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Abstract— The lifespan, and hence utility, of sensornets is
limited by the energy resources of individual motes. Network
designers seek to maximise energy efficiency while maintain-
ing an acceptable network Quality of Service. However, the
interactions between multiple tunable protocol parameters and
multiple sensornet performance metrics are generally complex
and unknown. In this paper we address this multi-dimensional
optimisation problem by two distinct approaches. Firstly, we
apply a Design Of Experiments approach to obtain a gen-
eralised linear interaction model, and from this derive an
estimated near-optimal solution. Secondly, we apply the Two-
Archive evolutionary algorithm to improve solution qualit y for
a specific problem instance. We demonstrate that, whereas the
first approach yields a more generally applicable solution,the
second approach yields a broader range of viable solutions at
potentially lower experimental cost.

I. I NTRODUCTION

Sensornets compose many autonomousmotesinto ad-hoc
networks for distributed sensing and processing applications.
Motes are small, cheap computers equipped with independent
power supplies, wireless communication capability, and sen-
sors with which to passively monitor with their environment.
An important feature of sensornets is that their resource
availability is minimal especially in terms of energy. When
sufficient motes have run out of energy for the sensornet
application to stop functioning effectively, the sensornet is
effectively dead. This can occur even if the majority of motes
continue to enjoy substantial unused energy reserves.

Wireless communication components are generally the
most energy-hungry subsystem of sensornet motes [1]. En-
ergy efficiency improvements are possible both in sensornet
hardware and software. In this paper we consider only
software-driven improvements at the level of network mid-
dleware, and assume a fixed hardware platform and typical
distributed sensing application. Our results are therefore
portable across hardware platforms and high-level software
applications in typical sensornet scenarios.

We demonstrate that careful tuning of networking pro-
tocols can yield substantial improvements in energy ef-
ficiency without compromising performance. We compare
two fundamentally different approaches and show that while
each has merit, a broad-but-shallow Design Of Experiments
(DOE) approach is more effective at finding high-quality
solutions for a given network instance than an Evolutionary
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Algorithm (EA) narrow-but-deep approach. To the best of our
knowledge, our work is the first to apply EA techniques to the
sensornet protocol tuning problem, and the first to compare
its efficacy to that of the DOE approach for sensornets.

Undertaking this work presented interesting challenges.
Sensornet protocol tuning is not a simple, idealised problem.
It is a real-world problem with multiple inputs, multiple out-
puts, and multiple objectives. The complex interrelationships
between these factors were not known at the outset, and as
such could not be targeted specifically during experiment
design. A further complication was the unusually high cost of
fitness function evaluation within the evolutionary algorithm.
Each evaluation of a candidate solution required a full sim-
ulation instance to be executed. Obtaining results of suitable
quality in acceptable time required novel optimisations in
simulation. Source data obtained by experiment necessarily
contains some level of experimental noise which we had to
take into account during experiment design. The research
objectives addressed in this paper are as follows.
Obj 1: Obtain near-optimal solutions to the sensornet pro-

tocol tuning problem using Design Of Experiments
and evolutionary approaches.

Obj 2: Compare solution quality attainable by design of
experiments and evolutionary search methods for a
given network design.

II. RELATED WORK
Tuning network protocols for energy efficiency is a com-

plex problem owing to interactions between parameters.
The resulting combinatorial explosion of possible solutions
renders exhaustive search impossible [2]. A methodology is
proposed based on full factorial experiment design to explore
solution space in acceptable time, fitting statistical models to
network performance metrics to summarise the relationship
between tunable parameters and network response.

The input variable ranges and multiple performance met-
rics designed by Tateet al. [2] define a Multi-objective
Optimisation Problem(MOP). It is appropriate to apply
multi-objective problem solving techniques to identify input
parameter sets giving near-optimal sensornet performance.

A major issue with multi-objective problems is the dif-
ficulty in determining a well-defined ordering of solution
quality for a given set of candidate solutions. In single-
objective problems, better solutions are simply those with
a lower fitness. With MOPs, there are multiple fitness values
to consider. A solution with every fitness value lower than
another is clearly superior, and is said todominatethe other
solution. However, solutions may be lower in one fitness



value but higher in another; this kind of solution is termed
non-dominatedand is harder to classify. In place of an
optimum value, MOPs tend to have what is termed aPareto-
optimal front, along which all solutions are mutuallynon-
dominated, and all other valid solutions are dominated by
the PO front members.

Combinatorial explosion of possible solutions within
multi-variable problem renders exhaustive search impossible.
Stochastic search algorithms explore the solution space non-
exhaustively in reasonable time. Multi-objective evolutionary
algorithms (MOEAs) are a type of a stochastic generational
multi-objective search algorithm. Using techniques inspired
by the concept ofsurvival of the fittest, they seek to find
this Pareto-optimal front by evolving progressively better
solutions based on the relativefitnessof previous solutions.
A number of such algorithms have been proposed, including
NSGA-II [3], SPEA2 [4], and Two-Archive [5].

