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Abstract

A major issue in software testing is the automatic gen-
eration of the inputs to be applied to the programme un-
der test. To solve this problem, a number of approaches
based on search methods have been developed in the last
few years, offering promising results for adequacy criteria
like, for instance, branch coverage. We devise branch cov-
erage as the satisfaction of a number of constraints. This al-
lows to formulate the test data generation as a constrained
optimisation problem or as a constraint satisfaction prob-
lem. Then, we can see that many of the generators so far
have followed the same particular approach. Furthermore,
this constraint-handling point of view overcomes this limi-
tation and opens the door to new designs and search strate-
gies that, to the best of our knowledge, have not been con-
sidered yet. As a case study, we develop test data generators
employing different penalty objective functions or multiob-
jective optimisation. The results of the conducted prelimi-
nary experiments suggest these generators can improve the
performance of classical approaches.

1. Introduction

Among the problems related to software testing, the au-
tomatic generation of the inputs to be applied to the pro-
gramme under test is especially relevant. Exhaustive testing
is generally prohibitive due to the huge size of the input do-
main, so tests are designed with the purpose of addressing
particular aspects of the software system [3]. This makes
the generation of test inputs a non-trivial task, as they must
conform to the test type and its requirements.

Many of the approaches for tackling this task aim at
creating inputs that fulfil a structural adequacy criterion.
Though several criteria comprising different levels of com-
plexity can be found in the literature, branch coverage is
accepted as a minimum mandatory criterion nowadays [3].
So, in this case, the aim is to generate a set of inputs exer-
cising every programme branch.

The automation of structural test data generation is typi-
cally reached by means of random, static or dynamic strate-
gies. A random strategy relies upon a probability distri-
bution for sampling all the inputs. So, its performance
heavily depends on this distribution, which is often uni-
form [5]. The main feature of static strategies is that pro-
gramme execution is not required to create inputs, since
they are obtained through a static analysis of the source
code. These approaches, however, suffer from well-known
problems which limit their performance [10]. In constrast
to static, dynamic strategies do execute the programme, and
the information available at run-time is exploited to guide
the generation of the test inputs [8]. While these methods
must incur the overhead of programme execution, many of
the drawbacks of previous strategies are overcomed [11].

In recent years, several approaches under the name of
Search Based Software Test Data Generation (SBSTDG)
have been developed, offering promising results [11]. SB-
STDG tackles the test data generation as a search for the
appropriate inputs by formulating an optimisation problem.
This problem is then addressed using search methods. Al-
though this field comprises any testing type and search
algorithm, most of the research to date has focused on
dynamic strategies using Evolutionary Computation tech-
niques [10, 13, 16, 18, 21, 22, 23].

A number of works in the software testing literature
have devised the test data generation as the achievement
of a set of constraints. Thus, constraints based approaches
have already been proposed for mutation testing [14] and
non-SBSTDG static-dynamic strategies [15], to name a
few. Surprisingly, concepts from constraint-handling have
scarcely been adopted for dynamic SBSTDG [12, 20]. This
might be an interesting topic, since it would allow for the
application of a wider range of techniques than those con-
sidered so far.

In the present work, we explicitly formulate the dynamic
test data generation for branch coverage as a constraint-
handling problem [1, 4]. We can see then that many of
the generators based on Evolutionary Computation so far
have to some extent followed the same particular approach.



Moreover, this formulation opens the door to new designs
and search strategies that, to the best of our knowledge, have
not been used to solve this problem yet. As a case study, we
develop test data generators employing a Genetic Algorithm
with different penalty objective functions [4] or multiobjec-
tive optimisation [7]. A preliminary empirical analysis is
conducted on their behaviour for different scenarios and en-
couraging results are obtained.

The remaining sections are arranged as follows. First,
dynamic SBSTDG approaches so far are outlined. In the
next section, the constraints handling point of view to SB-
STDG is explained and some new approaches are proposed.
We continue with the empirical evaluation of these ap-
proaches. Finally, we discuss conclusions and some ideas
for future work.

2. Dynamic Search Based Software Test Data
Generation

SBSTDG methods obtain test inputs employing search
techniques during the process. In the case of dynamic ap-
proaches, a usual practice is to create an instrumented ver-
sion of the programme, which will give feedback concern-
ing the execution with an input. This run-time information
is then used to guide the search technique.

