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1 IntrodutionThe reurring onept in optimization is to selet the best alternative among a numberof possible results or a�airs. Mathematially, optimization is the minimization or max-imization of a funtion subjet to onstraints on its variables. Therefore, three basielements may be reognized from this desription: the funtion, the set of variables andtheir onstraints, and a strategy for �nding the funtion extrema.A �rst step in the optimization proess is the identi�ation of the funtion, variablesand onstraints for a given pratial problem. This task is sometimes referred in theliterature to asmodeling [160℄. The set of variables and onstraints represents the featuresthat distinguish the results from one another, that is, they de�ne the possible problemsolutions. The whole set of suh solutions is usually alled the searh spae. On the otherhand, the funtion provides with a quantitative riterion of merit, aording to whih onesolution an be lassi�ed as better or worse than others. This is known as the objetivefuntion, as it depends on the goal to be attained. Constrution of an appropriate modelis a relevant, and sometimes the hardest, issue. If the model is too simplisti, it may notgive useful insights into the problem, while if it is too omplex, it ould beome extremelydi�ult to solve.The seond topi in optimization lies on the hoie or design of a suitable strategy forproeeding. There is no universal optimization tehnique. Rather, there are numerousmethods, eah of whih is tailored to a partiular type of problem. Most lassial meth-ods are founded on theoretial onepts regarding the neessary and su�ient onditionsfor the existene of extrema. However, a long way exists usually from the stablishmentof suh onditions to their determination. It often remains intrinate enough, if not im-possible, to �nd the optimum for many problems. Even exat methods, whih ensurereahing the optimum, have well-known omputational limitations whih turn them in anunfeasible option, e.g. for NP-hard problems [84℄. In takling suh problems, metaheuris-ti tehniques beome one of the most suessful alternatives sine, although optimalityis not guaranteed often, a high quality solution at a reasonable omputational ost isusually obtained.The large number of existing metaheuristis makes it di�ult to lassify them aurately.One of the strategies that has grown into a popular �eld are Evolutionary Algorithms(EAs) [7℄. EAs are a family of probability based methods that take a model for thenatural evolution of speies, formulated by Darwin [50℄, as a soure of inspiration. More3



1 Introdutionpreisely, the searh for the optimum proeeds by maintaining a population of solutionsthat evolves from one generation to the next. The evolution onsists of seleting aset of solutions from the population and applying to some subsets of it reombinationoperators that reate new solutions. A huge number of methods onforming to thisframework have been developed. Therefore, the hoie of the appropriate alternative fora partiular appliation results an important matter, as it may determine whether theproblem is solved e�iently or, even, if the optimum is found at all.Two modern emerging EAs tehniques are Estimation of Distribution Algorithms (EDAs)[131℄ and Satter Searh (SS) [126℄. The term EDAs alludes to a group of algorithmswhih, instead of using the typial reombination operators from EAs, sample a prob-ability distribution previously built from the set of seleted solutions. Indeed, this dis-tribution is responsible for one of the main harateristis of these algorithms, that is,the expliit desription of the relationships between the problem variables. On the otherside, SS is a methodology based on the support of a low ardinality set of solutions whihis updated with new solutions obtained from the ombination of the members of the set.Probably the most genuine feature of SS is that it emphasizes the use of systemati rulesduring the proess, though stohastiity may be left to some extent.A signi�ant aspet in the study of optimization methods is their appliation to real-world problems. This is appealing not just to demonstrate their usefulness, but alsoto unover limitations that only arise in realisti situations. Optimization and, morespei�ally, EAs have been applied to problems from a wide range of areas suh aseonomis, manufaturing, physial systems, biology or operations researh, just to namea few. A relatively unexplored disipline is, however, software testing.Testing is the means used in pratie to verify the orretness of software produed.Considering the ruial role of software nowadays, it is not di�ult to imagine the signif-iane of testing. In fat, it represents a major issue for quality assurane and it usuallyaounts for 50% of projet resoures [17℄. A huge amount of these resoures is dediatedto the generation of the input ases to be applied to the program under test. This taskis not trivial, as input ases must onform to the test type and its requirements. Sinemost organizations perform this step manually, the automati generation of test data isworthwhile and has turned into one of the most hallenging problems in the area. Aommon strategy for faing this task onsists of reating test inputs that ful�ll an ade-quay riterion based on the program struture. That is, adequay riteria ome de�nedby the entities revealed by the program soure ode. For example, entities suh as thebranhes the �ow of ontrol an take from a onditional statement de�ne the branhoverage riterion, i.e. every program branh must be exerised.In the last few years, a number of approahes under the name of Searh Based SoftwareTest Data Generation (SBSTDG) have been proposed, o�ering interesting results [144℄.SBSTDG deals with the test data generation as a searh for the appropriate inputs by4



1 Introdutionformulating an optimization problem during the proess. This problem may then besolved using metaheuristi searh tehniques.This dissertation is devoted to the treatment of the test data generation problem froman optimization point of view. More preisely, the three major omponents of an opti-mization problem are studied in the ontext of branh overage, whih is a mandatoryriterion nowadays.Conerning problem modeling, both the searh spae and the objetive funtion are in-vestigated. In the literature related to this problem, little attention has been paid tothe searh spae topi. The present work aims at revealing its signi�ane for obtainingimproved results in terms of e�ieny and e�ay. For this, in order to selet a promis-ing region, a strategy that dynamially transforms the searh spae during the proess isdeveloped. By ontrast, a muh more intensive e�ort has been deserved in the bibliogra-phy to the objetive funtion. It is worth to disuss then di�erent funtions previouslyproposed and to study them in the present sope with the purpose of unovering theirin�uene.The urrent work emphasizes the optimization tehnique topi, fousing on the appli-ation of EDAs and SS. The main objetive regarding this subjet is twofold: on theone hand, to show that leading edge metaheuristis are able to perform suessfully inthis problem and ontribute new alternatives for its solution, on the other, to asertainwhether EDAs and SS beome pratial methods in a demanding real world problem.1.1 Outlook of the DissertationThis dissertation is omposed of seven hapters. Chapter 2 presents the optimizationmethods studied throughout this work, namely, EDAs and SS. The general optimizationproblem and the onept of metaheuristi are �rstly introdued. EAs are then desribedby giving a general framework to whih every algorithm roughly onforms. Though theorigins of EDAs are not learly stated, Geneti Algorithms seem to be one of their soures;a little more attention is devoted to them. Finally, SS and, more extensively, EDAsare overviewed. For the latter, existings methods are lassi�ed in three groups: thosewhere the probabilisti model assumes problem variables are onditionally independent,algorithms with �rst order dependene probability distributions, and EDAs where themodel makes no restrition on the dependenies between variables. Apropos SS, apartfrom the general methodology, advaned designs as well as appliations are inluded.The purpose of Chapter 3 is to explain the problem faed in the dissertation. Theneed for software testing is motivated by desribing its relevane with regard to qualityassurane. Disussion onentrates then on the generation of test inputs. The basistrategies for aomplishing this task are explained, pointing their limitations. The most5



1 Introdutionommon strategy onsists of ful�lling a ode overage riterion. This onept, togetherwith its omplexity, are introdued. In the last part of the hapter, SBSTDG is dealtwith. There, a general shema followed by many approahes is desribed. Additionally,two designs for the objetive funtion are presented and the optimization methods usedin the literature reviewed.The following three hapters study the topis involving the main novelty of the disserta-tion.In Chapter 4, the test data generation is formulated from an optimization perspetive.The appliation of EDAs to the general sheme from SBSTDG is then desribed in detail.Several EDAs are hosen for their evaluation through extensive experimentation.Chapter 5 studies the appliation of SS. Again, the general sheme is employed as thebasis for the approah. The role of the improvement method in the SS algorithm is ana-lyzed by exposing di�erent alternatives for its usage. Moreover, an EDA-SS ombinationis proposed in order to take advantage of the bene�ts of both approahes.Chapter 6 onerns with the two other elements of the optimization: the objetive fun-tion and the searh spae. Two funtions previously desribed are disussed and om-pared empirially to hek their adequay. The bulk of the hapter, however, takles thesearh spae issue. A strategy for the seletion of a promising searh region is widely de-sribed and experimentally evaluated. Then, diverse analysis of the results are inludedto validate its performane and obtain onlusions.Finally, Chapter 7 lists the main ontributions and onlusions of this work. Future linesof researh are suggested as well.
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2 Modern Evolutionary OptimizationTehniquesIn the past years, a signi�ant researh e�ort has been devoted to the study and devel-opment of optimization methods and, more spei�ally, of metaheuristis. As a resultof this work, a number of methods are emerging whih ontribute new ideas in the �eldand improve the results of more lassial alternatives in ertain problems. Two repre-sentatives of suh novel methods are Estimation of Distribution Algorithms (EDAs) andSatter Searh (SS). The formers omply with a researh line where optimization is basedin probabilisti models, while the latter emphasizes a more systemati approah.The aim of this hapter is to serve as an introdution to suh methods. Firstly, theoptimization problem, in general, and metaheuristis, in partiular, are presented. EDAsand SS are typially inluded under the framework of Evolutionary Algorithms. The verybasis of this framework are desribed then. Next, both EDAs and SS are overviewed.The hapter ends by pointing some other optimization methods whih are deserving theinterest of the ommunity as well.2.1 Introdution to MetaheuristisThe lassial objetive of optimization is to �nd variables values leading to an extremumof a funtion. More formally, the general problem may be stated as follows: given afuntion f : Ω→ IR, �nd x∗ ∈ Ω suh that
f(x∗) = min

x∈Ω
f(x).Funtion f is the objetive funtion and the set Ω ⊆ IRn is alled the feasible region,though the term searh spae is usually employed as well. Additionally, Ω may omede�ned by a number of restritions, formulated as funtions on the problem variables,that is, Ω = {x ∈ IRn | gi(x) ≥ 0, gi : IRn → IR, i ∈ {1, ...,m} }. If Ω = IRn, the problemis alled unonstrained, otherwise it is onstrained.Notie that aording to the desription above minimization is sought. This by no meansauses a loss in generality, sine

max
x∈Ω

f(x) = −min
x∈Ω

(−f(x)).7



2 Modern Evolutionary Optimization TehniquesMoreover, f takes values in IR, even so it ould be widened to f : Ω → IRk; if k >
1, a multiobjetive optimization problem is being posed [43℄. Many hallenging real-world problems involve, by nature, the attainment of multiple objetives, however, inthe present work, we will restrit to a single objetive, i.e. k = 1. Di�erent levelsof knowledge about the mathematial properties of f are possible. In the ase of noknowledge at all, the problem is named blak-box optimization.Regarding at the topology of f , di�erent types of minima an be distinguished. Aminimum is alled loal if no smaller funtion value exists in the surroundings of theorresponding point in Ω. The deepest of the loal minima is known as the global one.More preisely, given a point x∗ ∈ Ω, f(x∗) is a loal minimum if an ε > 0 exists suhthat ∀x ∈ Ω ‖x−x∗‖ < ε⇒ f(x∗) ≤ f(x). In the ase of a global minimum, this holdsfor every ε, that is, ∀x ∈ Ω f(x∗) ≤ f(x). It an be noted that the onept of loalminimum depends, to a large extent, on the metri. In the ase of ontinuous problemvariables, a ommon pratie is to adopt the Eulidean distane. If variables are disrete,however, a mapping N : Ω → 2Ω is de�ned on the basis of a metri; suh a mapping isreferred to as a neighborhood.An objetive funtion that only shows one loal minimum is named unimodal, otherwiseit is alled multimodal. Obviously, we are interested in �nding a global optimum of f ,therefore, in the previous desription of an optimization problem, the solution point x∗alludes to a global minimum. From now on, terms optimum and minimum will be relatedwith globality, unless otherwise spei�ed where onfusion might arise.Inherent to an optimization problem is the need for a suitable solution strategy. Nogeneral-purpose e�etive method has been found, so the �eld is overed by proeduresthat limit their appliation to spei� problem ases eah. A rough lassi�ation of thesemethods an be drawn by onsidering the problem features. Thus, for instane, we maydisern between strategies for stati and dynami optimization (extrema are stationaryor of time-varying nature), parameter and funtional optimization (problem variablesare salars or funtions), or onstrained and unonstrained optimization.One other possible distintion is between analyti and numerial optimization methods[224℄. Analyti (also known as indiret) proedures are based on the investigation of thepartiular properties of f at the extrema points. For this, lassial theoretial oneptsregarding the neessary and su�ient onditions for the existene of minima and maximaare employed, resulting in systems of equations that a solution must satisfy. However,di�ulty, even possibility, of determination of this solution heavily depends on partiularproblem onditions; so, aspets like ontinuity or di�erentiability of f , whether nonlinearequations are involved, or the existene of onstraints, strongly restrit the appliationof suh strategies. On the other hand, numerial (or diret) methods are more widelyspread than indiret. Diret methods onsist of approahing the solution iteratively,attempting to improve the value of f at eah step. Not ahieving this improvement8



2 Modern Evolutionary Optimization Tehniquesauses a trial and error proess whih, in the uttermost ase, leads to an exhaustiveexploration of the searh spae. Indeed, strategies that ensure the ahievement of theoptimum, ommonly known as omplete or exat, are based on the examination of a largeproportion of the searh spae. Unfortunately, limitations arise when their omputationis addressed. Computational omplexity assoiated to a proedure grows with the sizeof the searh spae; in ase of an exponential growth, the problem is deemed intratable.Furthermore, a huge number of problems from diverse areas as eonomis, biology oroperations researh belong to the NP-hard ategory [84℄, whih implies no algorithm thatattains the optimum in a polynomial time omplexity sale is known. In onsequene,these problems are onsidered to be intratable.Hene, we arrive to a lak of feasible solution strategies for a signi�ant number ofproblems. The unavoidable question is: how an they be takled? An alternative is toapproximate the optimum by means of heuristis [198℄. A heuristi is a rule of thumb thatgives guidane in the solution of a problem. Although optimality is not guaranteed, a highquality solution at a reasonable omputational ost is usually ahieved. This e�ieny isvery appreiated when faing ompliated real-world problems and onstitutes the luefor the extended appliation of these tehniques.Many heuristi methods onsist of a searh proess over the feasible region [180℄. Suhheuristi searh proedures an be further divided into deterministi and nondetermin-isti algorithms. In the formers, deterministi rules are used at eah step of the proess,that is, given a problem, two exeutions of the algorithm under idential onditions resultin the same solution. By ontrast, in nondeterministi approahes, several options arefeasible at some deision points during the searh. It is ommon to resort to stohastirules at these points and, aordingly, di�erent solutions might be attained in two runsof the same algorithm, given a problem and idential exeution onditions. Examples ofdeterministi and nondeterministi approahes are, respetively, oordinate hill limbing[224℄ and random diretions algorithms [263℄.Taking the type of the extrema into aount, searh heuristis may also be lassi�edas loal or global methods. Loal methods operate in the surroundings of a solutionpoint at eah step of the searh, until an optimum is found1. If f is multimodal then aloal optimum, di�erent to the global, is often reahed [263℄. On the other hand, globalmethods aim at overing the searh spae to some extent, with the purpose of obtainingthe global optimum. Respetive instanes of loal and global algorithms omprise thebest �rst proedure [180℄ and grid searh strategies [224℄. It is important to remark that,in many ases, these two types of methods are ombined in order to build other globalproedures, e.g. multistart algorithms [221℄ typially onsist of multiple appliations ofa loal searh heuristi departing from di�erent initial points eah.1Other works from the literature [32℄ simply refer to loal methods as those employing a neighborhood.Notie that a stronger desription is used here [7; 224; 263℄.9



