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Abstract— The Redundancy Allocation Problem (RAP) is
a kind of reliability optimization problems. It involves the
selection of components with appropriate levels of redun-
dancy or reliability to maximize the system reliability under
some predefined constraints. We can formulate the RAP as a
combinatorial problem when just considering the redundancy
level, while as a continuous problem when considering the
reliability level. The RAP employed in this paper is that kind
of combinatorial optimization problems. During the past thirty
years, there have already been a number of investigations on
RAP. However, these investigations often treat RAP as a single
objective problem with the only goal to maximize the system
reliability (or minimize the designing cost). In this paper, we
regard RAP as a multi-objective optimization problem: the
reliability of the system and the corresponding designing cost
are considered as two different objectives. Consequently, we
can utilize a classical Multi-objective Evolutionary Algorithm
(MOEA), named Non-dominated Sorting Genetic Algorithm
II (NSGA-II), to cope with this multi-objective redundancy
allocation problem (MORAP) under a number of constraints.
The experimental results demonstrate that the multi-objective
evolutionary approach can provide more promising solutions in
comparison with two widely used single-objective approaches
on two parallel-series systems which are frequently studied in
the field of reliability optimization.

I. INTRODUCTION

The Redundancy Allocation Problem (RAP) [1]–[4] is one
of the most important reliability optimization problems in
the designing phase of the parallel-series systems, network
systems, k-out-of-n:G systems and other systems with various
structures. For a system, the reliability of it can be increased
by properly allocating redundancies to its subsystems [5],
so RAP is formulated involving the selection of components
with the appropriate levels of redundancy to maximize the
system reliability under some predefined constraints. RAP is
difficult to cope with because of its enormous requirement
of computational time to find an optimal solution (as a NP-
hard problem). In the field of system-reliability [6], [7], it
has been reported that various single-objective optimization
techniques, such as dynamic programming, integer program-
ming, meta-heuristic algorithm, mixed integer and nonlinear
programming and genetic algorithm [8]–[15], have been used
to cope with RAPs. Although these techniques have their own
advantages on RAPs, they all treat RAPs as single-objective
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problems, and the only goal is to maximize system reliability
(or minimize the designing cost of the system).

Some researchers have also noticed that determining the
redundancy allocation of the system should take multiple
considerations into account, e.g., one hopes to obtain a sys-
tem with high reliability while he or she will certainly prefer
spending low cost in the designing phase of the system.
Concretely, they considered both the reliability and cost [16]–
[21] by aggregating the two objectives (reliability and cost)
to a unique scalar objective function, and optimize the new
objective function via some single-objective optimization
technique. The above investigations have taken important
steps towards finding more effective and efficient approaches
for RAP. However, for single-objective approaches, one has
to design sophisticated mechanisms of combining different
objectives so as to achieve promising performances. On the
other hand, the aggregation of two objectives may eliminate
the possibility of finding multiple non-dominated solutions,
which would leave less choices for system designer in
practice. To cope with the above two difficulties, using some
multi-objective approaches (such as some well-known Multi-
Objective Evolutionary Algorithms (MOEAs) might be an
appropriate choice. There have been some similar attempts
for the reliability optimization [22]–[24]. In [22], a so-
called MOMS-GA was proposed to solve the tri-objective
redundancy allocation problem in multi-state systems, where
the availability, cost and weight of the systems are considered
as the three objectives. In [23], a tabu search meta-heuristic
approach is first utilized to solve a bi-objective (reliability
and cost) redundancy allocation problem. And then, based
on the obtained Pareto optimal solutions, Monte-Carlo sim-
ulation is employed provide a decision maker with a pruned
and prioritized set of Pareto-optimal solutions based on user-
defined objective function preferences. In [24], a problem-
specific MOEA is employed to solve the continuous reliabil-
ity optimization problems (single-objective or bi-objective)
on anomalistic complex systems, wherein the reliability of
the components are variables to be optimized. In this paper,
we utilize an efficient second-generation MOEA (NSGA-II)
to solve the combinational redundancy allocation problem on
parallel-series systems.