Although different works have been developed in the
field to date (see [11] and references therein), the idea un-
derlying many of them is to solve a number of function
optimisation problems, one for each structural entity to be
covered. Thus, it is common to follow the general scheme
in Figure 1. This scheme is an iterative two-step process
where, first, an entity is selected (e.g., a branch) and marked
as an objective. In the second step, the objective entity is as-
signed a function dependent on the programme input and its
optimisation is sought.

Repeat until stopping criterion is met
E ← Select objective entity to exercise
Obtain input optimising function for E

Figure 1. General scheme for dynamic SB-
STDG approaches.

2.1. Selection Step

Despite the different options that have been implemented
for the selection step in Figure 1 [10, 16, 23], the objective
entity is often determined with the help of a graph that re-
flects the structural characteristics of the programme. In the
case of branch coverage, a control flow graph [6] is typically
employed. A control flow graph G = (V, U) is defined by a

set V of vertices and a set U ⊆ V × V of arcs. Each vertex
in V represents a code basic block, excepting two vertices
labeled s and e, which refer to the programme entry and
exit. A code basic block is a maximal sequence of code
statements such that if one is executed, then all of them are.
An arc (v1, v2) ∈ U , with v1 and v2 distinct from s and e,
is such that the control of the programme can be transferred
from block v1 to v2 without crossing any other block. Anal-
ogously, for every arc (s, v1) ∈ U or (v2, e) ∈ U , it will
be possible to transfer the flow of control from the entry to
block v1 and from block v2 to the exit, respectively. Hence,
in this kind of graph, a programme branch comes defined by
every vertex v with outdegree(v) > 1. Given a programme
input x , we will call execution path of x to the path starting
from s that represents the flow of the programme’s control
when executed with x.

2.2. Optimisation Step

The next step in Figure 1 tackles an optimisation
problem. That is, given the search space Ω formed by
the programme inputs and a function f : Ω −→ IR, find
x∗ ∈ Ω such that f(x∗) ≤ f(x) ∀x ∈ Ω. Next, we discuss
two popular objective functions that have been defined for
branch coverage.

Classical Objective Function
A measure that is widely used to create the objective

function is the so-called branch distance [22, 23]. Let b be
the objective branch andAOPB an expression of the con-
ditional statement COND associated with b in the code,
with OP denoting a comparison operator. Only for nota-
tion purposes, we also consider the vertex vc representing
COND in the control flow graph of the programme. The
branch distance value for an input x that reaches COND
is determined by

f c(x) = d(Ax,Bx) + K (1)

where Ax and Bx are appropriate representations of the
values taken by A and B in the execution, d is a distance
measurement, and K > 0 is a previously defined constant.
Typically, if A and B are numerical, then Ax and Bx are
their values and d(Ax,Bx) = |Ax − Bx|. In the case of
more complex data types, a binary representation of the val-
ues for A and B can be obtained and, for instance, let d be
the Hamming distance [21]. Besides, if COND involves
a compound expression, the overall branch distance is con-
structed from the distances for each subexpression. Given
two subexpressions C1 and C2 with their respective branch
distances f c

1 and f c
2 , and an input x, the value for the logi-

cal expression C1 ∨ C2 is min{f c
1(x), f c

2 (x)}, the logical
expression C1 ∧ C2 is calculated as f c

1(x)+f c
2(x), and for

¬C1 the value is known by propagating the negation inside



C1. By applying the associative and commutative proper-
ties to different logical expressions, the overall value for f c

can be obtained.
Hence, a classical objective function based on the branch

distance is defined, keeping the notation above, as follows
[10, 18, 22]:

f(x) =

⎧⎨
⎩

M if COND not reached
f c(x) if COND reached and b not attained
0 otherwise

(2)
where M is the largest computable value. It is easy to note
that this function yields a plateau for inputs not reaching
the condition of the branch.

Advanced Objective Function
An objective function with more gradient than the one

in Equation 2 was presented in [23] and further studied in
[2]. Besides the branch distance, this function employs an
approach level to the condition of the branch, which is in
turn based on the notion of critical condition.

