
Applications of Model Reuse When Using

Estimation of Distribution Algorithms to Test
Concurrent Software

Jan Staunton and John A. Clark

Department of Computer Science, University of York, UK
{jps,jac}@cs.york.ac.uk

Abstract. Previous work has shown the efficacy of using Estimation
of Distribution Algorithms (EDAs) to detect faults in concurrent soft-
ware/systems. A promising feature of EDAs is the ability to analyse
the information or model learned from any particular execution. The
analysis performed can yield insights into the target problem allowing
practitioners to adjust parameters of the algorithm or indeed the algo-
rithm itself. This can lead to a saving in the effort required to perform
future executions, which is particularly important when targeting expen-
sive fitness functions such as searching concurrent software state spaces.
In this work, we describe practical scenarios related to detecting con-
current faults in which reusing information discovered in EDA runs can
save effort in future runs, and prove the potential of such reuse using an
example scenario. The example scenario consists of examining problem
families, and we provide empirical evidence showing real effort saving
properties for three such families.

1 Introduction

Estimation of Distribution Algorithms (EDAs) have been established as a strong
competitor to Evolutionary Algorithms (EAs) and other bio-inspired techniques
for solving complex combinatorial problems [8]. EDAs are similar to Genetic
Algorithms (GAs), but replace the combination and mutation phases with a
probabilistic model building and sampling phase. It has been shown that EDAs
can outperform GAs on a range of problems. In addition to strong performance,
another advantage of EDAs is the potential for the analysis of the probabilistic
models constructed at each generation. Model analysis can yield insights into a
target problem allowing for tuning of EDA parameters, or indeed the algorithm
itself, potentially saving computation effort in future instances.

Recently, we have shown the potential for EDAs, combined with aspects of
model checking, to detect faults in concurrent software by sampling the state-
space of the program intelligently [11,12]. Using a customised version of N-gram
GP [9], we have achieved greater performance than a number of traditional
algorithms, GAs and Ant Colony Optimisation (ACO) on a wide range of prob-
lems, including programs expressed in industrial languages such as Java. For

M.B. Cohen and M. Ó Cinnéide (Eds.): SSBSE 2011, LNCS 6956, pp. 97–111, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

98 J. Staunton and J.A. Clark

large problems, exploring the state-space can become expensive, leading to a
longer runtime and the potential exhaustion of resources. In order to combat
this effect, we propose using information, specifically information from the mod-
els constructed, from earlier executions of the EDA in future executions in an
attempt to save computational effort. We term this approach “model reuse”.

In this work, we outline practical scenarios related to detecting faults in con-
current software in which model reuse could potentially save computation effort.
These scenarios could potentially be extended to scenarios involving sequen-
tial software, and even hardware systems. We then provide empirical evidence
showing the potential of model reuse with regards to detecting faults in problem
families. A problem family is a program or system that can be scaled up or down
with respect to some parameter, typically the number of processes within the
system. Our system is implemented using the ECJ evolutionary framework [7]
and the HSF-SPIN model checker [5]. To our knowledge, this is the first instance
of model analysis being used to save computational effort, and therefore lower
cost, in the Search-Based Software Engineering (SBSE) domain.

This paper is structured as follows: Section 2 gives a brief overview of how
EDAs and the EDA-based model checking technique work. Section 3 describes
the concept of model reuse, along with a number of practical scenarios in which
model reuse could reduce computational effort. Section 4 describes empirical
work showing the potential for model reuse in practical scenarios. We conclude
the paper with a summary and outline future work in Section 5.

2 EDA-Based Model Checking

2.1 EDAs

Estimation of Distribution Algorithms (EDAs) are population-based probabilis-
tic search techniques that search solution spaces by learning and sampling proba-
bilistic models [8]. EDAs iterate over successive populations or bags of candidate
solutions to a problem. Each population is sometimes referred to as a genera-
tion. To construct a successor population, EDAs build a probabilistic model of
promising solutions from the current population and then sample that model to
generate new individuals. The newly generated individuals replace individuals in
the current population to create the new population according to some replace-
ment policy. An example replacement policy is to replace half of the old popula-
tion with new individuals. The initial population can be generated randomly, or
seeded with previously best known solutions. The algorithm terminates when a
termination criterion is met, typically when a certain number of generations are
reached or a good enough solution has been found.

