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Multi-Objective Approaches to Optimal
Testing Resource Allocation in

Modular Software Systems
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Abstract—Software testing is an important issue in software
engineering. As software systems become increasingly large and
complex, the problem of how to optimally allocate the limited
testing resource during the testing phase has become more im-
portant, and difficult. Traditional Optimal Testing Resource
Allocation Problems (OTRAPs) involve seeking an optimal al-
location of a limited amount of testing resource to a number of
activities with respect to some objectives (e.g., reliability, or cost).
We suggest solving OTRAPs with Multi-Objective Evolutionary
Algorithms (MOEAs). Specifically, we formulate OTRAPs as two
types of multi-objective problems. First, we consider the reliability
of the system and the testing cost as two objectives. Second, the
total testing resource consumed is also taken into account as the
third objective. The advantages of MOEAs over state-of-the-art
single objective approaches to OTRAPs will be shown through em-
pirical studies. Our study has revealed that a well-known MOEA,
namely Nondominated Sorting Genetic Algorithm II (NSGA-II),
performs well on the first problem formulation, but fails on the
second one. Hence, a Harmonic Distance Based Multi-Objective
Evolutionary Algorithm (HaD-MOEA) is proposed and evalu-
ated in this paper. Comprehensive experimental studies on both
parallel-series, and star-structure modular software systems have
shown the superiority of HaD-MOEA over NSGA-II for OTRAPs.

Index Terms—Multi-objective evolutionary algorithm, parallel-
series modular software system, software engineering, software re-
liability, software testing, star-structure modular software system.

ACRONYMS

OTRAP optimal testing resource allocation problem

SRGM software reliability growth model

MOEA multi-objective evolutionary algorithm
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NOTATIONS

total testing resource (or time)

testing resource allocated to module

optimal allocation resource to module

total testing cost

system reliability

cost function of module according to the
reliability of module

mean value function in NHPP

reliability of module after a testing period
. is a constant number associated with the

studied system

testing resource allocated to the th modular in
the lth parallel group

testing resource allocated to the th serial
module

reliability of the th module in the th parallel
group

reliability of the th serial module

testing resource allocated to the central unit in
star-structure modular software system

I. INTRODUCTION

A software development process typically consists of four
phases [1]: specification, designing, coding, and testing.

The requirements of consumers are defined in the specification
phase. After that, the structures and details are designed and im-
plemented during the next two phases. Finally, the software sys-
tems are tested to detect and correct latent software errors during
the testing phase. The testing phase, which aims to improve the
reliability of a software system, is the most costly, time-con-
suming phase among the four phases [1]. About half of the re-
sources consumed during the software development cycle are
testing resources [1]. Moreover, because the sizes of software
systems have increased significantly during the past decades,
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effective utilization of limited testing resource has become even
more important than before.

A software system is typically comprised of a number of
modules. Each module needs to be assigned appropriate testing
resources before the testing phase. Hence, a natural question is
how to allocate the testing resources to the modules so that the
reliability of a software system is maximized. Such a problem
was formally defined by Ohtera and Yamada as the Optimal
Testing Resource Allocation Problems (OTRAPs) [1]. Although
testing resources can be allocated in rather simple ways (e.g.
average allocation, random allocation, and proportional alloca-
tion), Huo et al. [2] proved that an optimal allocation scheme
may lead to significant improvement in terms of the reliability
of a software system. In other words, it is well worth optimizing
the allocation scheme.

Solving OTRAPs is a non-trivial task. Much effort has been
devoted to this topic since the 1990s [1]–[18], and progress has
been made in the way of either proposing more precise/practical
formulations of OTRAPs, or utilizing novel problem-solving
techniques. We start revisiting the literature from the former
type of work. An OTRAP is typically concerned with three fac-
tors: reliability, cost, and testing resources. To explicitly formu-
late an OTRAP, the relationship between these factors needs to
be precisely defined. In the literature, the relationship between
reliability and testing resources was usually formulated by Soft-
ware Reliability Growth Models (SRGMs), where the reliability
is usually some metric of the failure data, such as the number of
failures, time of occurrence, failure severity, or the interval be-
tween two consecutive failures [13]. The SRGMs describe reli-
ability growth during software development processes, and can
be viewed as formulating the reliability of a software system
as a function of the testing resource allocation scheme. Unsur-
prisingly, early work exclusively aimed at maximizing the reli-
ability with a given budget of resource, by means of minimizing
the remaining errors [1], [4], [5], minimizing the number of
software faults detected [2], or directly maximizing a function
that quantifies system reliability [6]–[8], [10]. More recently,
testing cost is attracting more attention. Intuitively speaking,
testing cost measures the cost required for attaining a given level
of reliability. It is essentially a function of reliability, and thus
also a function of testing resources [11]–[13], [15]–[18]. Recent
work on OTRAPs either proposed minimizing testing cost in-
stead of maximizing reliability, or incorporated additional con-
straints on the testing cost (e.g., the reliability is maximized sub-
ject to given bounds of the testing cost and resource) [12], [13],
[15]–[18].