Given a control flow graph G, we call a vertex v1 a crit-
ical condition of vertex v2 iff outdegree(v1) > 1, a path p
from v1 to v2 exists, and a path from v1 to e not contain-
ing any vertex in p exists. Intuitively, a critical condition v1

has an arc from which it is impossible to attain v2, so we
must follow one of the other arcs. Now, given a branch b
and an input x, let vc be the vertex representing the condi-
tion of b in the control flow graph, and let p be the execu-
tion path of x. We can define a distance between a vertex
v ∈ p and vc, D(v, vc), based on the number of critical
conditions of vc in a path from v to vc. If several paths
from v to vc with different numbers of critical conditions
exist, then we may take D(v, vc) as the minimum or max-
imum number of critical conditions, depending on whether
we choose an optimistic or pessimistic approach [2]. For
the sake of convenience, if no path exists from v to v c then
D(v, vc) = ∞. So, based on these concepts, we describe
the approach level as lc(x) = minv∈pD(v, vc). In other
words, the approach level alludes to the number of critical
conditions not achieved between vc and its closest vertex in
the execution path.

Thus, maintaining previous notation, the function in
Equation 2 is extended as follows:

f(x) =

⎧⎪⎪⎨
⎪⎪⎩

lc(x) + fa(x)
M if COND not reached

fc(x)
M if COND reached and b

not attained
0 otherwise

(3)
where lc(x) = D(va, vc) and M is a normalisation term.
The main idea of this function is to evaluate an input not
reaching COND by combining two concepts: the ap-
proach level to vc and how far the input was from taking

the correct arc at the vertex straying away from the path to
vc.

Even though the granularity of this function is greater
or equal than for the classical function, it still presents
problems with some code structures that have no clear
solution yet [2], e.g. the influence of an optimistic or
pessimistic choice for D(v, vc). Nonetheless, Equation 3
has been widely employed in recent works [2, 13, 19, 23];
see also references in [11].

2.3. Other Elements of a Test Data Gener-
ator

Although the search technique deals with one optimisa-
tion problem at a time, the real goal of the approaches fol-
lowing the scheme in Figure 1 is to solve a set of problems.
Several works in the literature have taken this into account
to improve the process. The alternative suggested by some
works is to profit from the good solutions found by not only
evaluating an input for the current objective branch, but also
with regard to all the others. Thus, each branch is assigned
a set containing the best inputs so far. The strategy to select
the objective branch consists then of choosing the branch
with a highest quality set of inputs. Moreover, for the opti-
misation step, this set is used to seed the initial phase of the
search method [10, 18, 23].

3. Dynamic SBSTDG as Constraint-Handling

As we will next see, many of the SBSTDG generators
discussed in the previous section implicitly follow a partic-
ular constraint-handling approach. However, we believe an
explicit formulation of the problem in term of constraints
can provide insights on the behaviour of the generator and
it opens the door to techniques that, eventually, may lead to
new designs. From now on we restrict ourselves to branch
coverage.

3.1. Problem Formulation

The attainment of an objective branch consists of finding
an input that makes the control of the programme flow until
the branch is exercised. That is, if the branch is represented
by an arc (vc, vo) in the control flow graph, we look for
an input whose execution path contains (vc, vo). Although
several such paths may be possible, the critical conditions
of vc indicate the arcs we must follow to achieve vc (see
Section 2.2), i.e. they identify a set of arcs that are com-
mon to different paths. To clarify the discussion, we will
call this set of arcs a critical set for vc. The coverage of the
branches a critical set represents is then a necessary (though
not sufficient) restriction to attain the objective branch. In



other words, we can see the coverage of each branch asso-
ciated to the critical set as a constraint to be fulfiled. Given
an arc (v1, v2) in a critical set for vc, and b, the branch in
the source code represented by (v1, v2), the constraint value
for an input x is given by

g1(x) =

{
f1(x)

M if b not attained
0 otherwise

(4)

where f 1 is the branch distance in Equation 1 and M is a
normalisation term.

Now, given the objective branch b, represented by arc
(vc, vo) in the control flow graph G = (V, U), and a critical
set for vc, {(vi, v

′), vi ∈ V, ∀i ∈ {1, 2, ..., n}, v′ ∈ V },
which has n arcs, we can formulate the coverage of b as a
constrained optimisation problem [4] (we keep the notation)

minimise f(x) =
{

fc(x)
M if b not attained

0 otherwise
s.t. gi(x) = 0, i = 1, 2, ..., n,

(5)

or as a multiobjective optimisation problem [7]

minimise f(x) =
{

fc(x)
M if b not attained

0 otherwise,
minimise gi(x), i = 1, 2, ..., n.