The pseudocode of a basic EDA algorithm is shown in Algorithm 1. Readers
who are familiar with Genetic Algorithm (GA) literature can view EDAs as
similar to a GA with the crossover and mutation operators replaced with the
model building and sampling steps. EDAs can be seen as strategically sampling
the solution space in an attempt to find a “good” solution whilst learning a
model of “good” solutions along the way. EDAs are sometimes referred to as

Applications of Model Reuse When Using Estimation of Distribution 99

Algorithm 1. Pseudocode for basic EDA
P = InitialPopulation();
evaluate(P);
while not(termination criterion) do

S = SelectPromisingSolutions(P);
M = UpdateModelUsingSolutions(S);
N = SampleFromModel(M);
P = ReplaceIndividuals(N);
evaluate(P);

end while

Probabilistic Model-Building Genetic Algorithms (PMBGAs), a full overview of
which can be found in [8].

2.2 Searching State-Spaces with EDAs

To search for concurrent faults using EDAs, we use aspects of model checking.
Model Checking is a technique for analysing reactive concurrent systems [4]. A
model checking tool can automatically verify that a given specification is satisfied
by a model of a system. A model checking tool achieves this by taking a descrip-
tion of a system and a specification, and then exhaustively checks all possible be-
haviours of that system to determine if the specification is violated. The descrip-
tion of the system can be in a number of formats, including being expressed in
industrial languages such as Java. Specifications are given as a set of properties
and are typically expressed in a formal language such as Linear Temporal Logic
(LTL). Example specifications include “The system must not deadlock” and “The
server must respond once a request has been made by a client”.

A possible behaviour of a system is typically referred to as a path. A path p
is a sequence of states which begins in an initial state of the system/program,
and ends in either a terminal state (a state from which no transition can occur)
or a state previously encountered on p. A path can also be seen as a sequence
of actions causing transitions between states. A transition system/state space is
shown in Figure 1, showing all of the main features pertinent to this work. The
goal of a model checking tool is to find a path that violates a given specification,
known as a “counterexample”. This goal is typically achieved using a Depth-first
Search. If no such path exists in the system after an exhaustive check, then the
system is said to satisfy the specification. For large systems, however, it is often
impossible to check all possible paths due to a lack of time and memory. This
is known as the state-space explosion problem [4]. In these situations, it may
suffice to detect a counterexample rather than check the system exhaustively.
For this purpose, a number of heuristic mechanisms exist. Best-first Search for
instance expands states during the search in an order determined by a heuristic
[5]. Heuristics exist for searching for a variety of faults [6,5], including deadlock
and violations of LTL formulae. Counterexamples with fewer states are often pre-
ferred for debugging purposes, as superfluous transitions are eliminated. To this
end techniques including A* search can be used that penalise longer paths [10].

100 J. Staunton and J.A. Clark

(T, T)

(L, T) (T, L)

(LR, T) (L, L) (T, LR)

Pickup Left Fork

Pickup Left Fork

Pickup Right Fork

Pickup Right Fork

Pickup Left Fork

Pickup Left Fork

Initial State

Error State

Counterexample/Path

Put down both forks

Put down both forks

Fig. 1. Figure of a Dining Philosopher transition system/state space visualised as a
digraph. States are shown as circles, with edges between them labelled with actions on
the left. The path highlighted is a counterexample that leads to a deadlock state.

Metaheuristic mechanisms have been shown to be promising when used to de-
tect faults in concurrent software/systems. Genetic Algorithms have been shown
to be effective at detecting deadlock in Java programs [3]. Ant Colony Optimisa-
tion has also been shown to be effective at detecting a variety of different errors
types, including deadlock and LTL formulae violations [1,2], in Promela models.
Recently, we have shown how an EDA-based model checking algorithm based
upon N-gram GP can be used to discover short errors in concurrent systems
[11,12]. Using this work, we show how the algorithm described in [11,12] can be
modified to allow for information in previous runs to save computational effort
in later runs. Our system is implemented using ECJ [7] and HSF-SPIN [5]. HSF-
SPIN is a model checking framework that analyses Promela specifications, and
implements a variety of heuristics for checking a range of properties.

