
A Multi-objective Approach to Testing Resource Allocation in

Modular Software Systems

Zai Wang, Ke Tang and Xin Yao

Abstract— Nowadays, as the software systems become
increasingly large and complex, the problem of allocating
the limited testing-resource during the testing phase has
become more and more difficult. In this paper, we propose
to solve the testing-resource allocation problem (TRAP)
using multi-objective evolutionary algorithms. Specifically,
we formulate TRAP as two multi-objective problems. First,
we consider the reliability of the system and the testing
cost as two objectives. In the second formulation, the total
testing-resource consumed is also taken into account as
the third goal. Two multi-objective evolutionary algorithms,
Non-dominated Sorting Genetic Algorithm II (NSGA2) and
Multi-Objective Differential Evolution Algorithms (MODE),
are applied to solve the TRAP in the two scenarios. This
is the first time that the TRAP is explicitly formulated and
solved by multi-objective evolutionary approaches. Advantages
of our approaches over the state-of-the-art single-objective
approaches are demonstrated on two parallel-series modular
software models.

keywords: Software Reliability; Multi-Objective Evolution-
ary Algorithm; Parallel-Series Modular Software System.

I. INTRODUCTION

Nowadays the software systems have become very large

and complex. Despite of the decrease of the hardware costs,

the costs of software systems have increased rapidly during

the past several decades. In modern computer systems,

software takes larger portion of the system cost than the

hardware. Like in hardware development [1-3], reliability is

a most important purpose in software development. There

are many environmental factors in the software development

process. The software testing-resource is a kind of entities

which can be measured and controlled early in the software

development cycle, and optimal allocation of testing resource

can lead to an improvement of the reliability of a software

system [4-5], Hence, the Test-Resource Allocation Problem

(TRAP) plays an important part in the development of

software systems.

Obviously, determining the optimal allocation of test-

resource involves multiple considerations. For example, we

would like to get a software with high reliability, but we also

prefer minimizing the cost during the testing phase. At the

same time, we may also aim to finish the testing phase as fast

as we can (i.e. with the minimal time). Therefore, the TRAP

is a multi-objective optimization problem, which concerns

The authors are with the Nature Inspired Computation and Applica-
tions Laboratory, the Department of Computer Science and Technology,
University of Science and Technology of China, Hefei, Anhui 230027,
China. Xin Yao is also with CERCIA, the school of Computer Science,
University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.(emails:
wangzai@mail.ustc.edu.cn, ketang@ustc.edu.cn, x.yao@cs.bham.ac.uk).

several incommensurable and often conflicting objectives.

Though many researchers have carried out studies on the

TRAP [6-13], most of them only considered reliability while

ignoring the cost of the software system, i.e., they considered

TRAP as a single-objective problem. Some other researchers

did consider both the reliability and the cost [14-15], but

they aggregated the two objectives to a scalar cost function,

and optimized it in a single-objective way. Further, the total

testing-resource consumed has never been considered in the

optimization. Instead, a fixed resource budget is always de-

fined in advance. In this paper, we suggest tackling the TRAP

with Multi-Objective Evolutionary Algorithms (MOEAs).

MOEAs, such as Strength Pareto Evolutionary Algorithm II

(SPEA2) [16], Pareto Archived Evolution Strategy (PAES)

[17], Nondominated Sorting Genetic Algorithm II (NSGA2)

[18] and Multi-Objective Differential Evolution Algorithms

(MODEs) [19-20], are a family of evolutionary approaches

to multi-objective optimization problems. They have been

proven to perform well on lots of real-world problems. To

the best of our knowledge, MOEAs have never been applied

to the TRAP before. We consider two scenarios. First, the

reliability of the software and the testing cost. So the goal is

to find a good trade-off between the reliability and the cost.

Then, the total testing-resource consumed (i.e. the total time)

is brought in as the third objective.

Compared to the existing single-objective approaches,

which usually provide one single optimal solution at a time,

MOEAs can offer a set of solutions that are well known

as non-dominated solutions. Hence MOEAs can provide the

designers a lot of choices with different level of trade-

off between reliability and cost (in our first scenario), or

between reliability, cost, and the total testing-resource con-

sumed (in our second scenario). Efficacy of our proposed

approaches are demonstrated on software reliability growth

models (SRGMs) [21-22], which is a main type of software

system models based on nonhomogeneous Poisson process

(NHPP).