In this paper, we also formulate the RAP by considering
the system reliability and designing cost as two objectives,
and the resultant Multi-Objective RAP (MORAP) takes both
objectives into account simultaneously. Solving the above
MORAP by MOEAs can provide the designers more solu-
tions with respect to different levels of trade-off between the
two objectives while traditional single-objective approaches
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Fig. 1. The structure of parallel-series system

[5], [10] can only provide a unique solution at a time. Con-
cretely, we utilize a well-known multi-objective optimization
algorithm named Non-dominated Sorting Genetic Algorithm
II (NSGA-II) to solve the MORAP in our empirical investiga-
tion. Efficacy of NSGA-II is demonstrated on two reliability
growth parallel-series systems, one contains 5 subsystems
while the other consists of 7 subsystems. The experimental
results shows that NSGA-II offers a number of promising
solutions, which enables the designers to consider the trade-
off between the system reliability and designing cost.

The rest of this paper is organized as follows: Section 2
presents the single-objective redundancy allocation problem
(SORAP) and multi-objective redundancy allocation problem
(MORAP) on parallel-series system; Section 3 shows how we
solve the redundancy allocation problem with our problem-
specific NSGA-II. In Section 4, our multi-objective approach
is experimentally studied in comparison with some widely
used approaches on two parallel-series software systems.
Section 5 contains our conclusion and future work.

II. SORAP AND MORAP ON PARALLEL-SERIES SYSTEM

A. Description of Parallel-series System

In this paper, we consider the RAP on the parallel-series
systems which have already received intensive investigations
[2], [5], [10]. A typical structure of parallel-series system
is illustrated in Fig.1. The system consists of s independent
subsystems and the maximal number of components hold
for ith subsystem is ni. A subsystem i can work properly
if at least one of its components is operational, while
for each subsystem, more than one components may also
work in parallel. Our investigation in this paper adopts four
assumptions which were commonly adopted in most studies
in this field [6], while the notations of redundancy allocation
problem on parallel-series systems are presented in Table I.

• Assumption 1: The system consists of some subsys-
tems, each of which can work properly if at least one
of its components is operational.

• Assumption 2: All components states are independent.
• Assumption 3: Reliability, cost and weight of each

components in one subsystem are same.

TABLE I

THE NOTATIONS OF RAP ON PARALLEL-SERIES SYSTEM

R reliability of the parallel system
C designing cost of the system
W weight of the system
Cc upper bound of cost of the system
Wc upper bound of weight of the system
Rc upper bound of reliability of the system
g1, g2, ..., gm the m constraints of the RAP
s number of subsystems
ai number of components selected for

subsystem i
ri reliability of every component available for

subsystem i
ci cost of every component available for

subsystem i
wi weight of every component available for

subsystem i
yi quantity of component j available for

subsystem i
ki minimum number required for subsystem i
ni maximal number required for subsystem i
θi, γi parameters associated with the cost

and weight of component in subsystem i

• Assumption 4: Each constraint is an increasing function
of ai

1.

According to the assumptions and notations, some perfor-
mance metrics (e.g., system reliability, designing cost and
system weight) are shown as follow:

• The reliability of the system can be calculated by

R =
s∏

i=1

[1 − (1 − ri)ai ], (1)

where s is the number of subsystems, ai is the number
of components available for subsystem i (1 ≤ ai ≤ ni),
and ri is the reliability of each available component in
subsystem i.

• The designing cost of the system can be calculated by

C =
s∑

i=1

ci[ai + exp(θiai)], (2)

where ci is the cost of each available component in
subsystem i, θi is a constant parameter for the ith
subsystem, and exp(θiai) is the additional cost due to
the interconnection between the parallel components.