A lot of traditional optimization approaches have been
employed to solve OTRAPs, such as nonlinear programming
[2]–[5], [13], [16], gradient projection method [6], and dynamic
programming [5]. However, these approaches only guarantee
local convergence. They may be easily trapped in local optima
if the solution space of an OTRAP is multimodal. Although
such disadvantage can be alleviated by running the algorithms
multiple times from different initial solutions, choosing appro-
priate initial solutions requires one to be familiar with both
the algorithm, and the characteristics of OTRAPs, which is
usually very difficult for ordinary users. Alternatively, evolu-

tionary algorithms are meta-heuristics that possess the strong
capability of global search, and are usually not very sensitive
to initial solutions. Their effectiveness has been demonstrated
on a large spectrum of problems in the reliability optimization
field, such as resource management and task partition in grid
systems [19]–[21], redundancy allocation [22], [23], reliability
optimization of weighted voting systems [24], and OTRAPs
[7]–[12], [15], [17], [18]. In particular, evolutionary algorithms
have been reported to perform better than some other tech-
niques on OTRAPs [7], [9]–[12], [15], [17], [18].

Being intensively investigated in the past decade, OTRAPs
were mostly handled as optimization problems with a single ob-
jective, i.e., the testing resource was allocated with the only pur-
pose to maximize the system reliability, or minimize the testing
cost. However, both reliability and testing cost are important
for software development, and it is unrealistic to overlook ei-
ther of them. Unfortunately, given a budget of testing resources,
more testing cost is usually inevitable if we want to improve the
reliability of a software system. Hence, it is impossible that a
single solution is optimal in terms of both reliability and cost.
Instead, we may resort to balancing between reliability and cost,
and seeking a good trade-off. Though some previous researchers
did attempt to do so [12], they still solved the problem in a
single-objective optimization manner, where the resource allo-
cation scheme is optimized with respect to a weighted sum of
reliability and testing cost. This might be inappropriate because
reliability and cost are generally of different scales. Summing
them up does not really provide meaningful information about
the quality of solutions, and might cause difficulties in practice
as it is hard to determine the appropriate values of weights.

In a preliminary work [25], we proposed employing
Multi-Objective Evolutionary Algorithms (MOEAs) to solve
OTRAPs. Specifically, we formulated OTRAPs as two types of
multi-objective problems. First, we considered the reliability
of the system, and the testing cost as two separate objectives.
Second, the total testing resource consumed was taken into
account as the third goal. The advantages of MOEAs over
existing approaches were then evaluated by applying two
MOEAs, namely Nondominated Sorting Genetic Algorithm
II (NSGA-II) [26], and multi-objective differential evolution,
on two simple parallel-series modular software systems. This
paper substantially extends our previous work, and can be
distinguished from it from three aspects as follows.

1) In [25], we found that NSGA-II performs well on the first
problem formulation, but fails on the second one. Multi-
objective differential evolution performs satisfactorily on
both problem formulations with fine-tuned control param-
eters. However, multi-objective differential evolution in-
volves too many control parameters, which are usually
problem-dependent, and difficult to fine-tune. As a result,
it is hard for a practitioner to utilize multi-objective dif-
ferential evolution effectively. For this reason, we propose
a novel MOEA called Harmonic Distance Based Multi-
Objective Evolutionary Algorithm (HaD-MOEA) in this
paper. HaD-MOEA not only performs well on both types
of multi-objective formulations of OTRAPs, but also in-
volves fewer control parameters than does multi-objective
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differential evolution. Hence, it fills the gap between the
two algorithms we adopted in the previous study.

2) In [25], the efficacy of MOEAs on OTRAPs was only ver-
ified on small-scale parallel-series modular software sys-
tems, which might not be sufficient to draw a more general
conclusion. In this work, we have conducted extensive em-
pirical studies on two additional software systems. One is a
parallel-series modular software system with a larger scale
than those investigated before. The other is a star-struc-
ture modular software system. In this way, we can evaluate
the efficacy of MOEAs (in particular, HaD-MOEA) more
comprehensively on different problem sizes, and system
structures.

3) A sensitivity analysis of the proposed HaD-MOEA with re-
spect to the model parameters (i.e., parameters of the soft-
ware system) is presented. In addition, the computational
cost of both NSGA-II, and HaD-MOEA are also inves-
tigated. These issues are indispensable for evaluating the
utility of our approach in the real world, but were absent
from the previous work.

