
Finding Short Counterexamples in Promela Models Using
Estimation of Distribution Algorithms

Jan Staunton
Department of Computer Science

University of York
York, United Kingdom YO10 5GH

jps@cs.york.ac.uk

John A. Clark
Department of Computer Science

University of York
York, United Kingdom YO10 5GH

jac@cs.york.ac.uk

ABSTRACT
Model checking is an automatic technique that exhaustively
checks the state space of a system/program to prove if a
specification is satisfied. If an error is detected, the precise
circumstances of the issue are returned to the user in the
form of a counterexample. Exhaustively checking the state
space of a large system, a system with many concurrent
components for example, is often intractable. In this sce-
nario, heuristic mechanisms can be employed with the task
of detecting errors rather than proving the system is correct.
Recently, a metaheuristic EDA-based approach to detecting
deadlock in multithreaded Java software has shown great
promise in this area. In this paper, we extend that work to
search Promela models for counterexamples. We show that
the EDA-based technique can find errors where algorithms
such as A* search fail. We also show the ability of the EDA
to find shorter errors than those discovered by traditional
heuristic methods.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication—model checking ; I.2.8 [Artificial Intelligence]:
Problem Solving, Control Methods, and Search—Heuristic
methods

General Terms
Verification, Algorithms, Experimentation

Keywords
Estimation of Distribution Algorithms, Metaheuristics, Model
Checking, Safety, Liveness, HSF-SPIN, SPIN

1. INTRODUCTION
Model checking is an automatic technique for verifying

concurrent reactive systems [9]. Given a description of a sys-
tem and a specification of some properties, a model checking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

algorithm is executed that automatically determines whether
the system satisfies the given specification. The model checker
exhaustively checks the system, thus proving that the system
satisfies the specification. If a violation of the specification is
found, a counterexample is returned to the user along with
a execution trace that describes the precise circumstances of
the fault. This information can then be used to refine the
system and/or specification.

For some systems, however, exhaustive verification may
be intractable. Systems with many concurrent processes, for
instance, can have a large number of states causing a model
checker to fail due to lack of resources. The size of the state
space typically grows exponentially with respect to the num-
ber of concurrent processes in a system. This is known as the
state space explosion problem, and places limitations on the
size of systems that can be verified by a model checker. De-
spite a number of sophisticated techniques to mitigate this
problem whilst preserving the exhaustive property of model
checking, verification of some large systems is still out of
reach.

As well as exhaustive verification, model checkers can be
used in a bug finding capacity. Using heuristic search tech-
niques, a model checker can focus the exploration of a state
space on areas of the state space more likely to contain
an error. This can reveal errors in a model/specification
without exploring the entire state space, using limited time
and resources. This approach to model checking is analo-
gous to testing the system. In addition to heuristic tech-
niques, metaheuristic techniques have shown some promise
when applied to model checking. Genetic Algorithms, Ant
Colony Optimisation and most recently Estimation of Dis-
tribution Algorithms have all shown great promise within
the model checking problem domain. In this work, we apply
a promising EDA-based model checking technique to the
HSF-SPIN model checker, a heuristic variant of the SPIN
model checker, to search for violations of a variety of prop-
erties in a range of models. Some of the models used in
our experiments have been derived from industrial samples.
We also demonstrate the ability of the EDA to optimise the
quality of counterexamples, by finding shorter error trails
than other prominent methods.

This paper is structured as follows: Section 2 gives a brief
overview of model checking. Section 3 gives an overview of
the EDA-based model checking technique. Section 4 reports
the empirical work showing the ability of the EDA to find
and optimise the length of found counterexamples. Finally,
a summary and conclusion is given in Section 5.

1923

2. MODEL CHECKING
Model Checking is a technique for analysing reactive con-

current systems [9]. A model checking tool can automati-
cally verify that a given specification is satisfied by a model
of a system. A model of a system can be expressed in a num-
ber of ways, or be automatically extracted from common in-
dustry languages such as Java. From the model of a system,
a state space can be generated. The state space of a sys-
tem with many processes, for instance, can be constructed
using the product of the state spaces of each process. Not
all states will be reachable from the initial state, however,
given locking and other phenomena. The state of a process
consists of the current “program counter”, the values of any
variables local to the process and any shared memory. The
actions of a single thread alter the state of that thread, and
consequently the state of the entire system. The actions of
a thread are said to cause a transition between global states
in the state space. The state space generated from a model
of a system, or indeed source code, is referred to as a tran-
sition system [6]. A transition system is typically visualised
as a digraph, where the nodes are unique global states and
the edges are labelled with the actions that caused the tran-
sitions between them. A transition system has one or more
initial states, and may have zero or more terminal states
(states from which no transition is possible).

A path through a transition system can be viewed as a
sequence of states and/or actions and is equivalent to a po-
tential execution of the system. The specification is given
as a set of formalised properties that describe a set of paths.
A path that exists in a set described by a property is said
to satisfy that property. The types of properties that can
be verified are divided into two categories: safety proper-
ties and liveness properties [6]. Safety properties describe
requirements of the form “something bad does not happen”,
an example of which is the “the system does not deadlock”.
System invariants are also examples of safety properties.
Liveness properties describe requirements of the form“some-
thing good eventually does happen”, an example of which is
“the server always responds after being signalled”. A popu-
lar method of expressing these properties is by using Linear
Temporal Logic (LTL).