III. E XPERIMENT DESIGN

In this section we define the experimental configuration
used in sections IV and V to tune a sensornet protocol and
explore the parameter landscape.

A. Experimental approaches

Two experimental approaches are employed in this paper.
The Design Of Experiments (DOE) approach, using Factorial
Design, is used to sample the entire problem space in
a systematic and even manner [6]. This is a broad-but-
shallow deterministic search method. Then, we implement
an evolutionary approach, using the Two-Archive algorithm
to sample the problem space in a guided and uneven manner
[5]. This is a narrow-but-deep stochastic search method. The
DOE part was implemented first and the preliminary results
used to define a problem space region in which we predict
optimal solutions to reside. We then used this insight to
focus the evolutionary portion of the work by providing
Two-Archive with initial values in that region. We therefore
contend that, for problems of this type, it is valuable to assign
some experimental effort to an initial DOE stage to focus a
later evolutionary stage. This hybrid approach exploits the
strengths of both constituent components.

B. Experimental technique

It is impractical to perform the experiments described
in sections IV and V using real networks due to high
overheads of logistics, cost and time. Additionally, it is
virtually impossible to guarantee a consistent and unchanging
environment for the total runtime of the tens of thousands of
experiments. This would severely undermine the validity of
comparison between results obtained from multiple experi-
ments, which is critical to the analytical methods we propose.
To address these concerns all experiments were conducted
by simulation, using theYASSmultithreaded simulator [7]
optimised for sensornet experiments and for this duty pattern.

To ensure accuracy of the derived interaction model,
simulations in the DOE portion of the experiment ran for
120 simulated seconds before sampling to allow metrics to

converge. This is considerably in excess of the 10 simulated
seconds required for the metrics to converge within±5%
experimental error [2]. For the Two-Archive portion of the
experiment the relative fitness of candidate solutions is
more important than absolute fitness, and the algorithm is
expected to gravitate toward non-degenerate solutions for
which metrics converge relatively quickly. Simulations for
this method ran for 20 simulated seconds before sampling.
This reduced overhead and allowed more generations to be
evaluated per unit time. Due to the stochastic nature of
network communication, metrics are not guaranteed to be
identical between repeats of the same experimental setup.
Therefore, all simulations in both the DOE and Two-Archive
tests were repeated three times and the results aggregated.

C. Network configuration

The techniques outlined in this paper are independent of
the specific protocols and network designs explored in the
following experiments. However, these experiments explore
only a finite portion of the unbounded design space of all
networks and all protocols. It is likely that the trends we
identify in network performance responses as a function of
protocol tuning parameters are likely to apply in similar
networking contexts. Nevertheless, we limit the scope of our
claims to the portion of design space defined in this section,
within which we have confidence in our findings as they are
demonstrated to have statistical significance.

A set of three typical sensornets was defined and reused for
all experiments. Each sensornet consisted of 250 static motes
of identical capability modelled on the Crossbow MICA2
mote. Motes were distributed randomly within a square
of side length 21Km yielding a geographic distribution of
uniform planar density. The resulting averagedegree of
connectivity, the number of peer nodes with which a given
node can feasibly communicate, is approximately 20 which
is typical of sensornets [8]. All internodal communication
was defined to occur through anisotropic radio broadcast in
an obstacle-free vacuum. Signal propagation and attenuation
was modelled using the Friis free space model with exponent
of 2.0. The simulated motes ran a simulated distributed sens-
ing application in which every node periodically produces a
small data packet. The destination of each packet is randomly
selected from all motes in the network to prevent bias from
any implicit structure in the mote distribution.

An adapted form [2] of the TTL-bounded gossiping proto-
col [9] was selected to manage in-network communication.
This protocol is ignorant of energy, network topology, and
the host application, ensuring no bias in the results produced.
Flooding and gossiping protocols of this form are commonly
used within more complex protocols [9] to establish delivery
routes or maintain awareness of network status, widening the
scope of our results to all such protocols.

Each node in the network can act as a packet source, a
packet destination, or a packet relay. When a source node
creates a packet it is queued for broadcast to the wireless
medium. If the packet is eventually broadcast it may be
received by one or more other nodes within communication
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range able to successfully extract the packet data from
background noise. Each packet recipient independently deter-
mines whether the packet is dropped (based on aTime To Live
(TTL)), consumed (based on recipient identity), or queued
for rebroadcast (based on whether a random value, between
0 and 1, exceeds a threshold - thegossip probability).
Packet headers specify one or more destinations, defining
the only nodes at which a given packet can be consumed.
In our experiments we specify exactly one destination per
packet. Packet headers also specify TTL in terms of node-
to-node hops and lifespan to prevent stale packets circulating
indefinitely. Assuming these header-defined limits are not
exceeded each recipient makes an independent probabilistic
decision whether to rebroadcast the packet to its neighbours.
The packet thus radiates outward from the source node,
hopefully arriving at least once at each intended destination.