The rest of this paper is organized as follows. Section II
presents the problem formulations of two multi-objective
OTRAPs based on two types of software systems. Section III
introduces the related work on evolutionary multi-objective op-
timization, and proposes HaD-MOEA. In Section IV, NSGA-II
and HaD-MOEA are experimentally compared with each other,
and with some state-of-the-art single-objective approaches on
four case studies including three parallel-series modular soft-
ware systems, and a mixture of star-structure modular software
systems. Finally, discussions, and conclusions are presented in
Section V.

II. PROBLEM FORMULATIONS

Because a software system typically consists of multiple
modules, two issues need to be addressed in the problem for-
mulation: the model that formulates the relationship between
the testing resource and reliability (or cost) on a single module,
and the structure of the system (i.e., the way that modules are
organized to form the system). Following previous work, we
address the former issue with SRGMs, which are defined based
on the following four assumptions [13].

1) The process of fault removing can be described by a non-
homogeneous Poisson process (NHPP).

2) The software application is subject to failures at random
times, caused by the remaining faults in the system.

3) Each time a failure occurs, the corresponding fault is im-
mediately removed, and no new faults are introduced.

4) The mean number of faults detected in the time interval
by the current testing resource expenditures is

proportional to the mean number of remaining errors.
For the latter issue, two types of system structures are consid-

ered: a parallel-series structure, and a star structure.

A. Problem Formulations on Parallel-Series Modular Software
Systems

Parallel-series modular software systems are the most pop-
ular simulated system models to describe real-world software

Fig. 1. Basic structure of a parallel-series modular software system.

systems [27]. They are comprised of groups of parallel mod-
ules, and serial modules. The basic structure of a parallel-se-
ries modular software system with groups of parallel mod-
ules (the group consists of modules) and serial mod-
ules is demonstrated in Fig. 1. Based on SRGMs, the reliability
of a parallel-series modular software system, and its associated
testing cost can be quantified using (1)(5).

The failure intensity of module in a system is denoted as
, which can be calculated as

(1)

where , and are constants. is the mean value of the total
errors in module , and is the rate of detected errors in module
.

The reliability of module is calculated by

(2)

Based on the above two equations, the reliability of a parallel-
series modular software system can be calculated with

(3)

where is the reliability of the th
parallel group. There are groups of parallel modules, thus
the total reliability of these groups of parallel modules is

. is the total
reliability of the serial modules.

The testing cost for each module is defined as [12]

(4)

where , , and are constants that control the increment
speed of the testing cost corresponding to the reliability in
module . Correspondingly, the testing cost for the whole
parallel-series modular software system is

(5)

where is the total testing cost for the
groups of parallel modules, and is the total

testing cost for the series modules.
Given an OTRAP, we aim at maximizing the reliability, while

minimizing the testing cost. Meanwhile, the consumed testing
resource should not exceed a pre-defined budget or (ideally) be
minimized. However, (4) shows that the testing cost exponen-
tially increases with reliability. Hence, the objectives of maxi-
mizing reliability and minimizing testing cost conflict with each
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other. Such a scenario is not uncommon in the real world, and
has been investigated under the name of multi-objective op-
timization. Mathematically, a multi-objective problem with
conflicting minimizing objectives can be formulated as (6).

(6)

where , , , and are called decision vector, decision space,
objective vector, and objective space, respectively. is the
th objective function of the problem. Because different objec-

tive functions usually conflict with each other, there seldom ex-
ists a unique solution that is optimal in terms of all objective
functions. For this reason, the common approach to a multi-ob-
jective optimization problem is to seek a set of Pareto optimal
solutions. In other words, each solution should not be inferior to
any other solution on all objectives. Such solutions are referred
to as nondominated solutions.

When formulating OTRAPs as multi-objective optimization
problems, we first simultaneously consider reliability and cost
as two objectives, and formulate OTRAPs as bi-objective prob-
lems. Despite the increase of the size and complexity of software
systems, the cycle of a software development process has be-
come shorter. Under such a circumstance, software testers might
want to shorten the testing phase, even with the price of a slight
decrease in reliability. So, we further consider the total testing
resource expenditure as a new target, and a tri-objective problem
can be formulated. Table I presents the mathematical formula-
tion of the two multi-objective OTRAPs on parallel-series mod-
ular software systems.

B. Problem Formulations on Star-Structure Modular Software
Systems

Star-structure modular software systems are comprised of
two types of units: central, and non-central. The central unit
acts as a “server,” and can be comprised of parallel, serial, or
parallel-series modules. A non-central unit consists of some
connected modules, each of which is an input of the whole
system. Fig. 2 illustrates a star-structure modular software
system with non-central modules, and central modules.

Equations (1), (2), and (4) can be readily utilized to quantify
the reliability and cost of every single module in a star-structure
modular software system. On the basis of these equations, the
reliability of a star-structure modular software system can be
calculated as

(7)

where is the reliability of the th module in the non-
central unit, and is the reliability of the central unit
(i.e., total reliability of the central modules).

Similarly, the cost of testing a star-structure modular software
system can be calculated by (8).

