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Abstract— The lifespan, and hence utility, of sensornets is
limited by the energy resources of individual motes. Netwdt
designers seek to maximise energy efficiency while maintain
ing an acceptable network Quality of Service. However, the
interactions between multiple tunable protocol parametes and
multiple sensornet performance metrics are generally comigx
and unknown. In this paper we address this multi-dimensiona
optimisation problem by two distinct approaches. Firstly, we
apply a Design Of Experiments approach to obtain a gen-
eralised linear interaction model, and from this derive an
estimated near-optimal solution. Secondly, we apply the Tar
Archive evolutionary algorithm to improve solution quality for
a specific problem instance. We demonstrate that, whereas ¢h
first approach yields a more generally applicable solutionthe
second approach yields a broader range of viable solutionsta
potentially lower experimental cost.

I. INTRODUCTION

Sensornets compose many autonommiagesinto ad-hoc
networks for distributed sensing and processing apptinati

Motes are small, cheap computers equipped with independ
power supplies, wireless communication capability, and se
sors with which to passively monitor with their environment
An important feature of sensornets is that their resource
availability is minimal especially in terms of energy. Whe
sufficient motes have run out of energy for the sensorn

application to stop functioning effectively, the sensdrize

effectively dead. This can occur even if the majority of nsote

continue to enjoy substantial unused energy reserves.

n

Algorithm (EA) narrow-but-deep approach. To the best of our
knowledge, our work is the first to apply EA techniques to the
sensornet protocol tuning problem, and the first to compare
its efficacy to that of the DOE approach for sensornets.
Undertaking this work presented interesting challenges.
Sensornet protocol tuning is not a simple, idealised prable
It is a real-world problem with multiple inputs, multiple bu
puts, and multiple objectives. The complex interrelatiops
between these factors were not known at the outset, and as
such could not be targeted specifically during experiment
design. A further complication was the unusually high cdst o
fitness function evaluation within the evolutionary alglom.
Each evaluation of a candidate solution required a full sim-
ulation instance to be executed. Obtaining results of bldta
quality in acceptable time required novel optimisations in
simulation. Source data obtained by experiment necegsaril
contains some level of experimental noise which we had to
take into account during experiment design. The research

ent

objectives addressed in this paper are as follows.

Obj 1: Obtain near-optimal solutions to the sensornet pro-

tocol tuning problem using Design Of Experiments

and evolutionary approaches.

8bj 2: Compare solution quality attainable by design of
experiments and evolutionary search methods for a
given network design.

Il. RELATED WORK

Wireless communication components are generally the Tuning network protocols for energy efficiency is a com-

most energy-hungry subsystem of sensoret motes [1]. sy problem owing to interactions between parameters.
ergy efficiency improvements are possible both in Sensomgfq regyiting combinatorial explosion of possible solio

hardware and software. In this paper we consider only,,qers exhaustive search impossible [2]. A methodology is

software-driven improvements at the level of network mid:
dleware, and assume a fixed hardware platform and typi

proposed based on full factorial experiment design to explo

Giution space in acceptable time, fitting statistical Mo t®

distributed sensing application. Our resu_lts are theesfor oy ork performance metrics to summarise the relationship
portable across hardware platforms and high-level SOﬁwaBetween tunable parameters and network response

applications in typical sensornet scenarios.

We demonstrate that careful tuning of networking pr
tocols can yield substantial improvements in energy e
ficiency without compromising performance. We compar
two fundamentally different approaches and show that whil
each has merit, a broad-but-shallow Design Of Experimen
(DOE) approach is more effective at finding high-qualityf
solutions for a given network instance than an Evolutionaré{

B. Woolford-Lim and X. Yao are with the School of Computer Stie,
University of Birmingham, Birmingham, B15 2TT, United Kidgm (email:
b.j.woolford-lim@cs.bham.ac.uk; x.yao@cs.bham.ac.uk)

J. Tate and |. Bate are with the Department of Computer Sejdduiver-
sity of York, York, YO10 5DD, United Kingdom (email: jt@coxk.ac.uk;
iain.bate@cs.york.ac.uk)

0_

The input variable ranges and multiple performance met-
ics designed by Tatest al. [2] define a Multi-objective
{')ptimisation Problem(MOP). It is appropriate to apply
?nulti-objective problem solving techniques to identifypurt
?arameter sets giving near-optimal sensornet performance
SA major issue with multi-objective problems is the dif-
iculty in determining a well-defined ordering of solution
uality for a given set of candidate solutions. In single-
objective problems, better solutions are simply those with
a lower fitness. With MOPs, there are multiple fitness values
to consider. A solution with every fithess value lower than
another is clearly superior, and is saiddominatethe other
solution. However, solutions may be lower in one fithess



value but higher in another; this kind of solution is termeatonverge. This is considerably in excess of the 10 simulated
non-dominatedand is harder to classify. In place of anseconds required for the metrics to converge withis%
optimum value, MOPs tend to have what is termdehgeto- experimental error [2]. For the Two-Archive portion of the
optimal front along which all solutions are mutuallyon- experiment the relative fitness of candidate solutions is
dominated and all other valid solutions are dominated bymore important than absolute fitness, and the algorithm is
the PO front members. expected to gravitate toward non-degenerate solutions for