(6)

In both cases, solutions meeting either f or g i define an
optimal region of points in the search space. A solution to
the problem is then a point in the intersection of the optimal
regions defined by f and g i, ∀i ∈ {1, 2, ..., n}. Loosely
speaking, according to Equation 5, we seek the best solu-
tion (input) among the feasible ones (inputs fulfiling all the
constraints), while as for Equation 6, the coverage of the
objective branch and the constraints are equally important
aims.

It is important to notice that different critical sets might
exist for vc. If so, in order to conform to any of the two
previous formulations, first, we would need to choose one
of such sets. The strategy employed for this selection might
be an issue relevant to the behaviour of the approach, e.g.
similarly to the optimistic/pessimistic options for the func-
tion in Equation 3. Nonetheless, we leave a study on this
matter for future work and, from now on, we assume there
is only one critical set for vc.

3.2. A Constraint-Handling View of Previ-
ous Works

The early work by Schoenauer and Xanthakis [20] is the
only we have found in the literature explicitly facing this
problem by handling constraints. There, the authors de-
velop an approach based on Genetic Algorithms (GAs) for
solving a (general) constrained optimisation problem. The

main idea is to apply a GA for solving one of the constraints
(gi in Equation 5) at a time. When dealing with a constraint,
the initial population of the GA is seeded with the popu-
lation resulting from the previous constraint. During the
search, if an individual does not fulfil a previously handled
constraint then it is penalised with the worst possible value
(death penalty [4]). The GA runs until a partial population
of individuals fulfiling the current constraint has been ob-
tained. In the last step of the approach, the GA is used to
find the optimum of the objective function (f in Equation
5). Again, the initial population is seeded with the partial
population obtained from the last constraint. As it can be
noted, in this approach, constraints are handled in a particu-
lar order, which makes it suitable for problems where such
an ordering is naturally imposed. Clearly, this is the case
for branch coverage, as it is unknown whether a branch was
exercised until a previous in the critical set was covered,
i.e. in Equation 5, the value of g i(x) is unknown unless
gi−1(x) = 0. With this motivation the authors build a dy-
namic SBSTDG generator, obtaining promising results.

Comparing this work with the SBSTDG approaches that
conform to Equation 3 a similarity can be observed. The
function of the latter generators penalises solutions (inputs)
proportionally to how far they are from meeting the last con-
straint, following the same order as in [20]. Therefore, the
search points are encouraged to pursue the optimal regions
defined by constraints in this particular order. Depending
on the topology of these regions and the functions encoded
by the constraints, this demarcation of the path to the opti-
mum may hinder the search. Additionally, such a restrictive
way of achieving each constraint might lead to a lack of di-
versity. Actually, in [20], the authors admit this problem in
their approach.

The generators using Equation 2 correspond, from a con-
strained optimisation point of view, to a death penalty ap-
proach. That is, solutions (inputs) not satisfying a constraint
are assigned the worst possible value. In this case, low per-
formance issues might arise owing to the lack of guidance
towards the intersection of the optimal regions in the search
space. Anyway, in spite of its simplicity, this type of penalty
functions perform satisfactorily for some problems [4].

All in all, generators conforming to equations 2 or 3 so
far follow a constrained optimisation formulation and use
two particular penalisation strategies. However, as we will
see next, a wider range of approaches can be applied to
solve the problem.

3.3. New Approaches

The formulations presented in Section 3.1 suggest
the use of strategies for the components of a SBSTDG
generator that, to the best of our knowledge, have not been
applied before in this context. Namely, we concentrate



on a criterion for the selection step of the generator and
on the use of different approaches for the search method.
Although these changes lead to new designs, we build upon
a test data generator with a set of inputs associated to each
branch, as described in Section 2.3.

Branch Selection
Most of the research on dynamic SBSTDG so far has

focused on the optimisation step of the scheme in Figure 1
[10, 13, 16, 18, 21, 22, 23]. However, the selection step is an
important component of a generator as well, since the strat-
egy implemented defines the order in which the coverage of
the branches will be sought.

From the constraints based formulation for the cov-
erage of the objective branch, we see that solving the
problem implies exercising all the branches associated
to the constraints. Thus, in order to maximisise the
number of branches covered when the objective branch
is attained, we may define a selection criterion that
consists of choosing as objective the branch with the
largest critical set. In case of tie, we select the branch
with a highest quality set of inputs among the tied branches.