Applications of Model Reuse When Using Estimation of Distribution 101

2.3 Brief Overview of EDA-Based Model Checking

Before a description of the technique is given, it helps to summarise the overall
theme. The goal of the EDA is to detect a path in the transition system which
leads to a fault. To this end, the EDA samples a set of paths from the transition
system (referred to as a population) and selects a subset of “fit” paths determined
by a fitness function. Using the individuals in the fit subset, a probabilistic model
is constructed. The model is then sampled in order to construct new paths which
replace current members of the population. In order to generate new paths, the
model is built so that it can answer the following the question. Given the n most
recent actions that have occurred on the path currently under construction, by
what distribution should the next action be selected? The model can be thought
of as a strategy for navigating a transition system.

Solution Space. In order to encode paths in the transition system, we use a
simple string representation. Paths in a transition system can be seen as a se-
quence of actions causing transitions between states. The alphabet of the strings
used in this work is the set of all actions possible in the transition system. In
this work, the alphabet consists of information gathered by HSF-SPIN whilst
constructing the transition system. Examples of the alphabet members used in
this work can be found in Figure 2, which shows a typical path through a Dining
Philosophers transition system. The alphabet members do not refer to specific
philosophers, but instead refer to actions that can be performed by any one of
the philosophers in the system. By modelling paths through a transition sys-
tem without referring to specific processes, sequences of actions regardless of
which processes executed them are modelled. This represents a minor abstrac-
tion from modelling actions performed by specific processes, reducing the size of
the alphabet and therefore reducing the solution space searched by the EDA.

1 . (NULL TRANSITION)
2 . (models/ deadlock . ph i l o s oph e r s . noloop . prm : 3 2) (break)
3 . (models/ deadlock . ph i l o s oph e r s . noloop . prm : 1 2) (l e f t ? fo rk)
4 . (models/ deadlock . ph i l o s oph e r s . noloop . prm : 1 2) (l e f t ? fo rk)

Fig. 2. A typical trace/string/path from HSF-SPIN on the Dining Philosopher problem
with 2 philosophers. This trace ends in a deadlocked state, because all the philosophers
have picked up their left fork.

Modelling Paths. In order to model paths in the transition system, we use
a customised version of N-gram GP [9]. An n-gram is a subsequence of length
n from a longer sequence. N-gram GP learns the joint probabilities of fit string
subsequences of length n. The rationale is that N-gram GP is modelling a strat-
egy to use whilst exploring a transition system. The n-grams are seen as a recent
history of actions on a particular path. The distribution associated with the n-
gram in the probabilistic model describes the actions that are most likely to
minimise a fitness function, hopefully leading to a counterexample. The model

102 J. Staunton and J.A. Clark

is “queried” with n-grams during the sampling phase in order to probabilistically
choose actions that are more likely to lead to a fault.

For each generation a set of “fit” paths is selected using truncation selection
and the fitness function described later in this work. In order the learn the model
or strategy from a set of fit paths, a simple sliding window frequency count algo-
rithm is used. Once the paths are selected, a frequency count of actions occurring
after each unique n-gram in the paths is performed. The frequency count is then
normalised to obtain distributions for each n-gram observed. A simple illustra-
tion of this process can be seen in Figure 3. In addition to learning n-gram
distributions, in this work the distributions for (n-1)-grams and (n-2)-grams etc.
down to 1-grams are also constructed and these additional distributions are used
during the sampling phase.

Fig. 3. Illustration of the N-gram learning process (2-grams in this case). A frequency
count is performed for each unique N-gram in the selected set of strings (only one
string is shown). The boxes represent a basic sliding window algorithm, with frequency
counts display on the right.

Sampling the Model. Once a set of individuals are selected and a model
created, the model is then sampled to create the next generation. A number
of paths are generated from the model to replace individuals in the current
generation according to some policy. In this work, we generate the entire new
generation using newly sampled individuals. To generate a path in the transition
system, the algorithm starts with the initial state of the transition system and
an empty path. Then, the algorithm must choose an action to execute from
the available actions in the current state. To do this, the model is queried with
the most recent n moves from the path, in this case an empty string, and a
distribution is returned. From the initial state, a set of actions are possible,
each of which leads to a potentially new state. Using the distribution obtained
from the model for the current n-gram, an action is probabilistically chosen and
executed. If more than one process is in a position to execute the chosen action,
then a single process is selected at random from those that can execute the chosen

Applications of Model Reuse When Using Estimation of Distribution 103

action at random to progress. This leads to a new state s. The action chosen is
appended to the current path, and the process is repeated using the new state
and the new path. This process repeats until either an error is found, a terminal
state is reached or a state is reached that has been previously encountered on
the current path.

