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Abstract—We explore the idea of applying machine learn-
ing techniques to automatically infer risk-adaptive policies to
reconfigure a network security architecture when the context
in which it operates changes. To illustrate our approach, we
consider the case of a MANET where nodes carrying sensitive
services (e.g., web servers, key repositories, etc.) should consider
relocating themselves into a different node to guarantee proper
functioning. We use simulation to derive properties from a
candidate policy, and then apply Genetic Programming and
Multi-Objective Optimisation techniques to search for optimal
candidates. The inferred policies take the form of risk-aware
service relocation algorithms that autonomously dictate when
and how to relocate services with the aim of keeping risk to
a minimum. Since security policies often have implications in
dimensions other than security, we force the learning process
to consider also the consequences (performance, usability) of a
given policy.

Index Terms—Security Policy Inference; Risk Management;
Mobile Ad Hoc Networks; Genetic Programming.

I. INTRODUCTION

Formulating a good security policy is an intrinsically dif-
ficult problem. Traditional approaches rely on the experience
and intuitions of security administrators who, equipped with
an appropriate knowledge of the system, the foreseeable risks,
and the potential (and affordable) countermeasures, produce
a policy making reasonable tradeoffs between security and
other relevant criteria. It has been argued that neither such a
methodology nor the resulting policies could be appropriate for
certain networking paradigms (e.g., MANETs) where multiple
autonomous systems interact with each other in unpredictable
ways. A notable example is found in military operations that
require the formation of dynamic mobile networks without
relying on preexisting infrastructures. Many of the constituent
elements of such communication systems (for example, the
basic units providing the physical connection layer upon which
data is transmitted) frequently need to be moved about a
geographical area as the mission evolves. Unlike most civilian
applications, the majority of military networks operate against
a complex, hostile background wherein the security of the
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nodes and the information (both stored and transmitted) is
paramount. At a high level, protection is provided through
a security architecture which defines aspects such as what
services are located in what nodes; what subnetworks exist and
how they are interconnected; what security controls must an
information flow pass through before reaching a node; etc. Tra-
ditional approaches to design and deploy security architectures
are predominantly static, done by a human security adminis-
trator, and often based on risk analysis methodologies that rely
on stationary assumptions about the network structure, typical
information flows, potential threats posed by the adversaries,
and location and configuration of security services.

One readily sees that few or none of these assumptions hold
in a MANET setting. If the conditions under which a network
operates change and, consequently, the current security con-
figuration is no longer optimal (or, simply, not good enough),
one desirable response would be for the network to reconfigure
itself and adapt to the new situation. This notion of adaptation
has been a central theme in autonomic computing almost
since its inception. When it comes to security properties, one
possible way of implementing adaptive systems is through a
security policy that takes into account the context in which
the system operates. Implicit in such an approach is the
assumption that one can foresee all possible situations and,
therefore, derive rules dictating how to best respond. This is
clearly unrealistic and other approaches must be explored. In
this work, we present an approach based on a entirely different
approach: security policies can be learnt rather than specified.

A. Motivation and Overview

As proof of concept, in this work we will consider the case
of a tactical MANET whose nodes are moving about a physical
terrain. Parts of the terrain will be considered more susceptible
to eavesdropping or physical attack than others. There will be
one (or more) indicators of risk associated with being at a
particular point in the terrain. Thus, as nodes move about risk
exposure changes.

We propose to use guided search and machine learning
approaches to discover risk-aware service relocation algo-
rithms. Such algorithms will dictate when a service needs
to be relocated and how. In particular, we will use Genetic
Programming (GP) to search for a program that each node
carrying sensitive services will execute. The program will
gather some information about the current networking and
physical context and will decide whether it is safe to maintain
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the service in the current node or else it would be convenient
to migrate to a different one. Roughly speaking, our approach
is based on the idea of finding a valuation function that will
measure the suitability of a given node to provide a service.
Implicit in such a function should be the entire security policy,
so that nodes under dangerous conditions should receive a
low value and vice versa. This would suffice when simple
risk reduction is the sole goal. However, we will also have
to extend the scheme to capture other properties of interest,
particularly those related to network performance (e.g., load
balancing). Otherwise, the resulting security policy might
result in totally unusable network configurations.