Combinatorial explosion of possible solutions withinwhich metrics converge relatively quickly. Simulationg fo
multi-variable problem renders exhaustive search impéessi this method ran for 20 simulated seconds before sampling.
Stochastic search algorithms explore the solution spane ndrhis reduced overhead and allowed more generations to be
exhaustively in reasonable time. Multi-objective evalutairy  evaluated per unit time. Due to the stochastic nature of
algorithms (MOEASs) are a type of a stochastic generationaktwork communication, metrics are not guaranteed to be
multi-objective search algorithm. Using techniques irespi identical between repeats of the same experimental setup.
by the concept ofurvival of the fittestthey seek to find Therefore, all simulations in both the DOE and Two-Archive
this Pareto-optimal front by evolving progressively bettetests were repeated three times and the results aggregated.
solutions based on the relatifinessof previous solutions. C. N : .

. . . C. Network configuration

A number of such algorithms have been proposed, including

NSGA-II [3], SPEA2 [4], and Two-Archive [5]. The techniques outlined in this paper are independent of
the specific protocols and network designs explored in the
[1l. EXPERIMENT DESIGN following experiments. However, these experiments explor

In this section we define the experimental configuratiofnly a finite portion of the unbounded design space of all
used in sections IV and V to tune a sensornet protocol afgtworks and all protocols. It is likely that the trends we

explore the parameter landscape. identify in network performance responses as a function of
_ protocol tuning parameters are likely to apply in similar
A. Experimental approaches networking contexts. Nevertheless, we limit the scope of ou

Two experimental approaches are employed in this papetaims to the portion of design space defined in this section,
The Design Of Experiments (DOE) approach, using Factorialithin which we have confidence in our findings as they are
Design, is used to sample the entire problem space @#femonstrated to have statistical significance.

a systematic and even manner [6]. This is a broad-but- A set of three typical sensornets was defined and reused for
shallow deterministic search method. Then, we implemeil experiments. Each sensornet consisted of 250 statiesnot
an evolutionary approach, using the Two-Archive algorithnef identical capability modelled on the Crossbow MICA2
to sample the problem space in a guided and uneven manmneote. Motes were distributed randomly within a square
[5]. This is a narrow-but-deep stochastic search method. Tief side length 21Km yielding a geographic distribution of
DOE part was implemented first and the preliminary resultgniform planar density. The resulting averagegree of
used to define a problem space region in which we prediepnnectivity the number of peer nodes with which a given
optimal solutions to reside. We then used this insight toode can feasibly communicate, is approximately 20 which
focus the evolutionary portion of the work by providingis typical of sensornets [8]. All internodal communication
Two-Archive with initial values in that region. We therefor was defined to occur through anisotropic radio broadcast in
contend that, for problems of this type, it is valuable tdgiss an obstacle-free vacuum. Signal propagation and attemuati
some experimental effort to an initial DOE stage to focus was modelled using the Friis free space model with exponent
later evolutionary stage. This hybrid approach exploits thof 2.0. The simulated motes ran a simulated distributed-sens
strengths of both constituent components. ing application in which every node periodically produces a
small data packet. The destination of each packet is randoml|
selected from all motes in the network to prevent bias from

It is impractical to perform the experiments describecny implicit structure in the mote distribution.
in sections IV and V using real networks due to high An adapted form [2] of the TTL-bounded gossiping proto-
overheads of logistics, cost and time. Additionally, it iscol [9] was selected to manage in-network communication.
virtually impossible to guarantee a consistent and undinang This protocol is ignorant of energy, network topology, and
environment for the total runtime of the tens of thousands dhe host application, ensuring no bias in the results preduc
experiments. This would severely undermine the validity ofFlooding and gossiping protocols of this form are commonly
comparison between results obtained from multiple experitsed within more complex protocols [9] to establish deljver
ments, which is critical to the analytical methods we pr@posroutes or maintain awareness of network status, wideniag th
To address these concerns all experiments were conductadpe of our results to all such protocols.
by simulation, using therASSmultithreaded simulator [7]  Each node in the network can act as a packet source, a
optimised for sensornet experiments and for this duty patte packet destination, or a packet relay. When a source node