2 Modern Evolutionary Optimization TehniquesAn enormous e�ort has been devoted in the past years to the study and development ofheuristi methods. One of the main objetives of this work has been the improvementof the traditional heuristi algorithms, resulting in inreasingly advaned designs. Thesehave been inluded under the relatively reent term of metaheuristis [32; 87; 198℄.Glover used this term for the �rst time to desribe proedures onsisting of �... a masterstrategy that guides and modi�es other heuristis to produe solutions beyond those thatare normally generated in a quest for loal optimality.� [88℄. Nonetheles, in pratie,metaheuristis involve sophistiated as well as modern approahes [198℄. The similarterm of hiper-heuristis an also be found in the literature [203℄, though its meaning islearly di�erent, as it alludes to methods whih seek through a searh spae of heuristialgorithms. A few well known examples of searh metaheuristis are Simulated Annealing[121℄, Tabu Searh [88℄ and Evolutionary Algorithms [7℄.2.2 Evolutionary AlgorithmsEvolutionary Algorithms (EAs) [7; 8; 9; 67℄ is the term used to group a number of stohas-ti (nondeterministi) global searh metaheuristi tehniques. All these tehniques shareas a soure of inspiration the theory of natural evolution of speies enuniated by Dar-win [50℄. Aording to Darwin's model, the evolution of a population of individuals inan environment with limited resoures is based on two ornerstones: natural seletionand phenotypi variations. Natural seletion favors reprodution of the best adaptedmembers in the population, allowing their geneti information to spread through theiro�spring. Phenotypi variations given by genes reombination during reprodution and,oasionally, by small mutations of a gene, produe new individuals in the population.EAs ome motivated by the interpretation of adaptation as a suessive progress ofimprovement of strutures in order to attain a better performane in their environment.Natural evolution an be then observed as an optimization proess whih is worthy ofimitation. This was the idea followed by three approahes developed separately during the60s. In the USA, Holland introdued Geneti Algorithms [108℄, while Fogel, Owens andWalsh invented Evolutionary Programming [74℄. Meanwhile, in Germany, Rehenbergand Shwefel implemented Evolution Strategies [197; 224℄. Suh tehniques have beenonsidered the mainstreams of the �eld sine their development. EAs, however, omprisemany more methods than these. Due to their extended use and their onnetion withthe sope of this thesis, Geneti Algorithms will be brie�y introdued later on. For adetailed explanation of these approahes and EAs in general, the reader is referred to[8; 9; 67; 74; 89; 224℄.
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2 Modern Evolutionary Optimization Tehniques2.2.1 The General FrameworkAs a onsequene of the evolutionary metaphor, muh of the biologial terminology hasbeen transferred to the �eld of EAs. For instane, a andidate solution point for theproblem at hand is represented by an individual, whih is in turn omposed by a set ofgenes or variables. The term population alludes to a set of individuals, that is, a set ofrepresentations of the andidate solutions. The objetive funtion is referred to as the�tness funtion and, aordingly, the funtion value of an individual is alled its �tness.An EA lies on the basis formed by three stohasti operators, namely, seletion, reom-bination and mutation. Reombination and mutation are not simultaneously inluded inall designs, though one of them is always present, e.g. basi Evolution Strategies onlyinvolve mutation. Many tehniques, however, ontain both operators.The searh for the optimum point onsists basially of an iterative proess departingfrom a population of individuals. At eah round or generation, the seletion operator isapplied to hoose a set of parent individuals from the urrent population. For this, �tterindividuals are assigned a higher probability of being hosen. Reombination merges thegenes of several parents (ommonly two) into o�spring individuals. The hoie of thegenes to be ombined as well as the manner of ombination are determined probabilis-tially. Even the appliation of the operator depends on a probability value. Mutationperforms random transformations on the genes of one individual. Similarly to reom-bination, eah of these transformations ours with a ertain probability. Finally, newindividuals ompete with the old ones for a plae in the next generation. Figure 2.1 showsthe pseudoode of a general framework to whih every EA onforms to some extent. Inthe pseudoode, Dl represents the population of the l-th generation; analogously, DSel
l ,

DRec
l and DNew

l denote the set of seleted individuals, the o�spring after reombinationand the new individuals after mutation, respetively.
D0 ← Obtain initial populationEvaluate eah individual from D0Repeat for l = 1, 2, ..., until stopping riterion is met

DSel
l−1 ← Selet individuals from Dl−1

DRec
l−1 ← Reombine individuals from DSel

l−1

DNew
l−1 ← Mutate individuals from DRec

l−1Evaluate eah individual from DNew
l−1

Dl ← Build next population with individuals from Dl−1 and DNew
l−1Figure 2.1: General framework for EAs.From an optimization point of view, EAs are based on two assumptions. On the onehand, eah solution point is a ontainer of knowledge about the features of the objetivefuntion. On the other, when solutions are ombined, their knowledge is transmitted to11



2 Modern Evolutionary Optimization Tehniquesthe resulting solutions. Sine �tter individuals have higher hanes of being seleted, itis expeted the parents to enode suitable features. As a result of their ombination,better individuals ould then be obtained, and the population might eventually evolvetowards promising areas of the searh spae.At this point, it is important to notie the signi�ane of the enoding sheme used byindividuals to represent andidate solutions. This sheme an be desribed as a mapping
h : Ω→ ΩI , where ΩI is the set of individuals. The searh proeeds in ΩI , so the objetivefuntion of the problem atually being takled is fI : ΩI → IR, instead of f : Ω → IR.In some ases, an individual is a solution point (h is the identity funtion) and, hene,
fI = f , while, in others, more elaborated mappings are required. Therefore, both h and
fI must be arefully de�ned in order to preserve the properties of the originals searhspae and objetive funtion. A onvenient approah, though not always feasible, is tomake h bijetive, so that fI = f ◦ h−1.The framework in Figure 2.1 reveals the remaining elements that haraterize EAs. Whilesome of these omponents are often spei�ed following general rules, others tend tobe tailored to the partiular tehnique at hand. Thus, the initial population an beobtained independently from the algorithm through several alternative proedures, e.g.at random. By ontrast, design of the evolutionary operators is usually in�uened by themethod. Below, a few operators are desribed in detail for the ase of Geneti Algorithms.Apropos the onstrution of the next population, relatively simple rules, like hoosing theindividuals with highest �tness, are popular. It is worth noting a pratie alled elitism,whih onsists of preserving for the next population the best individual from the urrentone. The use of elitism is widely spread as it has shown good results in many problems aswell as neessary properties for theoretial onvergene to the global optimum [137; 206℄.For the termination ondition, spei� strategies exist for a few EAs [5℄, though the usualapproah is to resort to general riteria. For instane, if the optimal value is known, anobvious halting ondition is the attainment of suh a �tness. Further basi riteriaare, among others, reahing a maximum number of �tness evaluations or omputationalresoures, no improvement of the mean �tness of the population in suesive generations,or the onvergene of the population to the same individual. In order to fully de�nean EA, parameters that ome together with these elements should also be spei�ed.Parameter values that need to be set in most tehniques are the population size, thenumber of individuals seleted, and probabilities of reombination and mutation. Ofourse, additional parameters may arise from the partiular details of eah omponent.When ompared with lassial optimization methods, EAs own a number of advantageswhih turn them to be an interesting option. First, EAs may be applied to a widevariety of senarios. They are able to deal with funtions where no derivatives exist,multimodality, disontinuities, onstraints, or with noisy funtions. Even problems notompletely de�ned or blak-box optimization an be takled. Seond, EAs do not makeany assumption about the searh spae. Third, the e�ort to adapt an EA to a new12



2 Modern Evolutionary Optimization Tehniquesproblem is relatively low. Finally, some EAs an run interatively, i.e. it is possible tohange the parameter values during exeution.EAs have also drawbaks. First, there is no guarantee of �nding the global optimumand, in most ases, no reliable stopping riteria are known. Seond, EAs are omplexsystems that make their theoretial analysis fairly intrinate, leading to a lak of enoughtheoretial basis in the �eld. Moreover, omparison between di�erent EAs is di�ultunless experimentally. Third, they are often omputationally expensive. Fourth, it isnot possible to know how far the solution obtained is from the global optimum. Finally,perhaps their worst harateristi is a strong dependeny on the set of parameters, whihusually has to be experimentally tuned for the problem at hand. In fat, in some al-gorithms, this tuning itself beomes an optimization problem [94℄. Exeptionally, thetuning proess an be avoided by Evolution Strategies and other self-adaptive EAs [66℄.To summarize, it is important to think that EAs are not a set of tehniques ready to beapplied, but a set of mehanisms to modify and tailor to the partiular problem.Nonetheless, the high quality results obtained in many problems have aused an expo-nential growth of the �eld. The literature is plenty of suessful appliations to real-worldproblems [51℄ as well as their abstrat forms, like, for example, the Traveling SalesmanProblem [7℄. These enouraging results led a number of works from the 80s to onlusionson the superiority of EAs with regard to other tehniques [89℄. Still, the No Free LunhTheorem [254℄ showed later on that, averaging over the spae of possible problems, allblak-box algorithms exhibit the same performane. The perspetive of researhers sinethen has ompletely hanged. Instead of seeking the best overall method, urrent e�ortsare addressed towards the identi�ation of the suitable methods for a given problem, orthe study of the problems where a method performs well. Undoubtedly, muh of thiswork has been devoted to the, probably, most popular EA: the Geneti Algorithm.2.2.2 Geneti AlgorithmsOrigins of Geneti Algorithms (GAs) lie on the work by Holland [108℄, although theirpopularity is mainly due to Goldberg [89℄. The pseudoode in Figure 2.1 an be straightlybrought to GAs, sine both reombination and mutation operators are ontained in thealgorithm. The Simple Geneti Algorithm (SGA) is the most elementary implementationof this method. Basi representation issues, together with the seletion, reombinationand mutation operators of the SGA, are desribed next. Additionally, a few advaneddesigns are inluded. Exelent in-depth disussions of GAs an be found in the literature;for instane, the reader may onsult the book by Goldberg [89℄, or the more reent oneby Vose [245℄.
13



2 Modern Evolutionary Optimization TehniquesRepresentation of a solutionAn individual in the SGA enodes a solution point from the original problem as a binarystring of n genes, i.e. an individual an be denoted as x = (x1, x2, ..., xn), with x ∈
{0, 1}n. This enoding implies a mapping funtion must be de�ned to transform originalsolutions into 0-1 strings. For instane, an integer variable ould be mapped to a binarystring following a sign-magnitude representation [246℄.Another possibility is to enode eah solution in a natural, non binary, way, resultingin strings of integers or reals. A disadvantage of these enodings is that most of theevolutionary operators are built with regard to the SGA, and they might not be usedwith non 0-1 strings. More preisely, many of the operators an be applied to integerenodings, but not to reals. In these ases, spei� operators usually need to be designed[106℄.SeletionThe purpose of seletion is to push the searh towards high quality areas. In the SGA,the number of individuals to be seleted is a parameter of the algorithm and the operatoris known as proportional-based seletion. Assuming a population size N and an objetivefuntion f to maximize, the probability of hoosing an individual xi with this operatoris

p(xi) =
f(xi)

∑N
j=1 f(xj)

(2.1)A well known drawbak of proportional-based seletion is that it is not invariant undertranslation nor under a hange in sale of the objetive funtion. Therefore, more ad-vaned strategies are used in pratie. For example, in linear rank-based seletion [10℄,previous drawbaks vanish, sine a rank of the �tness values in the population is em-ployed to eliite the probability of seletion for an individual. Let η+ denote the expetednumber of times the best individual x1:N is seleted, i.e. η+ = N · p(x1:N), and η− theminimum expeted value assigned to xN:N , i.e. η− = N · p(xN:N), then the probabilityassigned to individual xi:N is eliited following a linear mapping, that is,
p(xi:N) =

1

N
·

(

η+ − (η+ − η−) ·
i− 1

N − 1

) (2.2)and the onstraints ∑N
i=1 p(xi:N) = 1 and p(xi:N) ≥ 0 ∀i ∈ {1, 2, ...,N} imply 1 ≤ η+ ≤

2 and η− = 2− η+. As it an be notied, the implementation of this operator involves anew parameter η+.
14



2 Modern Evolutionary Optimization TehniquesReombinationAording to the EAs hypothesis, reombination is the way to spread the information ofindividuals. In the SGA, this operator is applied with a ertain probability, whih is givenas a parameter. The probability value tends to be high (nearly 1) in order to failitatethe exploration of the searh spae. Two parents (x1
1, x

1
2, ..., x

1
n) and (x2

1, x
2
2, ..., x

2
n) aremixed and two hildren are obtained. The proedure onsists of hoosing an index kfrom a uniform distribution over {1, 2, ..., n − 1}. Then, the �rst hild is omposed ofgenes x1

1, ..., x
1
k−1 and x2

k, ..., x
2
n, while the seond is reated with genes x2

1, ..., x
2
k−1 and

x1
k, ..., x

1
n.The underlying idea behind this ut point based operator is that neighbor genes ontainthe useful knowledge to obtain improved individuals. However, even if this is true, thereis no apparent reason to assume that the neighborhood is given by adjaent variables inthe string. Hene, several approahes have proposed to extend the number of ut pointsto two or more. The general situation is the uniform reombination operator [237℄, wherefor eah gene one of the parents is hosen randomly and independently of the rest of thevariables.Other reombination operators have investigated the possibility of merging more than twoparents. In the Bit-based Simulated Crossover [238℄, the value of eah gene is obtainedfrom the value of the same variable in an individual hosen from the whole population.The seletion of the individual onsists of sampling from a probability distribution thatdepends on the �tness value of the individuals.MutationThe role of mutation is to injet diversity in the population, enhaning the explorationapabilities of the algorithm. In the SGA, the value of eah gene is �ipped with aprobability value whih is a parameter of the system. In ontrast to reombination, thisvalue is kept low (a rule of thumb is to use 1/n [150℄) to avoid the exessive disruptionof the e�et of the reombination operator.2.2.3 Advaned DesignsAn intensive researh has been ommitted to EAs in the past years. To a great extent,these e�orts have onentrated on the alleviation of the drawbaks previously introduedor the improvement of the tehniques performane. It is worth to remark then a numberof approahes in the literature making use of advaned designs.The hybridization of EAs with other tehniques [22℄ is an ative working line supportedby the impressive results obtained in pratie, e.g. in graph oloring problems [80℄. One15



2 Modern Evolutionary Optimization Tehniquesother appealing area is based on the study of strategies for the self-adaptation of theparameters values of the EA [6; 66℄. The purpose of these developments is to makethe algorithm less dependant on the parameters by allowing the evolutionary proess tohange their values during the searh. A more spread approah is the generalization ofthis idea, that is, designing EAs where a number of basi omponents are self-adaptive[66℄. In this ontext, the bulk of the works onentrate on the employment of variablelength representations of a solution [123; 252℄. Finally, muh of the researh e�orts areonerned with the parallelization of EAs [34; 205℄. This �eld is not only interestingfrom an e�ieny point of view, but also from a methodologial one, sine some parallelmethods imply a di�erent behavior from the lassial EA and onstitute themselves anew domain, e.g. island models GAs [34℄.Of ourse, these approahes are just a few instanes from the body of extensions andinnovative ideas onerning EAs. In fat, suh is the level of sophistiation ahieved bymany reent developments that they do not �t exatly into the framework in Figure 2.1.The notion of EA is beoming inreasingly blur, favouring the inlusion of several teh-niques that follow some evolutionary onepts under its umbrella. Next, we review twoleading edge tehniques amongst these, namely, Estimation of Distribution Algorithms[131℄ and Satter Searh [126℄.2.3 Estimation of Distribution AlgorithmsIn the last deade, GAs have been widely used to solve di�erent problems, improvingin many ases the results obtained by other algorithms. However, as it was pointed inprevious setion, this kind of algorithms has a large number of parameters that need tobe orretly tuned in order to obtain good results. Generally, only experiened users ando this orretly and, moreover, the task of seleting the best hoie of values for allthese parameters has been suggested to onstitute itself an optimization problem [94℄.In addition, GAs show a poor performane in some problems (deeptive and separableproblems) in whih the existing operators of rossover and mutation do not guaranteethat better individuals will be obtained hanging or ombining existing ones.Some authors [108℄ have pointed out that making use of the relations between genes anbe useful to drive a more �intelligent� searh through the solution spae. This onept,together with the limitations of GAs, ontributed to spread a new type of algorithmsgrouped under the name of Estimation of Distribution Algorithms (EDAs).EDAs were introdued in the �eld of EAs in [158℄, although similar approahes an bepreviously found in [263℄. In EDAs there are neither rossover nor mutation operators.Instead, the new population of individuals is sampled from a probability distribution,whih is estimated from a database that ontains the seleted individuals from the pre-vious generation. Thus, the interrelations between the di�erent variables that represent16