The rest of this work is organised as follows. In Section II
we discuss some related works where GP and other forms of
heuristic search have been used to derive security components.
In Section III we provide a brief background on GP systems.
Section IV describes a scenario that will be used throughout
this paper to illustrate our ideas, and also the simulation envi-
ronment used for experimentation. In Section V we introduce
the concept of reconfiguration policy for MANET services
and describe its main components, including those which must
be learnt. In Section VI we describe the experiments carried
out and discuss some policies found using different goals as
evaluation criteria. Finally, Section VII concludes the paper.

II. RELATED WORK

Heuristic search and other techniques taken from Artifi-
cial Intelligence have been successfully applied to various
problems related to the design and analysis of access control
policies. For example, a central problem in role-based access
control is to identify the set of roles and their associated
privileges. Various authors (see e.g. [10], [12], [22]) have
explored how data mining can be of help in this process,
automatically engineering roles from existing data. In a related
series of works [13], [14], [15], Lim et al. show how GP (and
subsequently Grammatical Evolution) can be used to infer an
access control policy from a set of decision examples. The
authors explore the inference of generic Multi-Level Security
(MLS) policies coupled with the Fuzzy MLS risk model
proposed in [2]. It is shown how GP has the ability to correctly
capture the implicit policy provided by the examples. In [15],
the approach is attempted in an online training setting, where
the access control policy changes over time and the system
must be continuously learning.

The inference of security policies using automatic means
has been explored in other domains too. The idea of evolving a
security policy for an autonomic system which must consider
environmental factors was briefly mentioned in the work of
McDaniel [19], yet no results were published. Tongaonkar et
al. [25] have recently shown how high-level network access
policies can be derived from low-level firewall filtering rules.
Similarly, Scott et al. [23] discuss how to automatically
infer the security policy of a web gateway by observing the
interaction between the web server and its clients. Inoue et al.
describe in [4] how to learn application-specific Java sand-
boxing policies by monitoring the program execution and

learning from it.
A common characteristic of all these works is that they

just focus on learning a policy either from examples provided
by a human operator or from data observed during the real-
time operation of the system. But a security policy often
causes important effects on non-security parameters of the
system, notably on its usability and performance. Whilst it
is widely recognised that some tradeoffs inevitably exist,
characterising them is an entirely different matter. We believe
that such consequences should also be taken into account in the
inference process in order to obtain not only a good security
policy, but a usable one.

III. GENETIC PROGRAMMING

Evolutionary algorithms are search techniques inspired by
various evolutionary processes and principles [7], [3]. The
search generally starts with an initial population of individuals,
each one representing a potential solution to the problem at
hand. This initial population is generated either randomly or by
any other means. Associated with each individual is a “fitness”
or “cost” value that measures how well this candidate solution
solves the problem. Once every individual is evaluated, the
population is repeatedly subjected to a series of “evolutionary
operators:”
• Selection: a subset of individuals is selected for breeding

according to their fitness: the higher the fitness, the higher
the chance of being selected.

• Crossover: selected individuals are used to generate new
individuals resembling the “parents.”

• Mutation: elements within a solution are somehow per-
turbed. This introduces diversification into the population,
allowing to explore parts of the search space which would
be unreachable by selection and crossover alone.

• Reproduction: some exceptional individuals survive to the
next generation without changes.

The repeated application of this process generates successive
populations composed of solutions which are increasingly
better. The search stops either when a good enough solution
is found or after a predefined number of generations.