To ensure accuracy of the derived interaction modetreates a packet it is queued for broadcast to the wireless
simulations in the DOE portion of the experiment ran fomedium. If the packet is eventually broadcast it may be
120 simulated seconds before sampling to allow metrics t@ceived by one or more other nodes within communication

B. Experimental technique



range able to successfully extract the packet data froBv Output metrics

ba_lckground noise. Each packet recipient independentd_;rdet In order to compare network performance, a set of metrics
mines whether the packetis dropped (based time To Live must be defined over which networks can be measured. Tate

(TTL)), consumed (based on recipient identity), or queuegy 5 [2] define several metrics addressing the performance,
for rebroadcast (based on whether a random value, betwegljapijity, and efficiency of the network given the parasret

0 and 1, exceeds a threshold - tgessip probability. ,nings applied to it. Reliability is measured by the packet
Packet headers spec!fy one or more destinations, dGf'n'ﬂglivery failure ratio. Performance is measured by the-aver
the only nod_es at which a given packet can be_consum e latency per packet, and can be measured per hop and
In our experiments we specify exactly one destination p‘?fer metre traveled. Similarly, efficiency is measured as the
packet. Packet hegders also specify TTL in terms _qf nOdSY/erage energy required to send a packet one hop or one
to-node hops and lifespan to prevent stale packets cimglat metre. For all metrics, lower values indicate a higher dquali
indefinitely. Assuming these header-defined limits are NQution. A value of zero represents a perfect solution in a

excggded each recipient makes an independgnt pr(_)bab”iﬂven metric, although in practice this may not be attaiaabl
decision whether to rebroadcast the packet to its neigisboufj, o optimal value may be somewhat higher, whether or not

The packet thus radiates outward from the source nodgjs gptimal value is known. Metrics are labellad; to Ms.
hopefully arriving at least once at each intended destinati Definitions of these are given in [2].

1) Performance: Network latency is the average time
D. Controlled factors for packets to traverse unit distance in the netwatk
defines unit distance in terms of physical distance in mgtres

We define our experiments to explore as much of the : ! o .
) . .msfasured irseconds per metrél/, defines unit distance in
parameter space as is possible. For each parameter we “{Te“

, - . rms of logical distance in node-to-node hops, measured in
our search to a subset of the defined range within which a : )
. . ) seconds per hap\f; and M- are defined in the rand@, oo).
measurable difference in network response is known to exis S . : .
2) Reliability: The packet delivery failure ratio metrit/;

I[za).e;:-ethX?d; p;?:_ gossiping protocol takes six parameterrsé'presents the percentage of packets created by the samhulat

1) Gossip probability:The gossip probability; defines application which the network attempted to deliver but were

the likelihood of packet rebroadcast upon receipt by a nmlfnsctj t;téi?r:gdreigiﬂg]?;:;élnf]ended destinatiafy is unitless

destination node. This is unitless and defined in the range3) Efficiency: The energy metrics represents the average

[0,1]. Search range if), 1]. . .
: _ energy required for a unit packet to traverse the network
2) Seen-packet bufferThe seen-packet buffer siz&> 5 ynit distance. If the unit distance is defined in terms

controls t.he_ number of previously seen papket; the node wj physical distance in metres, the resulting mettig is

store. This is measured packetsand is defined in the range e agyred indoules per packet per metré the unit distance

[0, 00) for integral values only. Search range[ls10]. is defined in terms of logical distance in node-to-node hops,
3) Waiting-packet bufferThe waiting-packet buffer size the resulting metrid\Zs is measured idoules per packet per

X3 controls the number of packets stored in a queue to Bgyn A7, and M; are defined in the rang@, cc).
broadcast. This is measuredpackets and is defined in the

range[1, co) for integral values only. Search range{is10]. F. Measuring solution quality

4) Initial backoff: Just prior to transmitting a packet, The metrics); to M5 defined above are all mutually
nodes test the wireless medium to ensure no other transmﬁdependent and may be targeted as individual objectives
sions are occurring which would interfere with the proposegly sensornet designers. However, real sensornet designs ar
broadcast. If another transmission is detected the nods W"%ikely to require an acceptable compromise between meltipl
for a backoff period X4, and each subsequent failed attempgompeting objectives. It is therefore necessary to define a
waits for thenth power of this backoff value aXy". This  mechanism by which the relative quality of two or more
is measured irsecondsand is defined in the rande, o).  candidate solutions can be compared to determine which
Search range if.1, 1]. offers the best compromise.