In order to check for violations of a specification expressed
in LTL, automata-based model checking is a typically imple-
mented. Most model checkers (including SPIN) create (at
least conceptually) a Büchi that is equivalent to the nega-
tion of the LTL formulae. A Büchi automaton differs from
regular finite automaton only in the acceptance condition.
Whereas regular finite automata accept strings that end in
an accepting state, Büchi automata require an infinite string
that visits an accepting state infinitely often. The negation
of the LTL formulae is used because typically the LTL for-
mulae describe the correct behaviour of the system, therefore
the negation of the formulae describe behaviours that should
never happen. The created Büchi automaton accepts paths
which violate the LTL specification. In the SPIN model
checker, the Büchi automaton is expressed using a never
claim and can be automatically created from the negation
of LTL formulae.

In order to verify that a specification is satisfied, a model
checker systematically examines all of the states (and there-
fore paths) of the synchronous product Büchi automaton
and the transition system. [9]. For safety properties, promi-
nent mechanisms include depth-first search, breadth-first

search and A*. For liveness properties, a nested depth-first
is typically used. A depth-first search is performed to find an
accepting state in the product automaton. Once an accept-
ing state has been found, a second depth-first search is per-
formed to find a cycle. Resource constraints, however, may
place a limit on the size of model that can be verified using
these techniques. The size of a state space for some trivial
examples can be huge, and the size typically increases expo-
nentially with the number of concurrent components in the
system. Size is typically measured in the number of states.
This issue is known as the state space explosion problem [9]
and is one of the major obstacles in model checking practi-
cal commercial software. Efforts have been made to reduce
the state space of a model. Techniques such as partial order
reduction [15, 21] and symbolic model checking [5, 14] can
reduce state space sizes significantly. Manual reductions in
state space size, such as abstracting away from superfluous
details, can also be employed.

In some situations, it may suffice to show the presence
of a violation rather than exhaustively check a model, em-
ploying a search algorithm that aims to search parts of the
state space that are more likely to contain an error. Such
algorithms rely on heuristics to guide the search process to
promising parts of the state space. An example of such an
algorithm is best-first search, which examines states in an
order determined by a heuristic. To produce shorter coun-
terexamples, heuristic algorithms such as A* search can be
used to optimise the length of the execution path. [9] and
[6] are excellent texts regarding the topic of model checking,
describing all of the issues mentioned above and more.

HSF-SPIN implements a particular method that can re-
duce computational effort whilst model checking, and that
method is exploited in this work. The detection and classi-
fication of strongly connected components within a negated
LTL Büchi automata equivalent can help detect irrelevant
paths in the product automata. A subset S of nodes in
a graph are strongly connected if for all nodes v and u in
S, there is a path from v to u, and a path from u to v.
A strongly connected component (SCC) is a strongly con-
nected set of nodes that is not linked to any other by a cycle.
The SCCs of a never claim can be computed in linear time,
and a library for doing so is provided in HSF-SPIN. The
library can also be used to classify certain types of SCC.

[11] describes a number of useful types of SCC. The first
is the N-SCC, an SCC with no accepting cycles. Second, the
P-SCC (partial SCC) an SCC with at least once cycle that
does not contain an accepting state, and one cycle that does
contain an accepting state. Finally, the F-SCC, in which all
cycles contain an accepting state. For liveness specifications
that contain N-SCCs and F-SCCs, once a cycle is found and
it is part of an F-SCC, then an error has been discovered due
to all cycles in an F-SCC being accepting. Accepting states
found in N-SCCs can be ignored because no accepting cy-
cles exist in N-SCCs, potentially saving some computational
effort. Classifying and exploiting SCCs seems to result in a
higher hit rate in the ACOhg algorithm [2].

Recently, there has been some work on applying meta-
heuristic search techniques to the model checking problem.
Early work reported by [4] and [12] study the use of Ge-
netic Algorithms (GAs) to find errors in systems. Recent
work [8, 1] details the use of Ant Colony Optimisation for
finding safety and liveness errors in large models, along with
work exploiting partial order reduction [7]. In addition to

1924

1 (NULL TRANSITION)
2 (models/ deadlock . ph i l o sophe r s . noloop . prm : 3 2) (break)
3 (models / deadlock . ph i l o sophe r s . noloop . prm : 1 2) (l e f t ? fo rk)
4 (models / deadlock . ph i l o sophe r s . noloop . prm : 1 2) (l e f t ? fo rk)

Figure 1: A typical trace/string/path from HSF-
SPIN on the Dining Philosopher problem with 2
philosophers. This trace ends in a deadlocked state,
because all the philosophers have picked up their left
fork

this, recently published work [20] shows the potential of Es-
timation of Distribution Algorithms for finding deadlock in
multithreaded Java software.