N-gram GP was initially used to evolve programs, allowing any sequence of
alphabet members to constitute a program. However, in this work we must gen-
erate valid paths in the transition system. If we used the process described above
without modification, it is entirely possible to generate invalid paths in the tran-
sition system. There are a number of special cases when generating a path, and
these are described and handled in [11]. Mutation is implemented by taking an
arbitrary choice every m transitions according to some parameter.

3 Model Reuse

A typical GA run will produce a sequence of bags of solutions to a target problem.
In the case of detecting concurrent faults, this will amount to sets of paths within
the transition system which may or may not lead to an error. Whilst it is possible
to use some of these solutions to seed future runs, even a small change to the
target problem could destroy the applicability of these solutions. Similarly, Ant
Colony Optimisation constructs pheromone trails that may lose relevance once
the target problem has been changed. The EDA-based model checking technique,
on the other hand, produces a strategy for navigating a transition system in
addition to structures that represent solutions. We believe that with some simple
steps the models can be used to reduce computational effort on future instances
of similar problems. Outlined below are a number of potential practical scenarios
for model reuse that could greatly reduce computational effort.

3.1 Reuse during Debugging

The first proposed scenario for model reuse is during the testing/debugging
phases of the development life cycle. It is plausible that during any execution
of the EDA a constructed model can represent a strategy for finding not just a
single error but multiple errors, as well as “problem areas” of the state space.
If a single error has been found in an execution e on the ith revision of the
system, e could be halted in order to fix the bug. This would create the i + 1th
revision. Once the error has been corrected, execution can continue using the
model constructed in the last generation of e, labelled m. It is also plausible
that erroneous actions from the ith revision of the system in m can be mapped
to the corrected actions in the revised system, allowing for the EDA to focus on
these areas initially. This may potentially eliminate computation if errors still
exist in the area of the state space where the initial error was found. Equally, if a
practitioner is confident that the error has been corrected, the area of the state
space can be added to a tabu list, allowing the EDA to focus effort elsewhere.

104 J. Staunton and J.A. Clark

3.2 Reuse during Refinement

Another potential scenario for reusing models is during refinement. During im-
plementation, versions of the system are refined to meet various ends, including
performance improvements and bug fixing. Refinements may increase the size of
the transition system enormously. In order to combat this, it is plausible that
the EDA can be executed on the more abstract version of the system/software
in order to determine potential problem areas that rank highly with the fit-
ness function. The models constructed during these initial explorations can then
potentially be used to explore future refinements of the system. If refining the
system increases the state space size significantly, then significant computational
effort could be spared. There is also the potential to map actions from the ab-
stract system to actions in the refined system, potentially increasing the saving
of computational effort.

3.3 Reuse When Tackling Problem Families

We have speculated in previous papers [11,12] that the EDA-based technique is
learning effective strategies for navigating the state spaces of problem families,
rather than just the problem instance itself. A problem family is simply a sys-
tem which can be scaled up and down respective to some parameter, typically
the number of processes/threads in the system/software. This opens up the pos-
sibility of models learned whilst tackling small instances of a problem family
can be used to save effort whilst finding errors in larger instances. Finding the
same error in a number of instances of a problem family can provide additional
debugging information, potentially shortening the debugging life cycle. Problem
families arise frequently in practical situations [4], in both hardware and software
systems.

In this work, we provide empirical evidence showing how computational effort
can be saved when detecting errors in problem families. Extra information can
be gained from detecting faults in varying instances of a problem family, and this
can save time and ultimately lower costs when building and debugging practical
systems.

4 Experimentation with Problem Families

4.1 Sample Models

In order to demonstrate the ability for model reuse, we aim to show that the EDA
can learn structures in three problem families. The three test cases used in this
work are listed in Table 1. The test cases are diverse in the system description
as well as the property under test. The dining philosophers model is a classic
problem in which n philosophers contend over forks in order to eat from a shared
meal in the middle. n philosophers are sat around a circular table with n forks,
one between each adjacent pair of philosophers. Each philosopher requires two
forks in order to eat. Each philosopher picks up the fork to the left of them,

Applications of Model Reuse When Using Estimation of Distribution 105

then the fork to the right, eats some food, then releases the right and left fork
in that order. With this behaviour, there is the possibility of deadlock as all
philosophers can pick up the left fork denying access to the right fork for every
philosopher. The EDA will be aiming to find deadlocked states within the dining
philosopher model.

