGA were run on these instances for
ten times. The results are presented in Table V. In general, sim-
ilar conclusions can be drawn from the results on Problem-B,
and those on Problem-A. Therefore, the superiority of the pro-
posed MA is further demonstrated.

764

TABLE V
RESULTS OF THE PROPOSED MA, AND HGA ON Problem-B WITH
DIFFERENT SYSTEM PARAMETERS, WHERE “BEST SOLUTIONS”
INDICATE THE BEST SOLUTION FOUND FROM 10 RUNS, AND
“OVERALL PERFORMANCE” INDICATES THE AVERAGES
OVER THE 10 RUNS

Best Solutions Overall Performance
Case
HGA MA HGA MA
Number | Reliability — Cost | Reliability Cost Mean Variance Mean Variance
1 0.950429 500 0.964249 499 0.947293 3.64E-5 0.952084 1.41E-4
2 0.951790 499 0.955361 500 0.942630 6.42E-5 | 0.950388 6.84E-5
3 0.961935 485 0.987239 495 0.958302 4.74E-5 | 0.980582 3.65E-5
4 0.954075 497 0.962872 500 0.952205 5.72E-6 | 0.960353 9.64E-6
5 0.950373 476 0.963714 500 0.948291 8.75E-5 | 0.961842 4.62E-5
6 0.967201 491 0.989973 496 0.962863 6.28E-5 | 0.984032 1.64E-5
7 0.959306 492 0.970569 495 0.954032 2.39E-5 | 0.968145 2.77E-6
8 0.964437 497 0.981231 500 0.964437 0 0.972845 9.49E-5
9 0.944596 489 0.976990 495 0.940382 4.18E-5 | 0.942990 5.52E-5
10 0.956614 478 0.979008 4950 0.953214 2.39E-5 0.975843 2.53E-5

V. CONCLUSIONS

In the literature, the RAP has been intensively investigated on
single-level systems. However, practical systems usually have
multiple levels. Limited studies have been conducted in this sce-
nario. In this paper, the RAP for multi-level systems was in-
vestigated, and a novel MA was proposed to solve this type of
problem. Two new genetic operators (BFC, and BFM), and a
local search method have been proposed based on the hierar-
chical solution representation used in [5]. The proposed MA
combines the advantages of the two genetic operators with the
local search method to maintain a good trade-off between local
exploitation and global exploration. Experimental studies on
two examples demonstrated that our MA consistently outper-
formed a state-of-the-art algorithm named HGA [5].

Two issues deserve further discussion and investigation. First,
in the experimental study, only multi-level serial systems were
considered. Changing the structure of a system will lead to dif-
ferent reliability and cost functions of the corresponding opti-
mization problem. Because the proposed MA has been shown
to be effective on multi-level serial systems, it should be ex-
tended to multi-level systems with more complex structures in
the future. Second, the studied MLRAP is just a single-objective
problem with the only goal to maximize the system reliability,
while the designing cost is considered as a constraint. In fact, a
multi-objective problem can be formulated, which aims to seek
multiple solutions that represent different trade-off between the
system reliability and cost. Such a problem definition, as well as
the problem-solving approach, will be investigated in the future.

REFERENCES

[1] W. Kuo and V. Prasad, “An annotated overview of system-reliability
optimization,” IEEE Trans. Reliability, vol. 49, no. 2, pp. 176-187, Jun.
2000.

[2] W. Kuo and R. Wang, “Recent advances in optimal reliability alloca-
tion,” IEEE Trans. Systems, Man, and Cybernetics—Part A: Systems and
Humans, vol. 37, no. 2, pp. 143-156, 2007.

IEEE TRANSACTIONS ON RELIABILITY, VOL. 59, NO. 4, DECEMBER 2010

(3]

(4]

[5]

(6]

[7

—

(81

(91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

D. E. Fyffe, W. W. Hines, and N. K. Lee, “System reliability allocation
and a computational algorithm,” IEEE Trans. Reliability, vol. 17, no.
2, pp. 64-69, Jun. 1968.

W. Wang, N. J. Loman, and P. Vassiliou, “Reliability importance of
components in a complex system,” in Proceedings of the Annual Reli-
ability and Maintainability Symposium, Los Angeles, California, Jan.
26-29, 2004, pp. 6-11.

R. Kumar, K. Izui, M. Yoshimura, and S. Nishiwaki, “Multilevel redun-
dancy allocation optimization using hierarchical genetic algorithm,”
IEEE Trans. Reliability, vol. 57, no. 4, pp. 650-661, Dec. 2008.

M. S. Chen, “On the computational complexity of reliability redun-
dancy allocation in a series system,” Operations Research Letters, vol.
11, no. 5, pp. 309-315, 1992.

M. Djerdjour and K. Rekab, “A branch and bound algorithm for de-
signing reliable systems at a minimum cost,” Applied Mathematics and
Computation, vol. 118, no. 2/3, pp. 247-259, 2001.