3. EDA-BASED MODEL CHECKING
An understanding of how Estimation of Distribution Al-

gorithms (EDAs) work at an abstract level is assumed and a
full description is not given here. For a full description of a
broad class of EDAs, we recommend reading [16]. What fol-
lows is a brief description of the EDA-based model checking
algorithm, which is described fully here [20].

3.1 Model and Solution Space
In order to model paths in the transition system, we use

a simple string representation. Paths in a transition system
can be seen as a sequence of actions causing transitions be-
tween states. The alphabet of the strings used in this work
is the set of all actions possible in the transition system. In
this work, the alphabet consists of information gathered by
HSF-SPIN whilst constructing the transition system. Exam-
ples of the alphabet members used in this work can be found
in Figure 1, which shows a typical path through a Dining
Philosophers transition system. The alphabet members do
not refer to specific philosophers, but instead refer to actions
that can be performed by any one of the philosophers in the
system. By modelling paths through a transition system
without referring to specific processes, sequences of actions
regardless of which processes executed them are modelled.
This represents a minor abstraction from modelling actions
performed by specific processes, reducing the size of the al-
phabet and therefore reducing the solution space searched
by the EDA.

3.2 Modelling Paths
In order to model paths in the transition system, we use

a customised version of N-gram GP [17]. An n-gram is a
subsequence of length n from a longer sequence. N-gram
GP learns the joint probabilities of fit string subsequences
of length n. The rationale is that N-gram GP is modelling
a strategy to use whilst exploring a transition system. The
n-grams are seen as a recent history of actions on a partic-
ular path. The distribution associated with the n-gram in
the probabilistic model describes the actions that are most
likely to minimise a fitness function, hopefully leading to a
counterexample. The model is “queried” with n-grams dur-
ing the sampling phase in order to probabilistically choose
actions that are more likely to lead to a fault.

For each generation a set of “fit” paths is selected using
truncation selection and the fitness function described later
in this work. In order the learn the model or strategy from
a set of fit paths, a simple sliding window frequency count
algorithm is used. Once the paths are selected, a frequency

count of actions occurring after each unique n-gram in the
paths is performed. The frequency count is then normalised
to obtain distributions for each n-gram observed. A sim-
ple illustration of this process can be seen in Figure 2. In
addition to learning 3-gram distributions, in this work the
distributions for 2-grams and 1-grams are also constructed
and these additional distributions are used during the sam-
pling phase.

B A B A B B

Current N-gram
Observed next choice

Frequencies

A B: A = 1

A B: A = 1
B A: B = 2

A B: A = 1, B = 1
B A: B = 2

Step q:

Step q + 1:

Step q + 2: B A B A B B
B A B A B B

B A B A B B B A: B = 1

B A: B = 1

Step q + 3:

Figure 2: Illustration of the N-gram learning pro-
cess (2-grams in this case). A frequency count is
performed for each unique N-gram in the selected
set of strings. The boxes represent a basic sliding
window algorithm, with frequency counts display on
the right.

3.3 Sampling the Model
Once a set of individuals are selected and a model created,

the model is then sampled to create the next generation. A
number of paths are generated from the model to replace
individuals in the current generation according to some pol-
icy. In this work, we generate the entire new generation
using newly sampled individuals. To generate a path in the
transition system, the algorithm starts with the initial state
of the transition system and an empty path. Then, the al-
gorithm must choose an action to execute from the available
actions in the current state. To do this, the model is queried
with the most recent n moves from the path, in this case an
empty string, and a distribution is returned. From the ini-
tial state, a set of actions are possible, each of which leads
to a potentially new state. Using the distribution obtained
from the model for the current n-gram, an action is proba-
bilistically chosen and executed. If more than one process
are in a position to execute the chosen action, then a single
process is selected at random to progress. This leads to a
new state s. The action chosen is appended to the current
path, and the process is repeated using the new state and
the new path. This process repeats until a non-accepting
terminal state is reached, a non-accepting cycle is detected,
or an error is detected.

N-gram GP was initially used to evolve programs, allowing
any sequence of alphabet members to constitute a program.
However, in this work we must generate valid paths in the
transition system. If we used the process described above
without modification, it is entirely possible to generate in-
valid paths in the transition system. We have a number
of special cases when generating a path, and these are de-
scribed and handled in [20].

3.4 Fitness function
In order to rank potential solution paths we use a fitness

1925

function that ranks the solutions for truncation selection,
employing a HSF-SPIN heuristic to do so. The pseudo-code
of our ranking function can be found in Algorithm 1. The fit-
ness functions compares two individuals, returning the “fit-
ter” individual. The fitness function firstly prefers paths
that contain errors to paths that do not contain an error. If
both paths contain an error, then the shorter path is pre-
ferred. If neither path contains an error, then the decision
falls back to the HSF-SPIN metric. The HSF-SPIN metric
is described in Algorithm 2.

Algorithm 1 Fitness function used to rank individuals.
Individuals that are “closer” to violating a property are
favoured.
Require: A, B are Individuals;

if A.error found 6= B.error found then
return IndividualWithErrorFound(A,B);

else if A.error foundandB.error found then
return IndividualWithShortestPath(A,B);

else
return IndividualWithLowestHSFSPINMetric(A,B);

end if

Algorithm 2 HSF-SPIN heuristic metric algorithm.