Table 1. Models and the respective properties violated

Model Processes LoC Property

Dining Philosopher No Loopn n + 1 35 Deadlock

Leader n n + 1 117 Assertion

GIOP n n + 6 740 �(p → ♦q)

For the second test case, a leader election system is modelled by the Leader
model. In this model, n processes must agree on a common leader process in a
unidirectional ring configuration. The faulty protocol used to establish a leader
allows members of the ring to disagree on a leader. An assertion represents this
specification, and the EDA algorithm will be aiming to find violations of this
assertion. The final test case implements the CORBA Global Inter-ORB protocol
(GIOP) with n clients using a single server configuration. The system violates
a property specified in LTL. This model is particularly large, and is reported as
difficult to find errors in for large n (large n being n >= 10) [2,12].

In this set of examples, we have a deadlock, an assertion and an LTL violation
in order to show the applicability of the technique to errors other than deadlock.
Whilst the Dining Philosophers problem is a well studied toy problem, the GIOP
model is derived from an industrial source, adding credibility to using this ap-
proach in industrial scenarios. Finally, whilst the Dining Philosophers model is
symmetrical in nature (all the processes have the same description), the GIOP
model is asymmetric, adding further weight to the empirical argument that the
technique could be effective in industrial scenarios.

4.2 Heuristics

The fitness function detailed in Algorithm 2 is used to rank solutions and makes
use of heuristic information implemented in the HSF-SPIN framework [5]. The
heuristics implemented in HSF-SPIN give information about a single state only.
Algorithm 3 combines the information from the individual states in a path to
give a heuristic measure for the entire path. This is done by simply summing
the heuristic information of all the states along the path. The algorithm aims to
minimise this cumulative total, whilst favouring shorter paths and paths with
errors. The same heuristic is used on all of the runs in this work.

HSF-SPIN implements a variety of heuristics which can be used on various
types of properties. In Algorithm 3, the s.HSFSPINMetric is calculated using
the following heuristics. We use the active processes heuristic for finding dead-
lock in the Dining Philosophers model [6,5]. The active processes heuristic, when
given a state, returns the number of processes that can progress in that state.

106 J. Staunton and J.A. Clark

Algorithm 2. Fitness function used to rank individuals. Individuals that are
“closer” to violating a property are favoured.
Require: A, B are Individuals;

if A.error found �= B.error found then
return IndividualWithErrorFound(A,B);

else if A.error found andB.error found then
return IndividualWithShortestPath(A,B);

else
return IndividualWithLowestHSFSPINMetric(A,B);

end if

Algorithm 3. HSF-SPIN heuristic metric algorithm.
Require: I is an Individual;

aggregateMetric = 0;
for all States s ∈ I.Path do

aggregateMetric += s.HSFSPINMetric;
end for
return aggregateMetric;

When looking for assertion violations in the Leader model, the formula-based
heuristic is used [6,5]. The formula-based heuristic estimates how close a state is
to violating a formula by examining the satisfaction of constituent sub-formulae
in that state. And finally, when searching for LTL formulae violations, we use the
HSF-SPIN distance-to-endstate heuristic [6,5]. The distance-to-endstate heuris-
tic estimates how many transitions a state is away from the end state of a product
Büchi automaton, a structure used when verifying LTL properties and imple-
mented in HSF-SPIN. Put simply, the distance-to-endstate heuristic estimates
how far a state is away from violating the LTL specification.

4.3 Parameters

The parameters for all of the executions are derived from small scale empirical
work, as well as experimental results from our previous publications [11,12]. We
expect that these parameters may work well on a wide variety of problems, but
some problems may need extra tuning. An n-gram length of 3 was used, meaning
models for 3-grams, 2-grams and 1-grams are constructed from each generation.
The model is completely destroyed and rebuilt from the selected individuals at
each generation. This also means that the reused model is essentially a seed
model for the runs on larger instances. The population size for each genera-
tion was set to 150. This means that 150 paths are sampled from the model to
build each generation. The mutation parameter for these experiments is set to
0.001, meaning that on average 1 in 1000 transition choices are made randomly,
disregarding the model. The elitism parameter was set to 1, meaning that the
top individual from the population is copied to the next generation. In order to
build the model from which the next generation is sampled, truncation selection
selects the top 20% of individuals from the population. This means that the top

Applications of Model Reuse When Using Estimation of Distribution 107

30 individuals from the current population are used to build the EDA/N-gram
model. All individuals in the population are replaced at each generation with
individuals sampled from the model. The algorithm terminates once it reaches
200 generations, allowing for the potential optimisation of counterexamples. Ini-
tially, the model is a blank model meaning that all the paths evaluated during
the first generation are completely random.