• The weight of the system is often regarded as one
constraint. We can obtain the weight of the system by

W =
s∑

i=1

wi[ai + exp(γiai)], (3)

where wi is the weight of each available component in
subsystem i, γi is a constant parameter for the ith sub-
system, and exp(γiai) is a penalty factor with respect
to the interconnection between the parallel components.

1ai is the number of components selected for ith subsystem
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B. SORAP and MORAP on Parallel-series System

The SORAP is to select components for every subsystem
to meet the system design constraints while the reliability
of the system should be maximized or the designing cost
should be minimized, i.e., the SORAP is a single-objective
combinatorial optimization problem with constraints.
SORAP can be formulated by {Maximize R (system
reliability), subject to (g1, g2, . . . , gm)} or {Minimize C
(system designing cost), subject to (g1, g2, . . . , gm)} , where
g1, g2, . . . , gm are m constraints. The constraints are always
associated with other system variances different with the
objective variance (reliability or cost), which are determined
by the requirements of the consumers. The first constraint
g1 is associated with the designing cost of the system
(C) when maximizing the system reliability, while g1 is
associated with the system reliability (R) when minimizing
the designing cost. The formal description of SORAP is
shown as follow:
Find the optimal ai(1 ≤ ai ≤ ni), i = 1, . . . , s

Max R =
s∏

i=1

[1 − (1 − ri)ai ]

or

Min C =
s∑

i=1

ci[ai + exp(θiai)]

Subject to

g1 = C =
s∑

i=1

ci[ai + exp(θiai)] ≤ Cc,

or

g1 = R =
s∏

i=1

[1 − (1 − ri)ai ] ≤ Rc

g2 = W =
s∑

i=1

wi[ai + exp(γiai)] ≤ Wc,

where Rc, Cc and Wc are upper bounds of R, C and W
respectively.

Traditionally, SORAP is formulated with the only
goal to maximizing the system reliability or minimizing
the designing cost. However, sometimes the system
reliability and the designing cost of system are both
seriously concerned by designers. Thus, to meet different
requirements of designers, it would be desirable if the
reliability and costs can be involved in the optimization
process simultaneously. On the other hand, we know that
getting a higher reliability means we have to pay more
designing cost: Equations 1 and 2 imply that we have to use
a larger ai so as to achieve a higher value of R while the
value of C will become higher at the same time. Due to the
violation between the system reliability and the designing
cost, we can simultaneously consider them. In other words,
we can treat the system reliability and designing cost as
two objectives and formulate the Multi-Objective RAP
(MORAP):

TABLE II

THE IMPORTANT DEFINITIONS FOR MOEAS

Assume there are n objectives we need to optimize:
Definition 1: Dominance: a dominates b denoted as a ≺ b iff

∀i : fi(a) ≤ fi(b)
∧ ∃j : fj(a) < fj(b); i, j = 1, ...n.

Definition 2: Non-dominated: if a � b and b � a too, Then a and b
are non-dominated.

Definition 3: Pareto set : A set of non-dominated solutions.

Find the optimal ai, i = 1, . . . , s

Max R =
s∏

i=1

[1 − (1 − ri)ai ]

and

Min C =
s∑

i=1

ci[ai + exp(θiai)]

Subject to

g1 = W =
s∑

i=1

wi[ai + exp(γiai)] ≤ Wc,

where the constraint of the MORAP is related to the
weight of the system (W ), and Wc is the upper bound of W .
To cope with MORAP, we can utilize some multi-objective
approaches, such as MOEAs. In the next section, we will
introduce the MOEA employed in this paper.