D. Controlled factors

We define our experiments to explore as much of the
parameter space as is possible. For each parameter we limit
our search to a subset of the defined range within which a
measurable difference in network response is known to exist
[2]. The adapted gossiping protocol takes six parameters,
labelledX1 to X6:

1) Gossip probability:The gossip probabilityX1 defines
the likelihood of packet rebroadcast upon receipt by a non-
destination node. This is unitless and defined in the range
[0, 1]. Search range is[0, 1].

2) Seen-packet buffer:The seen-packet buffer sizeX2

controls the number of previously seen packets the node will
store. This is measured inpackets, and is defined in the range
[0,∞) for integral values only. Search range is[1, 10].

3) Waiting-packet buffer:The waiting-packet buffer size
X3 controls the number of packets stored in a queue to be
broadcast. This is measured inpackets, and is defined in the
range[1,∞) for integral values only. Search range is[1, 10].

4) Initial backoff: Just prior to transmitting a packet,
nodes test the wireless medium to ensure no other transmis-
sions are occurring which would interfere with the proposed
broadcast. If another transmission is detected the node waits
for a backoff period,X4, and each subsequent failed attempt
waits for thenth power of this backoff value asXn

4 . This
is measured inseconds, and is defined in the range[0,∞).
Search range is[0.1, 1].

5) Packet lifetime:The packet lifetimeX5 determines the
length of time a packet is allowed to exist in the network
before being dropped. Once it exceeds this value, all nodes
drop the packet. This is measured inseconds, and is defined
in the range[0,∞). Search range is[0.1, 10].

6) Intercluster TTL: The intercluster TTLX6 represents
the maximum number of node-node hops a packet may make
between clusterheads. If the number of hops exceeds this
before reaching the destination, the packet is dropped. This
is measured inhops, and is defined in the range[1,∞) for
integral values only. Search range is[1, 10].

E. Output metrics

In order to compare network performance, a set of metrics
must be defined over which networks can be measured. Tate
et al. [2] define several metrics addressing the performance,
reliability, and efficiency of the network given the parameter
tunings applied to it. Reliability is measured by the packet
delivery failure ratio. Performance is measured by the aver-
age latency per packet, and can be measured per hop and
per metre traveled. Similarly, efficiency is measured as the
average energy required to send a packet one hop or one
metre. For all metrics, lower values indicate a higher quality
solution. A value of zero represents a perfect solution in a
given metric, although in practice this may not be attainable;
the optimal value may be somewhat higher, whether or not
this optimal value is known. Metrics are labelledM1 to M5.
Definitions of these are given in [2].

1) Performance: Network latency is the average time
for packets to traverse unit distance in the network.M1

defines unit distance in terms of physical distance in metres,
measured inseconds per metre. M2 defines unit distance in
terms of logical distance in node-to-node hops, measured in
seconds per hop. M1 andM2 are defined in the range(0,∞).

2) Reliability: The packet delivery failure ratio metricM3

represents the percentage of packets created by the simulated
application which the network attempted to deliver but were
lost before reaching the intended destination.M3 is unitless
and defined in the range[0, 1].

3) Efficiency: The energy metrics represents the average
energy required for a unit packet to traverse the network
by a unit distance. If the unit distance is defined in terms
of physical distance in metres, the resulting metricM4 is
measured inJoules per packet per metre. If the unit distance
is defined in terms of logical distance in node-to-node hops,
the resulting metricM5 is measured inJoules per packet per
hop. M4 andM5 are defined in the range(0,∞).

F. Measuring solution quality

The metricsM1 to M5 defined above are all mutually
independent and may be targeted as individual objectives
by sensornet designers. However, real sensornet designs are
likely to require an acceptable compromise between multiple
competing objectives. It is therefore necessary to define a
mechanism by which the relative quality of two or more
candidate solutions can be compared to determine which
offers the best compromise.

Assume we haven controlled factorsX1-Xn andm met-
rics M1-Mm. A candidate solutionSα = {Xα1, . . . , Xαn}
maps to a set of metricsTα = {Mα1, . . . , Mαm}. The
mapping ofS 7→ T is not knowna priori but instead is
evaluated experimentally as described in section III-B for
specific values ofS. A perfect solutionSperfect would yield
a set of metricsTperfect such that∀M ∈ Tperfect •M = 0.
Although Sperfect does not necessarily exist, we define the
quality measureE in Equation 1 of any given candidate
solutionSα based on the Euclidean distance from the point
in solution phase space defined byTα to the pointTperfect.
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E = 2

√

√

√

√

m
∑

i=1

wi(siMi)
2 (1)

Some network performance attributes may be of greater
importance than others to a sensornet designer. We there-
fore define weightingwi for metric Mi such that a larger
weighting value indicates a greater importance attached tothe
network performance attributes quantified by a given metric.