4.4 Smaller Instances

In order to learn strategies that can be used on any instance of a particular
problem family, we ran the EDA algorithm on a small instance of each problem
family. For the Dining Philosophers problem family, a small instance is a system
with 32 philosophers. For the Leader model, we use a unidirectional ring with
3 members. And finally, for the GIOP model, we use a single server 2 client
configuration. For each model, we allow the algorithm to run for a fixed number
of generations, allowing execution to continue if an error is found in order to
optimise the model and find shorter counterexamples. The model constructed
from the final generation of a single execution is the model used in the subsequent
executions on the larger instances. The model is simply serialised out to a file
to be used as input to a future run. At this stage, there is the possibility of
inspecting the model in order to make improvements. In this work however, the
model is used verbatim in the execution on the larger model. Models from various
runs can potentially be archived for use in future work. Some measurements from
these initial runs can be found in Table 2. We have proven empirically in earlier
papers [11,12] that the EDA is capable of consistently finding good strategies in
the time scales shown in Table 2. The numbers below the First Error header are
numbers relating to the first error found during the execution. The best error
table shows the numbers related to the shortest error found.

Table 2. Measurements from the initial runs

Measurement Dining Philosophers Leader GIOP

First error:

Generations 3 0 0
Path Length 34 35 59

States 73,058 35 729
Time 27.45s 0.3s 0.3s

Best error:

Generations 3 0 17
Path Length 34 32 21

States 73,058 2,080 80,478
Time 27.45s 0.63s 3m8s

Total for run:

Generations 50 200 200
States 1,150,400 1,040,495 931,691
Time 13m30s 19m47s 37m33s

108 J. Staunton and J.A. Clark

4.5 Larger Instances

The larger instances of the problem families consist of the following. For the
Dining Philosopher problem family, we used a 128 philosopher system. For the
Leader system, we used a unidirectional ring with 10 voters. Unfortunately it
is not possible to scale this model further due to implementation limitations
on the part of the system, not the EDA. And finally, for the GIOP system, an
instance with a single server and 20 clients is used. The sizes of both the Dining
Philosopher system and the GIOP system were chosen due to the availability of
measurements on those systems without model reuse. We are confident that the
technique will scale beyond these numbers, but due to time contraints we could
not explore larger instances.

The statistics shown in Tables 3, 4 and 5 are taken from 100 executions on
the Dining Philosopher, Leader and GIOP systems respectively. Each of the
100 runs used the single model constructed in the initial run stage described in
Section 4.4. Any statistics in the “n/m” format are stating the “median/mean”.
In order to compare total amounts of computation, the “With Model Reuse”
column in the tables includes the computation up to the best error found in the
initial runs. We argue that this is a fair definition of the computation involved in
building a model initially because practitioners are likely to limit the number of
generations to find a good enough error, especially if the EDA-based technique
is used regularly during a development life cycle. The “Without Initial Run”
column shows the numbers of the reuse run only, without the computation of
the strategy on the smaller instance. Statistical comparisons with the results
obtained without model reuse are indicated with plus (significant difference)
and minus (insignificant difference) symbols. In order to compare the model
reuse runs against the non-reuse runs, we use the Wilcoxon rank-sum test with
a significance level of α = 0.05.

Table 3. Measurements from the model reuse runs on the Dining Philosophers 128
system

Measurement Without Model Reuse With Model Reuse Without Initial Run
First error:

Generations 19/19.4(+) 3/3 0/0
Path Length 130/130(-) 130/130 130/130

States 1,831,394/1,898,568.21(+) 73,831/74,281.1 773/1,223.1
Time 47m24s/1h14m32s(+) 29.572s/30.057s 2.122s/2.606s

Best error:
Generations 19/19.4(+) 3/3 0/0
Path Length 130/130(-) 130/130 130/130

States 1,831,394/1,898,568.21(+) 73,831/74,281.1 773/1,223.1
Time 47m24s/1h14m32s(+) 29.572s/30.057s 2.122s/2.606s