2 Modern Evolutionary Optimization Tehniques
D0 ← Generate M individuals and evaluate eah of themRepeat for l = 0, 1, 2, ..., until stopping riterion is met

DSel

l
← Selet N individuals from the Dl population following a seletion methodIndue from DSe

l
an n (size of the individual) dimensional probability model

Dl+1 ← Generate a new population of M individuals based on the sampling of theprobability distribution pl(x) learnt in the previous stepEvaluate individuals in Dl+1Figure 2.2: Pseudo-ode for EDAs.the individuals may be expliitly expressed through the joint probability distribution as-soiated with the individuals seleted at eah generation. Figure 2.2 presents a ommonoutline for all EDAs.A review of di�erent EDAs is presented in the following setions, lassi�ed on the basis ofthe di�erent probability models that an be used to represent the dependenies betweenthe variables that onstitute the individuals. Algorithms have been grouped aordingto the way dependenies between variables are onsidered: all variables are independent,pairwise dependenies, or multiple dependenies. For the sake of onveniene to thethesis objetives, we restrit the review to EDAs for optimization in disrete domains;for an exelent review inluding ontinuous variables the reader is referred to [131℄.Firstly, some notation that will be used throughout the diussion is introdued. Givenan n-dimensional random variable X = (X1,X2, ...,Xn) and a possible instantiation x =
(x1, x2, ..., xn), the joint probability distribution of X will be denoted by p(x) = p(X =
x). In the ase of two unidimensional random variables Xi,Xj and their respetivepossible values xi, xj , the onditional probability of Xi given Xj = xj will be representedas p(xi|xj) = p(Xi = xi|Xj = xj). In the ontext of EAs, an individual with n genesan be onsidered an instantiation x = (x1, x2, ..., xn) of X = (X1,X2, ...,Xn). Let thepopulation of the l-th generation be Dl. The individuals seleted, DSe

l , onstitute adataset of N ases of X = (X1,X2, ...,Xn). EDAs estimate p(x) from DSe
l , therefore,the joint probability distribution of the l-th generation will be represented by pl(x) =

p(x|DSe
l−1).2.3.1 Without DependeniesAll the models that belong to this ategory onsider all variables as independent. There-fore, the joint probability distribution is fatorized as a produt of univariate and inde-pendent probability distributions. That is, pl(x) =

∏n
i=1 pl(xi).
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2 Modern Evolutionary Optimization TehniquesUMDAUnivariate Marginal Distribution Algorithm (UMDA). Introdued in [151℄, this algorithmuses the simplest way to estimate the joint probability distribution:
pl(x) = p(x|DSe

l−1) =

n
∏

i=1

pl(xi) (2.3)where eah univariate marginal distribution is estimated from marginal frequenies:
pl(xi) =

∑N
j=1 δj(Xi = xi|D

Se
l−1)

N
(2.4)being

δj(Xi = xi|D
Se
l−1) =

{

1 if in the jth ase of DSe
l−1, Xi = xi

0 otherwise (2.5)UMDA has been suessfully applied to di�erent problems: feature subset seletion [4℄,learning of Bayesian networks from data [23; 202℄, or to solve linear and ombinatorialproblems using Laplae orretion [178℄.Other works fous on the behavior of the algorithm, performing a mathematial analysisof UMDA [154; 155℄, studying its onvergene when UMDA is used to maximize a numberof pseudo-boolean funtions [91℄, or analyzing the geneti drift phenomenon [110; 111;227℄.Finally, several modi�ations have also been introdued in UMDA trying to improve itsperformane: modi�ations on the simulation phase [215; 216℄, use of a repair methodfor solving onstraint satisfation problems [96℄, adaptive population sizing [109℄, use ofmemory shemes for dynami optimization problems [258℄, or introduing the bitwisemutation operator [97℄.BSCBit-Based Simulated Crossover (BSC) [238℄ originated as a reombination operator forGAs. This approah uses the �tness value of the seleted individuals to estimate eahmarginal distribution:
pl(xi) =

∑

{x|δj(Xi=xi|DSe
l−1

)=1} e
f(x)

∑

{xǫDSe
l−1
} e

f(x)
(2.6)where funtion δj maintains the meaning expressed in Equation 2.4.18



2 Modern Evolutionary Optimization TehniquesIn Equation 2.6, the numerator alludes to the sum of the evaluation funtion values ofthe individuals with value xi in the variable Xi, and the denominator is the sum ofevaluation values of the seleted individuals.This algorithm has been applied to problems suh as feature subset seletion [114℄ andpartition lustering tasks [204℄.PBILPopulation Based Inremental Learning (PBIL) [11; 12℄ uses a probability vetor torepresent the harateristis of the population:
pl(x) = (pl(x1), . . . , pl(xi), . . . , pl(xn)) (2.7)where pl(xi) refers to the probability of obtaining a value of 1 in the ith variable of the

lth population.The vetor is initialized using the �rst population, and then it is used to sample a newset of M individuals. From this set, only the best N individuals are seleted. We denotethem by:
xl

1:M , . . . ,xl
i:M , . . . ,xl

N :M (2.8)Based on the following Hebbian inspired rule, the probability vetor is updated:
pl+1(x) = (1− α)pl(x) + α

1

N

N
∑

k=1

xl
k:M (2.9)where α ∈ (0, 1] is a parameter of the algorithm (the reader may note that when α = 1,this algorithm performs as UMDA).The following population will be sampled from this new (updated) probability vetor.In ontrast to the general EDA behavior, it must be remarked that this algorithm usesthe probability vetor of the previous generation in addition to the reently sampledindividuals to obtain the new probability vetor.PBIL has been applied to di�erent problems, suh as: optimization of parameters ofa solution in the �eld of tatial driving [236℄, searh for optimal weights in a neuralnetwork struture [47; 82℄, lassi�er seletion [207℄, optimization of parameters for thesimple supply hain model [92℄, or learning of Bayesian networks [23℄.Some theoretial studies of PBIL have been ompleted in [90; 107℄.Finally, there are works that use harateristis of PBIL or even modify parts of thealgorithm. In [136℄, the Statistial and Indutive Tree Based Evolution algorithm ispresented. This approah mixes ideas from PBIL (probability vetor) with indutive19



2 Modern Evolutionary Optimization TehniquesFor i = 1, . . . , nIf xl
i,1:2 6= xl

i,2:2If xl
i,1:2 = 1

pl(xi) = pl−1(xi) + 1
KIf xl

i,1:2 = 0

pl(xi) = pl−1(xi)−
1
KFigure 2.3: Proess to update the probability vetor in GA. K is a onstant value �xedas a parameter.deision trees. In general terms, it works as follows: starting with a randomly reatedpopulation, individuals are split into three groups (best, mediore, and bad) and Indu-tion of Deision Trees is used to indut a deision tree, extrating the set of equivalentrules. Then, PBIL is used together with the rules to sample new individuals. The proessis repeated until some termination riteria is ful�lled.Related to dynami problems, there are two di�erent proposals: using a dual probabilityvetor and ompeting with the main probability vetor to generate samples [260℄, andusing a memory sheme to store the best sample and the working probability vetor [259℄.GAThe ompat Geneti Algorithm (GA) [99℄ is quite similar to PBIL. It also uses aprobability vetor to guide the searh through the spae of possible solutions.This algorithm ompletes the following steps: �rst, the probability vetor is initialized(eah omponent follows a Bernoulli distribution with parameter 0.5). Then, two indi-viduals are randomly sampled from the probability vetor, and evaluated. Taking intoaount their �tness value, one of them will be the best (xl

1:2) and the other the worst(xl
2:2). The proess to update the probability vetor is presented in Figure 2.3.It must be noted that the probability vetor is updated in an independent way for eahvariable. This proess of adaptation of the vetor of probabilities towards the winningindividual ontinues until the vetor of probabilities has onverged.GA has been applied to feature subset seletion [35℄ and to the pruning of neural net-works used in lassi�ation problems [36℄.A runtime analysis of GA using di�erent linear funtions is presented in [63℄.Finally, several modi�ations on GA have been presented in the literature. In [81℄, amodi�ed ompat GA is developed for the intrinsi evolution of ontinuous time reurrentneural networks. In [1℄, two elitism-based GAs are presented: persistent elitist ompat20



2 Modern Evolutionary Optimization Tehniquesgeneti algorithm (pe-GA), and nonpersistent elitist ompat geneti algorithm (ne-GA).RELEDAThe Reinforement Learning Estimation of Distribution Algorithm (RELEDA) was in-trodued in [179℄.In this algorithm, an agent explores an environment pereiving its urrent state as wellas information about the environment. Based on that information, the agent takes somedeisions, making the environment hange and reeiving the value of this transition as asalar reinforement sign.This algorithm is similar to UMDA, but the probability of eah variable is updatedapplying a reinforement learning method. The searh for probability distributions isredued to a number of parameters denoted by θ = {θ1, θ2, . . . , θn} where θi ∈ ℜis a parameter related to the probability of the variable Xi through a funtion. Theorrelation between p(xi) and θi is expressed through the sigmoid funtion:
p(xi) =

1

2
(1 + tanh(βθi)) (2.10)where β is the sigmoid gain.In eah generation, the value of the parameters θi is modi�ed by a ∆i value following:

∆θi = α(bi − p(xi))(1 − di) (2.11)
bt+1
i = γbt

i + (1− γ)xi (2.12)where bi is the reinforement signal (baseline), di is the marginal distribution of thevariable Xi, xi is the value of the variable Xi in the best individual in that generation,
α is the learning rate, and γ is the baseline fator.This algorithm has been ompared in [179℄ to other EDAs (UMDA and PBIL) using twowell-known problems: four peaks and bipolar funtion, showing that it requires fewer�tness evaluations to obtain an optimal solution.DEUMDistribution Estimation Using MRF with diret sampling (DEUM) [225℄. This algorithmuses the Markov Random Field (MRF) modelling approah to update the probabilityvetor. It an be seen as an adaptation of the PBIL approah by replaing marginalfrequenies with an MRF model on a seleted set of solutions.21



2 Modern Evolutionary Optimization TehniquesFor i = 1, . . . , nIf αi < 0
pi = pi(1− λ) + λIf αi > 0
pi = pi(1− λ)Figure 2.4: Proess to update the probability vetor in DEUM. λ is a learning rate (valuesbetween 0 and 1) �xed as a parameter.In [29℄, MRF theory was used to provide a formulation of the joint probability distribu-tion that relates solution �tness to an energy funtion alulated from the values of thesolution variables. Mathematially:

p(x) =
f(x)

∑

y f(y)
=

e−U(x)

∑

y e−U(y)
(2.13)therefore

− ln(f(x)) = U(x) (2.14)where f(x) is the �tness funtion of an individual and U(x) an energy funtion thatspei�es the joint probability distribution. Generally, the energy funtion involves inter-ation between variables but, for this partiular approah, all the variables are onsideredindependent. Therefore, the previous equation an be rewritten as:
− ln(f(x)) = α1x1 + α2x2 + . . . + αnxn (2.15)Eah solution in any given population gives an equation satisfying the model. Therefore,seleting N promising solutions from a population allows us to estimate the distributionby solving Aα = F , where A is the N×n dimensional matrix of values in the seleted set,

α is the vetor of MRF parameters α = (α1, α2, . . . , αn), and F is the N dimensionalvetor ontaining the value − ln(f(x)) of the seleted set of solutions.Finally, the probability vetor will be updated using the MRF parameters (see Fig-ure 2.4).This algorithm has been modi�ed in [226℄, proposing an approah alled DEUMd inwhih a MRF model is diretly sampled to generate the new population.2.3.2 Pairwise DependeniesAlgorithms in this seond group onsider only dependenies between pairs of variables.In this way, estimation of the joint probability an still be done quikly. However, it must22



2 Modern Evolutionary Optimization Tehniquesbe noted that an additional step is required (not neessary in the previous algorithms):the onstrution of a struture that best represents the probabilisti model.MIMICMutual Information Maximization for Input Clustering (MIMIC) [53℄. This approahsearhes (in eah generation) for the best permutation between the variables. The goalis to �nd the probability distribution, pπ
l (x), that is losest to the empirial distributionof the set of seleted points, pl(x), when using the Kullbak-Leibler divergene, where

pπ
l (x) = pl(xi1 | xi2) · pl(xi2 | xi3) · · · pl(xin−1

| xin) · pl(xin) (2.16)and π = (i1, i2, . . . , in) denotes a permutation of the set of indexes {1, 2, . . . , n}.The Kullbak-Leibler divergene between two probability distributions, pl(x) and pπ
l (x),an be expressed as:

Hπ
l (x) = hl(Xin) +

n−1
∑

j=1

hl(Xij | Xij+1
) (2.17)where

h(X) = −
∑

x

p(X = x) log p(X = x) (2.18)denotes the Shannon entropy of the X variable, and
h(X | Y ) =

∑

y

h(X | Y = y)p(Y = y) (2.19)where
h(X | Y = y) = −

∑

x

p(X = x | Y = y) log p(X = x|Y = y) (2.20)denotes the mean unertainty in X given Y .Therefore, the problem of searhing for the best pπ
l (x) an be solved by searhing for thepermutation π∗ that minimizes Hπ

l (x).As a searh over the n! possible permutations will be unfeasible for most of the problems,a greedy searh is proposed to �nd the π∗ permutation. The proess starts with thevariable Xin with the smallest estimated entropy. In the following steps, the variablewith the smallest average onditional entropy with respet to the variable seleted in theprevious step is hosen (obviously from the set of variables not yet hosen).
23



2 Modern Evolutionary Optimization TehniquesMIMIC has been used to solve several problems: the traveling salesman problem [201℄,feature subset seletion [114℄, partial abdutive inferene problem in Bayesian networks[54℄, or learning of Bayesian networks [202℄.In addition, some modi�ations of this algorithm have also been proposed, applying arepair method for solving onstraint satisfation problems [96℄, or introduing a mutationoperator [97℄.COMITCombining Optimizers with Mutual Information Trees (COMIT) [13℄. This algorithmshybridizes the EDA approah with loal optimizers. Estimation of the probability dis-tribution of the seleted individuals in eah generation is done using a tree struturedBayesian network, learnt using the algorithm Maximum Weight Spanning Tree (MWST)proposed in [41℄.In general terms, MWST looks for the probabilisti tree struture (pt
l(x)) that bestmathes the probability distribution of the seleted individuals (pl(x)). To onsider thequality of eah possible tree, the Kullbak-Leibler ross-entropy measure is used. Thedistane is minimized by projeting pt

l(x) on any MWST, where the weight of the branh
(Xi,Xj) is de�ned by the mutual information measure:

I(Xi,Xj) =
∑

xi,xj

p(Xi,Xj)(xi, xj) log
p(Xi,Xj)(xi, xj)

pXi
(xi)pXj

(xj)
(2.21)One an estimation of pl(x) has been obtained, COMIT samples a number of individualsfrom it and selets the best as the initial solutions of a loal searh method. The resultingindividuals are then used to reate a new population.TREETREE [131℄ refers to an adaption of COMIT where the loal searh step is eliminated.Thus, new individuals to enter in the next population are reated diretly by samplingthe distribution that estimates pl(x).TREE has been applied to several problems. To name a few, the traveling salesmanproblem [201℄, feature subset seletion [113℄, partitional lustering [204℄, rule indution[73; 229℄ and software test data generation [212℄.