(8)

TABLE I
FORMULATIONS OF TWO MULTI-OBJECTIVE PROBLEMS ON PARALLEL-SERIES

MODULAR SOFTWARE SYSTEMS (MAXIMUM TESTING RESOURCE TO BE

ALLOCATED IS � )

Fig. 2. Basic structure of a star-structure modular software system.

where is the cost of the th module in the non-cen-
tral unit, and stands for the cost of the th module of
the central unit. Similar to parallel-series modular software sys-
tems, the bi-objective, and tri-objective OTRAPs on star-struc-
ture modular software systems are mathematically formulated
in Table II.

III. HARMONIC DISTANCE BASED MOEA FOR

MULTI-OBJECTIVE OTRAPS

In the past few decades, evolutionary algorithms have
emerged as an effective approach to multi-objective optimiza-
tion problems [28], [29]. A lot of so called MOEAs, such as
the Vector Evaluated Genetic Algorithm (VEGA) [30], the
Pareto Archived Evolution Strategy (PAES) [31], and the Non-
dominated Sorting Genetic Algorithm II (NSGA-II), have been
proposed. Proposed by Schaffer in 1985, VEGA is known as the
first MOEA in literature. After that, the Nondominated Sorting
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TABLE II
FORMULATIONS OF TWO MULTI-OBJECTIVE PROBLEMS ON STAR-STRUCTURE

MODULAR SOFTWARE SYSTEMS (MAXIMUM TESTING RESOURCE TO BE

ALLOCATED IS � )

Genetic Algorithm (NSGA) [32], Niched- Pareto Genetic Al-
gorithm (NPGA) [33], and Multi-Objective Genetic Algorithm
(MOGA) [34] were developed. Unlike VEGA, which adopts
an objective-based fitness assignment strategy, these three
methods assign fitness based on the concept of domination.
Intuitively speaking, the latter three methods differ from VEGA
in the way of selecting good solutions that are preserved in
the problem-solving process. More recently, some other novel
techniques have been developed for new MOEAs. For example,
the niching technique has been suggested for preserving the
diversity of the obtained solutions, based on which NSGA-II,
and PAES were proposed [26], [31]. Elitism was also proven to
be an effective factor for the convergence of an MOEA. Hence,
most state-of-the-art MOEAs, including the Strength Pareto
Evolutionary Algorithm (SPEA) [35], SPEA2 [36], PAES,
and NSGA-II, were designed to preserve the nondominated
solutions found during the problem-solving process.

Alg. 1. The Pseudo-Code of NSGA-II [26].

1: Initialize: Set the population size to , and randomly
generate the parent population .

2: Set the generation number .

3: while (the terminate generation number) do

4: Generate the offspring population from with the
same population size.

5: Combine the parent and offspring population via
.

6: Sort all solutions of to get all non-dominated
fronts where

.

7: Set , .

8: while the parent population size do

9: (a) calculate crowding-distance of .

10: (b) add the th non-dominated front to the parent pop
.

11: (c) .

12: endwhile

13: Sort the according to the crowding distance.

14: Fill the parent pop with the first
elements of .

15: Set .

16: endwhile

17: return .

Among all the above-mentioned MOEAs, NSGA-II has
shown superior performance on not only benchmark prob-
lems [37], [38], but also real-world application [39], and thus
has been an off-the-shelf choice for solving multi-objective
optimization problems. For this reason, we first employed
NSGA-II to tackle the multi-objective OTRAPs on parallel-se-
ries modular software systems in a previous study [25].
However, empirical studies showed that NSGA-II managed to
solve the bi-objective problem, but failed on the tri-objective
problem. Although some recent studies have revealed that the
performance of MOEAs may deteriorate when the number of
objectives of a problem increases [40], it is still necessary to
investigate why NSGA-II failed in the context of OTRAPs.
Therefore, we have investigated this issue in-depth, and found
that the failure of NSGA-II may be due to two reasons:

1) The crowding distance measure does not accurately re-
flect the crowding degree.
Alg. 1 presents the pseudo-code of NSGA-II. One crit-
ical procedure in NSGA-II is the calculation of crowding
distance of a solution in the objective space [26]. Given
a solution (a point in the objective space), the crowding
distance is calculated as the 1-norm distance between the
two nearest neighbors of the solution. In a multi-objective
optimization problem, it is usually expected that the final
solutions cover the whole objective space well. Hence,
in the problem-solving process, the solutions with larger
crowding distances are preferable. The first drawback of
NSGA-II is that it employs a crowding distance metric
which does not accurately reflect the actual crowing de-
gree of a given solution. Fig. 3 illustrates such a scenario.
We would say that solution C is more crowded than solu-
tion Y because C is quite close to D, and thus preserving
one of them should be enough. However, in NSGA-II, the
crowding distance of C is larger than that of Y. Hence,
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Fig. 3. Crowding degree estimation.