The results in Table 3 show statistics for the Dining Philosopher problem
family. In the Dining Philosopher system, there is a single error. The error can
be reached in multiple ways but is always at the same depth/path length. This
explains the similarity between the first and best results. From the numbers
achieved, it is clear that model reuse can have a huge impact on the amount of
computational effort required to find errors in the larger instance. The mean time

Applications of Model Reuse When Using Estimation of Distribution 109

Table 4. Measurements from the model reuse runs on the Leader 10 system

Measurement Without Model Reuse With Model Reuse Without Initial Run
First error:

Generations 0/0(-) 0/0 0/0
Path Length 84/82.75(+) 71/71.21 71/71.21

States 84/82.75(+) 2,151/2,151.21 71/71.21
Time 0.239s/0.622s(+) 1.127s/1.606s 0.497s/0.976s

Best error:
Generations 17/20.26(-) 15/19.23 15/19.23
Path Length 36/35.45(-) 36/35.47 36/35.47

States 193,616/225,050.01(-) 163,429/209,150.82 161,349/207,070.82
Time 22m51s/25m57s(+) 4m7s/5m19s 4m6s/5m18s

Table 5. Measurements from the model reuse runs on the GIOP 20 system

Measurement Without Model Reuse With Model Reuse Without Initial Run
First error:

Generations 0/0.01(+) 17/17 0/0
Path Length 132/150.09(+) 61/73.37 61/73.37

States 40,421/60,681.01(+) 90,773/98,194.14 10,295/17,716.14
Time 1m26s/2m1s(+) 3m28s/3m46s 19.56s/38.017s

Best error:
Generations 30/28.71(+) 20/28.21 3/11.21
Path Length 31/31.21+) 26/25.6 26/25.6

States 13,068,139/12,337,306(+) 1,495,644/4,942,260.07 1,415,166/4,861,782.07
Time 6h47m16s/8h13m24s(+) 57m34s/3h12m14s 54m26s/3h9m6s

to discover an error is reduced by over 99%. This means that rather than wait an
hour for additional information regarding the error, information can be obtained
in a mere 30 seconds, potentially reducing time spent in the debugging cycle
substantially in this case. We expected a large gain on the Dining Philosopher
family as it is a symmetrical problem. The strategy to finding an error in the
Dining Philosopher is trivial, “Always choose the action that is Pickup the Left
Fork”.

The results in Table 4 show statistics for the Leader election problem family.
In this problem family, the results are less impressive than that of the Dining
Philosopher family. We attribute this to the fact that the EDA can find a short
counterexample with little computation, often in the first generation before any
strategy building has taken place. This suggests that the model is trivial and
does not require mechanisms to reduce computational effort. However, we still
obtain a significant speed increase in terms of time spent searching the transition
system. We attribute this to the EDA exploring a narrower area of the state space
on the larger instance due to the initial strategy constructed from the smaller
instance. This may avoid expanding useless parts of the search space, resulting
in a reduction in CPU and memory usage.

The most impressive results are listed in Table 5 for the GIOP problem family.
We expected poorer results on this model due to the description of the system
being asymmetric. However, not only is a 62% reduction of mean time in finding
a best error achieved (86% reduction in the median time), the quality of the
solutions discovered are also improved. The improvement in the path length of
the solutions found allow a practitioner to instantly assess the properties of the
error. In this instance, the paths are of a similar length meaning it is highly

110 J. Staunton and J.A. Clark

likely that only a subset of the processes in the system are required to cause
the error. If all 20 clients were involved, you can expect a substantial increase
in the path length over the 2 client model. The Dining Philosopher system,
for instance, requires that all processes perform actions to cause a deadlock,
and this is reflected by the increase in path length from the 32 philosopher
system to the 128 philosopher system. Model reuse and the ability of the EDA
to find and optimise counterexamples efficiently [11,12] could make the EDA-
based technique a valuable tool for practitioners, as useful information such as
this could be revealed along with other insights. Furthermore, the practitioner
could gain this information with zero effort, as there is the potential for this
approach to be automated.