5) Packet lifetime:The packet lifetimeX; determines the ~ Assume we have controlled factorsX;-X,, andm met-
length of time a packet is allowed to exist in the networkics Af;-M,,. A candidate solutior,, = {Xat,- s Xan}
before being dropped. Once it exceeds this value, all nodgfaps to a set of metric§, = {Mu1,...,Mam}. The
drop the packet. This is measuredsecondsand is defined mapping of S — T is not knowna priori but instead is
in the rang€0, co). Search range if).1, 10]. evaluated experimentally as described in section IlI-B for

6) Intercluster TTL: The intercluster TTLX¢ represents specific values of. A perfect solutionSpe, r.: would yield
the maximum number of node-node hops a packet may malieset of metrics e, rec: SUch thatvM € Ther fece @ M = 0.
between clusterheads. If the number of hops exceeds tiithough Sy, ... does not necessarily exist, we define the
before reaching the destination, the packet is dropped Thjuality measureE’ in Equation 1 of any given candidate
is measured irhops and is defined in the range, co) for  solution S, based on the Euclidean distance from the paint
integral values only. Search range[is10]. in solution phase space defined By to the pointT,c, fect-



which of the controllable factors are actually importamtda
which can be safely ignored. Phase 2 explores the significant
(1) controllable factors in much greater detail. The experireen
can therefore avoid wasting resources and analyticalteffor
Some network performance attributes may be of greatgatters which will not significantly influence the outcome,
importance than others to a sensornet designer. We thepgd more detailed statistical models can be derived for the
fore define weightingw; for metric M; such that a larger same experimental cost.
weighting value indicates a greater importance attach#éttto  In Phase 1 we identify which of the protocol controlled
network performance attributes quantified by a given metri¢actors are the best predictors of the network performance
Each of the metricsM;-M,, may be defined over a metrics. This requires a small number of points in the
different range, so it is inappropriate to compare the atieol parameter space to be sampled in the axis corresponding
measured values directly. We define a scaling fastofor to each controlled factor, and a set of simulation exper-
metric M; such that all possible values of M; are found iments to be run to measure network performance under
in the range[0, 1], noting that the the ideal value of anyeach combination. The ANOVA method is applied to assess
given metric is also the lowest possible value, 0. It is onlyvhich controlled factors are significant to the experimenta
meaningful to compare tw& values if all scaling values; outcomes [10]. Any factors which are deemed statistically
are equal for eacl. If for a given metricM; is defined over insignificant are dropped at this stage.
a finite range then the value sf is well-defined and does not  In Phase 2 we sample the parameter space along the
vary between network configurations under consideratiogorresponding axis in a greater number of points for each
However, if a given metricM; is defined over an infinite statistically significant controlled factor. Again, a set o
range then there does not exist a single well-defined valgmulation experiments was performed to measure network
of s,. Instead, we defing; in the context of a given set performance under each configuration. Statistical models
of experimental results by setting = m where are then fitted to the output metrics resulting from these
MAX (M;) is the largest value of metri3/; observed. experiments, and these models are then used to predict the
In the experimental work that follows we set al) = 1to  best set of values to assign to controllable factors. Phase
gi\/e equa] We|ght|ng to all metriCS, and set aL”using the 1 identifies which controllable factors are not Slgnlflcamt t
second definition above as some metrics defined in sectifi¢ outcome, so the specific value we assign to each of these
lI-E are defined over an infinite range. It follows that allinsignificant factors is unimportant, provided that theestgd
values of E are defined in the rangé,1] where 0 is value falls within the boundaries explored in Phase 1. We
the solution quality deriving from the theoretically perfe Select the midpoint value of the boundaries from section Il
solution and 1 is the solution quality deriving from the worsD for each controllable factor deemed insignificant.
quality solution considered in the set of all experiments. g st analysis

IV. DOE APPROACH FACTORIAL DESIGN Givenp controlled factors, each sampledgapoints in the

In this section we define the experiments with which th@ermitted region, we haveg® protocol configurations to as-
parameter landscape is explored, at broad scope but shall8@ps- We assess each protocol configuration witetworks
depth. Factorial design methods are used to define tkPreventresults being unduly influenced by a given network
experiment set, and linear interaction model fitting methodi€sign, yielding-¢” experimental configurations to consider

are used to analyse the results. by simulation. We repeat each experimental configuragion
] ) times to prevent results being unduly influenced by any sing|
A. Two-phase experiment design unusual simulation instance, yielding the requiremenuto r