Require: I is an Individual;
aggregateMetric = 0;
for all States s ∈ I.Path do

aggregateMetric += s.HSFSPINMetric;
end for
return aggregateMetric/LengthOfPath;

The algorithm described in Algorithm 2 aggregates a heuris-
tic value calculated by HSF-SPIN for all the states of a path,
and then averages that value over the path length. This cal-
culation gives a heuristic value for the entire path which the
EDA seeks to minimise. The heuristics used in this work are
described in the experimental section. The fitness function
described above favours shorter counterexamples to longer
ones. Because of this, if the algorithm is allowed to exe-
cute further once an error is found, there is the potential for
shorter counterexamples to be found.

3.5 Other Features and Parameters
In addition to the features described above, some aspects

of more traditional EDAs are adopted in this work. Mu-
tation, for instance, is implemented as taking a uniformly
random choice with a fixed probability m which is typically
set at a low value. To illustrate, setting m to 1.0 would
cause the algorithm to make every choice randomly, Elitism
is also implemented, copying n paths verbatim from the cur-
rent generation to the next.

3.6 Motivation for using EDAs in the model
checking domain

Estimation of Distribution Algorithms have been shown to
be effective in other software engineering and, more specifi-
cally, software testing activities. This activity motivates the
use of EDAs for use in the model checking domain. [19]
shows how EDAs can be used to generate test data meeting
coverage criteria for sequential software. [18] have shown an
EDA-based framework for generating test data for object-
oriented software. Lastly, [20] have shown that EDAs have

great potential in the model checking domain, showing how
an EDA can be used to find deadlock in multithreaded Java
software.

N-gram GP can generate strings of arbitrary length, and
that advantage is exploited here. Previous work involving
genetic algorithms and model checking [3] used a represen-
tation that could resize during the run using the crossover
operator. However, this size has to be “learned” during the
course of the run of the GA and a sophisticated“memory op-
erator” augmentation is required. The EDA based approach
eliminates this learning step, allowing for the construction of
paths of arbitrary length. The ACOhg algorithm described
in [1] must store pheromone information for a potentially
huge number of transitions/edges, and ACOhg employs com-
plex measures in order to avoid exhausting memory. The
EDA, however, is able to discard a large proportion of states
expanded during the exploration of a model, making the
technique memory efficient. The EDA need only store the
action/state sequences discovered during the execution of
the algorithm and the probabilistic model, discarding the
heavy-weight data structures created by HSF-SPIN or in-
deed Java PathFinder. This advantage is shared with the
GA-based approach described in [3].

An often cited advantage to using EDAs is the ability to
analyse and reuse the models produced during the execution
of the algorithm. Analysing the models produced may yield
insight into the target problem and may be helpful when
tuning parameters. In previous work [20], it has been sug-
gested that the models produced by the EDA-based model
checking approach could be used to verify errors in families
of problems, reducing the effort required to find a violation
in larger instances of a problem family. The model could also
be used between revisions of a model during the debugging
process, allowing for efficient checking of future revisions of
the specification/system.

4. EXPERIMENTS IN FINDING AND OP-
TIMISING COUNTEREXAMPLES

In this section, we present the results of experiments in
finding and optimising counterexamples in Promela mod-
els using the EDA-based approach. We compare the EDA-
based approach to traditional deterministic algorithms in-
cluded in the HSF-SPIN package. Rather than just running
the EDA until an error is found, we allow the EDA to run
for 200 generations allowing the EDA to potentially optimise
the length of the counterexample. The approach was imple-
mented using the ECJ toolkit [13] and HSF-SPIN [11]. This
allowed us to exploit tried and tested heuristics and algo-
rithms, as well as the breadth of Promela examples included
with HSF-SPIN. In our implementation, ECJ is the driver
of the search process, using HSF-SPIN as a workhorse to
explore paths. Our current implementation allows us to not
store previously visited states in memory, keeping memory
usage to a fairly constant level of around 300MB or less de-
pending on the Promela model. This measurement includes
the Java and HSF-SPIN process. To demonstrate the ca-
pabilities of the EDA-based approach, we have selected a
number of models that violate safety, assertion and liveness
properties.

4.1 Example Promela Models
The HSF-SPIN software distribution includes a number

1926

of different models and systems that violate a variety of dif-
ferent kinds of properties. In this work, we use the models
listed in Table 1 to demonstrate the efficacy of the EDA-
based approach. The table shows the name of the model,
the maximum number of processes created, the number of
Lines of Code in the model and the property the model vi-
olates.

Table 1: Models and the respective properties vio-
lated.