III. SOLVING MORAP BY NSGA-II

A. Introduction of NSGA-II

During the past twenty years, evolutionary algorithms have
been widely adopted in the multi-objective optimization,
while the researchers have formulated a lot of efficient multi-
objective optimization algorithms such as the improvement of
Strength Pareto Evolutionary Algorithm SPEA2 [26], Pareto
Archived Evolution Strategy (PAES) [27], Non-dominated
Sorting Genetic Algorithm II (NSGA-II) [25] and so on. As
a well-known MOEA, the NSGA-II is the most widely used
and has been proven to perform well on various real-world
application problems [28]. The pseudo-code of NSGA-II is
presented in Algorithm 1.

We will employ NSGA-II in our investigation, since there
have been many investigations ensuring that NSGA-II can
often converge to Pareto-optimal set and the obtained so-
lutions can often spread well over the Pareto-optimal set.
NSGA-II takes the fast-non-dominated-sort mechanism to
ensure the well convergence which is shown in Algorithm 2.
Moreover, it adopts the Density Estimation and Crowding-
Comparison Operator [25] to cut the solutions which have
bad distributions so as to obtain a good spread of solutions.
The above merits of NSGA-II make it a promising choice of
solving MORAP. For details of NSGA-II, one can refer to
[25].
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Algorithm 1 The Pseudo-Code of NSGA-II
1: step.1: Set the parent vector P = φ, the offspring vector

Q = φ, the collect vector R = φ and the generation
number t = 0.

2: step.2: Initialize the parent vector P0.
3: step.3:
4: while t < the terminate generation number do
5: (1) Combine the parent and offspring population via

Rt = Pt
⋃

Qt.
6: (2) Sort all solutions of Rt to get all non-dominated

fronts F = fast-non-dominated-sort(Rt) where F =
(F1, F2, ...).

7: (3) Set Pt+1 = φ and i = 1.
8: (4)
9: while the parent population size |Pt+1|+ |Fi| < N do

10: (a) calculate crowding-distance of Fi.
11: (b) add the ith non-dominated front Fi to the parent

pop Pt+1.
12: (c) i = i + 1.
13: end while
14: (5) Sort the Fi according to the crowding distance.
15: (6) Fill the parent pop Pt+1 with the first N − |Pt+1|

elements of Fi.
16: (7) Generate the offspring population to Qt+1.
17: (8) Set t = t + 1.
18: end while
19: step.4: the population in vector P are the non-dominated

solutions.

Algorithm 2 The Pseudo-Code for the function: fast-non-
dominated-sort(P)

1: step.1: For each population p in the P, we get the
solutions which p dominates and save these solutions
into Sp. We also need to calculate the np which is the
number of solutions which dominate p.

2: step.2: Find the solutions whose np = 0 and add them
to the first front F1.

3: step.3: Initialize the front counter i = 1.
4: step.4:
5: while Fi is not empty do
6: Set the temp vector Q = φ.
7: for each p ∈ Fi do
8: for each q ∈ Sp do
9: nq = nq − 1.

10: if nq = 0 then add q to the Q.
11: end for
12: end for
13: i = i + 1 and the solutions in Q compose the Fi.
14: end while

a1 a12 a1i a1i+1

a21 a22 a2i a2i+1
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a1n
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 and a1j, exchange these two
bits.

a1i a1j ... a11 ... a1na1j a1i ...

Exchange the bits after the
crossover point

Single-point crossover between a1

 and a2

Bitwise mutation on a1

Fig. 2. The Description of Crossover and Mutation Used in This Paper

B. Implementation Details

Although NSGA-II is a general algorithm that can be
used to solve various kinds of multi-objective optimization
problems, we have to utilize the problem-specific knowledge
to improve NSGA-II so that it can fit different requests of
real-world application problems. In this paper, on the basis
of the system model and the assumptions we have introduced
in the last section, we choose appropriate coding scheme and
genetic operator for NSGA-II to adapt NSGA-II to MORAP.