GP is an evolutionary search technique where individuals in
the population are programs [9], [11]. Such programs are often
represented using tree structures, where the terminal nodes are
constants and variables, and the internal nodes are functions,
operators, statements or control structures of the programming
language. When the program is a function returning a value,
the root of the tree represents the final value computed.
For example, Fig. 1 shows a simple tree representing the
expression F (X,Y, Z) = X ∗ Y

13 + min(0.5, sin(Z)). A
program is evaluated by recursively parsing the tree, so each
node is evaluated and the value is passed to the parent until the
entire program is executed. Note that more complex control
structures such as if-then statements or loops can be easily
represented too using trees or other data structures. In GP,
crossover is often implemented over two trees: a sub-tree in
each parent is randomly chosen and swapped with the other, so
two new trees are generated. Mutation is generally performed
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Fig. 1. Example of a tree structure representing the function F (X, Y, Z) =
X ∗ Y

13
+ min(0.5, sin(Z)).

on one tree by randomly choosing a node and replacing it with
a new subtree which is also generated randomly.

IV. SCENARIO

We next describe the scenario and simulation environment
used in our experiments.

A. Network

We will consider a MANET composed of N nodes moving
about a physical terrain. Each node acts either as a server or
as a client. Servers provide specific network services, such as
e-mail, key repositories, HTTP or FTP services, etc. For each
service, there will be one or more identical servers distributed
across the network, so when a client needs to access a service
it does it through the closest server. In this way, for each
service the network is divided into a number of clusters, each
one being served by a server. This is a common and scalable
approach in many settings where load balancing is necessary,
or where large blocks of the network can be temporarily
disconnected from each other due to mobility and physical
constraints.

B. Geographical Risk

The risk measure that we will consider is geographical
in nature and motivated by the operation of a MANET in
hostile territory. Parts of the terrain might be under con-
trol of the adversary, so a node approaching them would
see increased its likelihood of being captured, eavesdropped,
jammed, physically attacked, etc. We will not discriminate
between different threats, and will assume that a probability
indicator, Pattack(x, y, z) ∈ [0, 1] can be obtained by a node
only if the node is at location (x, y, z). This assumption holds
in many scenarios where enough intelligence about the terrain
and the adversary cannot be gained in advance, and also in
missions where the trajectories of the nodes and the location
of the adversaries change over time unpredictably.

The value of Pattack can be computed in different ways
depending on the specific attack(s) we are interested in

avoiding. For example, appropriate detection measures provide
valuable real-time information about the attacker’s actions
(e.g., attack attempts detected by an IDS, flows blocked by a
firewall, jamming signals detected by a listening device, etc.)
This feedback could be easily summarised into a probability
measure. Other forms of risks can be also considered (see for
example [1] for an excellent survey of various risk measures
relevant in a MANET context).

Note that we have explicitly made the geographical risk
independent on the node. Consequently, we will interpret it as
the probability of something undesirable happening, regardless
of the value or function of the node. In order to obtain a true
risk measure, such a probability has to be multiplied by the
value of the service and/or the node. We will denote by

Risk(n, x, y, z) = V al(n) · Pattack(x, y, z) (1)

the risk of node n at position (x, y, z). The value V al(n) of
node n is a positive quantity proportional to its importance
(or, equivalently, to the loss we incur in by losing it).

C. Configuration Performance: Load Balancing

As mentioned before, one reason for deploying various
identical copies of the same server is to balance the network
load and to ensure service availability when the network
suffers fragmentation. In order for such a strategy to be
effective, the replicas must be conveniently distributed across
the network. Next we introduce an indicator to measure this
property.

For clarity, assume that only one network service is provided
by a set S = {s1, . . . , s|S|} of servers. At a given time instant,
let C(si) be the set of clients associated with server si; that
is, those nodes for which si is the closest server according to
the routing metric. If N − |S| is the total number of clients
in the network, then in an ideal configuration each server
should serve exactly N−|S|

|S| clients (rounding up or down
appropriately). Consequenly, the quantity

B =
1
N

|S|∑
i=1

∣∣∣∣|C(si)| − N − |S|
|S|

∣∣∣∣ (2)

is minimised when the placement of the servers is optimal.
(Note that the normalisation constant ensures that B ∈ [0, 1].)