24



2 Modern Evolutionary Optimization TehniquesBMDABivariate Marginal Distribution Algorithm (BMDA) [189℄. This algorithm uses a fator-ization of the joint probability distribution that only needs seond-order statistis.It is based on an ayli (but not neessarily onneted) dependeny graph. This graphis onstruted as follows: �rst, a variable is hosen arbitrarily and it is added as a nodeof the graph. This �rst variable is the one with the greatest dependeny on the rest ofthe variables �measured by Pearson's χ2 statisti.Seond, the variable with the greatest dependeny between any of those previously addedand the set of those not yet added is inorporated to the graph. This seond step isrepeated until there is no dependeny surpassing a previously �xed threshold betweenalready added variables and the rest. If this is the ase, a variable is hosen at randomfrom the set of those not yet used to reate a new tree struture. The whole proess isrepeated until all variables are added into the dependeny graph.In eah generation the fatorization obtained with the BMDA is given by:
pl(x) =

∏

Xr∈Rl

pl(xr)
∏

Xi∈V \Rl

pl(xi | xj(i)) (2.22)where V denotes the set of n variables, Rl denotes the set ontaining the root variable�in generation l� for eah of the onneted omponents of the dependeny graph, and
Xj(i) returns the variable onneted to the variable Xi and added before Xi.2.3.3 Multiple DependeniesDi�erent works [26; 185℄ have shown the limitations of using simple approahes to solvedi�ult problems. It must be noted that in this kind of problems, di�erent dependenyrelations an appear between variables and, hene, onsidering all of them independentor taking into aount only dependenies between pairs of variables may provide a modelthat does not represent the problem aurately.Several algorithms have been proposed in the literature using statistis of order greaterthan two to fatorize the probability distribution. In this way, dependenies betweenvariables an be expressed properly without any kind of initial restrition. However, itmust be also notied that the probability model required for some problems ould beexessively omplex and, sometimes, una�ordable in omputational terms.ECGAExtended Compat Geneti Algorithm (ECGA) [98℄. This algorithm divides the variablesinto a number of groups (lusters) whih are onsidered independent. Therefore, in eah25



2 Modern Evolutionary Optimization Tehniquesgeneration, the fatorization of the joint probability distribution is expressed as a produtof marginal distributions of variable size. These distributions are related to the variablesthat are ontained in the same group and to the probability distributions assoiated withthem. In this way, the fatorization of the joint probability distribution on the n variablesis:
pl(x) =

∏

c∈Cl

pl(xc) (2.23)where Cl denotes the set of groups in the lth generation, and pl(xc) represents themarginal distribution of the variables Xc, that is, the variables that belong to the cthgroup in the lth generation.The grouping is arried out using a greedy forward algorithm that obtains a partitionbetween the n variables (as mention above, eah group of variables is assumed to beindependent of the rest).The proess starts onsidering n lusters (one variable in eah luster) and then ontinuestrying to unify the pair of lusters that redue the most a measure value. This valueonjugates the sum of the entropies of the marginal distributions with a penalty for theomplexity of the model based on the minimum desription length priniple (MDL) [200℄.ECGA has been applied to feature subset seletion [35℄ and to the pruning of neuralnetworks used in lassi�ation problems [36℄.From a theoretial point of view, in [219℄ empirial relations for population sizes andonvergene times are presented.Finally, some modi�ations of this algorithm have been proposed. In [134℄, a hybridECGA that ombines rossover and mutation operators. The proposed algorithm om-bines the Building Bloks-wise rossover operator from ECGA with a reently proposedBuilding Bloks-wise mutation operator that is also based on the probabilisti model ofECGA [220℄. In [218℄, a sub-strutural nihing method is proposed and applied to ECGAaiming to maintain diversity at the sub-strutural level.FDAFatorized Distribution Algorithm (FDA) [157℄. It must be noted that this algorithmdi�ers from the others in regard to the probabilisti model. Instead of reating a new oneat eah generation, the same model is used throughout the entire exeution. Therefore,this algorithm needs the fatorization and deomposition of the task to be given byan expert �whih is not a ommon situation. Generally, due to this harateristi, it isintended to be applied to additively deomposable funtions for whih, using the runningintersetion property [132℄, a fatorization of the mass-probability based on residuals, xbi
,and separators, xci

, is obtained. 26



2 Modern Evolutionary Optimization Tehniques
BN0 ← (S0,θ

0) where S0 is an ar-less DAG, and θ0 is uniform
p0(x) =

∏n
i=1 p(xi) =

∏n
i=1

1
ri

D0 ← Sample M individuals from p0(x)For l = 1, 2, . . . until the stopping riterion is met
DSe

l−1 ← Selet N individuals from Dl−1

S∗l ← Find the best struture aording to a riterion:
• penalized maximum likelihood+searh (if EBNABIC)
• penalized Bayesian sore + searh (if EBNAK2+pen)
• onditional (in)dependene tests (if EBNAPC)

θl ← Calulate θl
ijk using DSe

l−1 as the data set
BNl ← (S∗l ,θl)
Dl ← Sample M individuals from BNl using PLSFigure 2.5: Pseudo-ode for the EBNABIC, EBNAK2+pen and EBNAPC algorithms.The joint probability distribution an be fatorized as:

pl(x) =

k
∏

i=1

pl(xbi
|xci

) (2.24)As this fatorization remains valid for all the iterations, the only hanges are those inthe estimation of probabilities.Theoretial results for FDA an be found in [152; 153; 154; 155; 157; 262℄. In addition,the spae omplexity of the algorithm is studied by [83℄ using random additive funtionsas the prototype.EBNAIn this setion, three di�erent algorithms (EBNAPC, EBNAK2+pen, and EBNABIC),grouped under the name of Estimation of Bayesian Networks Algorithms (EBNAs), arepresented. Introdued in [69; 130℄, their main harateristi is that the fatorizationof the joint probability distribution is enoded by a Bayesian network, learnt from thedatabase ontaining the seleted individuals in eah generation. A ommon sheme forthese approahes an be seen in Figure 2.5.Before explaining the di�erent variations of EBNAs, we proeed with a brief introdutionto Bayesian networks that will be helpful to better understand the algorithms.Bayesian networks Formally, a Bayesian network [40℄ over a domain X = (X1, . . . ,Xn)is a pair (S,θ) that represents a graphial fatorization of a probability distribution. The27



2 Modern Evolutionary Optimization Tehniquesstruture S is a Direted Ayli Graph (DAG) whih re�ets the set of onditional(in)dependenies between the variables. The fatorization of the probability distributionis odi�ed by S:
p(x) =

n
∏

i=1

p(xi|pai) (2.25)where P ai is the set of parents of Xi (variables from whih there exists an ar to Xi inthe graph S). In Figure 2.6 for example, P a3={X1,X2} (X1 and X2 are the parents of
X3).The seond part of the pair, θ, is a set of parameters for the loal probability distributionsassoiated with eah variable. If variable Xi an take ri possible values, x1

i , . . . , x
ri

i , theloal distribution, p(xi|pa
j
i ,θi) is an unrestrited disrete distribution:

p(xk
i |pa

j
i ,θi) ≡ θijk (2.26)where pa1

i ,. . . ,pa
qi

i denote the values of P ai and the term qi denotes the number ofpossible di�erent instanes of the parent variables of Xi. In other words, parameter θijkrepresents the onditional probability of variable Xi being in its kth value, knowing thatthe set of its parent variables is in its jth value. Therefore, the loal parameters are givenby θi = (((θijk)
ri

k=1)
qi

j=1) i = 1, . . . , n. An example of a Bayesian network an be seen inFigure 2.6.In the ontext of EDAs, EBNAs omprise a group of algorithms that use Bayesian net-works to odify the dependenies between variables. At eah generation, given a set ofindividuals (population), a Bayesian network must be learnt trying to re�et properlythe relations between variables. After that, the Bayesian network is sampled in order toobtain the new population.Related to the learning proess, there are mainly two di�erent methods: �sore + searh�and �deteting onditional (in)dependenies�.�sore + searh�: This method uses a sore (metri) to measure the quality of theBayesian network. Among the di�erent sores used, we an point out the BayesianInformation Criterion (BIC) [223℄ or the Bayesian Dirihlet equivalene (BDe) [103℄.One the Bayesian network has been assigned a sore, the goal is to omplete asearh step, hanging the struture of the Bayesian network with the aim of im-proving the urrent sore.Generally, the searh step begins with an empty Bayesian network (without ars)and, in the following steps, ars will be added based on the sore used to measurethe quality of the network. In order to have an e�etive algorithm, it is neessaryto �nd an adequate model as soon as possible (even if it is not optimal).28



2 Modern Evolutionary Optimization Tehniques
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p(x1, x2, x3, x4) = p(x1)p(x2)p(x3|x1, x2)p(x4|x3)Figure 2.6: Struture, loal probabilities and resulting fatorization for a Bayesian net-work with four variables (X1, X3 and X4 with two possible values, and X2with three possible values).For example, Algorithm B [31℄ is a ommon method used to learn Bayesian net-works. This algorithm uses a hill limbing strategy. Starting with an ar-lessstruture, it adds in eah step the ar that maximizes the sore. When no improve-ment an be ahieved, the algorithm stops. An alternative to Algorithm B ouldbe the use of the model reated in the previous generation, instead of beginningeah time with an empty struture.Some of the algorithms that belong to this group are EBNABIC and EBNAK2+pen.Both use Algorithm B as a searh method, but EBNABIC uses the BIC soreto measure the quality of the Bayesian network, and EBNAK2+pen ombines theBayesian approah to alulate the marginal likelihood [44℄ with a penalizing term,introdued to avoid an exessively omplex Bayesian network.�deteting onditional (in)dependenies�: The tehniques that belong to this groupomplete several tests to detet the relations between variables. These algorithmsusually start with the omplete undireted graph, and then independene tests areperformed to remove edges. When no more edges an be removed, an orientationproess is ompleted to reate the Bayesian network. For example, EBNAPC, oneof the algorithms that belongs to this family, uses the PC algorithm [234℄ to detetthe dependenies. Starting with the omplete graph, it is �thinned� by removing29



2 Modern Evolutionary Optimization Tehniquesedges with zero order onditional independene relations, �thinned� again using �rstorder onditional relations, then seond order onditional relations are taken intoaount, and so on. The set of variables onditioned on need only to be a subset ofthe set of variables adjaent to one of the variables of the pair. The independenetest is performed based on the χ2 distribution. When there are no more tests todo, the orientation proess begins, giving a diretion to eah edge in the graph.Finally, one the Bayesian network has been learnt, new individuals are sampled to reatethe new population. Among the di�erent methods, EBNAs use the Probabilisti LogiSampling method [104℄. In this method, the instanes are generated one variable at atime in a forward way. That is, a variable is sampled after all its parents have alreadybeen sampled. To do that an anestral ordering of the variables is given (π(1), . . . , π(n))where parent variables are before hildren variables. One the values of P aπ(i) have beenassigned, we simulate a value for Xπ(i), using the distribution p(xπ(i)|paπ(i)).EBNA approahes have been applied to several problems; for instane, graph mathing[19℄, partial abdutive inferene in Bayesian networks [54℄, feature subset seletion [112;113℄, job sheduling problem [139℄, rule indution [229℄, traveling salesman problem [201℄,partitional lustering [204℄, knapsak problems [208℄ or software testing [212; 213℄.In [96℄ EBNA was modi�ed by applying a repair method for solving onstraint satisfationproblems, and in [97℄ a mutation operator is introdued.Parallel approahes for EBNABIC and EBNAPC have been presented in [140; 145℄; aparallel and multi-objetive version of EBNABIC to solve a hemial problem is shownin [146℄.In [83℄, the spae omplexity of the EBNA algorithm has been studied using randomadditive funtions.BOABayesian Optimization Algorithm (BOA) [181; 182; 185; 186; 187℄ uses a �sore + searh�method (B Algorithm) to onstrut the model, using as metri the Bayesian Dirihletequivalene (BDe) [103℄. In eah generation, the proess starts with an empty struture.In order to redue the ardinality of the searh spae, the number of parents that eahnode an have is limited to k.This algorithm has been extended and applied to several problems. In [183℄ BOA ismodi�ed in order to model hierarhial problems using a type of hybrid model alleda Hu�man network. In [187℄ it is adapted to inlude loal strutures by using deisiongraphs to guide the network onstrution.
30



2 Modern Evolutionary Optimization TehniquesOther extension named Mixed BOA that uses deision trees with mixed deision nodesis presented in [166℄. In [163℄ MBOA is ombined with variane adaptation in order toimprove its behavior in the ontinuous domain.Some theoretial studies have been ompleted using Bayesian networks to estimate the�tness of the individuals [190℄ or to redue the number of parameters needed to exeutethe BOA algorithm [188℄.The real-oded Bayesian Optimization Algorithm (rBOA) algorithm is proposed in [2℄,as an extension of BOA to the area of real-value optimization. It performs a fator-ization of a mixture of probability distributions, and �nds maximal onneted graphs(substrutures) of the fatorization graph (probability model). Then, it �ts eah sub-struture independently by a mixture distribution estimated for lustering results in theorresponding partial-string spae. Finally, o�spring is obtained by a sampling methodbased on independent subspaes.Two parallel approahes have been presented for BOA using a pipelined parallel arhi-teture [164℄ and lusters of omputers [165℄. Reently, in [167℄ the parallelization of thelearning of deision trees using multi-threaded tehniques has been proposed.The di�erent BOA approahes have been applied to feature subset seletion [35℄, to thepruning of neural networks used in lassi�ation problems [36℄, ising spin-glass systemsand maximum satis�ability problems [184℄. In [118; 119℄ a omparative review of someEAs (inluding MBOA) is presented, evaluating them on a di�erent number of testfuntions in the ontinuous domain.LFDA, FDAL, FDA-BC, FDA-SCLearning Fatorized Distribution Algorithm (LFDA), introdued in [153℄, essentially fol-lows the same steps as EBNABIC. The main di�erene is that in the LFDA the omplexityof the model learnt is ontrolled by the BIC metri in onjuntion with a restrition onthe maximum number of parents that eah variable an have in the Bayesian network.An initial algorithm FDAL is proposed in [170℄, to learn �by means of onditional(in)dependene tests� a juntion tree from a database. The underlying idea is to returnthe juntion tree that best satis�es the previous independenes, one a list of dependen-ies and independenies between the variables is obtained.Also, in [168℄, a struture learning algorithm that takes into aount questions of reliabil-ity and omputational ost is presented. The algorithm, alled FDA-BC, studies the lassof Fatorized Distribution Algorithm with Bayesian networks of Bounded Complexity.Similar ideas are introdued in the FDA-SC [169℄. In this ase the fatorization ofthe joint probability distribution is done using simple strutures, i.e. trees, forests orpolytrees. 31