1) Coding Scheme: For parallel-series systems proposed
in Section II, the SORAP and MORAP are combinatorial
optimization problems with the purpose of finding the num-
ber of components (ai) for every subsystem, where ai is the
number of components selected for ith subsystem with the
lower bound 1 and upper bound ni. Hence, we can construct
a chromosome using a list of integers, and the representation
of a chromosome (denoted by p) which has s subsystems is
shown as follows:

p = (a1, a2, ...., as), ai ∈ [1, ns],

where ai represents the number of components selected to
the subsystem i.

2) Genetic Operator: On the basis of Coding Scheme,
we adopt the single-point crossover and bitwise mutation for
NSGA-II. The detailed implementation of them are presented
in Fig.2. In our experiments, the crossover probability is set
to be 0.9 and the mutation rate is 1/s, where s is the number
of subsystems.

On the other hand, it is crucial to guide the search
within the feasible region, and we have to employ some
constraint handling techniques for NSGA-II. There have
already been many constraints handling methods such as
penalization techniques, repair techniques, separation tech-
niques, and hybrid techniques [29]. In this paper, we utilize
the constraint handling approach based on the concept of
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TABLE III

PARAMETER SETTINGS OF 5-SUBSYSTEM BENCHMARK PROBLEM.

Subsystems ci ri θi wi γi

1 7 0.9 0.25 7 0.25
2 8 0.85 0.25 7 0.25
3 6 0.85 0.25 9 0.25
4 8 0.8 0.25 8 0.25
5 4 0.85 0.25 6 0.25

constrained-dominate proposed in [25]. Concretely, a so-
lution i constrained-dominates j must satisfy one of the
following three conditions.

• Solution i is feasible but solution j is not.
• Solution i and j are both feasible, and i dominates j.
• Solution i and j are both infeasible, but i violates less

constraints than j.
On the basis of the above concept, we can naturally trans-
form the traditional concept of domination to the concept
of constrained-domination to deal with the constraints in
MORAPs.

IV. EXPERIMENTS

In this section, we experimentally compare NSGA-II with
traditional single-objective approaches on two benchmark
RAPs. Two commonly used methods are chosen in our
comparison. The first algorithm, named K-Y algorithm, is
devised by Kim and Yum [5]. K-Y is a heuristic algorithm
with the excursions over a bounded infeasible regions which
can alleviate the risks of being trapped at a local optimum.
The second algorithm, named R-M algorithm, is proposed
by Ravi and Murty et al. [10]. R-M is a fast convergence
algorithm which also uses an exponential cooling schedule
to provides a stable global solution. These two algorithms
are very classical in the reliability optimization literatures.

In the experiments, we choose two parallel-series systems
as benchmark problems. One of them is with five subsystems
(s = 5) which has been studied in [10], the other is more
complex and it is with seven subsystems (s = 7). For
the two benchmark systems, each subsystem can hold at
most 6 components (i.e. ni = 6 for all the subsystems,
where ni represents the number of components that the ith
subsystem can hold at most). Parameter settings of the two
systems are shown in Tables III, IV and V. To compare
comfortably with the K-Y and R-M algorithms, the parameter
settings of the 5-subsystem benchmark problem are very
similar to the parameter settings in [10]. For the 7-subsystem
benchmark problem, we set the values of parameters of every
subsystems similar to the 5-subsystem problem and also do
a proportional increase of Cc and Wc according to the values
of 5-subsystem problem.

A. Results on 5-subsystem benchmark problem

On the basis of Tables III and V, we formulate the
MORAP and SORAP on this benchmark problem in Ta-
ble VI.

When we use NSGA-II to solve this MORAP, the pa-
rameter settings of NSGA-II are as follows: the crossover

TABLE IV

PARAMETER SETTINGS OF 7-SUBSYSTEM BENCHMARK PROBLEM.

Subsystems ci ri θi wi γi

1 7 0.9 0.25 7 0.25
2 8 0.85 0.25 7 0.25
3 6 0.85 0.25 9 0.25
4 8 0.8 0.25 8 0.25
5 4 0.85 0.25 6 0.25
6 6 0.85 0.25 9 0.25
7 9 0.85 0.25 7 0.25

TABLE V

CONSTRAINTS OF TWO BENCHMARK PROBLEMS.