We will use B as an indicator of the quality of the
current configuration: the better the configuration, the lower
the value of B. Note that we are implicitly assuming that
the probability of a client accessing a server is uniform
among all the clients; otherwise the communication patterns
should be taken into account to produce a weighted measure.
Likewise, an optimal configuration does not guarantee full
availability against fragmentation, for that depends on factors
that we assume unpredictable (e.g., mobility patterns, radio
propagation barriers caused by the landscape, etc.).

D. Simulation Environment

Here we describe a concrete scenario and the simulation
environment that will be used later in the experimentation. We
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Fig. 2. (In colour in the electronic version.) Snapshot of a simulation of a
MANET moving about a hostile terrain.

will consider a MANET composed of 50 nodes moving about a
1000m × 1000m area. The network contains 3 servers which
offer the same service, so the remaining 47 nodes connect
to the closest server each time an access is required. The
scenario is implemented in the NS-2 network simulator [20]
and we use AODV [21] as routing protocol. Initial positions
and movement patterns are randomly produced using the
CMU scenario generator included within NS-2, with maximum
speeds varying between 5 and 15 m/s, and pause time set to 0
(i.e., nodes are constantly moving). The total simulation time
is 200 s.

In absence of real-life (and possibly mission-specific) risk
data, we have used an artificial construction to represent a
hypothetical risk map. This consists of two highly risky spots
located at coordinates (100, 700) and (800, 200) in our 1000
× 1000 grid. Each point1 (x, y) is then assigned a probability-
of-attack value which depends on the distance to these points:
the farthest away from them, the lower the probability. We
will assume that all the servers have the same value equal to
1 unit, so the risk will be simply the probability of attack.
This risk map is constant, i.e., it does not change over time.
Fig. 2 shows a snapshot of a simulation of this scenario. Each
blue point represents a node and lines illustrate the current
connectivity status. Servers are enclosed within a red square.
The background surface (in green) represents the risk level of
the terrain, with the two adversary locations easily discernible.

V. RECONFIGURATION POLICIES

The relocation of services in a MANET obeys a simple
principle: a server under too much risk should consider mi-
grating to a different node with lower risk. A reconfiguration

1For simplicity, we have used a 2D terrain, so no z coordinate will be
specified.

policy should establish what, when and where to move. We
make three basic assumptions concerning this process:

1) Transferring the server (program) and all additional data
required for proper functioning to other node is possible
but very costly, so the number of relocations should be
kept down.

2) Risk is not the only property to be managed. Perfor-
mance should not be neglected.

3) All nodes are equally valid to accommodate a server and
collaborate towards this end: a node chosen to house a
server cannot refuse to do it.

Our approach is based on a relocation protocol run by each
server. Let C(s) = {c1, . . . , ck} be the set of nodes which can
house server s when it needs to be moved2.

One basic task for the server is to decide which of them is
the best. To make this decision, the server periodically collects
from each ci a number of variables, or indicators, mi

1, . . . , m
i
d.

In our scheme, the server broadcasts a request and every
ci sends back its indicators. In order to keep the protocol
efficient, we will assume that these indicators are local to each
node; that is, each ci can produce them without exchanging
information with other nodes. Some examples may be the
local risk of each node, their position within the network,
the distance to the closest server, the number of neighbours;
the node’s computing power and remaining battery, etc. Once
these indicators are collected, the server computes for each
candidate node a function fi = f(mi

1, . . . , m
i
d), and the result

is interpreted as how suitable ci is to house the server: the
higher fi, the more suitable ci is. This solves the question of
where to move, as the server will move to the most suitable
node.

The remaining important decision is when to move. One
possible solution is to devise an additional function (or set
of rules) to make such a decision. This, however, is not
necessary at all, as the temporal dimension could be implicitly
incorporated into the suitability function f : the server will
move as soon as a more suitable node is found. More formally,
s will move to node j = arg maxi{fi} iff fj > fs. Note that
this approach does not necessarily imply a large number of
relocations, since that will depend on the particular form of f
and the environment where the nodes operate.

A. Learning through Simulation

Assume that we are given a simulator that allows us to
plug in a candidate policy f and study what effects it has on
a network over a given period of time. We next discuss how
such an f can be evaluated in terms of the outcomes of the
simulation. The ability to do this will allow us to compare
different policies and will be instrumental in learning optimal
policies.