The rest of this paper is organized as follows: The basic

structure of the parallel-series modular software system is

presented in section 2. Section 3 shows how we solve

the testing-resource allocation problem with NSGA2 and

MODE. In section 4, our multi-objective approaches are

experimentally compared to some existing single-objective

approaches on two examples of the parallel-series software

systems. Finally, discussion and conclusions are presented in

Section 5.

1148

978-1-4244-1823-7/08/$25.00 c©2008 IEEE

Fig. 1. The basic structure of a parallel-series modular software system

TABLE I

THE NOMENCLATURE OF THE SOFTWARE SYSTEM

T total testing resource (or time)
Ti testing resource allocated on module i

Ti∗ optimal allocation resource on module i

C the total testing cost
Ci(Ri) cost function of module i according to

the reliability of module i Ri

m(t) mean value function in NHPP
R system reliability
Ri(x|Ti) reliability function of module i, after a testing

period Ti

II. PARALLEL-SERIES MODULAR SOFTWARE SYSTEM

A. Basic Structure of the Parallel-series Modular Software

System

With the growth of the size of the software systems,

a system is usually comprised of many modules in the

designing and testing phase. The basic structure of a general

parallel-series modular software system with n groups of

parallel modules and m serial modules is shown in Fig.1.

B. The Performance of The Parallel-series Modular Software

System

According to the software reliability literature, we adopt

the following models to quantify the reliability of a parallel-

series modular system and the testing cost. A summary of

the nomenclature are presented in Table I.

For every modular in this system, the failure intensity of

module i is λi(Ti) and it can be calculated by:

λi(Ti) = aibiexp(−biTi) (1)

Where ai and bi are constants. ai is the mean value of the

total errors in modular i and bi describes the rate of detected

errors in modular i. Ti is the testing time allocated to module

i.

Thus the reliability of module i is

Ri(x|Ti) = exp{−λi(Ti)x}, x ≥ 0 (2)

After the Ti unit time of testing, The probability of no

fault occuring in the interval (Ti, Ti + x] is Ri(x|Ti). From

Eq. (1) and Eq. (2), we can find that the reliability of modular

i is exponentially increasing to the resource allocated to the

modular i [23].

TABLE II

PROBLEM.1:THE TESTING-RESOURCE ALLOCATION PROBLEM WITH

TWO OBJECTIVES

(1) Maximize

R(x|T) =
∏n

l=1
(1 −

∏kl
i=1

[1 − Rli (x|Tli)])
∏m

j=1
Rj(x|Tj)

(2)Minimize

C(Rli , Rj) =
∑n

l=1

∑kl
i=1

Cli (Rli) +
∑m

j=1
Cj(Rj)

Subject to
∑n

l=1

∑kl

i=1
Tli +

∑m
j=1

Tj ≤ T and Tli , Tj ≥ 0
The total testing-resource to be allocated is T

Based on the above two equations, the reliability of

this parallel-series modular software system is calculated as

following equation:

R(x|T) =
n∏

l=1

(1 −

kl∏

i=1

[1 − Rli(x|Tli)])
m∏

j=1

Rj(x|Tj) (3)

The (1−
∏kl

i=1
[1−Rli(x|Tli)] is the reliability function of the

lth parallel groups. There are n groups of parallel modules,

So the total reliability of these n groups of parallel modules

are
∏n

l=1
(1−

∏kl

i=1
[1−Rli(x|Tli)]) and

∏m

j=1
Rj(x|Tj) presents

the total reliability of the m series modules.

The cost function for individual module which we will

adopt has been explained in [24]:

Ci(Ri) = Hi × eBiRi−Di (4)

The Hi, Bi and Di are constants associated with the modu-

lar i. [24] has told us that the cost is exponentially increasing

to the improved reliability of the single model.