Each of the metricsM1-Mm may be defined over a
different range, so it is inappropriate to compare the absolute
measured values directly. We define a scaling factorsi for
metric Mi such that all possible values ofsiMi are found
in the range[0, 1], noting that the the ideal value of any
given metric is also the lowest possible value, 0. It is only
meaningful to compare twoE values if all scaling valuessi

are equal for eachE. If for a given metricMi is defined over
a finite range then the value ofsi is well-defined and does not
vary between network configurations under consideration.
However, if a given metricMi is defined over an infinite
range then there does not exist a single well-defined value
of si. Instead, we definesi in the context of a given set
of experimental results by settingsi = 1

MAX(Mi)
where

MAX(Mi) is the largest value of metricMi observed.
In the experimental work that follows we set allwi = 1 to

give equal weighting to all metrics, and set allsi using the
second definition above as some metrics defined in section
III-E are defined over an infinite range. It follows that all
values of E are defined in the range[0, 1] where 0 is
the solution quality deriving from the theoretically perfect
solution and 1 is the solution quality deriving from the worst
quality solution considered in the set of all experiments.

IV. DOE APPROACH: FACTORIAL DESIGN

In this section we define the experiments with which the
parameter landscape is explored, at broad scope but shallow
depth. Factorial design methods are used to define the
experiment set, and linear interaction model fitting methods
are used to analyse the results.

A. Two-phase experiment design

Full factorial design [6] is used to systematically explore
the entire parameter landscape. This approach gives broad
but shallow coverage of all possible combinations of all
acceptable ranges of controlled factors. Statistical models
are fitted to experimental results to yield a generalised
model of the relationship between controlled factors and each
measured response. This model is useful for predicting likely
network performance for any arbitrary set of input values.
The model can be used in the opposite direction by defining
sections of the multi-response hypersurface corresponding to
the desired network performance, and working backward to
input values by solving the simultaneous equations of the
fitted model to yield a set of inequalities defining usable
ranges of input controlled factors.

We address the combinatorial explosion by applying a two-
phase method. Phase 1 allows the experimenter to identify

which of the controllable factors are actually important, and
which can be safely ignored. Phase 2 explores the significant
controllable factors in much greater detail. The experimenter
can therefore avoid wasting resources and analytical effort on
matters which will not significantly influence the outcome,
and more detailed statistical models can be derived for the
same experimental cost.

In Phase 1 we identify which of the protocol controlled
factors are the best predictors of the network performance
metrics. This requires a small number of points in the
parameter space to be sampled in the axis corresponding
to each controlled factor, and a set of simulation exper-
iments to be run to measure network performance under
each combination. The ANOVA method is applied to assess
which controlled factors are significant to the experimental
outcomes [10]. Any factors which are deemed statistically
insignificant are dropped at this stage.

In Phase 2 we sample the parameter space along the
corresponding axis in a greater number of points for each
statistically significant controlled factor. Again, a set of
simulation experiments was performed to measure network
performance under each configuration. Statistical models
are then fitted to the output metrics resulting from these
experiments, and these models are then used to predict the
best set of values to assign to controllable factors. Phase
1 identifies which controllable factors are not significant to
the outcome, so the specific value we assign to each of these
insignificant factors is unimportant, provided that the selected
value falls within the boundaries explored in Phase 1. We
select the midpoint value of the boundaries from section III-
D for each controllable factor deemed insignificant.

B. Cost analysis

Givenp controlled factors, each sampled atq points in the
permitted region, we haveqp protocol configurations to as-
sess. We assess each protocol configuration withr networks
to prevent results being unduly influenced by a given network
design, yieldingrqp experimental configurations to consider
by simulation. We repeat each experimental configurations

times to prevent results being unduly influenced by any single
unusual simulation instance, yielding the requirement to run
rsqp simulations in total.

Assuming each simulation completes in approximately
equal wall time,t, we find that total experiment time grows
exponentially inp, polynomially in q, and linearly inr and
s. As total experiment time is NP-hard inp it is obvious
that any reduction inp is valuable, and is more significant
than similar reductions inq, r or s. Phase 1 addresses this
problem by identifying controllable factors which can safely
be disregarded. It is therefore possible in Phase 2 to increase
q after reducingp and still have the full experiment set
complete in acceptable wall time.