During the simulation of f , we will be interested in three
main outcomes. The first is a measure of how f works in

2We assume that the nodes which can house a server are only the clients
associated with it at a given time, hence the use of the same notation that in
Section IV-C. This ensures that the reconfiguration is feasible, as the network
could be fragmented and others nodes might not be reachable.
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terms of risk. At each time step, we will record the position
of each server and will compute their current risk according
to expression (1). At the end of the simulation, the average
R(f) of all the individual measures will be used as the risk
measure of f .

In order to study performance, we will use the balance
indicator B given by (2). We will denote by B(f) the average
of the balance values computed over the entire simulation
period.

Finally, relocation is a mechanism that should not be used
too often, so we will also keep track of how many relocations a
policy generates. We will denote by L(f) the average number
of relocations per time unit.

Each of these three values R(f), B(f), and L(f) constitute
independent objectives that should be minimised by a good
policy. One simple way of summarising them into a single
measure consists of using a weighted sum of the form

G(f) = w1R(f) + w2B(f) + w3L(f) (3)

where each wi ≥ 0 weights the relative importance placed on
each goal. G(f) can be thus viewed as a cost measure: the
lower the value of G(f), the better the reconfiguration policy
induced by f .

VI. EXPERIMENTS

We next describe and discuss some experimental results
obtained for the scenario described in Section IV-D.

A. Experimental Design

Our goal is to search for an optimal (lowest possible
cost) suitability function f . Each individual in the population
encodes a candidate function. The terminal set consists of
Ephemeral Random Constants (ERC) –constanst whose value
is randomly generated during their creation– in the interval
[−1, 1], and three additional variables that each server must
collect from each candidate destination:

• r: node’s local risk.
• g: node’s degree (number of neighbours).
• d: node’s distance to its closest server.

We experimentally determined that these three indicators are
the most adequate inputs to the policy. (In fact, they constitute
reasonable factors upon which decide when and where to
move.)

Policies (i.e., suitability functions) will be represented as
Lisp-like S-expressions. (See e.g. [24] for an early use of S-
expressions in SDSI and SPKI). The function set is composed
by usual arithmetic operations (+, -, *), trigonometric (sin,
cos) and exponential (exp) functions, and protected3 versions
of divison and logarithm. Limits are imposed on the size
of the programs: the maximum allowed depth of the tree is
13 and the maximum number of nodes is 150. This design
allows us to represent a reasonably vast set of candidate
functions. Note that we do not enforce the function to satisfy

3x/y =

{
x
y

if y �= 0

1 otherwise
and log(x) =

{
log(|x|) if x �= 0

0 otherwise

any constraints: the evolutionary process will hopefully discard
those candidates that for whatever reason do not behave well.

To evaluate the cost of a function f , the simulation is
executed using f at the core of the reconfiguration policy as
explained before. During the simulation, the relevant statistics
are harvested (see Section V) and returned when the simulation
finishes. A cost value G(f) is then computed using expression
(3). In order to increase the robustness of the learning process,
the policy given by f is executed 10 times in the same scenario
with different random initialisations and movement patterns.
The final cost value associated with f is then the average of
the 10 cost values obtained in each single simulation.

We follow the common practice of reformulating the min-
imisation problem into a maximisation one by using an ad-
justed fitness function of the form A(f) = 1

1+G(f) , where
G(f) is the original cost function, so now the goal is to
maximise A(f). This formulation presents the advantage that
the fitness is now normalised between 0 and 1, and also small
improvements in G(f) are amplified in A(f).

Other relevant parameters of the search are: the maximum
number of generations is set to 100; the population size is 200
tress; and crossover and mutation probabilities are 0.9 and 0.1,
respectively. All the experiments reported in this paper have
been carried out using ECJ V.19 [17]. Any parameters not
listed here is assumed to be set to the default value provided
by the framework.