The corresponding cost of the parallel-series modular

software system will be

C(Rli , Rj) =
n∑

l=1

kl∑

i=1

Cli(Rli) +
m∑

j=1

Cj(Rj) (5)

III. SOLVE THE TESTING-RESOURCE ALLOCATION

PROBLEMS WITH MOEAS

A. Formulating TRAP as Multi-objective Optimization Prob-

lems

Based on the above equations in section 2.1, we can easily

calculate the reliability and cost of a parallel-series modular

system. We allocate testing-resource for the sake of getting

an allocation of testing resource in an interval corresponding

to highest reliability and lowest cost of a software system.

However, Eqs. (1-5) denotes that the cost and reliability

increase exponentially to the testing resource allocated to the

system, i.e., getting a higher reliability means we need to pay

more cost. Hence, we can consider the reliability and cost

as two objectives and formulate a two-objective problem in

Table II. Then we can use MOEAs to get a set of solutions

which are non-dominated with one another.

From Table II, it can be observed that, as a two-objective

problem, maximizing the reliability and minimizing the cost

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 1149

TABLE III

PROBLEM.2:THE TESTING-RESOURCE ALLOCATION PROBLEM WITH

THREE OBJECTIVES

(1) Maximize

R(x|T) =
∏n

l=1
(1 −

∏kl
i=1

[1 − Rli (x|Tli)])
∏m

j=1
Rj(x|Tj)

(2)Minimize

C(Rli , Rj) =
∑n

l=1

∑kl
i=1

Cli (Rli) +
∑m

j=1
Cj(Rj)

(3)Minimize

Tc =
∑n

l=1

∑kl

i=1
Tli +

∑m
j=1

Tj

Subject to
∑n

l=1

∑kl

i=1
Tli +

∑m
j=1

Tj ≤ T and Tli , Tj ≥ 0
The total testing-resource to be allocated is T

of a software system are two purposes. Also we can find this

problem has bound constraint of the testing-resource (in this

paper means the testing time T).

Despite of the increase of the size and complexity of

the software systems, the cycle of a software development

process has become shorter and shorter and the testing time

which can be allocated to the software system in the testing

phase has been become insufficient day by day. So designers

want to save the testing time eagerly, and lower reliability can

sometimes be acceptable. So we consider the total testing-

resource expenditure as a new target, and the three-objective

problem can be formulated in Table III.

This problem is also a constrained multi-objective problem

and has a bound constraint for the testing time. The designers

can get a choice based on the testing time from the non-

dominated solutions.

B. Evolutionary Multi-objective Optimization Approaches to

TRAP

Given the two multi-objective formulations, it is obviously

that MOEAs are promising approaches to the TRAP. In this

work, we suggest using NSGA2 and MODE as the specific

problem solver. Proposed by Deb et al. [18], NSGA2 is one

of the most famous MOEAs and has been extensively used

in various real-world problems. MODE [20] is a recently

proposed approach and show some advantages over NSGA2

in some aspects. Due to space constraints, the details of

NSGA2 and MODE may not be described in this paper,

interested readers are referred to the original publications.

In the next subsection, we briefly describe some issues

regarding the application of MOEAs to the TRAP.

C. Two Implementation Details

When using MOEAs to solve the TRAPs, two particular

issues need to be addressed, i.e., how to code and generate

solutions

1) The Coding Scheme: In modular software systems, the

total testing resource comprises testing resource consumed

in every module. The testing resource of the parallel-series

modular software system in this paper is the total testing time

T. Thus, we can construct a chromosome using a list of time

every modular consumes. The sum of the elements in the list

is T. In other words, for a system with n modules, we have:

TABLE IV

REPAIR THE INFEASIBLE OFFSPRING a′

Assume a′ is re-assigned to a new chromosome a′′.
First we calculate the sum of elements in a′:total = sum(a′).
For problem.1, the a′′ is:
a′′=(t′′

1
, t′′

2
, ...t′′n) = ((t′

1
× T/total), (t′

2
× T/total), ...(t′n × T/total)).

For problem.2, the a′′ is:
a′′=(t′′

1
, t′′

2
, ...t′′n) = ((t′

1
× T × rand(1)/total),

(t′
2
× T × rand(1)/total), ...(t′n × T × rand(1)/total)).

p = (t1, t2,, tn)
Subject to sum(ti) = T

2) A Repairing Operator: Assume there is a chromosome

a = (t1, t2, ..., tn), after the crossover between a and another

chromosome b or mutation on a, there will be a new

chromosome a′ = (t′
1
, t′

2
...t′

n
). If the sum of elements in

a′ exceeds the pre-defined total resource T , the a′ is an

infeasible solution and will be repaired. In this work, we

repair the infeasible solution following the method presented

in Table IV.