NSGA-II may obtain more solutions in one region of the
objective space, while obtaining fewer solutions in some
other regions.

2) The selection strategy based on the crowding distance
is unilateral.
Because all MOEAs search for the solutions in an iterative
way, the most important part of an MOEA is how it oper-
ates in a single iteration (usually referred to as a generation
in the evolutionary computation literature). From Alg. 1,
we can observe that, in each generation of NSGA-II, the
parent population and offspring population are first
combined to make an intermediate population . Then,

is sorted into different nondominated fronts through the
function fast-non-dominated-sort; and for every nondom-
inated front, the crowding distance of each individual in
it is calculated. The parent population for the next gener-
ation is finally selected from based on their nondomi-
nated levels and crowding distances. During this process,
when calculating the crowding distance of a solution, only
those solutions belonging to the same nondominated front
are considered. However, this may lead to an inappropriate
selection of solutions. For example, the rectangular, and
circular points in Fig. 4 belong to two nondominated fronts.
Assume that all of the rectangular points have been se-
lected, and we need to select some circular points based
on the crowding distance. Based on the selection strategy
of NSGA-II, point A will be selected prior to point B, but
this is somewhat counter-intuitive because point B is obvi-
ously less crowded than point A.

Having the above two drawbacks of NSGA-II in mind, we
propose two alternative approaches to deal with them. First, in-
stead of calculating the crowding distance using the 1-norm dis-
tance between the two nearest points to a given solution, we
calculate it with the harmonic average distance. Assume the dis-
tances of the -nearest solutions of a solution are .
Then the harmonic average distance associated with this solu-
tion can be calculated as

(9)

Fig. 4. Crowding degree estimation.

To overcome the second drawback of NSGA-II, we propose
the following scheme. After sorting the solutions in the interme-
diate population into a number of fronts, if some solutions are
to be selected from a front, the crowding distance will be calcu-
lated based on both the solutions belonging to the same front,
and all the previously selected solutions. In this way, the unde-
sirable scenario illustrated in Fig. 4 will be prevented.

Incorporating the above two schemes into the framework
of NSGA-II, we obtain a new MOEA, the HaD-MOEA. The
pseudo-code of HaD-MOEA is shown in Alg. 2. Specifically,
lines 12-15 present the detailed steps of the two novel schemes
adopted by HaD-MOEA. Taking advantage of the two new
schemes, we expect the solutions obtained by HaD-MOEA
to spread better in the objective space than those obtained by
NSGA-II.

When applying HaD-MOEA to a system with modules, a
solution is encoded by an -dimensional vector (chromosome).
Each element represents the testing time consumed by a module,
and the sum of these elements should not exceed the total testing
time . Besides, HaD-MOEA cannot guarantee always gener-
ating solutions that satisfy this constraint during search. There-
fore, whenever a solution obtained violates the constraint, it will
be repaired by using the procedures presented in Table III.

Alg. 2. The Pseudo-Code of HaD-MOEA.

1: Initialize: Set the population size to , and randomly
generate the parent population .

2: Set the generation number .

3: while do

4: Generate the offspring population from with the
same population size.

5: Combine the parent and offspring population via
.

6: Sort all solutions of to get all non-dominated
fronts where

.

7: Set , and .

8: while the parent population size do
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TABLE III
REPAIRING AN INFEASIBLE OFFSPRING � � �� � � � � � � � �

9: add the th non-dominated front to the parent pop
.

10: .

11: endwhile

12: Combine and to a temporary vector .

13: Calculate the harmonic crowding distances of individuals
of in .

14: Sort the according to the crowding distance.

15: Set .

16: Fill the parent pop with the first
elements of .

17: Set .

18: endwhile

19: return .

IV. EXPERIMENTAL STUDIES

Experimental studies have been carried out to evaluate the ef-
ficacy of our proposed approach. The experimental studies were
designed to consist of two parts. First, the MOEAs were com-
pared with three state-of-the-art single-objective approaches to
evaluate whether they (in particular HaD-MOEA) are able to
provide some advantage over the single-objective approaches.
Second, HaD-MOEA was compared with NSGA-II in terms of
both solution quality, and computational time.

A. Comparing MOEAs With Single-Objective Approaches

Three single-objective approaches were considered in this ex-
periment. For brevity, these approaches will be denoted using
the acronyms of the family names of the researchers who pro-
posed them. The first algorithm, denoted as the D-X algorithm,

Fig. 5. Structure of the simple parallel-series modular software system with
two modules.