B. Experiment 1: Minimising Risk

In the first experiment we attempt to find an f for a
reconfiguration policy that only cares about risk. In our for-
mulation, this translates into a set of weights (w1, w2, w3) =
(1.0, 0.0, 0.0) to be used in the cost function G(f). In a typical
experiment, the result is a function that discards nodes’ degree
(g) and distance to server (d), and only takes into account
the nodes’ local risk (r). Furthermore, the function is always
strictly decreasing in r. Some examples of functions found
include:

f(r, g, d) = (- (cos r)
(sin r))

or the even simpler

f(r, g, d) = (* -0.27514 r)

This is clearly the expected result: a policy that constantly
moves servers to those areas of the network with the lowest
risk. The average risk value obtained by these policies is
approximately R = 0.1, which is extraordinarily low. This,
however, comes at a price: the load balance is generally around
B = 0.83 (a value quite far from being optimal) and the
number of relocations is L = 0.36 (i.e., relocations occurred
36% of the time).

Fig. 3 (upper plates) shows some snapshots of the effects
induced by these policies on the network operation. It is clear
how after a few time steps the servers flee from the dangerous
areas and accumulate around nodes in the upper-right area. The
results for different simulations and at different time steps are
equivalent to those shown here.
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TABLE I
METRICS OF SOME POLICIES OBTAINED WITH DIFFERENT WEIGHTINGS.

w1 w2 w3 R B L

1.00 0.00 0.00 0.10 0.83 0.36
0.00 1.00 0.00 0.54 0.11 0.24
0.00 0.00 1.00 0.56 0.33 0.00

0.33 0.33 0.33 0.56 0.14 0.03
0.40 0.40 0.20 0.33 0.21 0.03
0.50 0.25 0.25 0.18 0.60 0.07

C. Experiment 2: Maximising Performance

Reconfiguration policies that only focus on load balanc-
ing can be discovered by using a weighting of the form
(w1, w2, w3) = (0.0, 1.0, 0.0). The policy functions obtained
are complex and generally difficult to understand analytically
(although, as we will see later, they work remarkably well).
For example, one search produced the function
f(r, g, d) = (- (cos (sin (log (+ (/ r g)

(* g d)))))
(exp (log (- (- (/ r d)

(sin (* 0.64990 g))
(+ (cos 0.70840)

(/ r 0.64637))))))

Some illustrations of the effect of this policy are given in
Fig. 3 (middle plates). After some simulation steps, servers
tend to migrate to areas where approximately one third of
the clients are associated to each server. This constitutes an
optimal configuration according to our performance measure.
(Note that we are not demanding any centrality measure, hence
that some configurations place the servers in peripherical posi-
tions where nonetheless the partition into three approximately
equal subnetworks is preserved.)

D. Experiment 3: Minimising the Number of Reconfigurations

This experiment produces again an anticipated result. The
search converges very quickly to a constant function, such as
for example

f(r, g, d) = (exp (/ -0.42278 -0.49757))

The effect is obvious: all nodes are equally suitable and,
consequently, servers are never relocated. The average number
of relocations is therefore L = 0, and values for risk and load
balancing are approximately R = 0.56 and B = 0.33.

E. Experiment 4: Combined Objectives

Table I shows the results of some additional experiments
where combined objectives are considered, as well as the
ones already discussed. For example, when using weights
(w1, w2, w3) = (0.4, 0.4, 0.2) we obtained the function
f(r, g, d) =
(* r

(/ (log (/ (sin (+ (log (exp (sin (exp (log (- d g))))))
(+ (exp (- (cos g)

(sin d)))
(sin (* (- (cos 0.36447)

(cos 0.43138))
(sin (+ g g))))))) r)) d))

Gaining an analytical understanding of what such policies
do is not an easy task. In the case shown above, the policy

produces an average risk of R = 0.33, an average load
balancing of B = 0.21 and an average number of reloca-
tions of L = 0.03. While L is very low and R could be
considered appropriate, the load balancing is still somewhat
high. This can be visualised in Fig. 3 (lower plates). Even in
this reduced number of snapshots is obvious that managing
risk slightly prevails over load balancing, and the successive
policy decisions tend to relocate the servers on suboptimal
choices. Such effects may be partially controlled by attempting
different weightings in the cost function (see, e.g., Table I). A
more adequate approach is presented in the next section, where
we obtain a characterisation of the trade-offs among these
competing objectives through Multi-Objective Optimisation.