All simulations are mutually independent and can therefore
be executed in parallel, reducing total runtime to that of a
single simulation if sufficient processing hosts are available.
Assume a multiprocessing environment in whichx ∈ N

independent simulations can execute in parallel. For DOE
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experiments there are no dependencies between simulations
so any number can execute in parallel, all at costt. The total
wall time cost isC = rsqp

x
t. Note thatC ∝ 1

x
, reaching a

minimum of C = t wherex = rsqp.
Increasing the number of experimental configurations in-

creases the quality of fitted statistical models, and hence
solution quality, but also increases experiment cost. A bal-
ance must be found which obtains solutions of acceptable
quality within reasonable time. We measured wall time for
all experiment simulations and took the mean ast = 78.51s.

In both Phases 1 and 2 we setr = 3 and s = 3. In
Phase 1 we setp = 6 andq = 3, yielding a requirement for
3 × 3 × 36 = 6561 independent simulations. As we will fit
linear models to the results in section IV-C we must consider
at least two values for each controlled factor, but to improve
accuracy we use three. we take one value at the low extreme
of the defined interval, another value at the high extreme, and
another value from the centre. This ensures that the results
cover the full spectrum of possible behaviour. In Phase 2 we
setp = 3 andq = 6, yielding a requirement for3×3×63 =
1944 independent simulations. As the number of controlled
factors has decreased it is feasible to use more values for
each, yielding a more detailed model.

C. Model fitting

The factorial design of the experiment suite described
in section IV-A samples the parameter space atqp points
as described in section IV-B. These pairs of sample points
and simulation-derived metrics represent exact solutionsto
specific known points in the generalised model of the re-
lationship between controlled factors and output metrics.
However, these are not directly usable if we wish to know
the relationship between input and output, or vice-versa, for
other points in the input-output phase space.

To consider points in the parameter space that have
not measured directly we need to interpolate by fitting a
statistical model to the known sampled points to derive
a set of equations describing a hypersurface in the phase
space [10]. We then work with the fitted surface rather
than specific individual experimental results. An appropriate
statistical model must be selected, which yields a surface
with shape similar to that which would be observed if an
infinite number of sample points were used. Previous work
[2] has shown that linear first-order interaction models are
a suitable approximation in the context of the TTL-bounded
gossip algorithm in sensornets.

Sampling the parameter space at more points yields a
fitted model which is a better approximation of the real
relationship by providing more data for the model fitting
algorithm. For a finite set of sample points there exists the
risk that an interesting feature of the solution landscape falls
between sample points, and hence is not present in the fitted
model. The DOE broad-but-shallow search implemented by
factorial design experiments may or may not outperform an
Evolutionary Algorithm in this regard; interpolation allows
every candidate parameter set to be considered simultane-
ously, including those not measured directly, but there is a

risk that the optimal solution lies between directly measured
points and is not revealed in the fitted model.

For each output metric under consideration, a linear in-
teraction model of the form given in Equation 2 was fitted
to the result set in MATLAB.β0 is a constant,Xi is
the ith controlled factor value,βi is the coefficient for
controlled factorXi, βij is the coefficient for the interaction
between controlled factorsXi andXj , andε is the normally-
distributed noise term. The responseY is influenced linearly
by each factor and each pairing of potentially interacting
factors. Lack of space precludes the controlled factor coeffi-
cients extracted from Phases 1 and 2 being included in this
paper; these can be found at [11].

Y = β0 +

n
∑

i=1

βiXi +

n
∑

i=1

n
∑

j=i+1

βijXiXj + ε (2)

For each output metricM1-M5 a separate linear interaction
model is produced in which 6 axes represents controlled
factors X1-X6 and a further axis in which the height of
the hypersurface varies with the values of the output metric
Mi. Axes corresponding to controlled factorsX1-X6 are
common to all metricsM1-M5 so a more complex surface
can represent the interrelationships between all controlled
factors and all metrics.

Finding sets of values for controlled factors corresponding
to solutions with appropriate characteristics is equivalent to
identifying regions of the axes representing controlled factors
X1-X6 with appropriate fitted surface height in the axes
corresponding to output metricsM1-M5. Similarly, finding
optimal or worst-cast sets of controlled factors is equivalent
to finding minima and maxima in the fitted surface. This
is implemented by solving sets of simultaneous inequalities
when identifying regions with suitable characteristics, or
by solving sets of simultaneous equations when addressing
optimal or worst-cast characteristics.

D. Experimental results

Lack of space precludes the inclusion of all experimental
results, even in summarised form; for the full results referto
[11]. However, it is important to consider then-way ANOVA
[10] results for the first-order pairwise interactions between
these controllable factors, shown in Table I.