2 Modern Evolutionary Optimization TehniquesPADAPolytree Approximation of Distribution Algorithms (PADA) [231℄. The fatorization isdone using a Bayesian network with polytree struture (no more than one undiretedpath onneting every pair of variables). The proposed algorithm an be onsidered ahybrid between a method for �deteting onditional (in)dependenies� and a proedurebased on �sore + searh�.MN-EDAMarkov Network Estimation of Distribution Algorithm (MN-EDA) [214℄. The authorsintrodue a method that approximates probability distributions using what they all�messy fatorizations�. In order to learn the fatorizations, the algorithm ombines a re-formulation of a probability approximation proedure used in statistial physis (Kikuhiapproximations), with a novel approah for seleting the initial inputs required by theproedure.In addition, a new method for sampling solutions from the approximation is also used(Gibbs Sampling). The learning and sampling methods are the primary omponents ofthis MN-EDA.2.3.4 Other Algorithms
• An EDA in the permutation representation domain that uses Edge Histogram BasedSampling Algorithms (EHBSAs) is presented in [243℄. The algorithm starts gen-erating random permutation strings for eah individual in the population. Then,individuals are evaluated and the most promising solutions are used to onstruta symmetrial Edge Histogram Matrix (EHM) where an edge is a link betweentwo variables in an individual. Finally, new individuals will be sampled from thatEHM, replaing the old population. The behavior of the algorithm is tested on thetraveling salesman problem.
• Estimation of Distribution Programming (EDP) is presented in [256℄. This programis odi�ed using a probabilisti graphial model given by a Bayesian network. Thesearh method follows the ommon sheme of EDAs to solve Geneti Programmingappliable problems. This work is extended in [257℄, where the proposed EDP ismixed with a GP algorithm.
• Dependeny Detetion for Distribution Derived from df (DDDDD or D5) [242℄.This approah ombines EDAs with linkage identi�ations in order to detet de-pendenies. It has three parts: (1) alulation of �tness di�erenes �eah variable32



2 Modern Evolutionary Optimization Tehniquesis perturbed and then �tness di�erene for the perturbation is alulated�, (2) las-si�ation of individuals aording to the �tness di�erene, and (3) estimation ofthe lassi�ed individuals based on entropy measures.
• The algorithm presented in [255℄ uses marginal frequenies to onstrain the esti-mated probability distribution. A shema is a subset of the searh spae where thevalues of some variables are de�ned (�xed) and the values of the others are variable(represented by *). The order of the shema is de�ned by the number of *. Givena frequeny distribution over the searh spae and a shema, the orrespondingshema frequeny is just the sum of the relative frequenies of the elements of thatshema.The entropy of this distribution is subsequently maximized and the distribution issampled to produe a new population. In this work, only ontiguous order-2 shemafamilies are used, proposing as a future work the use of higher order shemas.
• In [196℄ a Learning Automata based Estimation of Distribution Algorithm (LAEDA)is presented. This algorithm follows the general EDA sheme, and uses a variablestruture learning automata as the probability model.
• Finally, Unsupervised Estimation of Bayesian Network Algorithm (UEBNA) is in-trodued in [191℄. This approah uses a Bayesian network for data lustering inorder to fatorize the joint probability distribution of the individuals seleted ateah iteration. The goal of this approah is to optimize multimodal problems.2.4 Satter SearhThe Satter Searh (SS) tehnique [86; 124; 126℄ is presented in the literature as a novelinstane of EAs. Though this method shares with EAs some of their features, it alsosets a number of fundamental di�erenes. In fat, priniples of SS were established byonepts developed independently from the evolutionary paradigm.Aording to Glover [86℄, the notion of ombining solutions or rules to reate new solu-tions originated in the 1960s. Researhers in the �eld of sheduling proposed the mergingof rules to obtain improved loal deisions. Suh an approah was motivated by the on-jeture that information about the relative desirability of a hoie is aptured in di�erentways by alternative rules. This notion was extended soon to the �eld of mathemati-al relaxation for optimization, where the reation of surrogate onstraints was devisedthrough a heuristi [85℄ whih was, in turn, the stem of SS.In the same manner as EAs maintain a population of individuals, SS operates on a setof solution points, the referene set, by ombining them to reate new solutions. Hene,both methodologies assume that solutions enode useful information about the problem,33



2 Modern Evolutionary Optimization Tehniquesand that this information is transferred to new solutions when merged. On the otherhand, the main oneptual dissimilarity lies on the management of the diversi�ation andintensi�ation notions. While in EAs, seletion, reombination and mutation of individ-uals are probabilisti, in SS, seletion and ombination of solutions follow systematistrategies. Moreover, intensi�ation may be fored through the appliation of a heuristiimprovement proedure to eah new solution, and the diversity in the referene set anbe expliitly ontroled during the searh.The following disussion attempts to introdue basi onepts of SS. Detailed desrip-tions, together with more sophistiated extensions, an be found in the book by Lagunaand Martí [126℄ or in any of the exellent reviews available in the bibliography, e.g. [86℄.2.4.1 Basi SS ShemeThe SS algorithm departs from the onstrution of a set P of solutions to guarantee aritial level of diversity. In other words, this phase promotes the generation of solutionsinreasing the diversity in P . Optionally, a heuristi method is applied to eah solutionbefore entering the set; if so, a loal searh is generally employed. Next phase of thealgorithm onsists of an iterative proess. In the �rst round, the referene set, RefSet, isbuilt by extrating the best solutions from P . The meaning of �best� in this ontext is notlimited to a measure given exlusively by the objetive funtion. In partiular, a solutionmay be added to RefSet if the diversity of the set is enhaned, though the objetive valueof suh solution is worse than other ompetitors. In the next step, a number of subsetsof solutions is systematially generated. The members of these subsets are ombined togenerate new solutions that might replae others in RefSet. As in the initial phase,new solutions are, optionally, improved with a loal searh method before onsideringtheir inlusion in RefSet. The �best� solutions (broad brush meaning, one again) areadded to RefSet. If a new solution has been inluded, new subsets are generated andthe proess repeats. Otherwise, the algorithm �nishes.Struturally, a SS algorithm is omposed of the following �ve interating methods. Thefuntionality of eah method is learly spei�ed. However, its de�nition remains open tothe problem being solved, whih grants this tehnique a suitable �exibility.Diversi�ation Generation Method A method that generates a number of diverse solu-tions.Improvement Method One a solution is obtained, this method aims at improving it,usually through a loal searh method. Although this method is not stritly re-quired, the ommon trend is to inlude it in the SS methodology.Referene Set Update Method This method manages RefSet by de�ning the strate-gies neessary to build and update it. Both, building and updating, may be based34



2 Modern Evolutionary Optimization Tehniques
P ← Ø
P ← Add |P | distint solutions obtained by diversi�ation and improvement
RefSet ← Add the b1 solutions in P with best objetive funtion value and delete them from P
RefSet ← Add the b2 most diverse solutions in P in relation to the solutions in RefSetRepeat while new solutions are in RefSetGenerate all new subsets of solutions from RefSetObtain new solutions by ombination and improvement

RefSet ← Update RefSet with new solutionsFigure 2.7: Pseudoode of basi SS.on the objetive funtion value, the diversity between solutions or an alternativeriterion. If no new solution is added to RefSet, the algorithm stops. Nonetheless,in many ases, a maximum number of iterations is established in order to avoid toolong exeutions.Subset Generation Method The subsets of solutions are systematially generated from
RefSet. At least, all subsets formed by two solutions are reated. As the numberof subsets tends to be high, there is a need for keeping RefSet small; generally,
|RefSet| = |P |/10.Solution Combination Method This method reates new solutions by ombining thesolutions in a given subset.The interation of the �ve methods an be observed in the basi SS algorithm proposedin Figure 2.7. A ommon size for P is 100 solutions and, therefore, |RefSet| = 10.Notie the improvement method has been inluded in the algorithm, though it is anoptional omponent. A lassial strategy for onstruting the referene set is to seletfrom P the b1 = |RefSet|/2 solutions with the best objetive funtion value, and theremaining b2 most diverse solutions. As notieable, the subset generation method onlyonsiders the new subsets assoiated with the solutions introdued in the previous step.If the maximum number of iterations is not reahed and no solution has been added to

RefSet, then the proess halts.Figure 2.8 presents a shemati illustrating the roles of the SS methods, assuming im-provement is applied. Cirles represent new solutions, unoloured before the appliationof the improvement method, and blak afterwards.2.4.2 Advaned SS DesignsThe advaned features of SS are related to the way the �ve methods desribed above areimplemeted. In other words, the sophistiation level is given by the implementation ofthe SS methods, instead of the deision to inlude or exlude some elements from the35



2 Modern Evolutionary Optimization Tehniques
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methodFigure 2.8: Shemati of a basi SS design [126℄.approah. Next, a few interesting advaned strategies are desribed in brief; details maybe onsulted in [126℄.Referene set rebuildingThe basi SS proess �nishes when no new solution is added to RefSet. This impliesthe algorithm has onverged, sine no new solution would be generated from a furtherombination. A possibility for saping from suh a situation ould lie on the injetionof diversity in RefSet. Thus, if no solution is added to the set, a ommon pratie isto perform a rebuilding step and run the algorithm one again. For instane, a simplerebuiding strategy onsists of reating a new set P and replaing the half of worst so-lutions in RefSet with the solutions in P whih most inrease the diversity in RefSet.As a result of suh strategy, the SS algorithm is extended as shown in Figure 2.9.Referene set dynami updateIn the basi design from Figure 2.7, new solutions that are to beome members of RefSetare not ombined until the next iteration of the algorithm. This strategy is known asstati update. On the other hand, the dynami update strategy applies the ombinationmethod to new solutions in a manner that is faster than in the basi design. That is,if a new solution is to be admitted in RefSet, the goal is to allow this new solution tobe subjeted to ombination as quikly as possible. For this, the solution is inmediatelyinluded in the RefSet, instead of waiting for the rest of parent solutions to be ombined.36



2 Modern Evolutionary Optimization Tehniques
P ← Ø
P ← Add |P | distint solutions obtained by diversi�ation and improvement
RefSet ← Add the b1 solutions in P with best objetive funtion value and delete them from PRepeat for l = 1, 2, ..., MaximumIteration

RefSet ← Add the b2 most diverse solutions in P in relation to the solutions in RefSet
NewSolutions ← TRUERepeat while NewSolutions = TRUE

NewSolutions ← FALSEGenerate all new subsets of solutions from RefSetObtain new solutions by ombination and improvement
RefSet ← Update RefSet with new solutionsIf RefSet hanged

NewSolutions ← TRUEElse
RefSet ← Delete the b2 solutions with worst objetive funtion value from RefSet
P ← Ø
P ← Add |P | distint solutions obtained by diversi�ation and improvementFigure 2.9: Pseudoode of extended SS.Multiple solutions ombinationThe ombination mehanism in SS is not limited in its general form in ombiningjust two solutions. However, the mehanism annot handle all subsets of size i, i ∈

{1, 2, ..., |RefSet|} (there are 2N −N − 1 subsets, with N = |RefSet|). A proedure toontrol the total number of subsets onsists of a strategy to expand pairs into subsetsof larger size. The following approah selets representative subsets of di�erent sizes byreating subset types:
• Subset Type 1: all 2-element subsets.
• Subset Type 2: 3-element subsets derived from the 2-element subsets by augment-ing eah subset of type 1 to inlude the best solution not in this subset.
• Subset Type 3: 4-element subsets derived from the 3-element subsets by augment-ing eah subset of type 2 to inlude the best solution not in this subset.
• Subset Type 4: the subsets onsisting of the best i solutions, i ∈ {5, 6, ..., |RefSet|}.2.4.3 Performane ResultsAlthough being based on mathematial foundations and lassial methods, SS su�ers,likewise other metaheuristis, from a lak of theoretial works. Nonetheless, this teh-nique is nowadays one of the entres of attention of the optimization ommunity. Its37



2 Modern Evolutionary Optimization Tehniquessuitability is mainly due to the inreasingly number of suessful apliations in a widevariety of problems. Improved benhmarks for solving suh problems have resulted fromthese appliations, along with new advanes for solving a signi�ant range of real-lifesituations.Just to name a few examples, in [127℄ ǫ-optimal solutions were obtained for 30 from upto 40 multimodal funtion optimization problems. Moreover, the SS design showed to�nd solutions in fewer evaluations than a GA. In [142℄, several implementations of SS areompared with GAs to solve four blak-box permutation problems, resulting in a slightsuperiority of the formers. The linear ordering problem was dealt in [33℄. A numberof diversi�ation proedures are studied and show to be ompetitive when ompared toother lassial methods. SS has also been applied to pratial optimization problems likeneural network training, ar rossing minimization in graphs, maximum lique problem,graph oloring, vehile routing or job-shop sheduling; see [126℄ for disussions on theseworks. More reently, the knapsak problem [48℄ and software test data generation [213℄have been faed using SS.The proedures employed in the previous works, as well as in others, have yielded anumber of SS designs di�ering from the basi template. Taking the results obtained bythese designs into aount, lessons for future developments are presented in [125℄.Regarding the diversi�ation generation method, it is suggested in this work that theuse of a memory struture to reate solutions provides with a proper balane betweendiversity and quality. By ontrast, while a pure random method generates highly diversesolutions, their quality tends to be low.A onlusion related to the improvement method onerns its in�uene on the omputa-tional omplexity of the SS algorithm. This method may imply suh an overload that theinvestigation of its seletive use is proposed. Additionally, the appliation of improve-ment to every solution aelerates the onvergene of RefSet, suggesting this methodshould be studied from a methodologial perspetive as well.A hint whih may be useful for further approahes is that solution quality is more impor-tant than diversity when updating RefSet. Albeit the possible strategies for this step,aording to the experimental results, it seems that best performane is not ahieved ifdiversity is used as a main updating riterion.Apropos te subset generation method, it has been observed that most of the searhingpower an be atributed to the ombination of 2-solution subsets. In [33℄, di�erent sub-set types were empirially employed one after the other. The outomes showed that atleast 80% of the solutions to enter RefSet ame from ombinations of 2-element sub-sets. Nonetheless, this result should be arefully taken, as a distint sequene of subsetsombination ould modify this perentage.Finally, a lesson stated in [125℄, about the ombination method, is that the use of multiplestrategies an be e�etive. This is inspired by GAs implementations where good results38



2 Modern Evolutionary Optimization Tehniqueshave been attained by generating new individuals from reombination and mutationoperators.2.5 Other Reent MetaheuristisThe �eld of optimization has been experiening in the last years a resurgene of proe-dures, mainly from the area of metaheuristis. Though these are out of the sope of thepresent thesis, we �nd interesting to draw some omments on the subjet, sine they aremodern optimization tehniques that are deserving the attention of researhes in someontexts.The Greedy Randomized Adaptive Searh Proedure (GRASP) [71℄ ombines in an it-erative proess a solution onstrution with a loal searh. At the onstrution step, afeasible solution is iteratively built in a semi-greedy way. A set of possible element andi-dates to be part of the solution is realulated at eah generation. These andidates area �piee� of the indued solution. One element is seleted and added to the solution. Theelement andidate list is evaluated with respet to a greedy soring funtion in order toselet the next element to be added to the onstrution. The evaluation of the elements isused to reate a list, whih onsists of the best. The element to be added into the partialsolution is randomly hosen from the list. One an element is inluded in the partialsolution, the list is updated. The solution indued is then applied a loal searh method.A partiularly appealing harateristi of GRASP is that it is easy to implement and,usually, a small number of parameters is needed [126℄.Ant Colony Optimization (ACO) [62℄ is a searh method that mimis the foraging be-havior of ants. Ants deposit an amount of pheromone on the ground, thus in�ueningthe hoies of other members. The larger the load of pheromone in a path, the higherthe probability that an ant selets this path. In ACO, pheromone is seen as a heuristivalue that is assigned to partial solutions based on the frequeny of its presene in goodsolutions. As the onstrution of the new solutions is arried out by using an auxiliaryprobabilisti value based on the pheromone value, there is a bias in the algorithm to formsolutions whih ontain building bloks that have shown to be good in previous steps.Roughly speaking, the idea behind the Variable Neigborhood Searh (VNS) [149℄ is aloal searh where the neighborhood is sistematially hanged. VNS explores inreasinglydistant neighborhoods of the urrent solution at eah step of the proess. More preisely,a solution is drawn at random from the urrent neighborhood of the urrent solution anda loal searh is applied departing from this neighbor. If the resulting solution improvesthe urrent, then the urrent best is updated and the proess restarts; otherwise, a widerneighborhood is tried.
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3 Fundamental Conepts on SoftwareTestingTesting is a ruial part of the software development proess. It plays a main role inthe searh for the quality required as it onstitutes the primary way used in pratie toverify the orret behavior of the software produed. One of the most important issues insoftware testing is the generation of the input ases to be applied to the program undertest. Due to the expensive ost of this task, its automatization has beome a key aspet.A number of options for this has been proposed under the name Searh Based SoftwareTest Data Generation. The aim of suh approahes is the reation of test data by meansof heuristi searh optimization methods. More preisely, most developments over thelast years have onentrated on metaheuristi methods, o�ering promising results.This hapter is devoted to the introdution of suh approahes. Firstly, the motivationfor software testing is presented. Di�erent aspets of the test proess, together withthe lassial alternatives for test data generation, are brie�y overviewed next. Finally,the �eld of input generation methods based on heuristi searh is dealt. Owing to theextensive sope of the �eld, the disussion is intended to provide insights on the basielements to ahieve the automati obtention of test data.3.1 Software QualityConsidering the ruial role software plays nowadays, quality assurane beomes a mainissue in the �eld. Software is so deeply present in daily life that the e�ets of an un-desirable behavior an be dramati [233℄, even for human beings [133℄. In ontrast toother produts, suh as manufaturing goods, where a balane between produtivity andquality is sought, in software development, these two onepts are almost indistinguish-able [17℄. Moreover, omplexity of software systems is ontinuously growing in order toexploit the huge advanes in omputer hardware, resulting in an inreasing developmentost. As some authors state [115; 116℄, no other produt in the industrialized world is solabor-intensive and error-prone as software. In fat, software quality has been suggestedto be the most ritial and di�ult tehnologial hallenge of modern times [20; 59; 60℄.The elusive onept of software quality may be de�ned either from a tehnial or ustomeroriented perspetive. From the tehnial side, quality is the ful�llment of the spei�ed41