Search Methods
If we were able to overcome the restriction of following

the order naturally given by the problem, i.e. by the critical
set, we would dramatically open the range of search tech-
niques that can be applied to the test data generator. This
might enable to alleviate some of the limitations of the SB-
STDG generators we have discussed.

Actually, this can be achieved through the testability
transformation presented in [12]. Such a transformation
is a controlled modification of the source code of the pro-
gramme which aims at improving some aspect of a test data
generator. The testability transformation proposed in [12]
consists of a particular instrumentation of the source code
that allows to obtain the branch distance value for every
critical condition associated to the objective branch. The
main idea to achieve this is to remove the conditional state-
ments corresponding to the critical conditions of the ob-
jective branch, and to compute the branch distance instead.
This way, we can calculate the value for any constraint g i

and for the objective function f in equations 5 or 6. Figure
2 gives an example of the type of instrumentation presented
in [12]. Only one critical condition is considered, which
corresponds to the branch distance f 2.

It is worth to remark, however, that this instrumentation
might pose some issues for certain conditional statements.
For instance, it might be the case the branch distance is not
defined (has no value) for the input at hand. In this situation,
we could choose to return the worst possible value for that
condition. For details regarding further issues, the reader is
referred to [12].

Having a means to calculate any of the values in equa-
tions 5 and 6 for any programme input, we can use the
techniques developed in the fields of constrained and multi-
objective optimisation. However, the general problem of
meeting a set of constraints is know to be NP-complete
[9], which has motivated the widespread use of heuristic
methods and, in particular, Evolutionary Algorithms. Since
virtually any function may be encoded in a condition and,
hence, in the branch distance, we may assume the same
complexity for the general case of branch coverage when
following a constraints-handling formulation.

In our case, we fix the search method to be a simple GA
with truncation selection, one point crossover and a muta-
tion operator that consists of substituting the corresponding
allele with a random number. As a case study, we propose
several penalty functions [4] for tackling the constrained
optimisation problem in Equation 5, and different Pareto
rankings [7] for facing the multiobjective optimisation
problem in Equation 6. Next, we keep using the notation in
Section 3.1.

Penalty Functions
One common approach to deal with constrained optimi-

sation problems is to penalise solutions not fulfiling some
of the constraints. That is, the objective function value is
added a certain value based on the ammount of constraint
violation. This way, the constrained optimisation problem
is transformed into an unconstrained one, which is a suit-
able scenario for an Evolutionary Algorithm [1].

A large number of penalty functions have been proposed
in the literature (see [4] and references therein). Amongst
the most widely used are static functions, which penalise by
just taking into account the constraint value of the solution.
We adopt two static functions, f s1 and f s2:

fs1(x) = f(x) +
∑n

i=1 δi(x), δi(x) =
{

1 gi(x) > 0
0 otherwise

fs2(x) = f(x) +
∑n

i=1(1 + gi(x))

It can be noted that the penalty of f s1 is simply the num-
ber of violated constraints, while for f s2 the penalisation is
given by the ammount of violation of each constraint.

A more sophisticated type of penalty is given by dynamic
functions, which incorporate the current generation number.
We consider the following function:

fd(x) = f(x) +
∑n

i=1(1 + (t + 1) · gi(x))

where t is the current generation number in the GA. The
idea underlying this function is to be less strict in the early
stages of the GA in order to allow for exploration, and to be
more restrictive as the search progresses.

The last type of penalty function we have used is an



void example (int a, int b)
(1){
(2) if (a<b)
(3) if (a*a-b+5==0)
(4) // objective branch
(5)}

void example transformed (int a, int b)
(1){
(2) compute bd(a<b); ← returns f 2(a, b)
(3) compute bd(a*a-b+5==0); ← returns f 3(a, b)
(4) // objective branch
(5)}

Figure 2. Example of the type of instrumentation proposed in [12]. Original programme to the left
and transformed programme to the right.

adaptive function:

fa(x) = f(x) + λ(t)
∑n

i=1 gi(x),

λ(t + 1) =

⎧⎨
⎩

(1/β1) · λ(t) if case 1
β2 · λ(t) if case 2
λ(t) otherwise

where cases 1 and 2 denote situations where the best
individual in the last 5 generations was always (case 1)
or was never (case 2) feasible, β1 > β2 > 1. That is,
this function allows either an increase or a decrease of the
penalty during evolution based on the feasibility of the best
solution in the last generations (in our case, 5).