F. Experiment 5: Multi-Objective Optimisation

The approach used above implictly assumes that the policy
objectives (i.e., risk, load balance, and numer of reconfigu-
rations) are directly comparable and, therefore, can be con-
veniently weighted and summarised into a single value. The
limitations of such a strategy are well known, e.g. what are
the best assignment of weights? (i.e., that for which the three
goals are simulateonusly minimised). In scenarios with cer-
tain complexity there are often non-trivial interdependencies
between the objectives, in such a way that a good value for one
of them automatically implies a not-so-good value for another
one. Multi-Objective Optimisation (MOO) algorithms attempt
to simultaneously optimise a number of (possibly competing)
goals. The main aim is to approximate the Pareto-optimal
front, that is, the set of solutions that are not dominated by any
other solution. Such a surface reflects the inherent tradeoffs
and relationships among the different goals. Furthermore, the
set of solutions in the Pareto front is a valuable outcome, as
the decision-maker can establish under which circumstances
a different tradeoff is required and, consequently, a different
solution.

MOO problems naturally arise in all sort of engineering
problems. In the case of MANETS, some works have already
explored this paradigm (see e.g. [5] for an early discussion of
MO routing for tactical aircraft; or, more recently, [8], [16],
[18] for a similar application to route-discovery protocols in
MANETs). Here we have used Strength Pareto Evolutionary
Algorithm (SPEA2) [26] to perform MOO to the reconfig-
uration policy problem. The obtained Pareto front is a set
of solutions (256 in our case, but this is a parameter set by
the user) which are essentially incomparable as they provide
optimal values for one objective, possibly at the expense of
others. We give a preliminary analysis of this set in Fig. 4. The
upper plate shows the tradeoffs between R and B for different
intervals of L. (Graphs are listed from the bottom and from
the left in increasing order of the intervals, so the bottom-
left graph corresponds to L ∈ [0, 0.04], the bottom-middle to
L ∈ [0.04, 0.09] and so on. The amplitudes of the intervals are
selected so approximately the same number of solutions are
kept in each bin.) It is clearly observed how for high number
of relocations (L > 0.3), a range of possibilities regarding
R and B exists (bottom-left graph). In general, risk and load
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Risk-focused policy – weights: (w1, w2, w3) = (1.0, 0.0, 0.0)
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Performance-focused policy – weights: (w1, w2, w3) = (0.0, 1.0, 0.0)
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Mixed policy – weights: (w1, w2, w3) = (0.4, 0.4, 0.2)
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Fig. 3. (In colour in the electronic version.) Placements dictated by three different policies at various time instants. Service providers are marked with a red
square. The effect of the different policies is clear even for this reduced number of snapshots.

balance are conflicting goals, so decreasing one of them causes
a bad effect on the other. Few relocations translate into pareto
fronts where good load balance is difficult to achieve, although
risk can be kept in reasonable levels. The middle and bottom
plates in Fig. 4 give similar analysis for other comparison of
objectives.

VII. CONCLUSIONS

Data mining and combinatorial optimisation techniques
have already shown their potential to solve a variety of
computer and network security problems. In this work, we
have discussed and motivated the need for an additional step
in this direction, namely, the discovery of security policies for

systems that operate against complex backgrounds where the
consequences of a particular policy are not easily foreseeable.
We have provided an example for a tactical MANET where
sensible services must avoid risk exposure, so a policy must
dictate when and how to reconfigure the deployment of such
servers. We emphasise that the scenario used throught this
paper is but an example of the general idea; that is, that
traditional ways of producing security policies (specification
followed by successive refinement stages) are difficult and very
limited. Here we attempt to shift the emphasis away from such
an approach towards learning (or searching for) a policy with
desirable outcomes.
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Fig. 4. (In colour in the electronic version.) Pareto fronts.
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