Full factorial design [6] is used to systematically explorersq? simulations in total.
the entire parameter landscape. This approach gives broaddssuming each simulation completes in approximately
but shallow coverage of all possible combinations of alequal wall timet, we find that total experiment time grows
acceptable ranges of controlled factors. Statistical nsodeexponentially inp, polynomially ing, and linearly inr and
are fitted to experimental results to yield a generalisedl As total experiment time is NP-hard im it is obvious
model of the relationship between controlled factors amtheathat any reduction irp is valuable, and is more significant
measured response. This model is useful for predictindylikethan similar reductions i, r or s. Phase 1 addresses this
network performance for any arbitrary set of input valuesroblem by identifying controllable factors which can dgfe
The model can be used in the opposite direction by definirtge disregarded. It is therefore possible in Phase 2 to irerea
sections of the multi-response hypersurface correspgrtdin ¢ after reducingp and still have the full experiment set
the desired network performance, and working backward womplete in acceptable wall time.
input values by solving the simultaneous equations of the All simulations are mutually independent and can therefore
fitted model to yield a set of inequalities defining usablde executed in parallel, reducing total runtime to that of a
ranges of input controlled factors. single simulation if sufficient processing hosts are awda

We address the combinatorial explosion by applying a twéAssume a multiprocessing environment in whiche N
phase method. Phase 1 allows the experimenter to identifjdependent simulations can execute in parallel. For DOE

4



experiments there are no dependencies between simulatiois& that the optimal solution lies between directly measur
S0 any humber can execute in parallel, all at ¢odthe total points and is not revealed in the fitted model.
wall time cost isC' = %t Note thatC' % reaching a For each output metric under consideration, a linear in-
minimum of C' = ¢ wherez = rsq”. teraction model of the form given in Equation 2 was fitted
Increasing the number of experimental configurations irnto the result set in MATLAB.3, is a constant,X; is
creases the quality of fitted statistical models, and hentke ith controlled factor values; is the coefficient for
solution quality, but also increases experiment cost. A batontrolled factorX;, j;; is the coefficient for the interaction
ance must be found which obtains solutions of acceptableetween controlled factor¥; and.X;, ande is the normally-
quality within reasonable time. We measured wall time fodistributed noise term. The resporigas influenced linearly
all experiment simulations and took the meart as78.51s. by each factor and each pairing of potentially interacting
In both Phases 1 and 2 we set= 3 ands = 3. In factors. Lack of space precludes the controlled factorfeoef
Phase 1 we st = 6 andq = 3, yielding a requirement for cients extracted from Phases 1 and 2 being included in this
3 x 3 x 35 = 6561 independent simulations. As we will fit paper; these can be found at [11].
linear models to the results in section IV-C we must consider
at least two values for each controlled factor, but to improv
accuracy we use three. we take one value at the low extreme
of the defined interval, another value at the high extreme, an
another value from the centre. This ensures that the resultsFor each output metrit/, -5 a separate linear interaction
cover the full spectrum of possible behaviour. In Phase 2 waodel is produced in which 6 axes represents controlled
setp = 3 andq = 6, yielding a requirement fo3 x 3 x 63 = factors X,-Xs and a further axis in which the height of
1944 independent simulations. As the number of controllehe hypersurface varies with the values of the output metric

factors has decreased it is feasible to use more values fifi- Axes corresponding to controlled factors;-Xs are
each, yielding a more detailed model. common to all metricsV/;-M5 so a more complex surface

. can represent the interrelationships between all coettoll

C. Model fitting factors and all metrics.

The factorial design of the experiment suite described Finding sets of values for controlled factors correspogdin
in section IV-A samples the parameter spacejatpoints to solutions with appropriate characteristics is equivate
as described in section IV-B. These pairs of sample pointgentifying regions of the axes representing controlleddes
and simulation-derived metrics represent exact soluttons X,-X with appropriate fitted surface height in the axes
specific known points in the generalised model of the rezorresponding to output metrics/;-Ms. Similarly, finding
lationship between controlled factors and output metricgptimal or worst-cast sets of controlled factors is eq@imal
However, these are not directly usable if we wish to knowo finding minima and maxima in the fitted surface. This
the relationship between input and output, or vice-versa, fis implemented by solving sets of simultaneous inequalitie
other points in the input-output phase space. when identifying regions with suitable characteristics, o

To consider points in the parameter space that hawg solving sets of simultaneous equations when addressing
not measured directly we need to interpolate by fitting @ptimal or worst-cast characteristics.