Pareto Rankings
A key concept to evaluate the optimality of a solution

in a multiobjective optimisation problem is dominance [7].
Informally, a solution x dominates another solution x ′ if
it is better than x′ for at least one of the objectives and
it is equally good to x′ for the rest. By contrast, if no
solution dominates x′ then we say it is non-dominated.
Thus, in multiobjective optimisation, we seek the set of non-
dominated solutions, which is known as the Pareto-optimal
set.

In the context of multiobjective Evolutionary Algo-
rithms, it is common to define the fitness of a solution ac-
cording to a Pareto ranking [7], PT 1, where the rank value
for a solution is given by the number of solutions in the
population that dominate it.

However, as it has been suggested by some authors [4],
this ranking suffers from a lack of guidance to the optimal
regions of the search space. In order to bias the search to-
wards these regions, we propose the following variant of
PT 1. First, rank solutions according to PT 1. Once fin-
ished, make a second ranking among the solutions with the
same value in the first ranking; in this second ranking, the
value for a solution x is given, summing over the solutions
x′ that dominate it, by the number of objectives by which
x′ dominates x. It is important to remark that we imple-
ment this approach hierarchically, that is, if a solution x has
a higher rank than x′ in PT 1, it will keep having a higher

value after the second ranking. We denote this strategy by
PT 2.

As it may be noticed, using either PT 1 or PT 2, non-
dominated solutions in the population receive a rank value
of 0. As a result, there is no guidance regarding these solu-
tions, which might lead the population to converge towards
undesirable regions of the search space. For instance, a so-
lution might be non-dominated because evaluates to an out-
standing value for one of the objectives, whilst having a bad
evaluation for the rest. So, in order to bias the search to-
wards the intersection of all the optimal regions (which is
where optima are in our problem), we develop one more
ranking, PT 3. This ranking is as PT 2 but, if a solution is
not dominated by any other, then we evaluate it with the sum
of the objective function values, i.e. f(x) +

∑n
i=1 gi(x).

Similarly to PT 2, we implement this approach in a hirar-
chical way.

4. Empirical Evaluation

We conducted a preliminary evaluation of the proposed
test data generators to see whether they might be a com-
petitive option with regard to generators so far. For
this, we compare the performance of the generators in
three programmes typically used in the literature; namely,
Triangle, Atof and Remainder [23]. Triangle
owns 26 branches and a maximum number of critical con-
ditions (constraints) of 6, Atof has 30 branches and a max-
imum of 8 critical conditions, and Remainder has 18
branches and a maximum of 4 critical conditions. All the
experiments were run for three population sizes: 50, 100
and 150. The rest of the parameters of the GA were kept
constant for every programme and test data generator. So,
selection pressure was set to 0.5, probability of crossover
was 1, probability of mutation was 0.1 and maximum num-
ber of generations was set to 50.

Tables 1 to 3 show, for each generator, the average re-
sults of 30 runs for two measurements: the coverage per-
centage (%) and the number of generated inputs throughout
the whole process (#). The best results for each measure-
ment are marked in bold. f cl and fad refer to the generators
with the classical (Equation 2) and advanced (Equation 3)



functions respectively, both following the approach with a
set of inputs associated to each branch (Section 2.3). The
rest of generators are denoted as in Section 3.3.

50 100 150
f cl % 93.97 94.1 94.36

# 9813 17177 22650
fad % 94.23 93.85 94.36

# 9548 18793 22280

fs1 % 93.59 94.1 94.62
# 10137 18187 20975

fs2 % 93.08 93.72 95.39
# 10497 16337 19835

fd % 92.95 94.49 94.36
# 9662 12907 22430

fa % 93.21 94.36 94.49
# 8803 16910 25115

PT 1 % 92.56 92.69 93.08
# 5956 11314 16227

PT 2 % 92.44 92.69 93.46
# 6060 11348 15917

PT 3 % 93.08 92.82 92.69
# 5768 11215 16684

Table 1. Results for Triangle.