The results from Phase 1 [11] show that some con-
trolled factors and factor interaction pairs are more sig-
nificant than others, and the measure of significanceR2

for any given factor or factor pair tends to vary between
metrics. However, it is evident that the controlled factors
{X1, X5, X6} are significant in isolation with 95% confi-
dence (R2 < 0.05) for at least two of the metricsM1-M5,
and at least one of{X1, X5, X6} is evident in almost all
interaction pairs deemed significant with 95% confidence.
Factors {X2, X3, X4} are not significant in isolation for
any metric, or as a member of an interaction pair which
does not include any of{X1, X5, X6}. We therefore select
controlled factors{X1, X5, X6} for Phase 2 and discard
factors{X2, X3, X4}.
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Table I presents similar data corresponding to the subset
of controllable factors deemed statistically significant and
explored in greater detail in Phase 2.R2 values are defined
in the interval [0, 1] where lower values indicate greater
statistical significance. All figures are presented to 4 decimal
places; particularly smallR2 values appear rounded to 0.0000
but are non-zero positive members ofR.

M1 M2 M3 M4 M5

X1 0.1034 0.0000 0.0000 0.0000 0.0000
X5 0.1417 0.1546 0.0000 0.0000 0.0001
X6 0.0000 0.0000 0.0000 0.0000 0.0000

X1 × X5 0.6780 0.4134 0.9365 0.7561 0.5617
X1 × X6 0.7624 0.0652 0.0000 0.2421 0.5512
X5 × X6 0.6058 0.9437 0.0000 0.0008 0.0381

TABLE I

PHASE 2: R2 VALUES FOR CONTROLLED FACTORS{X1, X5, X6} AND

THEIR INTERACTIONS FOR METRICSM1-M5

Table I shows that the most significant factors from Phase
1 remain significant when considered in greater detail in
Phase 2. Each of the factors{X1, X5, X6} is significant with
confidence> 99% for each of metricsM3-M5, and each of
these factors is significant with confidence of> 85% for the
remaining metricsM1 andM2. BothM1 andM2 are network
performancemetrics (see section III-E); we conclude that
the model is good at predicting all metricsM1-M5, but is
better at predicting networkreliability and efficiencythan
performance.

Turning to the factor interactions, we observe that the
X1 × X5 interaction is largely irrelevant. TheX1 × X6

interaction is significant with> 93% confidence for metrics
M2 and M3. The X5 × X6 interaction is significant with
> 94% confidence for metricsM3-M5. We conclude that
factor interactions are important in sensornet protocols and
must be taken into account by sensornet designers.

The coefficients{X1, X5, X6} were inserted into the gen-
eralised form of Equation 2 given in section IV-C yielding a
set of simultaneous equations. We solved these simultaneous
equations to minimise the E measure described in section III-
F, yielding a set of controlled factor values{X1, X5, X6}
expected to approximate the optimal solution. For factors
{X2, X3, X4}, which are not statistically significant and are
therefore omitted from the simultaneous equations, we take
the midpoints of ranges defined in section III-D. The actual
network performance metricsM1-M5 corresponding to this
calculated approximation to the optimal solution are givenin
section VI.

V. EVOLUTIONARY APPROACH: TWO-ARCHIVE

In this section we define the experiments with which
the parameter landscape is explored, at narrow scope but
substantial depth. The Two-Archive evolutionary algorithm
is employed to progressively improve solution quality.

A. The Two-Archive algorithm

The Two-Archive algorithm is a multi-objective evolu-
tionary algorithm developed by Praditwong and Yao [5].
It is designed to perform well on problems with a large

number of objectives. Two-Archive uses anelitist approach,
storing the best solutions it has found at any given point
in an archive. Unlike traditional archiving algorithms, Two-
Archive separates this archive further, as described below.

One of the issues with archiving algorithms, particularly
in high-dimensional problems, is the potential for memory
overflow. To counteract this, archives must be limited to
a certain size and reduced as necessary when this size is
reached. However, non-dominated solutions such as those
stored in the archives can be subdivided into two types:
convergent solutions, which have dominated a previous
member of the archive, and divergent solutions, which are
merely non-dominated by all current members. In general,
convergent solutions tend to help convergence towards the
Pareto-optimal front, whereas divergent solutions may or
may not lead towards a local optimal front instead. Whereas
previous MOEAs do not differentiate between these solution
types, Two-Archive stores each kind of solution separately.

When saving solutions to the archives, if the given solution
has successfully dominated an existing member (or members)
of either archive, it is placed in the convergence archive,
and the dominated members of the archives are deleted.
Otherwise, the given solution is added to the diversity
archive, and no members are deleted. From this it can be
seen that solutions entering the convergence archive do not
increase the size of the combined archive, as at least one
member must be dominated (and thus deleted) before it can
enter the convergence archive. When entering the diversity
archive, no members are deleted, and so the total archive size
is increased by one. This is where the potential for memory
overflow exists, and so Two-Archive implements a removal
strategy, as given below.