IV. COMPARE THE MOEAS WITH OTHER ALGORITHMS

ON TWO PARALLEL-SERIES SOFTWARE SYSTEM MODELS

In this section, we experimentally compare our multi-

objective approaches with traditional single-objective ap-

proaches on two examples. Three state-of-the-art single-

objective methods are chosen for comparison. The first

algorithm is devised by Dai and Xie [25], and denoted as

D-M algorithm. The second is proposed by Yang and Xie

[23], denoted as Y-X algorithm. The last method is devised

by Tom and Murthy [26] and denoted as T-M algorithm.

In the case study, we adopt a simple software model with

only two modules and a complex model with eight modules.

In the literature, the D-M and T-M algorithms have been

applied to the simple and complex models, respectively.

And the Y-M algorithm has been applied to both. For the

sake of a fair comparison, we adopt the same structure and

parameter settings of the two models as in [25]. To be

specific, the structures of the simple model and the complex

model are demonstrated in Fig.2 and Fig.3, respectively.

Parameter settings of the systems are given in Tables V and

VI, respectively. When considering the total testing resource

as the third objective, the maximal total testing resource is

also required to be pre-defined. Since this objective has never

been considered as an objective in the literature, we assume

that 10 persons are prepared to test this simple model, and

23 persons for complex model. The deadline of testing time

for every person from now on is 1000 hours. Thus, the total

testing time is calculated by 10 × 1000 = 10000 hours for

simple model and 23 × 1000 = 23000 for complex model.

A. Results of The Simple Model

1) Parameter Settings: When we use NSGA2 to solve

TRAP on this simple model, the parameters of NSGA2 are

1150 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Fig. 2. The structure of a two-unit parallel modular software system

Fig. 3. The structure of the complex modular software system

assigned as follow: crossover probability: 0.9; mutation prob-

ability: 0.1; the terminate generations: 200. The population

size is assigned as 200 for problem.1 and 1000 for problem.2.

For MODE, parameter valued as: scaling factor F=0.3;

crossover probability CR =0.3. The population size is same

as the enactment of NSGA2.

When comparing MOEAs with D-X algorithm which

combine the reliability and cost to a single objective with

the sensitivity weight K1 and K2, the K1 is set as 1.1 and

K2 as 0.3.

2) Results on Problem.1: The NSGA2, MODE, D-X, Y-

X are adopted to solve this problem, the results of the above

algorithms are shown in Fig.4.

From Fig.4, we can find that NSGA2 and MODE get a set

of solutions which are non-dominated by each other. Thus as

designers of software systems, we can choose a solution with

respect to the reliability and cost easily from the pareto-front

TABLE V

THE VALUES OF THE PARAMETERS FOR SIMPLE MODEL

Modular1 Modular2

ai 249.22 199.48

bi(10
−4/h) 5.9464 5.8379

Hi 5.05 4.95
Bi 6 6.3
Di 5 5.1

TABLE VI

THE PARAMETERS OF COMPLEX MODEL

Modules ai bi Hi Bi Di

1 210 0.00051 3.493 6.011 4.97
2 199 0.00059 3.503 6.12 4.93
3 453 0.00048 3.498 6.012 4.955
4 345 0.00058 3.498 6.001 4.997
5 258 0.00063 3.499 6.002 4.995
6 221 0.00074 3.5015 6.15 4.97
7 33.99 0.00597 3.495 6.01 4.98
8 32.32 0.00593 3.500 6.005 4.01

0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12
The results for problem 1

Reliability

Co
st

NSGA2
D−X
Y−X

0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12
The results for problem 1

Reliability

Co
st

MODE
D−X
Y−X

Fig. 4. The results for problem.1 on simple model

TABLE VII

COMPARE MOEAS WITH Y-X AND D-X ALGORITHM

Cost factor Algorithm T1∗ T2∗ Reliability Cost(units)

Consider NSGA2 9402.37 597.63 0.8953 7.354
Consider MODE 9403.49 596.51 0.8953 7.355
consider D-X 9404.34 595.66 0.8953 7.356

Consider NSGA2 0 10000 0.9344 10.903
Consider MODE 0 10000 0.9344 10.903
Without Y-X 0 10000 0.9344 10.903

of NSGA2 and MODE.