3 Fundamental Conepts on Software Testingrequirements [192; 233℄. From the ustomer point of view, quality is the onformaneof software to the user needs or expetations [68; 233℄1. Regardless of the perspetive,de�nition remains extremely vague, as the meaning of terms �requirement�, �expetation�or �need� onnotes a subjetive evaluation. We require more spei� means of assessingwhether software quality has been ahieved or not. Thus, requirements or expetationsare represented by a number of desirable software harateristis, and quality attainmentonsists then of their satisfation. Usually, desription of a harateristi is still notpreise enough so that it an be quanti�ed. There are however related attributes whihan be measured to express the degree of exellene in this harateristi, allowing toeliite the ahieved quality level [93℄.In order to settle a standard basis, researhers and organizations, suh as ISO and IEEE,have developed models that desribe quality harateristis and their interrelations [64;173; 75℄. Despite the lak of onsisteny and unity in some of the terms [192℄, as well asin the harateristis involved and their treatment, a few elements are ommon to most ofthe approahes. Hene, harateristis suh as usability (extent to whih the software ispratiable to use), maintainability (apability of updating) or reliability are usual amongquality models [64℄. Reliability is de�ned as the probability that software funtionswithout failure for a given period of time under spei�ed onditions [193℄. Desription ofa software failure is an area for open debate; we resort to IEEE [172℄. An error refers toa mental mistake made by the programmer or designer. The manisfestation of that errorin the ode is alled a fault. The ourrene of an inorret output resulting from aninput value that is reeived with respet to the spei�ation is named a failure. Qualityis mainly in�uened by failures [192℄, so reliability is onsidered to be the most importantsoftware harateristi [60; 64; 68℄. Indeed, it is a prerequisite of other properties, e.g.usability, and it is often mistakenly used as a synonym of quality [68℄.Owing to the fat that a population of idential software systems, operating under similarenvironmental onditions, fail at di�erent points in time, failure phenomena are typiallyexplained in probabilisti terms. Furthermore, as, in general, the whole set of faults in aprogram is unknown, true reliability annot be eliited, so it is estimated, mainly throughprobabilisti models. Certain models try to assess the number of faults in a program,while others study the failure rate (failures per unit time in a time interval) or the numberof observed failures by time t. Some approahes measure and predit the improvement ofreliability during the software development proess or even take environmental fators,as the programmer skill, into aount. Anyhow, most of the models in the literaturerequire a onsiderable amount of failure data to estimate their parameters [25℄. For aninteresting formal desription of reliability models the reader is referred to [193℄.Basially, attempts to improve software reliability onsist of preventing or reduing faultsintrodued during the development proess. A ommon way of fault prevention is to fo-1It is worth to emphasize both de�nitions sine one does not neessarily imply the other.42



3 Fundamental Conepts on Software Testingus on the most omplex modules in a system and to assign them larger resoures. Onthe other hand, fault redution involves software veri�ation, detetion and orretion offaults. So, improvement e�orts an be applied at the di�erent stages of the so-alled soft-ware lifeyle [24℄, that is, analysis (requirements and funtional spei�ations), design,oding, testing and operating. Among these, testing is the most signi�ant with regardto reliability [17; 60; 68; 193℄.3.2 Software TestingTesting may be desribed as the proess of exeuting a software program to exposefailures [17; 68℄. In other words, testing onsists of operating the program with an inputand heking whether the obtained behavior is orret or not. An input refers to anassignment of values to the program parameters, whih are, in turn, the set of variableswhose values need to be �xed to enable an exeution.The high relevane of testing with respet to reliability omes as a onsequene that bothonern with failures. As the primary way of failure detetion [68℄, testing beomes ruialfor reduing faults in the software. In addition, it represents a powerful fault preventionmethod, sine the knowledge on the system and the reasonings arried out to reate atest may avoid errors [17℄. Indeed, testing is not only signi�ant for improving reliability,but also for its evaluation. The measurement of software reliability annot be performedwithout previously disovered failure data [193℄. Moreover, testing intrinsially involvesa validation proess, so it serves as a means of gaining on�dene that the software isreliable enough.Nonetheless, the rest of phases from the software lifeyle are still needed to improve reli-ability, i.e. testing by itself is not su�ient [60℄. Finding an input revealing a failure maybe extremely di�ult. The software onditions that trigger a fault an be remarkablyomplex, a fault might remain latent for a period of time only to arise in a partiularenvironment, or even it ould be masked by other faults [79℄. Thus, due to the intrin-ate dynami behavior of faults, not all the failures in a program are usually deteted.Anyhow, in order to ensure that all failures have been found, the whole set of programinputs, i.e. the input domain, should be heked. Although �nite in essene, suh inputdomain is often so huge that a omplete exploration results unfeasible. In fat, this in-ability for an exhaustive validation onstitutes the most basi limitation of testing: it anshow the presene, but not the absene of faults [61℄. This implies testing is not able toprovide a proof that the software is orret. The alternative approah for demonstratingthe orretness of software is formal veri�ation, that is, mathematial proofs that thesystem meets all the onditions required of it. However, this method also su�ers fromsome well-known disadvantages whih fairly restrit its appliation [17℄. Just to name
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3 Fundamental Conepts on Software Testingtwo, it shows a lak of salability to the omplexity of modern programs, and eah of themathematial proofs is in turn subjet to failures.Therefore, in spite of its drawbaks, testing remains the foremost mehanism in pratiefor deteting failures and verifying the orret behavior of software. In onsequene, itis a major way of improving and assesing reliability and, hene, attaining quality [60℄.Quantitative arguments from the real world also support this relevane. Testing usuallyaounts for 50% of the projet resoures [17; 24℄, growing up to 80% in some safety-ritial systems [28℄. Even so, a reent study [239℄ estimated U.S.A. users su�er annualeonomi losses derived from software faults totaling more than $59.5 billion. Moreimportant from the standpoint of software developers, however, is the �nding that morethan a third of those losses ould have been saved via better testing.3.3 Test ProessThe test proess involves a large number of ativities, strategies and elements whihmake of testing a vast �eld. Next, we point out a few ideas that are useful to introduethe following disussions. An immense literature on software testing topis exists; forinstane, the reader might onsult the lassial book by Beizer [17℄ or the more reentone by Kaner et al. [117℄.Given a software program, testing is generally applied at di�erent levels, eah built onthe last:Unit testing A unit refers to the minimal software module that an be tested, e.g. inobjet-oriented programming, a lass method. Thus, at this level, a unit is testedin isolation from the rest of the system.Component testing A omponent is a module formed of a number of units, e.g. inobjet-oriented programming, a lass. Obviously, a unit is a omponent, and so isthe whole system.Integration testing At this level, the purpose of a test is to expose failures in the inter-faes and dependenies between software omponents.System testing These tests are oriented towards the veri�ation that the omplete soft-ware system meets its requirements.Aeptane testing It alludes to the user validation. This involves testing the softwaresystem under simulated real-world operating onditions as well as delivering theso-alled beta program versions to a limited audiene.
44



3 Fundamental Conepts on Software TestingTypially, testing proeeds from unit to aeptane level, sine the ost of orreting afault grows superlinear in this diretion [68℄. A further reason is that up to 65% of thefailures may be deteted with unit testing [17℄.Being one of the stages from the software lifeyle, testing is an arranged proess inludingmany ativities. For example, system requirements need to be studied, tests must bedesigned and exeuted, results observed, and onlusions reported. Eah ativity is inturn subjet to faults, so, if a failure is found, both the software and the test proessshould be explored for the ause. Moreover, during the orretion of a fault, new onesould be injeted in the software or others whih were previously masked ould arise.This implies one the fault is �xed, tests need to be proessed again, yielding an iterativeproedure; suh situation is known as regression testing.Among the previous ativities, the generation of a set of test ases is of great importane.A test ase an be desribed as a piee of information onerning one software exeution.This information inludes an input with whih the program will be exeuted, the expetedprogram behavior for that input, and any additional useful data for proessing the test,e.g. an identi�ation number. Then, it may be inferred that a mandatory task withinthis ativity is the generation of a set of inputs to be applied to the program under test.3.4 Generation of Test InputsAs remarked above, exhaustive testing is generally prohibitive due to the huge size ofthe input domain. Furthermore, real-world demands and modern development toolsare dramatially inreasing programmers produtivity, so laiming a growing amount oftesting in less and less time. Thus, tests are designed with the purpose of addressingpartiular aspets of the software system. This makes the generation of a set of testinputs a non-trivial task, as it must be adequate to the test type and its requirements.Input generation methods mainly onform to two testing strategies [76℄: random andsubdomain based. In this ontext, random testing alludes to the employment of inputssampled from the input domain aording to a probability distribution. For instane,due to its simpliity, a well-known approah is to generate test data simulating a uniformdistribution on the input domain [65℄. A more sophistiated alternative, instead, is toemploy the operational pro�le of the program, that is, the expeted run time probabilitydistribution of the inputs [159℄. The purpose of this approah, then, is to test the programin a way lose to its real usage. However, input generation is not straightforward, asknowledge on the system is needed to estimate the probability distribution, whih anbe a ostly task [95℄. On the other hand, the underlying idea in subdomain based testingis speifying subsets from the input domain, alled subdomains, and requiring the set ofinputs to inlude an element from eah of the subsets. A ommon assumption for thesubdomains is that their union must lead to the input domain, so in the partiular ase45
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testing strategies
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funtional −→ states based testing, time performane testingstrutural −→ statement testing, branh testing, path testingFigure 3.1: Sheme of usual testing strategies.where they are disjoint, the strategy is known as partition testing [251℄. In any ase, it isimportant to note that, rather than expliitly, subdomain spei�ation is often impliitlydriven by the purpose of the partiular testing approah.Considering the riteria used for splitting the input domain, subdomain based testingmay be further lassi�ed as funtional or strutural [18; 76℄. In funtional (also knownas blak box ) testing, eah subdomain onsists of the inputs satisfying a ondition orombination of onditions asserted in the program spei�ation. Therefore, the aim ofthis strategy is to test aspets regarding the funtionality of software. For example,a general approah is assigning a subdomain to eah of the funtional states of theprogram [175℄; test data generation onsists then of �nding a set of inputs that visitseah state. A more spei� funtional riterion is time performane testing [18℄, whihtests whether the response time onstraints of the program are ful�lled or not, i.e. thereis a subdomain for eah time onstraint. By onstrast, strutural (or white box ) testingrelies on the intuition that faults are exposed if ertain parts of the soure ode exeute.More preisely, in strutural approahes, subdomains ome spei�ed by the so-alledode overage riteria. For example, in statement testing [17℄, the inputs implying theexeution of a ode statement (instrution) desribe a subdomain. Consequently, a set ofinputs must be generated so that eah statement is overed. Other overage riteria willbe disussed in detail below. Figure 3.1 shows a basi sheme of the testing strategiesjust desribed, together with some of their instanes as examples.3.4.1 Code Coverage CriteriaStrutural testing is probably the most widely used lass of strategies to test programs[17; 161℄. Based on the assumption that a fault is exposed when ertain portions of ode46



3 Fundamental Conepts on Software Testingare exeuted, ode overage riteria are de�ned in order to detet as many failures aspossible.The soure ode of the program reveals di�erent ontrol or data �ow entities, suh asstatements, branhes, paths, defs, p-uses or -uses. The �rst three examples are ontrol�ow entities, while the others are data �ow ones. A branh refers to one of the possibilitiesfor the �ow of ontrol from a onditional statement in the ode. A path, instead, is asequene of statements that the ontrol �ow may traverse. A def alludes to a de�nition,that is, the assignment of a value to a program variable. A variable is used if its value isfethed; an use in a onditional statement is alled a p-use, and if it is elsewhere in theode, it is named a -use.Strutural entities of a program an be represented by means of a graph. Although manyalternatives exist in the literature [102℄, we will restrit our attention to the ontrol �owgraph [70℄. A ontrol �ow graph G = (X,U) is de�ned by a set X of verties and aset U ⊆ X × X of ars. Eah vertex in X denotes a ode basi blok, exepting twoverties labeled s and e, whih refer to the program entry and exit. A ode basi blokis a maximal sequene of ode statements suh that if one is exeuted, then all of themare. An ar (x, y) ∈ U , with x and y distint from s and e, is suh that the ontrolof the program an be transferred from blok x to y without rossing any other blok.Analogously, for every ar (s, x) ∈ U or (y, e) ∈ U , it will be possible to transfer the �owof ontrol from the entry to blok x and from blok y to the exit, respetively. We all averties sequene x1, x2, ..., xn, with (xi−1, xi) ∈ U, ∀i ∈ {2, ..., n}, n ∈ IN, a path from
x1 to xn.In this kind of graph, a statement is then represented by a vertex, a branh by an ar
(x, y) where outdegree(x) > 1, and a program path by a path from s to e in the graph.Instead, to re�et defs, -uses or p-uses assoiated to a program variable, the graphneeds to be enlarged with appropriate labels on the verties. Suh a modi�ed ontrol�ow graph is sometimes referred to as a data �ow graph [49℄. For a vertex x labeled
u, if outdegree(x) > 1, then a p-use is represented, otherwise a -use assoiates. So,given a program variable, a de�nition or an use in a ode basi blok might be re�etedby respetive d or u labels in the orresponding vertex. Figure 3.2 illustrates a soureode together with derived ontrol and data �ow graphs. The soure ode orrespondsto a funtion, written in the C programming language [120℄, whih, given three integersrepresenting the oe�ients of a quadrati equation, eliites an integer-valued solution,if it exists. The ontrol �ow graph of the funtion is shown in the middle of the �gure,and the data �ow graph regarding variable x in the ode, on the right side.A ode overage riterion spei�es a group of strutural entities whih have to be exerisedwith a set of program inputs. Several overage riteria have been developed in theliterature so far, whih leads to di�erent strutural testing approahes. A few well-knowninstanes are desribed next; a more exhaustive list an be onsulted in [17; 77; 78; 117℄.47
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7         printf("integer solution: %d",x);

         int quad (int a, int b, int c)
1      {
          double d=0, x=0;
          if (a!=0)
2         if ((b*b)−(4*a*c)<0)
3          x=0;
4         else {
            d=(b*b)−(4*a*c);

5        else
           x=(−c)/b;
6        if ((a*x*x+b*x+c)==0)

8        else
           printf("no integer solution");
9       }

            x=(−b+(int)sqrt(d))/(2*a); }
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Figure 3.2: Example soure ode, its assoiated ontrol �ow graph (middle) and enlargedontrol �ow graph (right).
• In statement overage, every ode statement is hosen to be exerised by a set ofprogram inputs, i.e. the whole set of verties in the orresponding ontrol �owgraph must be overed.
• Branh overage is a lassial riterion stating that every branh in the soure odemust be exerised at least one. Thus, in the assoiated ontrol �ow graph, thisimplies the overage of every ar (x, y) with outdegree(x) > 1.
• All -uses overage involves the defs and -uses of all the program variables. A-ording to this riterion, the set of inputs must exerise, for every variable, ade�nition-lear path from eah def to eah -use. Given a def and an use (ei-ther -use or p-use) of a variable v, a de�nition-lear path is a sequene of state-ments between def and the use suh that no other de�nition of v is ontained init. From the graphial point of view, this riterion settles that, in the data �owgraph G = (X,U) of eah program variable, ∀{x1, x2} ∈ X with x1 labeled d and

x2 labeled u and outdegree(x2) ≤ 1, a path x1, y1, ..., yn, x2 where yi is not labeled
d, ∀i ∈ {1, ..., n}, n ∈ IN, must be found.