When the total archive limit is exceeded, the removal strat-
egy is executed to decrease the size of the archives. During
this process, only members from the diversity archive are
removed, ensuring convergent solutions remain to encourage
convergence to the Pareto optimal front. The removal strategy
works by calculating the shortest Euclidean distance from
each member of the diversity archive to any member of
the convergence archive. Solutions with the least distance
to the convergence archive members are then removed until
the archive size is within acceptable limits. As a result of
this strategy, the size of the archives during runtime is never
more than twice the population size, and the final archive
size will never be greater than the population size.

Selection of a new mating population also comes from
the archives. This is accomplished by selecting an archive
according to a specified probability, and then randomly
selecting a solution from that archive. This process is then
repeated until the mating population is full.

Two-Archive operates as follows. First, a random initial
population is generated and evaluated according to the given
fitness function. The algorithm then enters a loop. Non-
dominated solutions in this population are added to the
archives as described, with the removal strategy applied at
the end if the archives overflow. The mating population is
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then constructed as detailed above, and genetic operators
are applied to this population to produce the next generation
of solutions. These are then evaluated, and the loop repeats
until a termination condition is reached. The contents of the
archives are then taken as the final population.

Two-Archive exhibits convergence similar to that of the
other leading MOEAs, yielding results of similar or higher
quality. Experimental work indicates that Two-Archive run-
time for a given problem is typically equal or lower than
that displayed by these other algorithms, by up to an order
of magnitude for representative problems [5]. This does come
at a cost of reduced diversity in comparison to some alternate
MOEAs. However, we assert that suboptimal diversity is
tolerable for the tuning experiments considered in this paper;
the losses in diversity are more than offset by the gains in
efficiency which enable a significantly greater number of
generations to be evaluated per unit time.

B. Two-Archive experimental settings

A parameter,r, defines the ratio of parent selection from
the convergence and diversity archives. A higher ratio leads
to more convergence solutions being chosen, and thus faster
convergence overall at the cost of potentially reduced diver-
sity in the range of solutions. Population size,s, defines the
size of the combined archives. We setr = 0.9 ands = 50.

Simulated Binary Crossover (SBX) [12], polynomial mu-
tation [12] and random selection operators were used for
this experiment. SBX takes as parameters a crossover rate,c
and anηc value controlling the probability ofnear-parent
solutions being generated (with higher values producing
closer matches to parents). These were set as 0.7 and 15,
respectively, for this experiment. Polynomial mutation also
takes a mutation rate,m, and anηm value controlling the
mutation distance, which were set to 1/6 and 20 in this case.

Experiments were conducted in which all values were
represented internally as 64-bit precision floats. Where a
given parameter is defined only for integral values, the
float value was rounded to the nearest integer at the point
of use. All tests were run for 50 generations, to give the
solutions time to converge to useful values. Data on the best
known candidate solutions were logged at every generation to
provide insight into the running convergence of the system.

C. Cost analysis

Each fitness function evaluation requires exactly one sim-
ulation instance to be executed. Consider an evolutionary
run with a population size ofa for which b generations are
required to attain the required solution quality. Within each
generation it is necessary to evaluate the fitness function
once for each candidate solution, requiringab simulation
instances for all population members and all generations.
As with the DOE experiments, we testr networks and
repeat each experimental configurations times, requiring
abrs simulations in total. Total cost grows linearly in each
of a, b, r ands; this is clearly a desirable property.

We now consider the relative costs of the EA approach
as described above, and the DOE approach described in

section IV-B. Assume each simulation instance completes in
t seconds. The DOE approach has wall time costCA = rsqpt

and the EA approach has wall time costCB = abrst. Given
a single uniprocessor host, the EA approach will terminate
before the DOE approach ifCB < CA, a condition which is
fulfilled whereab < qp.

Now assume a multiprocessing environment in whichx

independent simulations can execute in parallel. For DOE
experiments there are no dependencies between simulations
so any number can execute in parallel, all at costt. The total
wall time cost isCC = rsqp

x
t. Note thatCC ∝ 1

x
, reaching a

minimum ofCC = t wherex ≥ rsqp. For EA experiments it
is possible to run allars simulations of a given generation in
parallel at costarst, but all simulations of a given generation
must complete before the next generation can begin. The total
wall time cost isCD = ars

x
bt. Note thatCD ∝ 1

x
, reaching

a minimum ofCD = bt wherex ≥ ars. If x is large then
DOE experiments will complete before EA experiments.

VI. RESULTS

Tables II and III summarise the output of the DOE
experiments described in section IV and the EA experiments
described in section V. We label the Design Of Experiments
approach asA and the evolutionary approach asB. Sets of
protocol tuning values corresponding toA andB are labelled
IA andIB respectively. Figures are to 4 decimal places.

For each experimental approach, the set of values assigned
to controlled factorsX1-X6 corresponding to the highest
quality solution discovered is given in table II. For approach
A some controlled factors were not evaluated directly in
Phase 2 of the experiment. For these controlled factors,
italicised in table II, we take the midpoint of search ranges
defined in section III-D.