Model Processes LoC Property
phil-loopn n + 1 34 Deadlock
phil-noloopn n + 1 35 Deadlock
deadlock-giopn n + 6 717 Deadlock
pots 3 453 Deadlock
leadern n + 1 117 Assertion
alter 2 64 2(p → 3q) ∧ 2(r → 3s)
elevn n + 3 191 2(p → 3q)
ltlgiopn n + 6 740 2(p → 3q)
sgc 20 1001 3p

The selected models exhibit a range of property viola-
tions which include safety and liveness properties. The first
two (phil-loop and phil-noloop) are Promela implementa-
tions of the Dining Philosophers coordination problem. In
both of these examples, each philosopher effectively lock-
s/picks up the left fork, then then right fork, then releases
them in that order. The “locking” is implemented by read-
ing and writing to channels that represent the forks. The
first models infinitely loops this behaviour, whilst the second
model terminates each philosopher after executing the fork
retrieval. The deadlock-giop model is an implementation of
the CORBA General Inter-Orb Protocol with a faulty time-
out phase that can lead to deadlock. The pots model is an
implementation of the Plain Old Telephony System which
exhibits a deadlock. leader implements an election algo-
rithm for nodes in a unidirectional ring configuration and
violates a consistency assertion. alter is an implementation
of the alternating bit protocol. The elevn models an eleva-
tor that services n floors in a building. The ltlgiop model
is the same implementation as the deadlock-giop model but
includes an LTL property which the model violates. Finally,
the sgc simulates the operator protocol of a power planet.
The giop series of models have been derived from an indus-
trial standard, and the phil, elev and giop models are stated
as having very large state spaces [2].

4.2 Parameters of the EDA
The parameters used in this experiment were chosen through

small-scale experimentation on the selection of Promela mod-
els, using the parameters from [20] as a guide. An n-gram
length of 3 was used, meaning models for 3-grams, 2-grams
and 1-grams are constructed from each generation. The pop-
ulation size for each generation was set to 150. This means
that 150 paths are sampled from the model to build each
generation. The mutation parameter for these experiments
is set to 0.001, meaning that on average 1 in 1000 transition
choices are made randomly, disregarding the model. The
elitism parameter was set to 1, meaning that the top indi-
vidual from the population is copied to the next generation.
In order to build the model from which the next generation
is sampled, truncation selection selects the top 20% of in-
dividuals from the population. This means that the top 30
individuals from the current population are used to build the

EDA/N-gram model. All individuals in the population are
replaced at each generation with individuals sampled from
the model. The algorithm terminates once it reaches 200
generations, allowing for the potential optimisation of coun-
terexamples. Initially, the model is a blank model meaning
that all the paths evaluated during the first generation are
completely random.

4.3 Experiments
In this section, we present results from experimentation

that compares the EDA-based approach against traditional
deterministic approaches for finding short property viola-
tions. When searching for deadlock, we use the active pro-
cesses heuristic provided by HSF-SPIN and compare against
the A* algorithm. The active processes heuristic simply re-
turns the number of active processes/enabled transitions in
a particular state. If the heuristic returns 0 and the state is
not a valid terminal state, then the state is a deadlocked
state. When searching for the assertion violation in the
leader model, we use the formula-based heuristic and A*.
The formula-based heuristic is described in [10] and returns
an estimate on the number of transitions from a given state
s to a violation based upon satisfaction of sub-formulae in
a specified property. And finally, we use the endstate of
claim distance heuristic and the improved nested depth-first
(INDFS) search when searching for LTL violations. The
endstate of claim distance heuristic estimates the distance a
given state is from an accepting state in the product Büchi
automaton. In this scenario, INDFS uses the heuristic to de-
termine the order in which new states are expanded during
the depth-first expansion. The same heuristic is used for the
EDA and for the respective deterministic approaches, with
the deterministic approaches using the heuristic on individ-
ual states rather than paths. In order to gain statistically
sound results, we run the EDA-based approach 100 times
(with the exception of ltlgiop20 due to time constraints) as
the algorithm is probabilistic.

Table 2 shows the results from this experiment, along with
some statistical comparison information. The performance
with respect to a selection of measures of each algorithm
(apart from the EDA) is compared with the performance of
the EDA. These measures include the length of the error
found, the generation in which the error was found and the
number of states expanded before the error is found. These
measurements are shown for the first error found by the
EDA, and the best error found. We opted to not show wall
clocks times as the number of states expanded is a more re-
alistic measure of the algorithms performance. The vast ma-
jority of the CPU time and memory used during the course
of a run is spent expanding states, as opposed to building
models/evaluating statistics. Most run times, of both the
EDA and the deterministic approach, range from a 4 mil-
liseconds to a maximum of 4 hours. Statistical comparisons
are indicated with plus and minus symbols. In order to
compare the EDA-based algorithm against the determinis-
tic variants, we use the Wilcoxon signed-rank test with a
significance level of α = 0.05. We have also performed com-
parisons with random search. However, in the interest of
parsimony, the random search results are briefly discussed
rather than included in full.

4.4 Discussion of Results
Initial observations from the results table reveal that the

1927

EDA is the only algorithm to achieve a 100% hit rate on all
of the sample models. The deterministic approaches fail to
find an error on the deadlock-giop and the ltlgiop examples,
either hitting a 64GB memory limit or going over a time
limit of 24 hours. Random search also failed to discover an
error on the phil-noloop model family. These models are par-
ticularly large, and the results show the ability of the EDA
to focus the search on promising areas of the state space re-
vealing errors by expanding fewer states, and consequently
using less memory and CPU time. The 100% hit rate on
all the test cases shows that the EDA-based approach is a
very promising algorithm for discovering counterexamples
in large state spaces, especially with respect to robustness
and sensitivity to the state space explosion problem. The
ACOhg algorithm in [8, 2] shows a less than 100% hit rate
on the ltlgiop and philosophers models, suggesting that the
EDA-based approach may have an advantage on some of the
larger models.