C. Ha and W. Kuo, “Reliability redundancy allocation: An improved
realization for nonconvex nonlinear programming problems,” Euro-
pean Journal of Operational Research, vol. 171, no. 1, pp. 24-38, 2006.
V. R. Prasad and W. Kuo, “Maximization of a percentile life of a series
system through component redundancy allocation,” IIE Trans., vol. 33,
no. 12, pp. 1071-1079, 2001.

J. Onishi, S. Kimura, R. J. W. James, and Y. J. Nakagawa, “Solving
the redundancy allocation problem with a mix of components using
the improved surrogate constraint method,” IEEE Trans. Reliability,
vol. 56, no. 1, pp. 94-101, Mar. 2007.

H. Lee, W. Kuo, and C. Ha, “Comparison of max-min approach and NN
method for reliability optimization of series-parallel systems,” Journal
of System Science and System Engineering, vol. 12, no. 1, pp. 39-48,
2003.

J. E. Ramirez-Marques, D. W. Coit, and A. Konak, “Redundancy al-
location for series-parallel systems using a max-min approach,” I/E
Trans., vol. 36, no. 9, pp. 891-898, 2004.

K. Y. K. Ng and N. G. F. Sancho, “A hybrid dynamic programming/
depth-first search algorithm with an application to redundancy alloca-
tion,” IIE Trans., vol. 33, no. 12, pp. 1047-1058, 2001.

A. Yalaoui, E. Chatelet, and C. Chu, “A new dynamic programming
method for reliability and redundancy allocation in parallel-series
system,” IEEE Trans. Reliability, vol. 54, no. 2, pp. 254-261, Jun.
2005.

J. E. Ramirez-Marques and D. W. Coit, “A heuristic for solving the
redundancy allocation problem for multi-state series-parallel system,”
Reliability Engineering and System Safety, vol. 83, no. 3, pp. 341-349,
2004.

C. Elegbede, C. Chu, K. Adajallah, and F. Yalaoui, “Reliability alloca-
tion through cost minimization,” IEEE Trans. Reliability, vol. 52, no.
1, pp. 106-111, Mar. 2003.

D. W. Coit and A. E. Smith, “Genetic algorithm to maximize a lower-
bound for system time-to-failure with uncertain component Weibull
parameters,” Computers and Industrial Engineering, vol. 41, no. 4, pp.
423-440, 2002.

G. Levitin and A. Lisnianski, “Optimal separation of elements in
vulnerable multi—state systems,” Reliability Engineering and System
Safety, vol. 73, no. 1, pp. 55-66, 2001.

D. W. Coit and A. E. Smith, “Reliability optimization of series-parallel
systems using a genetic algorithm,” IEEE Trans. Reliability, vol. 45, no.
2, pp. 254-260, Jun. 1996.

Z. Wang, T. Chen, K. Tang, and X. Yao, “A multi-objective approach
to redundancy allocation problem in parallel-series systems,” in Pro-
ceedings of the 2009 IEEE Congress on Evolutionary Computation
(CEC2009), Trondheim, Norway, May 18-21, 2009, pp. 582-589.

G. Levitin, “Optimal allocation of multi-state elements in a linear con-
secutively—connected system,” IEEE Trans. Reliability, vol. 52, no. 2,
pp. 192-199, Jun. 2003.

Y. C. Liang and A. E. Smith, “An ant colony optimization algorithm
for the redundancy allocation problem,” IEEE Trans. Reliability, vol.
53, no. 3, pp. 417423, Sep. 2004.

N. Wattanapongsakorn and S. P. Levitan, “Reliability optimization
models for embedded systems with multiple applications,” IEEE
Trans. Reliability, vol. 53, no. 3, pp. 406—416, Sep. 2004.

N. Nahas, M. Nourelfath, and D. Ait-Kadi, “Coupling ant colony and
the degraded ceiling algorithm for the redundancy allocation problem
of series—parallel systems,” Reliability Engineering and System Safety,
vol. 92, no. 2, pp. 211-222, 2007.

M. Nourelfath and D. Ait-Kadi, “Optimization of series—parallel
multi—state systems under maintenance policies,” Reliability Engi-
neering and System Safety, vol. 92, no. 12, pp. 1620-1626, 2007.

WANG et al.: MEMETIC ALGORITHM FOR MULTI-LEVEL REDUNDANCY ALLOCATION 765

[26] N. Nahas, M. Nourelfath, and D. Ait-Kadi, “Ant colonies for struc-
ture optimisation in a failure prone series—parallel production system,”
Journal of Quality in Maintenance Engineering, vol. 14, no. 1, pp.
7-33, 2008.

[27] G. Levitin, “Optimal multilevel protection in serial-parallel systems,”
Reliability Engineering and System Safety, vol. 81, no. 1, pp. 93-102,
2003.