It might be interesting to check whether the results

achieved by D-X and Y-X algorithms really lie on the

pareto front of the problem, So we ran MOEAs for 30

times and calculate the mean value of the results. Then,

the solutions corresponding to the same reliability achieved

by D-X (0.8953) and Y-X (0.9344) are picked out and

presented in TABLE VII, respectively. From TABLE VII,

we can observe that MOEAs manage to provide almost the

same solutions as the compared single-objective approaches,

while they also provide many other candidate solutions to

the decision maker.

In this work, the NSGA2 and MODE can get the highest

reliability with the T1∗ = 0 and T2∗ = 10000 every time, so

the mean value of these results is also T1∗ = 0 and T2∗ =
10000 when comparing with Y-X algorithm.

3) Results on Problem.2: For this problem, we consider

the total testing resource expenditure as the third objective. Y-

X algorithm and D-X algorithm set the total testing resource

as constant, hence they can not be used to solve problem.2.

However we can draw the results of Y-X and D-X algorithms

with the solutions of NSGA2 and MODE when the total

testing resource is set to be 10000 hours. The results are

presented in Fig.5.

From Fig.5, we can find that the solutions obtained by

D-X and Y-X still approximately lie on the pareto front

obtained by MODE. That means MODE still manage to

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 1151

0

0.5

1 0
5

10
15

0

2000

4000

6000

8000

10000

Cost

The results for problem 1

Reliability

to
ta

l te
sti

ng
 re

so
ur

ce
 co

ns
um

ed

NSGA2
D−X
Y−X

0

0.5

1

051015

0

5000

10000

The results for problem 2

Cost
Reliability

to
ta

l te
sti

ng
 re

so
ur

ce
 co

ns
um

ed

MODE
D−X
Y−X

Fig. 5. The results for problem.2 on simple model

provide a set of good solutions in this scenario. The results

obtained by NSGA2 are different. NSGA2 offer us a set of

solutions with a shape of curve, i.e., there is a unique value

of reliability and cost corresponding to a fixed value T. As

we know, there should be a set of choices with a fixed T,

as can be observed on MODE. There might be two reasons

for NSGA2 not providing a set of appropriate solutions :

a):Too close relation between the reliability and testing-time

consumed.

b):Too early strong convergence to the pareto-front.

When MODE is utilized, the problem b does not exist and

the DE strategy can indicate us to get a good spread of the

non-dominated solutions.

B. Results of The Complex Model

1) Parameter Settings: The parameter settings for ap-

proaches on this complex model are same as the above

settings on the simple model, expect for the population size

is assigned as 3000 for problem.2.

2) Results on Problem.1: Y-X algorithm cannot work on

this model, So we use T-M algorithm which consider this

system as a distributed computing system [26]. The results

of the approaches on problem.1 are shown in Fig.6.

To quantitavely compare MOEAs, D-X and T-M algo-

rithms, we adopt the same procedure as in the previous

subsection. To be specific, we averaged the results of MOEAs

over 30 runs, picked out the ones with the same reliability

value as D-X and T-M, and present them in TABLE VIII.

Again, it can be observed that the MOEAs are able to find

the pareto optimial solutions, including those obtained via

single-objective methods.

Table XIII tells us that NSGA2 and MODE get better so-

lutions than the D-X algorithm. MODE outperforms NSGA2

when getting the highest reliability.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60
The results for problem 1 on complex model

Reliability

Co
st

NSGA2
D−X
T−M

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60
The results for problem 1

Reliability

Co
st

MODE
D−X
T−M

Fig. 6. the results for problem.1 on complex model

TABLE VIII

COMPARE MOEAS WITH Y-X AND T-M ALGORITHM ON SIMPLE MODEL

Alogrithm Reliability Cost(units)

NSGA2 0.895725 49.46
MODE 0.894875 49.33
D-X 0.89 49.65

NSGA2 0.9055 51.88
MODE 0.9118 52.04
T-M 0.91 52.64

3) Results on Problem.2: The T-M algorithm and D-X

algorithm also set the total testing resource as constant,

so they cannot be used to solve problem.2. However we

can draw the results of T-M and D-X algorithms with the

solutions of MOEAs when the total testing resource is set

to be 23000. Solutions of above algorithms are shown in the

following Fig.7.