• Similarly to the previous riterion, all p-uses overage requires the set of programinputs to exerise, for every variable in the ode, a de�nition-lear path from eahdef to eah p-use. The analogy in the data �ow graph G = (X,U) of eah variable,is that ∀{x1, x2} ∈ X with x1 labeled d and x2 labeled u and outdegree(x2) > 1,a path x1, y1, ..., yn, x2 where yi is not labeled d, ∀i ∈ {1, ..., n}, n ∈ IN, must befound. 48



3 Fundamental Conepts on Software Testing
• Path overage is the most demanding overage riterion, as all the paths in theprogram struture are onsidered for exeution. That is, in the assoiated ontrol�ow graph G = (X,U), every path from s to e needs to be overed.Complexity of ode overage riteriaDepending on the overage riterion and the program at hand, generating a set of inputsthat satis�es a testing approah may result in an extremely hard task.Several relations have been proposed in the literature to ompare overage riteria; toname a few, power, narrows, probbetter or properly overs [77; 249; 250℄. Regarding therelative di�ulty of satisfying riteria, the subsumption relation is one of the most popular[52; 249℄. Informally, given a program and two riteria C1 and C2, C1 subsumes C2 ifany set of inputs whih ful�lls C1 also ful�lls C2. Subsumption is re�exive, antisymetriand transitive, so it is a partial ordering. Aording to this, statement overage is theeasiest amongst the previous riteria while path overage is the most di�ult. Figure 3.3shows this relation for some lassial ode overage riteria. An ar from riterion C1 toriterion C2 denotes that C1 subsumes C2.path overageall DU overageall uses overageall -uses and somep-uses overage all p-uses and some-uses overageall defs overage all p-uses overageall branhes overageall statements overageFigure 3.3: Subsumption relation between ode overage riteria.Path overage is exhaustive in the sense that the whole struture of the program is tested.However, it usually beomes unfeasible due to the prohibitive number of paths; this anbe noted just by onsidering the loops in the graph. Instead, statement testing is the49
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if (x==0 && y>0)

.      .      .      .      .

/* previous code segment */
.      .      .      .      .

          /* basic block where variable y is not defined */
          .      .      .      .      .
          if (y<0)
                    /* basic block */
                    .      .      .      .      .
/* next code segment */Figure 3.4: Example of an infeasible branh.less demanding riterion, though its restrition to the overage of the ode basi bloksis deemed insu�ient. Nowadays, branh testing is referred as the minimum mandatoryoverage riterion [17℄.On the other hand, program omputations and semantis determine the inputs exerisinga given entity, making the test data generation arbitrarily omplex. In fat, not all theentities are exerised often. Moreover, the e�et of program semantis may result in anentity whose overage is impossible. Suh a ase may our when the program �nishesunexpetedly due to a failure, or when the entity is infeasible. An entity is alled infeasibleif there is no input apable of exerising it. For example, the branh represented by theseond if statement in the ode segment of Figure 3.4 is infeasible, sine y > 0 and

y < 0 must our in order for it to be overed. Unfortunately, the problem of disoveringwhether an entity is infeasible results undeidable [77; 251℄, so exeutable entities annotbe known a priori in every ase.Hene, there is a need to determine the level of ompletion attained by a set of inputs.This is what the overage measurement indiates, i.e. the perentage of entities exerisedfor the partiular ode overage riterion.Automati test data generation for ode overage riteriaAs noted above, the reation of program inputs ful�lling a given ode overage riterionis not trivial. This, together with the fat that in most organizations input generationis performed manually [68; 144℄, results in a high amount of resoures dediated to suhtask. The automati generation of test data is hene worthwhile, and some authorssuggest it is even vital for the software testing area [176℄.Though many are the possibilities, automated strutural testing is typially reahed bymeans of random, stati or dynami input generation methods [72℄.A random method relies upon a probability distribution for sampling all the inputs. Inspite of its simpliity, the performane obtained tends to be poor for omplex programs50



3 Fundamental Conepts on Software Testing[72℄, sine the distribution is often hosen without regard to any information on theprogram at hand. Therefore, the most popular random method so far onsists of theuniform distribution, whih is used to serve as a basi benhmark for omparison withmore sophistiated tehniques.On the other hand, stati and dynami methods are based on knowledge derived fromthe program struture. The main feature of stati methods is that program exeutionis not required to reate test inputs, sine they are obtained through a stati analysisof the soure ode. Most of the approahes are inspired on the tehnique named sym-boli exeution [42℄. This tehnique onsists of hoosing an entity from the programstruture, and assigning a system of inequalities in terms of the input parameters. Thesystem is built by substituting variables a�eting the entity with symboli values whilerespeting the onstraints assoiated with the onditions in the ode. A solution to thesystem is then an input exerising the seleted entity. In [57℄, a more reent work usingthis tehnique an be onsulted. Symboli exeution su�ers, however, from well-knownproblems whih limit its performane. The method requires a lot of omputational re-soures, as expressions in the soure ode have to be resolved and transformed. In asea program variable depends on a funtion all, no related inequality an be onstrutedif the soure ode of the funtion is unavailable. Furthermore, the resulting system ofinequalities ould be hardly solved, e.g. if it is nonlinear. Other di�ulties arise witharray strutures, pointers and loops [122; 143℄.In ontrast to stati, dynami methods exeute the program in order to generate thetest inputs [122; 148℄. While suh methods must inur the overhead assoiated withatually exeuting the program under test, many of the drawbaks of stati methods areoveromed. Moreover, the information available at run-time is exploited to guide thegeneration of inputs. More preisely, the underlying idea is addressing the automatigeneration of test data as an optimization problem [148℄. An instrumented version of theprogram is onstruted, i.e. the program is expanded with instrutions that will extratinformation onerning the exeution of an input. The olleted information is used toassess the loseness of the exeuted inputs to over the desired strutural entities andguide the searh towards new inputs to be exeuted. In [122℄, the obtained informationdetermined a funtion value assigned to eah input after exeution. The objetive wasto �nd an input minimizing its funtion value, whih only oured when reahing thetarget entity.Finally, attempts have been developed to ombine both the stati and dynami methods.For instane, in [174℄, a tehnique alled Dynami Domain Redution is presented whihtraverses the ontrol �ow graph by symbolially exeuting the ode assoiated to eahvertex.
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3 Fundamental Conepts on Software Testing3.5 Searh Based Software Test Data GenerationThe automati generation of test inputs has turned into one of the most hallengingproblems in the software testing area. An alternative whih is deserving the interest ofresearhers in reent years is Searh Based Software Test Data Generation (SBSTDG)[144℄. This �eld alludes to the seletion of program inputs making use of heuristi searhtehniques during the proess. The manner in whih the heuristi tehnique takes partremains open, so the optimization point of view in dynami test data generation is gen-eralized to any other testing approah. In fat, the idea of employing suh optimizationmethods has also been applied in the testing of other manufaturing produts, e.g. hard-ware integrated iruits [46℄.Most of the works to date have onentrated on funtional and strutural testing. Ap-pealing approahes have been proposed for the funtional strategy, e.g. safety ritialsoftware testing [240℄ or temporal behavior testing [194℄. However, these are out of thesope of the present work, so, in the following, only the strutural perspetive is dis-ussed, emphasizing branh testing where remarked. A well rafted and extensive reviewof SBSTDG an be onsulted in [144℄.3.5.1 The General ShemeMany of the works developed for strutural testing are based on a dynami test datageneration strategy. So, these works onsist of hoosing the entities to be exerised and,then, searhing for the inputs overing them via a heuristi searh method. Thus, itis ommon to more or less follow the general sheme in Figure 3.5. This sheme is aniterative two-step proess where, �rstly, a previously identi�ed strutural entity is seleted(a branh, for instane) and marked as an objetive. In the seond step, the objetiveentity is assigned a funtion dependent on the program input, and its optimization issought. This objetive funtion is formulated in suh a way that, if an exeuted inputexerises the objetive, the value is optimum. Otherwise, the value is proportional tohow lose the input is to the objetive overage. Consequently, in order to obtain thefuntion value of an input it must be previously exeuted on an instrumented version ofthe program whih will provide the information neessary.Repeat until stopping riterion is met
E ← Selet objetive entity to exeriseObtain input optimizing funtion for EFigure 3.5: General sheme for test input generation.This way, the test data generation is takled as the resolution of a number of optimizationproblems, one for eah objetive entity. Early approahes relied on the use of lassial52



3 Fundamental Conepts on Software Testingnumerial optimization [148℄ and simple loal searh methods [122℄. By onstrast, morereent works resort to global metaheuristis motivated by the fat that the searh spaede�ned by the inputs is generally large and omplex. Previous lassial methods performpoorly in suh spaes, as they easily fall into loal optima or beome unfeasible om-putationally. Therefore, more sophistiated optimization tehniques beome a suitablealternative.For the seletion step in Figure 3.5, rather than applying a general rule to determine theobjetive entity, eah approah usually implements a partiular alternative [30; 143; 177;248℄. In any ase, a ommon pratie is to determine the objetive entity somehow withthe help of the ontrol �ow graph of the program at hand.The next step of the sheme in Figure 3.5 takles an optimization problem. That is,given the searh spae Ω formed by the program inputs and a funtion f : Ω→ IR, �nd
x∗ ∈ Ω suh that f(x∗) ≤ f(x) ∀x ∈ Ω. From now on, we restrit our attention tothe ase where entities are branhes. One again, the reader is referred to the survey byMMinn [144℄ for a disussion about other entities; in [247℄, a reent study on objetivefuntions for path overage an be found.Thus, for branh testing, a lassial strategy to reate the objetive funtion is the follow-ing. Given an objetive branh b and an expression AOPB of the onditional statement
COND assoiated with b in the ode, with OP denoting a omparison operator, thevalue for an input x is determined by:

f(x) =







M if COND not reahed
d(Ax,Bx) + K if COND reahed and b not attained
0 otherwise (3.1)where M is the largest omputable value, Ax and Bx are appropriate representations ofthe values taken by A and B in the exeution, d is a distane measurement, and K > 0is a previously de�ned onstant. Typially, if A and B are numerial, then Ax and Bxare their values and d(Ax,Bx) = |Ax − Bx|. In the ase of more omplex data types,a binary representation of the values for A and B an be obtained and, for instane, let

d(Ax,Bx) be the Hamming distane [235℄.In ase COND involves a ompound expression, the overall objetive funtion is on-struted from the partial funtions for eah subexpression. Given two subexpressions C1and C2 with their respetive funtions f1 and f2, and an input x, the value for the logialexpression C1 ∨ C2 is min{f1(x), f2(x)}, the logial expression C1 ∧ C2 is alulated as
f1(x) + f2(x), and for ¬C1 the value is known by propagating the negation inside C1.By applying the assoiative and ommutative properties to di�erent logial expressions,the overall value for f is obtained.
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3 Fundamental Conepts on Software Testing3.5.2 Improving the Objetive FuntionThe previous type of objetive funtion su�ers from well-known drawbaks, some of whihhave no lear solution yet. For example, if the omparison operator in the onditionalexpression is 6=, the funtion only takes three values and beomes plateau shaped. Inorder to solve this �aw, several possibilities based on ode transformations are desribedin [101℄ and [15℄. In [27℄, other weaknesses are identi�ed and a number of alternativesare proposed to overome them.To a ertain extent, these limitations may be alleviated with the objetive funtionpresented in [248℄. In addition to the distane in the onditional statement COND ofthe objetive branh, a ondition distane is used for the inputs not reahing COND.This distane onsiders the path from s to e in the ontrol �ow graph, taken by aninput during program exeution. Denoting by vc the vertex in the ontrol �ow graphrepresenting COND, and by vn the nearest previous vertex to COND in the pathfollowed by the input, the distane value is alulated in terms of the number of branhingverties straying from the path between vc and vn. Therefore, the funtion in equation3.1 is extended, maintaining the notation, as follows:
f(x) =











dc(vc, vn) if COND not reahed
d(Ax,Bx)+K

L+(d(Ax ,Bx)+K) if COND reahed and b not attained
0 otherwise (3.2)where dc is the ondition distane and L > 0 is a previously de�ned onstant. Notie that

L is employed to ensure that the funtion value when COND is not reahed surpassesthe value when COND is reahed but b is not attained.In this manner, if an input was unable to reah the ondition, instead of assigning it theworst value (M), the proximity to the ondition is taken into aount and the objetivefuntion is smoothed with regard to equation 3.1.3.5.3 Applied Metaheuristis and ExtensionsApropos the metaheuristi employed to solve the optimization problem, the most preva-lent hoie has been the GA. This tehnique was applied for branh overage by Sthamer[235℄ and Wegener et al. [248℄. The former ompared binary and gray oded represen-tations of the program inputs. However, no lear onlusion ould be drawn as to whihof them was superior. In the latter work, exellent overage results where obtained witha parallel GA using a funtion of the form of equation 3.2 to alulate the �tness of theindividuals. In ontrast, in the work by Pargas et al. [177℄, �tness is only the onditiondistane desribed above. GAs have also been hosen for other testing riteria like, forinstane, path overage [135℄ and ondition/deision overage [143℄. This last overage54