[28] W. Y. Yun and J. W. kim, “Multilevel redundancy optimization in
series systems,” Computers and Industrial Engineering, vol. 46, pp.
337-346, 2004.

[29] P. Moscato, On Evolution, Search, Optimization, Genetic Algorithms
and Martial Arts: Towards Memetic Algorithm CalTech, Pasadena, CA,
CalTech Concurrent Computation Program Report 826, 1989.

[30] N. Krasnogor and J. Smith, “A tutorial for competent memetic
algorithms: Model, taxonomy, and design issues,” IEEE Trans. Evolu-
tionary Computation, vol. 9, no. 5, pp. 474-488, 2005.

[31] M. Gen and R. Cheng, “A survey of penalty technique in genetic al-
gorithms,” in Proceedings of the International Conference on Evolu-
tionary Computation, Japan, 1996, pp. 804—809.

[32] C. A. C. Coello, “Theoretical and numerical constraint-handling tech-
niques used with evolutionary algorithms: A survey of the state of the
art,” Comput Methods Appl Mech Eng, vol. 8, no. 2, pp. 1245-1287,
2002.

Zai Wang (S°09) received the B.S. degree in computer science from the School
of Computer Science and Technology, University of Science and Technology
of China (USTC), Hefei, China, in 2006; and is currently working toward the
Ph.D. degree at the Nature Inspired Computation and Applications Laboratory
(NICAL), School of Computer Science and Technology, USTC.

Ke Tang (S’05-M’07) received the B.Eng. degree from the Huazhong Univer-
sity of Science and Technology, Wuhan, China, in 2002; and the Ph.D. degree
from the School of Electrical and Electronic Engineering, Nanyang Technolog-
ical University, Singapore, in 2007.

Since 2007, he has been an Associate Professor with the Nature Inspired
Computation and Applications Laboratory, School of Computer Science and
Technology, University of Science and Technology of China, Hefei, China. He
is the coauthor of more than 40 refereed publications. His major research inter-
ests include machine learning, pattern analysis, evolutionary computation, data
mining, metaheuristic algorithms, and real-world applications.

Dr. Tang is an Associate Editor of IEEE Computational Intelligence Maga-
zine, editorial board member of three international journals, and the Chair of
IEEE Task Force on Large Scale Global Optimization.

Xin Yao (M’91-SM’96-F’03) received the B.Sc. degree from the University of
Science and Technology of China (USTC), Hefei, China, in 1982; the M.Sc. de-
gree from the North China Institute of Computing Technology, Beijing, China,
in 1985; and the Ph.D. degree from USTC in 1990.

From 1985 to 1990, he was an Associate Lecturer and Lecturer with USTC,
while working toward the Ph.D. degree in simulated annealing and evolutionary
algorithms. In 1990, he was a Postdoctoral Fellow with the Computer Sciences
Laboratory, Australian National University, Canberra, Australia, where he
continued his work on simulated annealing and evolutionary algorithms. In
1991, he was with the Knowledge-Based Systems Group, Commonwealth
Scientific and Industrial Research Organization, Division of Building, Con-
struction and Engineering, Melbourne, Australia, where he worked primarily
on an industrial project on automatic inspection of sewage pipes. In 1992, he
returned to Canberra to take up a lectureship in the School of Computer Sci-
ence, University College, University of New South Wales, Australian Defense
Force Academy, Sydney, Australia, where he was later promoted to a Senior
Lecturer and Associate Professor. Since April 1999, he has been a Professor
(Chair) of computer science in the University of Birmingham, Birmingham,
U.K. He is currently the Director of the Center of Excellence for Research in
Computational Intelligence and Applications, School of Computer Science,
University of Birmingham, Birmingham, U.K. and also a Changjiang (Visiting)
Chair Professor (Cheung Kong Scholar) with the Nature Inspired Computation
and Applications Laboratory, School of Computer Science and Technology,
USTC. He has given more than 50 invited keynote and plenary speeches at
conferences and workshops worldwide. He has more than 300 referenced
publications. His major research interests include evolutionary artificial neural
networks, automatic modularization of machine learning systems, evolutionary
optimization, constraint-handling techniques, computational time complexity
of evolutionary algorithms, coevolution, iterated prisoner’s dilemma, data
mining, and real-world applications.

Dr. Yao was the Editor-in-Chief of the IEEE TRANSACTIONS ON
EVOLUTIONARY COMPUTATION from 2003 to 2008, an Associate Editor
or editorial board member of 12 other journals, and the Editor of the World
Scientific Book Series on Advances in Natural Computation. He was the recip-
ient of the President’s Award for Outstanding Thesis by the Chinese Academy
of Sciences for his Ph.D. work on simulated annealing and evolutionary
algorithms in 1989. He was the recipient of the 2001 IEEE Donald G. Fink
Prize Paper Award for his work on evolutionary artificial neural networks.