From Fig.7, we can see that a fixed value of testing-

resource consumed denoted as Ti corresponds to a set of

solutions which comprise a range of reliability and cost. So

as designers of software systems, we can get lots of choices

in specified reliability interval with lower testing-resource

expenditure.

V. CONCLUSION

In this paper, we first formulate two multi-objective

testing-resource allocation problems on parallel-series mod-

ular software system, and try a new attempt to use MOEAs

(NSGA2 and MODE) to solve these two problems. Two

main observations can be made by comparing MOEAs to

state-of-the-art single-objective algorithms. First, the MOEAs

provide the best results that has been obtained with single-

objective approaches, while MOEAs also offer the designers

of software systems a set of appropriate choices. Second,

our approach can even handle the scenario where the total

testing resource expenditure is involved as the third objective.

In this way, we manage to obtain solutions with acceptable

1152 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

0

0.5

1

0
20

40
60
0

0.5

1

1.5

2

2.5
x 10

4

Reliability

The results for problem 2

Cost

to
ta

l te
sti

ng
 re

so
ur

ce
 co

ns
um

ed

NSGA2
D−X
T−M

0

0.5

1

0
20

40
60
0

1

2

3
x 10

4

Reliability

The results for problem 2

Cost

to
ta

l te
sti

ng
 re

so
ur

ce
 co

ns
um

ed

Fig. 7. The results for problem.2 on complex model

reliability, cost and total time expenditure, which might be

of more help to designers and conners of software systems.

To summarize, MOEAs are more applicable and successful

than the single-objective algorithms.

Although we focus on the parallel-series software systems

in this paper, we believe that the general idea are presented

here is also applicable to many other modular systems such

as star structure, circular structure, etc. we will investigate

these issues in our future work.

ACKNOWLEDGMENT

This work is partially supported by the National Natural

Science Foundation of China (Grant No. 60428202), The

Engineering and Physical Sciences Research Council (EP-

SRC Grant No. EP/D052785/1) and The Fund for Foreign

Scholars in University Research and Teaching Programs

(Grant No. B07033).

REFERENCES

[1] C. Y. Huang, J. H. Lo, S. Y. Kuo and M. R. Lyu, “Optimal Allocation
of Testing Resources for Modular Software Systems,” In Proceedings

of the Thirteenth IEEE International Symposium on Software Relia-

bility Engineering, 2002.

[2] C. Y. Huang, J. H. Lo, S. Y. Kuo and M. R, “Optimal Allocation of
Testing-Resource Considering Cost, Reliability, and Testing-Effort,”
Dependable Computing, 2004. Proceedings. 10th IEEE Pacific Rim

International Symposium on 3-5 March 2004, pp. 103-112.

[3] Y. S. Dai, X. L. Wang, “Optimal Resource Allocation on Grid Systems
For Maximizing Service Reliability Using A Genetic Algorithms,” In
Reliability Engineering and System Safety, 2006.

[4] X. M. Zhang, M. Y. Shin, H. Pham, 2001. “Exploratory Analysis
of Environmental Factors for Enhancing the Software Reliability
Assessment,” J. Syst. Software 57 (1), pp. 73-78.

[5] J. Tian, 1999. “Measurement and Continuous Improvement of Soft-
ware Reliability Throughout Software Life-Cycle,” J. Syst. Software
47 (2C3), pp. 189-195.

[6] P. Kubat and H. S. Koch, “Managing Test-Procedure to Achieve
Reliable Software,” IEEE Transcations on Reliability, Vol, 32, No.
3, pp. 299-303, 1983.

[7] P. Kubat, “Assessing Reliability of Modular Software,” Operation

Research Letters, Vol. 8, No. 1, pp. 35-41, 1989.