Fig. 6. Structure of the complex parallel-series modular software system with
eight modules.

was proposed by Dai and Xie et al. [12]. It is essentially a ge-
netic algorithm that aims to solve a single-objective problem
whose objective function is the weighted sum of the reliability
and cost. The second algorithm was proposed by Yang and Xie
[9], and thus is denoted as the Y-X algorithm. It considers only
the software reliability, and ignores the cost. The last method,
denoted as the T-M algorithm, was devised by Tom and Murthy
[41], who considered the problem of finding an allocation of
program modules onto processors of a distributed computing
system with the single goal to maximize the reliability while ig-
noring the cost.

We compared the MOEAs with the single-objective ap-
proaches on two parallel-series modular software systems:
A simple parallel-series modular software system with only
two parallel modules, and a complex parallel-series modular
software system with eight modules. The structures of the two
systems are illustrated in Figs. 5 and 6. The Y-X, and T-M algo-
rithms have been separately applied to the simple, and complex
parallel-series modular software systems. The D-X algorithm
has been applied to both. Hence, the two systems serve as a
good platform for our comparative study. It is noteworthy that
all the compared single-objective algorithms do not consider
the total testing time as an objective. Hence, we only consider
the bi-objective problem on the two systems in this experiment.
All results of the single-objective approaches were obtained
from the original publications.

Following the previous studies, we assume that 10 persons are
available for testing the simple system, and 23 persons are avail-
able for the complex system. Each person can spend up to 1000
hours on the testing task. In addition, all the parameters of the
systems are set to the values used in previous studies [9], [12],
[41]. We ran the two MOEAs (NSGA-II, and HaD-MOEA) on
each system for 30 independent runs. Similar results were ob-
tained in the 30 runs. The solutions obtained in the first run on
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Fig. 7. Results for the bi-objective problem on the simple parallel-series mod-
ular software system.

Fig. 8. Results for the bi-objective problem on the complex parallel-series
modular software system.

TABLE IV
NEAREST SOLUTIONS OBTAINED BY MOEAS TO THE SOLUTIONS OBTAINED

BY SINGLE-OBJECTIVE ALGORITHMS ON THE SIMPLE, AND COMPLEX

PARALLEL-SERIES MODULAR SOFTWARE SYSTEMS

the simple system are illustrated in Fig. 7, together with the so-
lutions obtained by D-X, and Y-X algorithms. In addition, the
solutions obtained in the first run on the complex system are il-
lustrated in Fig. 8, together with the solutions obtained by D-X,
and T-M algorithms. From the figures, it can be observed that
both NSGA-II, and HaD-MOEA achieved such a set of solu-
tions that provide a variety of trade-offs between the system
reliability and the cost. Furthermore, it would be interesting to
check whether the solutions achieved by the single-objective ap-
proaches can also be obtained by MOEAs. For this reason, we
recorded all nondominated solutions obtained by the MOEAs
in the 30 runs. Then, the difference between the reliability of
these solutions and the solutions obtained by the single-objec-
tive approaches were calculated. The nondominated solutions
corresponding to the smallest difference were identified, and
presented in Table IV.

The MOEAs managed to find the same or very similar
solutions as that provided by the single-objective approaches.

Fig. 9. Structure of the larger parallel-series modular software system with
twelve modules.

However, MOEAs find many additional solutions with different
trade-offs between the reliability and cost, which enable a
software tester to ask what-if questions. Such a set of different
solutions also enables a software tester to see the exact relation-
ship between the reliability and cost. It is now possible to ask
practical questions, such as how much savings one can obtain if
we were willing to sacrifice the reliability by a certain amount.
Therefore, compared to the single-objective approaches, the
major advantage of using MOEAs on OTRAP is that it can
provide a lot of additional choices to a practitioner, and thus
benefit organizing the whole testing process.

B. Comparing HaD-MOEA With NSGA-II

According to the results presented in the above subsection,
we can find that NSGA-II and HaD-MOEA performed compa-
rably for the bi-objective problem on the simple, and complex
parallel-series modular software systems. Hence, a natural
question is whether the two algorithms perform comparably on
all OTRAPs? In other words, is NSGA-II alone sufficient for
OTRAPs? To answer this question, we have further conducted
comprehensive experiments to compare HaD-MOEA with
NSGA-II.

In this experiment, we considered both types of multi-objec-
tive problems that we formulated in Section II. The simple, and
complex parallel-series modular software systems were utilized
as the test-bed. In addition, the efficacy of the MOEAs on an-
other two systems was also evaluated. The first system is the par-
allel-series modular software system illustrated in Fig. 9. It con-
sists of twelve modules. The purpose of evaluating the MOEAs
on this system is to verify the MOEAs’ scalability with respect
to the number of modules. As shown in Fig. 10, the second
system is a star-structure modular software system (denoted as
the SS-system) with six modules. By applying the MOEAs to
this system, we aim to check whether the MOEAs can work
well on different types of structures.