Regarding the classical (f cl) and advanced (f ad) gener-
ators, it can be observed they both behave similarly, except
for Atofwith a population of 50 individuals, where the f ad

clearly improves f cl.
As for the penalty functions, the results for the coverage

are again similar, though a difference can be appreciated
for the number of inputs. Unfortunately, we cannot draw
any conclusion on the superiority of a particular approach,
since the best values for # alternate among the functions
and vary with the programme. Several works in the litera-
ture have aluded to the unpredictability of penalty functions
[1, 4, 17] and their dependency on the parameters associ-
ated to the penalty terms. For instance, it is common to
assign a weight to these penalty terms. Ideally, values for
the weights should be chosen upon information of the prob-
lem at hand. However, for the sake of simplicity, we have
devised the programme as a black box and, so, each term
corresponded a weight of 1. In other words, in order to find
the most suitable penalty function for a programme the use
of a-priori knowledge is advisable.

Concerning the multiobjective approaches, a clear dis-
similarity can be observed between the coverage of PT 3
and the two other rankings in Atof; in this programme
PT 3 clearly improves PT 1 and PT 2. No relevant differ-
ence is seen in the two other programmes however. So, it
seems that PT 3 can make a difference, though, as with the

50 100 150
f cl % 93.44 99.89 100

# 8238 5350 6755
fad % 99 99.89 100

# 4713 5347 5920

fs1 % 99.22 99.78 100
# 6720 7837 6530

fs2 % 99.44 99.89 100
# 5295 5417 5040

fd % 99.11 99.78 99.78
# 6235 6433 7090

fa % 99.56 100 99.89
# 6020 8587 9305

PT 1 % 81.78 92.33 93.78
# 20324 20538 26169

PT 2 % 85.67 91.22 94.67
# 16377 22466 22374

PT 3 % 93.56 97.89 98.56
# 11560 10699 13915

Table 2. Results for Atof.

penalty functions, this depends to a large extent on the pro-
gramme at hand. Again, owing to the arbitrary complexity
of branch coverage, the use of a-priori information from the
programme presents as an important requirement to obtain
a well suited approach.

In general terms, it can be observed that no clear differ-
ence appears to be among all the generators in terms of cov-
erage. An exception to this, however, is the case of multiob-
jective based generators for programme Atof, where their
coverage looks lower than for the others. This result con-
forms to those of authors [17] in other domains, which sug-
gest multiobjective optimisation is not suitable for handling
constraints at the present stage of research. Nonetheless, as
it may be noted, the best results in terms of the number of
inputs generated belong to multiobjective approaches. All
in all, the best result values are given by either a penalty
function or a Pareto ranking.

5. Conclusions

In the present work, we have formulated the SBSTDG
based dynamic test data generation for branch coverage as a
constraint-handling problem. This formulation let us apply
a criterion for the selection step and search strategies that,
to the best of our knowledge, had not been used to solve this
problem yet. More precisely, we developed test data gener-
ators employing a Genetic Algorithm with several penalty
objective functions and Pareto rankings. The results of the
conducted experiments, though not conclusive at all, sug-



50 100 150
f cl % 89.07 88.89 89.07

# 6967 13433 19650
fad % 88.89 88.89 89.44

# 7217 13767 18870

fs1 % 88.89 89.44 89.07
# 7550 12720 20000

fs2 % 89.07 89.63 88.89
# 6612 13527 21900

fd % 88.89 89.44 89.44
# 7633 12790 18905

fa % 89.07 88.89 89.07
# 6467 15100 22140

PT 1 % 89.07 88.89 89.07
# 5089 10268 15251

PT 2 % 88.89 88.89 89.26
# 5170 10267 14866

PT 3 % 89.07 89.44 89.26
# 5103 10018 15168

Table 3. Results for Remainder.

gest constraints based generators can improve the perfor-
mance of approaches so far. Much work needs to be done
however. For instance, it would be interesting to shed some
light on how the functions encoded in the conditional state-
ments influence the constraints based generator. Also in this
line, the interactions between the regions defined by those
functions are an important topic to research. Since the con-
straint handling techniques employed here are rather sim-
ple, another line for future work could be the exploration of
more sophisticated techniques. On the one hand, the func-
tions encoded in the conditions may be arbitrarily complex,
so we believe that, in order to achieve the best performance,
information on the programme at hand should be obtained
and used for the search, e.g. by making a previous static
analysis of the source code. On the other hand, there is
a vast literature on constraint-handling and multiobjective
optimisation. By following the formulation presented here,
we could benefit from all this existing knowledge to create
improved designs.
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