5 Conclusion

To summarise, we have presented an approach for saving computational and
manual effort when building and debugging concurrent systems using the EDA-
based technique described in [11,12]. This is achieved by reusing information,
specifically information from the models constructed, from an earlier execution
to aid the search in a future execution. The analysis and reuse of modelling
information learned by EDAs is an often cited advantage [8], and we have used
this advantage in a practical scenario. Using this new approach, we have shown
that it is possible to save computational effort when analysing problem fami-
lies, and described other scenarios where effort could potentially be saved. Our
results show that information can been gained using an insignificant amount of
additional computational resources. This information can yield insights that can
save time in the debugging phase, which could ultimately lower development
costs. The scenario we have tested in this paper could potentially be automated,
meaning no manual effort would be required to gain additional information. At
the time of writing, we believe that this is the first application of EDA model
analysis/reuse in the SBSE domain.

We believe that there is ample scope for further work in this area. The sce-
narios for model reuse described and tested in this work are likely a subset of
what is possible. There may well be other scenarios in which this work could be
beneficial, and not just in the concurrent software testing domain. N-gram GP
is essentially a sequence modelling algorithm, and approaches like this could be
used wherever the solution space can be represented as a sequence. This could
include problems that can be couched as graph search. We feel that the EDA de-
scribed in [11,12] can be applied to stress testing. In this application domain, the
EDA could be used to learn problematic sequences that cause the performance
of systems to degrade or indeed completely fail. Augmenting the sequence mod-
elling used in our work is another potential avenue of future research. We have
previously outlined a number of ways in which N-gram GP can be improved to
further increase efficiency when tackling large problems [11]. Using an entirely
different sequence modelling approach may also increase the efficacy of the EDA
in the concurrent software testing domain.

Applications of Model Reuse When Using Estimation of Distribution 111

Acknowledgments. This work is supported by an EPSRC grant (EP/
D050618/1), SEBASE: Software Engineering By Automated SEarch.

References

1. Alba, E., Chicano, F.: Finding safety errors with ACO. In: Proceedings of the 9th
Annual Conference on Genetic and Evolutionary Computation, pp. 1066–1073.
ACM Press, New York (2007)

2. Alba, E., Chicano, F.: Searching for liveness property violations in concurrent
systems with ACO. In: Proceedings of the 10th Annual Conference on Genetic and
Evolutionary Computation, pp. 1727–1734. ACM, New York (2008)

3. Alba, E., Chicano, F., Ferreira, M., Gomez-Pulido, J.: Finding deadlocks in large
concurrent java programs using genetic algorithms. In: Proceedings of the 10th
Annual Conference on Genetic and Evolutionary Computation, pp. 1735–1742.
ACM, New York (2008)

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (2000)

5. Edelkamp, S., Lafuente, A.L., Leue, S.: Directed explicit model checking with HSF-
SPIN. In: Proceedings of the 8th International SPIN Workshop on Model Checking
of Software, pp. 57–79. Springer-Verlag New York, Inc., New York (2001)

6. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Protocol verification with heuristic
search. In: AAAI-Spring Symposium on Model-based Validation Intelligence, pp.
75–83 (2001)

7. Luke, S., Panait, L., Balan, G., et al.: Ecj 16: A java-based evolutionary computa-
tion research system (2007)

8. Pelikan, M., Goldberg, D.E., Lobo, F.G.: A survey of optimization by building and
using probabilistic models. Computational Optimization and Applications 21(1),
5–20 (2002)

9. Poli, R., McPhee, N.F.: A linear estimation-of-distribution GP system. In: O’Neill,
M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa,
A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 206–217. Springer,
Heidelberg (2008)

10. Russell, S.J., Norvig, P., Canny, J.F., Malik, J., Edwards, D.D.: Artificial intelli-
gence: a modern approach. Prentice hall, Englewood Cliffs (1995)

11. Staunton, J., Clark, J.A.: Searching for safety violations using estimation of distri-
bution algorithms. In: IEEE International Conference on Software Testing, Verifi-
cation, and Validation Workshop, pp. 212–221 (2010)

12. Staunton, S., Clark, J.A.: Finding short counterexamples in promela models using
estimation of distribution algorithms. To appear: Search-based Software Engineer-
ing Track, Genetic and Evolutionary Computation Conference (2011)

	Applications of Model Reuse When Using Estimation of Distribution Algorithms to Test Concurrent Software
	Introduction
	EDA-Based Model Checking
	EDAs
	Searching State-Spaces with EDAs
	Brief Overview of EDA-Based Model Checking

	Model Reuse
	Reuse during Debugging
	Reuse during Refinement
	Reuse When Tackling Problem Families

	Experimentation with Problem Families
	Sample Models
	Heuristics
	Parameters
	Smaller Instances
	Larger Instances

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