For the parallel-series modular software systems, we assumed
the same total testing time as in the previous sub-section. We
assumed that 35, and 15 persons are available for the larger
parallel-series modular software system, and the star-structure
modular software system. The testing time for each person was
set to 1000 hours. In the previous sub-section, all algorithms
were evaluated using a set of pre-defined parameters of the sys-
tems. It is necessary to evaluate the sensitivity of the MOEAs to
these system parameters. Therefore, we further randomly gen-
erated 30 different parameter settings for each system. For each
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TABLE V
RANGE OF THE PARAMETER VALUES OF THE FOUR SOFTWARE SYSTEMS (THE VALUE OF THE PARAMETER IS A REAL NUMBER WHICH IS RANDOMLY GENERATED

WITHIN THE CORRESPONDING RANGE). � ,� , � , � , AND � ARE PARAMETERS OF THE �TH MODULE IN SOFTWARE SYSTEMS

Fig. 10. Structure of the SS-system with six modules.

TABLE VI
PARAMETER SETTINGS OF NSGA-II, AND HAD-MOEA

module of each system, all 30 parameter settings were gen-
erated within a pre-defined interval, as presented in Table V.
Given a system with a randomly generated parameter setting,
both HaD-MOEA, and NSGA-II have been applied to it for 30
independent runs. To make the comparison as fair as possible,
the two algorithms adopted exactly the same initial populations
and control parameters in each run. Table VI presents the control
parameters used throughout the experiment. To summarize, we
altogether compared the two MOEAs on 240 (two types of prob-
lems four systems 30 system parameter settings) problem
instances, and carried out a statistical test on each instance based
on the results of the 30 independent runs.

TABLE VII
VALUES OF HYPERVOLUME INDICATOR OF OBTAINED RESULTS ON DIFFERENT

PARAMETER SUITES ON THE SIMPLE PARALLEL-SERIES MODULAR SOFTWARE

SYSTEM (THE RESULT THAT IS SIGNIFICANTLY BETTER THAN THE OTHER IS

EMPHASIZED IN BOLDFACE)

Fig. 11 illustrates the nondominated solutions obtained on
the tri-objective problems in the first run of the first randomly
generated parameter settings. The solutions obtained by HaD-
MOEA spread better in the objective space than those obtained
by NSGA-II. This result suggests that HaD-MOEA might be
advantageous to NSGA-II. However, the figures are just a simple
illustration, and no rigorous conclusion can be made yet.
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TABLE VIII
VALUES OF HYPERVOLUME INDICATOR OF OBTAINED RESULTS ON DIFFERENT

PARAMETER SUITES ON THE COMPLEX PARALLEL-SERIES MODULAR

SOFTWARE SYSTEM (THE RESULT THAT IS SIGNIFICANTLY BETTER THAN THE

OTHER IS EMPHASIZED IN BOLDFACE)

To compare the MOEAs in a quantitative, rigorous way, a
quantitative measure of the performance of the two algorithms
is required. In the multi-objective optimization field, there are a
number of metrics for measuring the goodness of the solutions
obtained by an algorithm. Among these metrics, we adopted
the hypervolume indicator in our study because it holds two
important properties:

1) It is sensitive to any type of improvements, i.e., whenever
an approximation set dominates another approximation
set , the measure yields a strictly better quality value for
the former than for the latter set [42].

2) As a result of the first property, the hypervolume measure
guarantees that any approximation set that achieves the
maximally possible quality value for a particular problem
contains all the Pareto-optimal objective vectors [43].

So far, the hypervolume indicator is the only metric that pos-
sesses the above two properties. Hence, it serves as the most
appropriate metric for comparing NSGA-II and HaD-MOEA.
For space considerations, we refrain from providing the de-
tailed information of hypervolume indicator, but direct inter-
ested readers to [42].

Tables VII –X present the results (in terms of the values of
hypervolume indicator) obtained by the MOEAs algorithms in

TABLE IX
VALUES OF HYPERVOLUME INDICATOR OF OBTAINED RESULTS ON DIFFERENT

PARAMETER SUITES ON THE LARGER PARALLEL-SERIES MODULAR SOFTWARE

SYSTEM (THE RESULT THAT IS SIGNIFICANTLY BETTER THAN THE OTHER IS

EMPHASIZED IN BOLDFACE)

30 independent runs. For each algorithm, the best, median, and
worst results are given. Two-sided Wilcoxon rank sum tests with
a significance level 0.05 have been conducted to compare the
performance of NSGA-II with that of HaD-MOEA. Table XI
summarizes the results of the Wilcoxon test. When considering
the bi-objective problems, HaD-MOEA performed comparably
with NSGA-II on all four systems. This result is consistent with
the results presented in the previous subsection. However, in
case of the tri-objective problems, HaD-MOEA is obviously su-
perior to NSGA-II. For all 120 testing instances, HaD-MOEA
performed significantly better than NSGA-II on 73 instances,
yet was inferior on only seven. To investigate the computa-
tional efficiency of the MOEAs, we recorded their runtime on all
test instances. Table XII presents the average runtime for each
problem on the four systems. In comparison with NSGA-II,
HaD-MOEA merely involved an additional computational over-
head of 0.4 seconds in the worst case, which was about 2% of the
overall runtime of the whole algorithm. In essence, the compu-
tational efficiency of the two algorithms is comparable. More-
over, we may find that the runtime of both MOEAs are about
20 seconds for the bi-objective problems, and 130 seconds for
the tri-objective problems, which are negligible compared to the
total time that we allocated to the testing phase. This further jus-
tifies the utility of MOEAs in practice.
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TABLE X
VALUES OF HYPERVOLUME INDICATOR OF OBTAINED RESULTS ON DIFFERENT