[8] H. Ohtera and S. Yamada, “Optimal Allocation and Control Problems
for Software-Testing Resource,” IEEE Transcations on Reliablity, Vol.
39, No. 2, pp. 171-176, 1990.

[9] S. Yamada, T. Lehimori and M. Nishiwaki, “Optimal Allocation
Policies for Testing Resource Based On a Software Reliability Growth
Model,” Mathemarical and Computer Modelling, Vol. 22, pp. 295-301,
1995.

[10] Y. W. Leung, “Dynamic Resource Allocation for Software Module
Testing,” The Journal of the Systems and Software, Vol. 37, No. 2,
pp. 129-139, May 1997.

[11] Y. W. Leung, “Software Reliablity Allocation Under Uncertain Oper-
ational Profits,” Journal of the Operational Research Society, Vol.48,
No. 4, pp. 401-411, April 1997.

[12] Y. W. Leung, “Optimal Reliability Allocation for Modular Software
System Designed for Multiple Customers,” IEICE Transcations on

Information and Systems, Vol. 79, No. 12, pp. 1655-1662, December
1996.

[13] R. H. Huo, S. Y. Kuo and Y. P. Chang, “Efficient Allocation of
Testing Reaources for Software Module Testing Based on the Hyper-
Geometric Distribution Software Reliability Growth Model,” IEEE

Transcations on Reliability, Vol. 45, No. 4, pp. 541-549, Dec 1996.
[14] B. Yang and M. Xie, “Testing-resource Allocation for Redundant

Software Systems,“ Proceedings of the 1999 Pacific Rim International

Symposium on Dependable Computing(PRDC”99), Dec 1999.
[15] B. Yang and M. Xie, “Optimal Testing-Time Allocation for Modular

Systems, ” International Journal of Quality and Reliability Manage-

ment, Vol. 18, No. 8, pp. 854-863, 2001.
[16] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the

Strength Pareto Evolutionary Algorithm,” In K. Giannakoglou et al.,
editor, EUROGEN 2001. Evolutionary Methods for Design, Optimiza-

tion and Control with Applications to Industrial Problems, pp. 95-100,
Athens, Greece, 2002.

[17] J. D. Knowles and D. W. Corne, “Approximating the Nondominated
Front Using the Pareto Archived Evolution Strategy,” In Evolutionary

Computation, vol. 8, no. 2, pp. 149-172, 2000.
[18] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist

Multiobjective Genetic Algorithm: NSGA-II,” In IEEE Transactions

on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, April 2002.
[19] C. S. Chang, D. Y. Xu. and H. B. Quek. “Pareto-Optimal Set Based

Multiobjective Tuning of Fuzzy Automatic Train Operation for Mass
Transit System,” In IEE Proceedings on Electric Power Applications,
September 1999.

[20] V. L. Huang, P. N. Suganthan, A. K. Qin, and S. Baskar, “Multi-
Objective Differential Evolution with External Archive and Harmonic
Distance-Based Diversity Measure,” Nanyang Technological Univer-
sity, Singapore, Tech. Rep. TR-07-01, 2006.

[21] M. R. Lyu(1996). Handbook of Software Reliabilty Engineering,
McGraw Hill.

[22] O. Berman and N. Ashrafi, “Optimization Models for Reliability of
Modular Software Systems,” IEEE Transcations on Software Engi-

neering, Vol.19, No.11, pp. 1119-1123, Nov. 1993.
[23] B. Yang, M. Xie, 2000. “A Study of Operational and Testing Reliability

in Software Reliability Analysis,” Reliab. Eng. Syst. Safety 70, pp. 323-
329.

[24] A. Kumar, K. Malik, “Voting Mechanisms in Distributed Systems,”
IEEE Transcations on Reliability 40 (5), pp. 593-600, 1991.

[25] Y. S. Dai, M. Xie, K. L. Poh, B. Yang, “Optimal Testing-Resource
Allocation with Genetic Algorithm for Modular software Systems,”
The Journal of Systems and Software, Vol. 66, pp. 47-55, 2003.

[26] P. A. Tom, C. S. R. Murthy, “Algorithms for Reliability-Oriented Mod-
ule Allocation in Distributed Computing Systems,” J.Syst.Software

40(2), pp. 125-138, 1998.

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 1153

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