MORAP SORAP
Example1 Ws = 200 Cs = 180

Ws = 200
Example2 Ws = 280 Cs = 250

Ws = 280

probability is 0.9, the mutation probability is 0.2 (i.e. 1
s ,

here s = 5 ), and the terminate generation is set to 100.
Moreover, we let the population size of NSGA-II be 50.

In this paper, when we use the K-Y and R-M algorithms
to solve the SORAP on this problem, the cost constraint Cc

is set to 180. For K-Y, the maximum global iterations is 1000
and the cooling parameter is set to be 0.06.

In our experiments, all three algorithms are run on this
benchmark problem for 30 times. To compare the NSGA-II
with the single-objective algorithms (K-Y and R-M algo-
rithms), we select one solution set from the 30 Pareto fronts
with the median value of the diversity metric commonly
used in the domain of multi-objective optimization, where
the diversity of a Pareto front is given by the following
formulation:

Δ =
∑M

m=1 de
m +

∑N−1
i=1 |di − d|

∑M
m=1 de

m + (N − 1)d
,

where de
m is the Euclidean distance between the extreme so-

lutions of the obtained solutions and the boundary solutions
of the actual Pareto set, the parameter di is the Euclidean dis-
tance between the neighboring obtained solutions. A smaller
value of Δ demonstrates a better performance of MOEA
in general. On the other hand, we also record the solutions
obtained by K-Y and R-M, and the solution with respect to

TABLE VI

5-SUBSYSTEM BENCHMARK PROBLEM.

MORAP: Maximize
R =

∏5
i=1[1 − (1 − ri)

ai ]
Minimize
C =

∑5
i=1 ci[ai + exp(0.25ai)]

Subject to
g1 = W =

∑5
i=1 wi[ai ∗ exp(0.25ai)] ≤ 200

SORAP: Maximize
R =

∏5
i=1[1 − (1 − ri)

ai ]
Subject to
g1 = C =

∑5
i=1 ci[ai + exp(0.25ai)] ≤ 180

g2 = W =
∑5

i=1 wi[ai ∗ exp(0.25ai)] ≤ 200
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TABLE VII

RESULTS OBTAINED BY K-Y AND R-M ON 5-SUBSYSTEM BENCHMARK

PROBLEM.

K-Y R-M NSGA-II
a1 2 2 2
a2 3 3 3
a3 3 3 3
a4 2 2 2
a5 3 3 3
R 0.9702 0.9702 0.9702
C 146.8368 146.8368 146.8368

TABLE VIII

7-SUBSYSTEM BENCHMARK PROBLEM.

MORAP: Maximize
R =

∏7
i=1[1 − (1 − ri)

ai ]
Minimize
C =

∑7
i=1 ci[ai + exp(0.25ai)]

Subject to
g1 = W =

∑7
i=1 wi[ai ∗ exp(0.25ai)] ≤ 280

SORAP: Maximize
R =

∏7
i=1[1 − (1 − ri)

ai ]
Subject to
g1 = C =

∑7
i=1 ci[ai + exp(0.25ai)] ≤ 250

g2 = W =
∑7

i=1 wi[ai ∗ exp(0.25ai)] ≤ 280

highest system reliability obtained by NSGA-II in Table VII
respectively. Fig.3 illustrates the solutions obtained by the
three algorithms, where the x-axis represents the designing
cost spent by the solution while the y-axis represents the
system reliability obtained by the solution,.