In the majority of test cases the EDA found a statistically
significantly shorter counterexample than the deterministic
approach, with the exception of the pots model and the
larger phil-loop model. However, the difference in the length
of the best paths found is a matter of 1 or 2 states on the
pots model. The larger difference on the phil-loop128 model
is likely explained by the way the heuristic is constructed.
By using the average of the heuristic values of states in a
path as the heuristic value for a path in the EDA, the EDA
may favour longer paths in some instances. For example,
a longer path of low heuristic values may be favoured over
a short path with high heuristic values. This result shows
that the EDA can be sensitive to the heuristic used, and that
some models may require a carefully thought out heuristic
in order for the EDA to be effective. The ability to optimise
counterexamples makes the EDA an appealing approach, as
shorter counterexamples remove superfluous information en-
abling a software tester/model checking practitioner to fo-
cus on the underlying cause of an issue. To optimise the
counterexample, however, more states must be expanded in
order to learn a model that reflects shorter counterexam-
ples. This is shown in the results table on the majority of
the models with the exception of the leader model, where
the EDA managed to find a shorter error by expanding far
fewer states and therefore using less memory and CPU time.

In some cases, the number of states required to find the
first error in an EDA run is either less than or statistically
insignificantly greater than or equal to the results from the
deterministic algorithms. In the cases where the EDA does
expand more states to find the first error, mere milliseconds
are added to the EDA search time with respect to the de-
terministic search time. However, this is not the case on
the phil-noloop and pots models, where the states required
to find the first error is far greater than the deterministic
algorithm. However in the vast majority of cases, the EDA
found the first error by expanding a reasonable amount of
states. The results shown in this experiment show that the
EDA is capable of finding errors in a short space of time,
even in models (the giop based models) that are deemed
very large by previous work [2].

In the majority of the tests, one can observe that the
number of generations required to find the first error is on
average zero. This indicates that the EDA algorithm found
the first error using random search alone due to the EDA
starting with a blank model. When given a blank model, all

transitions are chosen at random. It is the case that random
search is also able to find an error with a 100% hit rate in
all of the test cases with the exception of the phil-noloop
model. However in all but three cases (the elevn, alter and
sgc models), the EDA was able to shorten the error statis-
tically significantly when compared to the best error found
by random search. The fact that random search is able to
find an error with a 100% hit rate in the majority of the
tests, as well being statistically equivalent to the EDA when
faced with the elev, alter and sgc models suggests that a
comparison with random search is necessary when evaluat-
ing probabilistic algorithms in the model checking domain.
It also suggests that as part of a benchmark suite of tests
for model checking algorithms, relevant models that defeat
random search must be found. We can state, however, that
the EDA-based approach achieves a 100% hit rate, whilst
being able to more effectively optimise counterexamples in
the majority of our selected benchmark tests when compared
with random search and the most prominent deterministic
algorithms.

On some of the tests, the EDA finds the best error in gen-
eration 0 100% of the time. The models in which this occurs
are the sgc and alter models. The best error found in these
systems is the shortest possible error that can be found.
This indicates that the model is trivial for any sensible algo-
rithm, since the shortest possible error can be found using
random search without any guidance/learning. These triv-
ial models are likely not good candidates for future model
checking benchmarks and we suggest that the use of these
models should be avoided.

5. CONCLUSION AND FUTURE WORK
In this paper we have presented results from experiments

that show the promising ability for an EDA-based algorithm
to find counterexamples in large state spaces. We compared
the algorithm against prominent deterministic approaches
using similar heuristics, showing that the EDA can find
shorter counterexamples in the majority of the test cases.
In two cases, we have shown that the EDA can find er-
rors where traditional approaches fail due to exhaustion of
resources, showing that the EDA can effectively focus the
effort of the search. The optimisation of counterexamples is
a key feature that model checking practitioners could find
useful. This ability of the EDA has not been demonstrated
before and is part of the novelty of this work. Current promi-
nent mechanisms, namely the improved nested depth-first
search algorithm, do not provide this ability. Although they
can be extended to potentially do so, it is not clear how
well an extended nested depth-first search algorithm would
scale on large state spaces. The EDA-based approach shows
promise with respect to large state spaces, with the results
of the experiment showing robustness when tested with a
variety of models.

In addition to previous work [20] showing the ability to
find deadlock in concurrent systems, we have shown that the
EDA can find violations of assertions and liveness properties,
a key step in demonstrating the efficacy of an EDA-based
approach. We were initially concerned that the EDA can
only be effective on highly symmetric toy problems such as
the Dining Philosophers problem. However, the results show
that the EDA can find errors in large asymmetric systems
that are derived from industrial scenarios. The results sug-
gest that an EDA-based approach to searching a state space

1928

can be used to find an error of any kind provided a suit-
able heuristic can be defined. In addition to this, the EDA
could potentially be used as a counterexample optimiser as
a supplement to another algorithm known to be effective on
a particular model. For instance, one could use a traditional
algorithm to find an error in the phil-loop series of models,
and then use the EDA-based algorithm with a state-distance
heuristic to find a shorter counterexample.