PARAMETER SUITES ON THE SS-SYSTEM (THE RESULT THAT IS SIGNIFICANTLY

BETTER THAN THE OTHER IS EMPHASIZED IN BOLDFACE)

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we formulated two types of OTRAPs as
multi-objective optimization problems: one with two ob-
jectives, and the other with three. Then, we solved the two
problems using MOEAs. Specifically, a novel MOEA called
HaD-MOEA was proposed because the state-of-the-art MOEA,
namely NSGA-II, does not perform satisfactorily on the second
type of OTRAP. Empirical studies were first carried out to
evaluate the utility of MOEAs in comparison with existing
single-objective approaches. MOEAs not only managed to
achieve almost the same solution as that which can be attained
by single-objective approaches, but also found simultaneously
a set of alternative solutions. These solutions showed dif-
ferent trade-offs between the reliability of a system and the
testing cost, and hence can facilitate informed planning of a
testing phase. Later, a comprehensive experimental study was
conducted to compare HaD-MOEA with NSGA-II on three
parallel-series modular software systems, and a star-structure
modular software system, each with a large variety of randomly
generated parameter settings. The purpose was to evaluate
the algorithms on systems with different sizes, structures, and
parameters. The results showed that both algorithms performed
well on the bi-objective problems, while HaD-MOEA per-
formed significantly better than NSGA-II on the tri-objective

Fig. 11. Pareto sets obtained by NSGA-II, and HaD-MOEA for the tri-objec-
tive problems on the four employed software systems (one case study).

problems, for which the total testing resource expenditure is
not determined in advance. The superiority of HaD-MOEA
consistently holds for all four tested systems.

In addition to the above advantages, MOEAs may also be ap-
plied to real-world problems with little effort. Given a software
testing task, a software tester only needs to formulate the re-
liability and cost as the functions of testing resource assigned
to each modules of the system. Then, control parameters of
the MOEAs can be set to those values used in this work, be-
cause they generally performed well in our empirical studies.
After that, the algorithm can obtain a set of solutions (i.e., plans
of testing resource assignment) without human involvement in
the search process. The very modest computational cost of the
MOEAs (in comparison with the total testing resource) also sup-
ports its potential utility in real-world scenarios.

Two directions may be further pursued in the future. First,
the efficacy of MOEAs was only evaluated on parallel-series,
and star-structure modular software systems; and the objective
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TABLE XI
OVERALL COMPARISON BETWEEN HAD-MOEA AND NSGA-II FOR THE TWO

MULTI-OBJECTIVE PROBLEMS ON FOUR SOFTWARE SYSTEMS (TWO-SIDED

WILCOXON RANK-SUM TEST WITH A SIGNIFICANCE LEVEL 0.05 WAS

USED). S, C, L AND SS STAND FOR SIMPLE, COMPLEX, LARGER AND SS
SOFTWARE SYSTEMS, RESPECTIVELY. RESULTS ARE PRESENTED IN FORM OF

WIN-DRAW-LOSE, INDICATING THE NUMBERS OF TEST CASES ON WHICH

THE CORRESPONDING HAD-MOEA IS SUPERIOR, COMPARABLE (I.E.,
�-INSIGNIFICANT), AND INFERIOR TO THE NSGA-II

TABLE XII
AVERAGE RUNTIME (IN CPU SECONDS) OF MOEAS ON THE FOUR CASE

STUDIES

functions were formulated based on the assumption of -in-
dependence between modules and components. However, in
the reliability literature, some software systems are modeled
under the assumption that the modules and components are
dependent upon each other [27]. In this case, the objective
functions (e.g., the reliability function) will be substantially
different from those investigated in this work. It would be
interesting to verify whether MOEAs can still work for such
scenarios. Second, although HaD-MOEA was specifically de-
signed to address the drawback of NSGA-II on the tri-objective
problems, the improvement essentially arose from the consid-
eration of multi-objective optimization. No domain-specific
knowledge about OTRAPs was taken into account. However,
it is commonly thought that incorporating domain-knowledge
into an algorithm will further boost its performance on the
specific problem. Hence, we will investigate designing novel
search operators that are specifically suitable for OTRAPs.
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