statistical model to the known sampled points to derive .
a set of equations describing a hypersurface in the phaBe Experimental results
space [10]. We then work with the fitted surface rather Lack of space precludes the inclusion of all experimental
than specific individual experimental results. An appragi results, even in summarised form; for the full results reder
statistical model must be selected, which yields a surfad#l]. However, it is important to consider theway ANOVA
with shape similar to that which would be observed if arj10] results for the first-order pairwise interactions beén
infinite number of sample points were used. Previous worthese controllable factors, shown in Table I.
[2] has shown that linear first-order interaction models are The results from Phase 1 [11] show that some con-
a suitable approximation in the context of the TTL-boundettolled factors and factor interaction pairs are more sig-
gossip algorithm in sensornets. nificant than others, and the measure of significafe
Sampling the parameter space at more points yieldsfar any given factor or factor pair tends to vary between
fitted model which is a better approximation of the reametrics. However, it is evident that the controlled factors
relationship by providing more data for the model fitting{ X, X5, X} are significant in isolation with 95% confi-
algorithm. For a finite set of sample points there exists thgence @2 < 0.05) for at least two of the metricd/;-Ms,
risk that an interesting feature of the solution landscafis f and at least one of X;, X5, X5} is evident in almost all
between sample points, and hence is not present in the fittederaction pairs deemed significant with 95% confidence.
model. The DOE broad-but-shallow search implemented Hyactors { X2, X3, X4} are not significant in isolation for
factorial design experiments may or may not outperform aany metric, or as a member of an interaction pair which
Evolutionary Algorithm in this regard; interpolation alls does not include any of X1, X5, Xs}. We therefore select
every candidate parameter set to be considered simultamentrolled factors{X;, X5, Xs} for Phase 2 and discard
ously, including those not measured directly, but there is factors{Xs, X35, X4}.

YiﬁoJrZ@'XiJrz Z Bi; XiX;+e  (2)
i=1

i=1 j=i+1



Table | presents similar data corresponding to the subsetimber of objectives. Two-Archive uses alitist approach,
of controllable factors deemed statistically significantda storing the best solutions it has found at any given point
explored in greater detail in Phase 22 values are defined in an archive. Unlike traditional archiving algorithms, Gw
in the interval [0, 1] where lower values indicate greaterArchive separates this archive further, as described below
statistical significance. All figures are presented to 4 mati One of the issues with archiving algorithms, particularly
places; particularly smalk* values appear rounded to 0.0000n high-dimensional problems, is the potential for memory
but are non-zero positive memberskf overflow. To counteract this, archives must be limited to
a certain size and reduced as necessary when this size is
reached. However, non-dominated solutions such as those
stored in the archives can be subdivided into two types:
convergent solutions, which have dominated a previous
member of the archive, and divergent solutions, which are
merely non-dominated by all current members. In general,
convergent solutions tend to help convergence towards the
Pareto-optimal front, whereas divergent solutions may or
may not lead towards a local optimal front instead. Whereas
previous MOEAs do not differentiate between these solution
Table | shows that the most significant factors from Phadgpes, Two-Archive stores each kind of solution separately
1 remain significant when considered in greater detail in When saving solutions to the archives, if the given solution
Phase 2. Each of the factofX, X5, X} is significant with  has successfully dominated an existing member (or members)
confidence> 99% for each of metrics\/5-Ms, and each of of either archive, it is placed in the convergence archive,
these factors is significant with confidence>e®85% for the and the dominated members of the archives are deleted.
remaining metrics\/; andM,. Both M/; andM, are network Otherwise, the given solution is added to the diversity
performancemetrics (see section IlI-E); we conclude thatarchive, and no members are deleted. From this it can be
the model is good at predicting all metridd;-Ms, but is  seen that solutions entering the convergence archive do not
better at predicting networkeliability and efficiencythan increase the size of the combined archive, as at least one
performance member must be dominated (and thus deleted) before it can
Turning to the factor interactions, we observe that thenter the convergence archive. When entering the diversity
X1 x X interaction is largely irrelevant. Th&; x Xs archive, no members are deleted, and so the total archige siz
interaction is significant with> 93% confidence for metrics is increased by one. This is where the potential for memory
M, and Ms. The X5 x Xg interaction is significant with overflow exists, and so Two-Archive implements a removal
> 94% confidence for metrics\/3-M;s. We conclude that strategy, as given below.
factor interactions are important in sensornet protocols a  When the total archive limit is exceeded, the removal strat-
must be taken into account by sensornet designers. egy is executed to decrease the size of the archives. During
The coefficientd X1, X5, X¢} were inserted into the gen- this process, only members from the diversity archive are
eralised form of Equation 2 given in section IV-C yielding aremoved, ensuring convergent solutions remain to enceurag
set of simultaneous equations. We solved these simultane@nvergence to the Pareto optimal front. The removal gjyate
equations to minimise the E measure described in section Illorks by calculating the shortest Euclidean distance from
F, yielding a set of controlled factor valugs{y, X5, X¢}  each member of the diversity archive to any member of
expected to approximate the optimal solution. For factoie convergence archive. Solutions with the least distance
{X2, X5, X4}, which are not statistically significant and areto the convergence archive members are then removed until
therefore omitted from the simultaneous equations, we takge archive size is within acceptable limits. As a result of
the midpoints of ranges defined in section 1lI-D. The actuahjs strategy, the size of the archives during runtime issnev
network performance metricd/;-M;s corresponding to this more than twice the population size, and the final archive
calculated approximation to the optimal solution are given sjze will never be greater than the population size.