The next phase of our work is to investigate the poten-
tial for model reuse within the debugging life-cycle. The use
of the models generated by EDAs is often cited as a major
advantage over GAs and ACO. In the debugging life-cycle,
one can envisage using an EDA to find a bug in a system,
and then using the probabilistic models generated from the
execution of the EDA in subsequent executions. This could
potentially reduce the amount of resources required to find
errors in future revisions of a system/specification by us-
ing information learned from previous debugging sessions,
allowing for more debugging cycles in a set period of time.
Reusing models to reduce effort in verifying the existence of
errors in large models can also be implemented. Using mod-
els learned from small instances of families of problems to
find errors in larger instances can be implemented. Our most
tantalising prospect is reusing models during the refinement
of a system. By running the EDA on an abstract version
of a system, there is the possibility to use the information/-
models collected from the abstract version to find errors in a
refined implementation of that system. In addition to these
investigations, we hope to implement the EDA-based tech-
nique as an Eclipse plugin, allowing for efficient debugging
of concurrent software in more mainstream languages such
as Java.

Acknowledgments
This work is supported by an EPSRC grant (EP/D050618/1),
SEBASE: Software Engineering By Automated SEarch. We
would also like to thank Alberto Lluch for his guidance and
help whilst ironing out bugs in HSF-SPIN.

6. REFERENCES
[1] E. Alba and F. Chicano. Finding safety errors with

ACO. In Proceedings of the 9th annual conference on
Genetic and evolutionary computation, pages
1066–1073. ACM Press New York, NY, USA, 2007.

[2] E. Alba and F. Chicano. Searching for liveness
property violations in concurrent systems with ACO.
In Proceedings of the 10th annual conference on
Genetic and evolutionary computation, pages
1727–1734. ACM New York, NY, USA, 2008.

[3] E. Alba, F. Chicano, M. Ferreira, and
J. Gomez-Pulido. Finding deadlocks in large
concurrent java programs using genetic algorithms. In
Proceedings of the 10th annual conference on Genetic
and evolutionary computation, pages 1735–1742. ACM
New York, NY, USA, 2008.

[4] E. Alba and J.M. Troya. Genetic Algorithms for
Protocol Validation. Lecture Notes in Computer
Science, pages 870–879, 1996.

[5] S. Anand, C.S. Pasareanu, and W. Visser. JPF-SE: A
symbolic execution extension to Java PathFinder.
Lecture Notes in Computer Science, 4424:134, 2007.

[6] C. Baier and J.P. Katoen. Principles of Model
Checking. The MIT Press, 2008.

[7] F. Chicano and E. Alba. Ant colony optimization with
partial order reduction for discovering safety property
violations in concurrent models. Information
Processing Letters, 106(6):221–231, 2008.

[8] F. Chicano and E. Alba. Finding liveness errors with
ACO. In Evolutionary Computation, 2008. CEC
2008.(IEEE World Congress on Computational
Intelligence). IEEE Congress on, pages 2997–3004,
2008.

[9] Edmund M. Clarke, Orna Grumberg, and Doron A.
Peled. Model Checking. The MIT Press, January 2000.

[10] S. Edelkamp, S. Leue, and A. Lluch-Lafuente.
Protocol verification with heuristic search. In
AAAI-Spring Symposium on Model-based Validation
Intelligence, pages 75–83, 2001.

[11] S. Edelkamp, S. Leue, and A. Lluch-Lafuente.
Directed explicit-state model checking in the
validation of communication protocols. International
Journal on Software Tools for Technology Transfer
(STTT), 5(2):247–267, 2004.

[12] P. Godefroid and S. Khurshid. Exploring very large
state spaces using genetic algorithms. International
Journal on Software Tools for Technology Transfer
(STTT), 6(2):117–127, 2004.

[13] Sean Luke, Liviu Panait, Gabriel Balan, and Et. Ecj
16: A java-based evolutionary computation research
system, 2007.

[14] K.L. McMillan. Symbolic Model Checking: An
Approach to the State Explosion Problem. Kluwer
Academic Publishers, 1993.

[15] Doron A. Peled. Ten years of partial order reduction.
Lecture notes in computer science, pages 17–28, 1998.

[16] M. Pelikan, D.E. Goldberg, and F.G. Lobo. A survey
of optimization by building and using probabilistic
models. Computational optimization and applications,
21(1):5–20, 2002.

[17] R. Poli and N.F. McPhee. A linear
estimation-of-distribution GP system. Lecture Notes
in Computer Science, 4971:206–217, 2008.

[18] R. Sagarna, A. Arcuri, and X. Yao. Estimation of
distribution algorithms for testing object oriented
software. In Evolutionary Computation, 2007. CEC
2007. IEEE Congress on, pages 438–444. IEEE, 2008.