According to Fig.3, we find that NSGA-II has got a set
of solutions which are non-dominated with each other. From
Table VII and Fig.3, we also find that the solutions obtained
by K-Y and R-M locate on the top of Pareto-front obtained
by NSGA-II. Moreover, it can be observed that the reliability
of solutions in the rectangle varies smoothly and the cost of
them varies acutely. For instance, the reliability of solution
A is little worse than that of the solutions obtained by K-Y
and R-M algorithms, while the cost of A are very lower than
that of K-Y and R-M algorithms. Thus the system designers
can choose a solution in the rectangle by considering the
reliability and cost simultaneously. An intuitive explanation
is that K-Y and R-M algorithms maximize the system
reliability while they does not concern the designing costs.
Hence, they will exploit the system costs to the full extent.

B. Results on 7-subsystem benchmark problem

To confirm the observation on the former benchmark prob-
lem, we further increase the maximal number of subsystem
by 2. On the basis of Tables IV and V, we formulate
the MORAP and SORAP on this system in Table VIII:
The parameter settings of NSGA-II are the same to the
settings for the former problem except that the population
size has been increased to 100 here. Moreover, the terminate
generation of NSGA-II is set to 150. The parameter settings
of K-Y and R-M are the same to the settings for the former
problem except that the cost constraint Cc is set to be 250

TABLE IX

RESULTS OBTAINED BY K-Y, R-M AND THE SOLUTION WITH THE

HIGHEST RELIABILITY OBTAINED BY NSGA-II ON 7-SUBSYSTEM

BENCHMARK PROBLEM.

K-Y R-M NSGA-II
a1 2 2 2
a2 3 3 3
a3 3 3 3
a4 3 3 3
a5 3 3 3
a6 3 3 3
a7 3 3 3
R 0.9656 0.9656 0.9656
C 235.338 235.338 235.338

for SORAP (due to the augment of the maximal number of
subsystems). All the algorithms are repeated for 30 times.
For K-Y and R-M, we select the best solutions from their 30
simulation runs.

The solutions obtained by K-Y, R-M and the solution with
the highest reliability obtained by NSGA-II are summarized
in Table IX, and all solutions obtained by the three algorithms
are illustrated in Fig.4.

According to Fig.4, the solutions obtained by K-Y and
R-M for SORAP, as we have observed on the last example,
locate at the top of the Pareto-front obtained by NSGA-II. On
the other hand, we find that NSGA-II has obtained a number
of solutions which are near the solutions obtained by K-Y
and R-M (i.e. the solutions in the rectangle) . The system
reliability obtained by these solutions are only slightly worse
than the solution given by K-Y and R-M, while the former
solutions are with designing costs smaller than the latter
solutions. The above facts show that MOEAs are capable of
finding more promising solutions than those single-objective
approaches. Such a merit will greatly increase the number of
available choices for system designers.

V. CONCLUSION

In this paper, we formulate a multi-objective combinato-
rial redundancy allocation problem on parallel-series mod-
ular system, and utilize NSGA-II to solve the formulated
MORAP. The experiments show that NSGA-II can find a
number of promising solutions of RAP. In comparison with
the two widely used single-objective algorithms, NSGA-II
offers much more choices for system designers. In a practical
point of view, NSGA-II enables the trade-off between the
system reliability and designing cost while the two widely
used single-objective approaches tend to optimize the system
reliability without saving any designing cost.

Although we have focused on the parallel-series systems
in this paper, the general idea presented here could also be
applicable to many other systems such as star structure sys-
tem, circular structure system and so on. The investigations
on these different systems will be carried out in our future
work.

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 587



50 60 70 80 90 100 110 120 130 140 150 160
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Designing Cost

S
ys

te
m

 R
el

ia
b

ili
ty

Solutions obtained by NSGA−II

Solution obtained by K−Y

Solution obtained by R−M

Solutions obtained by K−Y 
and R−M are the same

(146.8, 0.9702)

 A solution of the Pareto front:
named Solution A

(127.1, 0.9395)

Fig. 3. Results obtained by K-Y, R-M and the solution with the highest reliability obtained by NSGA-II on 5-subsystem benchmark problem.
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