X1 X2 X3 X4 X5 X6

IA 0.9999 5.5000 5.5000 0.5500 4.9506 7.5390
IB 0.8425 5.0000 3.0000 0.3864 6.8320 9.0000

TABLE II

BEST-KNOWN PROTOCOL TUNINGS

We define the highest quality solutionIα for approachα as
being that which offers the smallest Euclidean distanceEα

betweenOα and the theoretical perfect values of metrics,
as defined in sections III-E and III-F. Table II shows the
Euclidean distancesEA and EB from which IA and IB

were identified as the highest quality solutions derived by
approachesA and B respectively. Note that the theoretical
perfect metric values are not necessarily attainable underany
real protocol tuning.

To ensure fair comparison of the quality of solutions
obtained by the two experimental approaches, it is necessary
to eliminate any factors which could unfairly influence the
outcome. We achieved this goal by conducting further sim-
ulation experiments as per section III where the simulation
scenario is identical in all respects, except for the protocol
parameter set which is eitherIA or IB as appropriate.

Three hundred simulations were executed for each ofIA

and IB as defined in table II; 100 repeats for each of the
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3 networks considered in the experiments of sections IV
and V. Where a controlled factorX1-X6 is defined only for
integral values, but the value given in table II is non-integral,
we round to the nearest integer. For each combination of
experimental approach and metricM1-M5, a set of 300
output values is produced. The arithmetic mean of each set is
taken as the final value and presented in table III. The sets of
output metrics corresponding toA andB are labelledOA and
OB respectively.f(OB, OA) givesOB as proportion ofOA

to allow comparison of relative solution quality. All figures
for M1-M5 are give to 5 significant figures and scaled by a
factor of 106 for clarity.

M1 M2 M3 M4 M5 E

OA 14624 7.2833 352420 75106 36.0260.18771
OB 15192 8.0257 368900 5948.3 2.94280.20370

f(OB , OA) 1.0388 1.1019 1.0468 0.0792 0.08171.0852
Best DOE DOE DOE EA EA

TABLE III

NETWORK PERFORMANCE FOR BEST-KNOWN PROTOCOL TUNINGS

It is notable the approaches find different result sets, as
shown in Table II. The observed metrics as shown in Table III
are also different, with DOE producing better results in terms
of network performance (X1 and X2) and reliability (X3),
but the EA approach producing results with significantly
better energy efficiency (X4 and X5). It is noteworthy that
for (X1 - X3) both DOE and EA approaches yield results of
the same order of magnitude, but for (X4 and X5) the EA
yields results that are superior by an order of magnitude.

The DOE approach yields a compromise solution that
is superior to the compromise solution found by the EA
approach, as measured by the Euclidean distance metricE.
However, in problems with larger sets of input variables, sec-
tion V-C demonstrates that the DOE approach will become
prohibitively expensive in comparison to the EA technique,
although with smaller sets of inputs the DOE method may
be faster. Similarly, when a simple ranking metric such
as Euclidean distance is unavailable or unsuitable, the EA
approach will provide a better diversity of possible solutions.

During the evolution of the EA results the solution quality
was not observed to supplant that of the DOE results.
Although theoretically possible, it is considered unlikely
to occur within acceptable time. However, the EA results
made good progress during the experimental runtime, rapidly
approaching the observed optimum. Consequently, the EA
approach can yield useful near-optimal results early in the
evolutionary run, whereas the DOE approach yields no useful
results before termination.

We designed our DOE and EA methods to find a single
best solution to a protocol optimisation problem. As EA
approaches are generally optimised for finding sets of non-
dominated solutions rather than single solutions, experi-
menters may need to allocate more fitness function eval-
uations and experimental effort than required under DOE
approaches to obtain single solutions of equivalent quality.

The DOE-derived fitted model is a useful summary of
the relationship between inputs and outputs across the full

defined ranges of all inputs, including solutions correspond
to poor performance, whereas the EA approach focuses
computation resources on good solutions. We therefore con-
clude that both approaches serve useful though different
purposes. The sensornet designer might usefully apply the
DOE approach to narrow the search space to those portions
of the parameter space mapping to useful portions of the
solution space, then apply the EA approach to navigate
any non-linear regions within this narrowed search space to
obtain better near-optimal solutions.

VII. C ONCLUSIONS

In this section our findings are considered against the
research objectives defined in the introduction. For the first
objective, Obj 1, the results obtained from the DOE and
EA approaches shown in Tables II and III show that both
methods achieve results close to the theoretical optimum for
this problem. For the second objective,Obj 2, the metrics
presented in Table III show that DOE outperforms the EA
approach in network performance, reliability, and overall
solution quality metrics. However, the EA approach produces
reasonable results across all metrics, and outperforms the
DOE approach in energy efficiency metrics.
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