section VI. Selection of a new mating population also comes from

V. EVOLUTIONARY APPROACH: TWO-ARCHIVE the archives. This is accomplished by selecting an archive

In this section we define the experiments with whictficcording to a specified probability, and then randomly

the parameter landscape is explored, at narrow scope isglecting a s_olutlon fr(_)m that arc_hlvg. This process is then
substantial depth. The Two-Archive evolutionary algarith répeated until the mating population is full.

My Mo M3 My Ms
X; | 0.1034 0.0000 0.0000 0.0000 0.00¢
X5 | 0.1417 0.1546 0.0000 0.0000 0.00(¢
Xe | 0.0000 0.0000 0.0000 0.0000 0.00¢
X1 x X5 | 06780 0.4134 0.9365 0.7561 0.561
X1 x Xe | 0.7624 0.0652 0.0000 0.2421 0.55]
X5 x Xe¢ | 0.6058 0.9437 0.0000 0.0008 0.03

TABLE |
PHASE 2: R? VALUES FOR CONTROLLED FACTORS X1, X5, X6} AND
THEIR INTERACTIONS FOR METRICSM1-M5

RPN~NORO

is employed to progressively improve solution quality. Two-Archive operates as follows. First, a random initial
) ) population is generated and evaluated according to thegive
A. The Two-Archive algorithm fitness function. The algorithm then enters a loop. Non-

The Two-Archive algorithm is a multi-objective evolu- dominated solutions in this population are added to the
tionary algorithm developed by Praditwong and Yao [5]archives as described, with the removal strategy applied at
It is designed to perform well on problems with a largehe end if the archives overflow. The mating population is



then constructed as detailed above, and genetic operateestion IV-B. Assume each simulation instance completes in

are applied to this population to produce the next genaratia seconds. The DOE approach has wall time €gst= rsqPt

of solutions. These are then evaluated, and the loop repeatsl the EA approach has wall time c@$t = abrst. Given

until a termination condition is reached. The contents ef tha single uniprocessor host, the EA approach will terminate

archives are then taken as the final population. before the DOE approach @z < C4, a condition which is
Two-Archive exhibits convergence similar to that of thefulfilled whereab < ¢P.

other leading MOEAs, yielding results of similar or higher Now assume a multiprocessing environment in which

quality. Experimental work indicates that Two-Archive run independent simulations can execute in parallel. For DOE

time for a given problem is typically equal or lower thanexperiments there are no dependencies between simulations

that displayed by these other algorithms, by up to an ordep any number can execute in parallel, all at ¢o3the total

of magnitude for representative problems [5]. This doeseonwall time cost isC = %t. Note thatCe o % reaching a

at a cost of reduced diversity in comparison to some alternamninimum of Cc = ¢t wherex > rsqP. For EA experiments it

MOEAs. However, we assert that suboptimal diversity iss possible to run alrs simulations of a given generation in

tolerable for the tuning experiments considered in thisspap parallel at costrst, but all simulations of a given generation

the losses in diversity are more than offset by the gains imust complete before the next generation can begin. Thie tota

efficiency which enable a significantly greater number ofvall time cost isCp = “2*bt. Note thatCp o« <, reaching

generations to be evaluated per unit time. a minimum of Cp = bt wherexz > ars. If x is large then

. . . DOE experiments will complete before EA experiments.
B. Two-Archive experimental settings

A parametery, defines the ratio of parent selection from
the convergence and diversity archives. A higher ratiodead Tables Il and Il summarise the output of the DOE
to more convergence solutions being chosen, and thus fas@periments described in section IV and the EA experiments
convergence overall at the cost of potentially reducedrdivedescribed in section V. We label the Design Of Experiments
sity in the range of solutions. Population sisedefines the approach asi and the evolutionary approach &5 Sets of
size of the combined archives. We set 0.9 and s = 50. protocol tuning values corresponding4oand B are labelled

Simulated Binary Crossover (SBX) [12], polynomial mu-/4 and/p respectively. Figures are to 4 decimal places.
tation [12] and random selection operators were used for FOr each experimental approach, the set of values assigned
this experiment. SBX takes as parameters a crossovercratd® controlled factorsX;-Xs corresponding to the highest
and ann, value controlling the probability ohear-parent quality solution discovered is given in table Il. For apprba
solutions being generated (with higher values producing4 some controlled factors were not evaluated directly in
closer matches to parents). These were set as 0.7 and itase 2 of the experiment. For these controlled factors,
respectively, for this experiment. Polynomial mutatioscal italicised in table Il, we take the midpoint of search ranges
takes a mutation raten, and ans,, value controlling the defined in section II-D.
mutation distancewhich were set to 1/6 and 20 in this case X, X, X < e X5