[19] Ramón Sagarna and Jose A. Lozano. On the
performance of estimation of distribution algorithms
applied to software testing. Applied Artificial
Intelligence: An International Journal, 19(5):457–489,
2005.

[20] Jan Staunton and John A. Clark. Searching for safety
violations using estimation of distribution algorithms.
Software Testing Verification and Validation
Workshop, IEEE International Conference on
Software Testing, Verification, and Validation,
0:212–221, 2010.

[21] A. Valmari. A stubborn attack on state explosion. In
Computer-Aided Verification’90: Proceedings of a
DIMACS Workshop, June 18-21, 1990. American
Mathematical Society, 1991.

1929

Table 2: Results for each of the algorithms
Statistic EDA Deterministic

pots
Errors/Runs 100/100 1/1
First error:
Length 68.08/69 67 (+)
Generation 19.34/9 -
States 44,292.95/22,926 7060 (+)

Best error:
Length 68.64/69 67 (+)
Generation 42.15/24 -
States 92,286.66/58,298 7060 (+)

phil-noloop64
Errors/Runs 100/100 1/1
First error:
Length 258/258 258 (-)
Generation 6.35/6 -
States 324,209.42/333,886 258 (+)

Best error:
Length 258/258 258 (-)
Generation 6.35/6 -
States 324,209.42/333,886 258 (+)

phil-noloop128
Errors/Runs 100/100 1/1
First error:
Length 514/514 514 (-)
Generation 18.93/18 -
States 1,859,306.63/1,762,271 514 (+)

Best error:
Length 514/514 514 (-)
Generation 18.93/18 -
States 1,859,306.63/1,762,271 514 (+)

phil-loop64
Errors/Runs 100/100 1/1
First error:
Length 611.4/594 258 (+)
Generation 0/0 -
States 1,732.25/1,414 258 (+)

Best error:
Length 268.84/258 258 (-)
Generation 29.21/9 -
States 826,669.98/312,698 258 (+)

phil-noloop128
Errors/Runs 100/100 1/1
First error:
Length 1,294.12/1,272 514 (+)
Generation 0/0 -
States 2,766.09/2,276 514 (+)

Best error:
Length 735.32/754 514 (+)
Generation 68.62/5 -
States 4,267,972.45/708,306 514 (+)

deadlock-giop20
Errors/Runs 100/100 0/1
First error:
Length 197.4/199 -
Generation 0/0 -
States 140.44/142 -

Best error:
Length 141/141 -
Generation 0.48/0 -
States 17,553.87/18,917 -

deadlock-giop40
Errors/Runs 100/100 0/1
First error:
Length 283.29/279 -
Generation 0/0 -
States 190.46/182 -

Best error:
Length 221/221 -
Generation 0.39/0 -
States 19,836.35/17,704 -

Statistic EDA Deterministic

leader5
Errors/Runs 100/100 1/1
First error:
Length 69.17/69 58 (+)
Generation 0/0 -
States 48.17/48 5,108 (+)

Best error:
Length 55/55 58 (+)
Generation 9.52/7 -
States 69,607.76/53,748 5,108 (+)

leader10
Errors/Runs 100/100 1/1
First error:
Length 124.24/125 88 (+)
Generation 0/0 -
States 83.24/84 4,876,999 (+)

Best error:
Length 75.65/76 88 (+)
Generation 86.86/75 -
States 926,073.91/800,486 4,876,999 (+)

alter
Errors/Runs 100/100 1/1
First error:
Length 26.32/24 64 (+)
Generation 0/0 -
States 15.31/14 32 (+)

Best error:
Length 8/8 64 (+)
Generation 0/0 -
States 202.36/170 32 (+)

elev20
Errors/Runs 100/100 1/1
First error:
Length 767.72/529 1,159 (+)
Generation 0.01/0 -
States 4,127.04/2,978 558 (+)

Best error:
Length 378.88/381 1,159 (+)
Generation 70.78/53 -
States 1,698,200.08/1,266,285 558 (+)

elev40
Errors/Runs 100/100 1/1
First error:
Length 1,196.82/723 2,039 (+)
Generation 0.03/0 -
States 8,104.37/5,494 978 (+)

Best error:
Length 578.98/581 2,039 (+)
Generation 55.99/39 -
States 2,254,850.07/1,603,325 978 (+)

ltlgiop10
Errors/Runs 100/100 0/1
First error:
Length 209.66/184 -
Generation 0/0 -
States 3,153.72/707 -

Best error:
Length 73.45/74 -
Generation 111.54/113 -
States 7,291,250.65/7,297,643 -

ltlgiop20
Errors/Runs 87/87 0/1
First error:
Length 348.9/338 -
Generation 0/0 -
States 57,244.90/50,511 -

Best error:
Length 96.58/96 -
Generation 105.75/117 -
States 44,940,817.34/49,606,760 -

sgc
Errors/Runs 100/100 1/1
First error:
Length 19.54/18 46 (+)
Generation 0/0 -
States 4.4/4 11 (+)

Best error:
Length 18/18 46 (+)
Generation 0/0 -
States 6.28/4 11 (+)

1930