Experiments were conducted in which all values wer€ 7, 10.0999 55000 55000 0.5500 4.9506 7.5390
represented internally as 64-bit precision floats. Where |alg | 0.8425 5.0000 3.0000 0.3864 6.8320 9.0000
given parameter is defined only for integral values, the TABLE Il
float value was rounded to the nearest integer at the point BEST-KNOWN PROTOCOL TUNINGS
of use. All tests were run for 50 generations, to give the
solutions time to converge to useful values. Data on the bestWe define the highest quality solutidp for approachy as
known candidate solutions were logged at every generationlpeing that which offers the smallest Euclidean distahige
provide insight into the running convergence of the systenbetweenO,, and the theoretical perfect values of metrics,

) as defined in sections IlI-E and llI-F. Table Il shows the
C. Cost analysis Euclidean distances’, and E from which I, and Iz

Each fitness function evaluation requires exactly one simvere identified as the highest quality solutions derived by
ulation instance to be executed. Consider an evolutionagpproachesi and B respectively. Note that the theoretical
run with a population size of for which b generations are perfect metric values are not necessarily attainable usaer
required to attain the required solution quality. Withirckea real protocol tuning.
generation it is necessary to evaluate the fitness functionTo ensure fair comparison of the quality of solutions
once for each candidate solution, requiring simulation obtained by the two experimental approaches, it is necgssar
instances for all population members and all generationt eliminate any factors which could unfairly influence the
As with the DOE experiments, we test networks and outcome. We achieved this goal by conducting further sim-
repeat each experimental configuratientimes, requiring ulation experiments as per section Il where the simulation
abrs simulations in total. Total cost grows linearly in eachscenario is identical in all respects, except for the praitoc
of a, b, r ands; this is clearly a desirable property. parameter set which is eithép or Iz as appropriate.

We now consider the relative costs of the EA approach Three hundred simulations were executed for eaclof
as described above, and the DOE approach describedand Iz as defined in table Il; 100 repeats for each of the

VI. RESULTS




3 networks considered in the experiments of sections Idefined ranges of all inputs, including solutions correspon
and V. Where a controlled factox;-Xg is defined only for to poor performance, whereas the EA approach focuses
integral values, but the value given in table Il is non-iméég computation resources on good solutions. We therefore con-
we round to the nearest integer. For each combination ofude that both approaches serve useful though different
experimental approach and metrid;-M;5, a set of 300 purposes. The sensornet designer might usefully apply the
output values is produced. The arithmetic mean of each set®E approach to narrow the search space to those portions
taken as the final value and presented in table Ill. The sets of the parameter space mapping to useful portions of the
output metrics corresponding tbandB are labelled) 4 and  solution space, then apply the EA approach to navigate
Op respectively.f(Op,04) givesOp as proportion ofD4  any non-linear regions within this narrowed search space to
to allow comparison of relative solution quality. All figire obtain better near-optimal solutions.

for M;-Ms; are give to 5 significant figures and scaled by a

. VII. NCLUSION
factor of 106 for clarity. CONCLUSIONS

In this section our findings are considered against the
M Ma Ms M, M; ﬁ E research objectives defined in the introduction. For the firs
8,4 ig?gg 2?,223 ggéggg ggig% gﬁég_m;gg; objective, Obj 1, the results obtained from the DOE and
B . . . 4 -
(05, 0a) 10388 11010 10468 0.0792 0.0811.0852 EA approaches shown in Tables Il and Il ;how that both
Best DOE  DOE DOE EA EA methods achieve results close to the theoretical optimum fo
TABLE Il this problem. For the second objectiv@bj 2, the metrics
presented in Table Il show that DOE outperforms the EA
approach in network performance, reliability, and overall
It is notable the approaches find different result sets, aslution quality metrics. However, the EA approach proguce
shown in Table Il. The observed metrics as shown in Table Ifeasonable results across all metrics, and outperforms the
are also different, with DOE producing better results imi®r DOE approach in energy efficiency metrics.
of network performanceX; and X5) and reliability (X3),
but the EA approach producing results with significantly _ . .
better energy efficiencyX, and X;). It is noteworthy that ~ This work is partially supported by an EPSRC grant
for (Xl - X3) both DOE and EA approaches y|e|d results O{NO. EP/D052785/1) on "SEBASE: Software Englneel’lng By
the same order of magnitude, but fox{ and X;) the EA Automated SEarch”.
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