3 Fundamental Conepts on Software Testingriterion has been reently faed through Evolution Strategies [3℄. Metaheuristis pro-posed in other works inlude Simulated Annealing [241℄, Tabu Searh [58℄ and EDAs[212℄; all takling branh overage with the lassial objetive funtion. In [213℄, SatterSearh was seleted for the optimization step. Besides, a ollaborative sheme betweenthis method and EDAs was developed.Although the metaheuristi tehnique deals with one optimization problem at a time, thereal goal of the test ase generation is to solve a set of problems. Several approahes inthe literature have taken this into onsideration to improve the proess. The alternativesuggested by some works is to pro�t from the good solutions found by not only evaluatingan input for the urrent objetive entity, but also with regard to all the others. Eahentity is assigned a set ontaining the best inputs so far whih are used to seed the initialphase of the metaheuristi [248; 212℄. Similarly, in [143℄, the set of an entity is omposedof the inputs just reahing the ondition assoiated with the entity. Moreover, this typeof strategy is employed for di�erent testing riteria. For instane, the work by Buenoand Jino [30℄ deals with path overage, and a set of inputs exerising a seleted pathis sought at eah step; thus, the initial population of a GA is seeded with the losestsets of inputs to overing the path from those stored in a base pool. In ontrast, inthe approah for path overage desribed in [105℄, a multiobjetive optimization view isadopted. This system uses a GA where an individual represents an input and the �tnessvalue is obtained from a weighted sum of the proximities to the overage of eah path.An appealing alternative is developed in [209; 211℄, where strategies are proposed forsearhing in the most promising regions of the input spae with the aim of enhaning thetest data generation proess.Indeed, it should be marked that there are other strategies for strutural test data gener-ation, aside from the one outlined in Figure 3.5. For example, in [230℄, a GA is used oneagain. However, in this ase, an individual orresponds to a set of test inputs, and the�tness is the overage reahed by the set after exeution. This way, the problem of gener-ating a set of test ases to ful�ll an adequay riterion is faed from a pure EvolutionaryAlgorithm view, where an individual represents a solution to the whole problem.3.5.4 An Example of the General ShemeTo sum up, the preproessing required to automate the generation of test data for branhoverage following the general sheme in Figure 3.5 should be notied. Figure 3.6 illus-trates this by showing an example program, written in the C programming language,and the elements to be indued from it: the ontrol �ow graph and the instrumentedprogram version. The redued box on the right represents the information supplied by ahypothetial exeution of the instrumented program.The graph is used to selet the next objetive branh whose overage will be pursued,for example, branh (2, 3). A GA ould be used in the optimization phase. Thus, an55



3 Fundamental Conepts on Software Testing

7         printf("integer solution: %d",x);

         int quad (int a, int b, int c)
1      {
          double d=0, x=0;
          if (a!=0)
2         if ((b*b)−(4*a*c)<0)
3          x=0;
4         else {
            d=(b*b)−(4*a*c);

5        else
           x=(−c)/b;
6        if ((a*x*x+b*x+c)==0)

8        else
           printf("no integer solution");
9       }

            x=(−b+(int)sqrt(d))/(2*a); }
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        printf("integer solution: %d",x); }

        probe_dist(0,((b*b)−(4*a*c)),0);

       probe_dist(0,(a*x*x+b*x+c),0);

        printf("no integer solution"); }

      int quad_instr (int a, int b, int c)
1     {
       probe_init();
       probe_out(1);
       probe_dist(0,a,0);
       double d=0, x=0;
       if (a!=0) {
2       probe_out(2);

        if ((b*b)−(4*a*c)<0) {
3        probe_out(3);
         x=0; }
4       else {
         probe_out(4);
         d=(b*b)−(4*a*c);
         x=(−b+(int)sqrt(d))/(2*a); }
5      else {
        probe_out(5);
        x=(−c)/b; }
6      probe_out(6);

       if ((a*x*x+b*x+c)==0) {
7       probe_out(7);

8      else {
        probe_out(8);

9      probe_out(9);
      }

1
2 1
4 276
5
7

10
9 5

Figure 3.6: Example of soure ode, ontrol �ow graph, instrumented version, and outputinformation.
56



3 Fundamental Conepts on Software Testingindividual is a representation of the program input, i.e. three integers. If the inputs setstrategy desribed above is applied, the initial population of the GA ould be seededwith the set assoiated to branh (2, 3).Eah input generated during the searh is exeuted on the instrumented program versionin order to eliit its �tness funtion value. The instrumentation results shown in theredued box of Figure 3.6 orrespond to input (1, 20, 31). The �rst number in eah lineof the box ontains the traversed basi blok and, if the previous blok had a onditionwith an expression AOPB, one more number is inluded whih is the value of |A−B| inthe exeution. Using this information, the value of the ondition distane (dc) shown inequation 3.2 an be obtained. However, this is not neessary, as input (1, 20, 31) reahesthe ondition of branh (2, 3). Hene, aording to equation 3.2 and taking K = 1 and
L = 1000, f(1, 20, 31) = 276+1

1000+276+1 = 0.2169. Although the input is already evaluatedfor the GA, the instrumentation results are used to alulate f(1, 20, 31) with regard tothe rest of the branhes. This way, if (1, 20, 31) is a high quality input for a di�erentbranh, it is stored in the set of the orresponding branh.One the searh �nishes, a new round of the sheme in Figure 3.5 is performed until, forinstane, every branh has been seleted as an objetive.
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4 Software Test Data Generation bymeans of EDAsOne of the most important issues in software testing is the generation of the programinputs used during the test. Partiularly, branh overage is onsidered nowadays abasi riterion to be ful�lled. On the other hand, EDAs are deserving the attention ofthe Evolutionary Algorithms ommunity, partially supported by the outstanding resultsobtained in some problems. This hapter is devoted then to the appliation of EDAs tothe problem of �nding test inputs for satisfying branh overage.Firstly, the system developed for oping with test data generation is explained. Then,the performane of a handful of EDAs, involving several types of probabilisti models, isevaluated through extensive experimentation. In addition, results of EDAs are omparedwith those of previous works using GAs, yielding interesting onlusions on the adequayof the formers for takling this problem.4.1 MotivationAs remarked in the previous hapter, a major issue in software testing is the automatigeneration of the inputs to be applied to the program under test. Approahes basedon SBSTDG have been o�ering promising results and, hene, they onstitute nowadaysa serious alternative to aomplish this task [144℄. Until now, works in the SBSTDGliterature have onentrated on the use of GAs and, oasionally, on other methods, e.g.Simulated Annealing [121℄ or Tabu Searh [88℄. Many other metaheuristis an be ex-ploited however; for instane, most modern tehniques ould be an appealing alternative.Thus, onsidering the high relevane of the test data generation, we deem worth to studythe appliation of EDAs. The wide range of possible probabilisti models o�ered byEDAs turn them into a �exible tool for takling arbitrarily omplex problems. In fat,these metaheuristis have already been applied to several problems with exellent results.Just to name a few works, in [112℄, Feature Subset Seletion was dealt with by meansof an EDA whih required fewer generations to obtain the same quality results of otherEvolutionary Algorithms. In [156℄, EDAs were ompared with other approahes for theresolution of the Graph Bipartitioning problem; EDAs reahed the best solution valuesin all the problem instanes. 59



4 Software Test Data Generation by means of EDAsIndeed, takling the test data generation is also interesting from the EDAs point of view asit allows to evaluate their performane when applied to a demanding and signi�ant real-world problem. By employing alternative probabilisti models, able to re�et di�erentorders of dependenies between variables, it an be heked whether sophistiated EDAsbeome more adequate than simple ones in this ontext.Amongst the di�erent levels at whih the test proeeds, unit testing usually aounts forthe bulk of the failures deteted [17℄. On the other hand, a ommon strategy for testdata generation onsists of obtaining a set of inputs ful�lling a ode overage riterion.Branh overage is speially relevant, sine it is onsidered the minimum mandatoryriterion [17℄. So, in the alternative desribed here, we deal with branh overage forunit testing of programs writen in the C or C++ language.4.2 The Optimization ApproahThe approah follows a dynami strategy, that is, the overage of a branh onsistsof �nding the minimum of a funtion previously assigned to it. Hene, the test datageneration an be posed, in general terms, as a set of optimization problems to be solved.Eah of these problems may be stated as follows: given the input domain Ω and a funtion
f : Ω → IR, �nd x∗ ∈ Ω suh that f(x∗) ≤ f(x) ∀x ∈ Ω. The problem is onstrained,as Ω is bounded by the �nite representation apability of omputers and, oasionally,by the program spei�ation. However, due to the arbitrary nature of programs, therest of harateristis to loate the problem remains open, e.g. input parameters anbe salars or funtions, or f an be multimodal or not. Nonetheless, in order to enablethe automatization of the proess, we will assume a blak-box optimization problem,that is, no knowledge is inferred from the objetive funtion. To depart from a simpleapproximation, f is formulated aording to equation 3.1.4.3 System FrameworkThe system onforms the general sheme in Figure 3.5. The seletion phase follows theoption proposed in [248℄, where a set with the best inputs found so far was assoiated witha branh during the proess, and the branh with the highest quality set was seleted asthe objetive. The optimization step of the sheme allows for the appliation of severalEDAs. Eah ode branh is assoiated with one of the three following states: overed,treated but unovered, and untreated. The stopping riterion is full overage ahievement(all branhes in the overed state) or unsuesful treatment of every unexerised objetivebranh (branh in the treated but unovered state).
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4 Software Test Data Generation by means of EDAsThe system manages infeasible branhes like any other one and, therefore, it seeks theiroverage. One the inputs generation proess �nishes, these branhes will be labelled astreated but unovered, and it might be determined whether their overage is impossibleor whether the system was merely unable to �nd an input exerising them.Next, both the optimization and seletion steps are desribed in detail.4.3.1 Optimization PhaseGiven the objetive branh, this phase tries to solve the optimization problem raised inSetion 4.2 by means of an EDA.An individual is omposed of a 0-1 string representing an input, so that eah input pa-rameter is assoiated a 0-1 substring. In the urrent implementation of the approah,three parameter types are onsidered: integers, reals and haraters. In the ase of aninteger, the 0-1 substring represents the parameter following a 2's omplement represen-tation. For real numbers, the IEEE �oating point odi�ation is used instead, and for aharater type, a sign-magnitude odi�ation is employed. In this last ase, the numberobtained results in a harater, aording to the ASCII ode table. The reason for hoos-ing suh representation systems [246℄ relies in the fat that they are usually employedby omputers for making the same transformations to internal variables. Sine programinputs are to be run in omputers, these representations make sense then. Anyhow,for more omplex parameter types, an appropriate transformation should be de�ned toobtain the input parameter value.The �tness value of an individual is given by funtion f , de�ned as in equation 3.1.Information needed to alulate the �tness value is obtained from the performed instru-mentation on the program. This instrumentation returns the values of expressions foronditional statements during the exeution of the input represented by the individual.Eah branh is bound with a set of individuals whih is used as the seed population forthe EDA when the branh is the objetive. Thus, although the objetive branh is �xed,eah individual is evaluated aording to every other unovered branh. If the branh isexerised, its state is marked as overed and the input is stored. Otherwise, if the �tnessof the urrent individual is better than the worst individual in the set assoiated withthe branh, then the latter is replaed by the new better individual and, if the branhhad previously been treated, its state is marked as untreated. This notion of seeding hasalso been exploited in other works [143; 248℄. Figure 4.1 shows the evaluation algorithmfor an individual xi. The value of funtion f assoiated with branh b for a given input
x is represented by fb(x).The EDA �nishes when either the minimum is found, i.e. an input overing the objetivebranh is found, or a maximum number of generations is reahed. In the �rst ase, theobjetive branh state is marked as overed and in the seond as treated but unovered.61



4 Software Test Data Generation by means of EDAs
x←Translate individual xi to inputExeute instrumented program with xRepeat for eah unovered branh b

f i
b ← fb(x)

fw
b ← Find the �tness of the worst individual xw in the set assoiated with bIf f i

b < fw
bSubstitute xw by xi in the set assoiated with bIf f i

b = 0Mark b as overedelseMark b as untreatedIf b is the objetive
fitness ← f i

bReturn fitness Figure 4.1: Evaluation algorithm pseudoode.Any EDA approah an be applied. However, assumming the use of the relations betweenvariables bene�ts the searh, multivariate EDAs seem to be more adequate for this prob-lem than simpler alternatives, as the existene of variable interdependenies appears tobe evident. Often, input parameters at over program variables whih, in turn, interata�eting other variables and so on, leading to non-linear ombinations that determinethe branhes followed by the ontrol �ow.As an be noted, at eah generation, a probability distribution is learnt and used togenerate new individuals. In other words, the input domain is sampled aording to aprobability distribution. Therefore, the EDA follows a random test data reation strategyinside eah generation. On the other hand, the probability distribution is obtained fromthe seleted individuals, and these are hosen with respet to their �tness, i.e. a dynamitest data generation tati is adopted. Consequently, this approah an be desribedas a hybrid between random and dynami test data generation. This allows for theoutlining of the behavior of the referred method, from the testing perspetive, as arandom generation of inputs whih, at eah generation, updates its distribution on thebasis of the ones already generated.4.3.2 Seletion PhaseA ontrol �ow graph is used to identify the branhes at the initialization stage and tohelp deiding whih branh to selet next during the proess. Reall that, in a ontrol�ow graph, branhes ome de�ned by every ar (x, y) with outdegree(x) > 1.62



4 Software Test Data Generation by means of EDAs
f best ← ∞
objective ← ∅
tie← falseRepeat for eah untreated branh b

f b ←Average �tness of the individuals assoiated with bIf f b < f best

f best ← f b

objective ← b
tie← falseIf f b = f best

tie← trueIf tie = true

objective←Breadth �rst searh between branhes with f best valueReturn objectiveFigure 4.2: Seletion algorithm pseudoode.Candidate objetive branhes are those in the untreated state. The branh objetivewill be the one for whih the mean �tness of its assoiated individuals is the best. Inase there is a tie, then a breadth �rst searh is arried out, i.e. from the tied branhes,the one with the lowest level in the ontrol �ow graph is seleted. A pseudoode of theseletion algorithm an be observed in Figure 4.2.The underlying idea is faing the optimization problem with the most promising popu-lation seed available at that moment. As one an see, it is possible for a branh alreadytreated to be a andidate objetive one again if, during optimization, a new individualis introdued in its set. The reason for this is that the mean �tness in the set is betterthan in the previous optimization proess and ould result in a promising populationseed.4.4 An Exeution ExampleAs an illustration of the developed approah, some of the steps of a hypothetial systemexeution will be explained. The example funtion used in the previous hapter will beemployed one again. Reall that the input of this funtion onsists of three integer-valued parameters. For the sake of larity, Figure 4.3 presents again the funtion andthe elements to be indued from it.First of all, the ontrol �ow graph is obtained and an instrumented version of the programonstruted; both are shown in Figure 4.3.63



4 Software Test Data Generation by means of EDAs

7         printf("integer solution: %d",x);

         int quad (int a, int b, int c)
1      {
          double d=0, x=0;
          if (a!=0)
2         if ((b*b)−(4*a*c)<0)
3          x=0;
4         else {
            d=(b*b)−(4*a*c);

5        else
           x=(−c)/b;
6        if ((a*x*x+b*x+c)==0)

8        else
           printf("no integer solution");
9       }

            x=(−b+(int)sqrt(d))/(2*a); }
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        printf("integer solution: %d",x); }

        probe_dist(0,((b*b)−(4*a*c)),0);

       probe_dist(0,(a*x*x+b*x+c),0);

        printf("no integer solution"); }

      int quad_instr (int a, int b, int c)
1     {
       probe_init();
       probe_out(1);
       probe_dist(0,a,0);
       double d=0, x=0;
       if (a!=0) {
2       probe_out(2);

        if ((b*b)−(4*a*c)<0) {
3        probe_out(3);
         x=0; }
4       else {
         probe_out(4);
         d=(b*b)−(4*a*c);
         x=(−b+(int)sqrt(d))/(2*a); }
5      else {
        probe_out(5);
        x=(−c)/b; }
6      probe_out(6);

       if ((a*x*x+b*x+c)==0) {
7       probe_out(7);

8      else {
        probe_out(8);

9      probe_out(9);
      }
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Figure 4.3: Example of soure ode, ontrol �ow graph, instrumented version, and outputinformation.
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4 Software Test Data Generation by means of EDAsAfter an exeution of the instrumented ode, an output �le ontains, at eah line, thetraversed basi blok and, if the previous blok had a onditional statement, the valuesof the (sub)expression(s) in it alulated aording to equation 3.1. As seen in the �gure,the instrumentation uses three arti�ially reated probe funtions. At the beginning,the all to probe_init initialises the output �le and a required memory vetor. Theprobe_dist funtion alulates an appropriate distane measurement between the seondand third parameters and stores the result in the position of the memory vetor given bythe �rst parameter. In this example, the distane will always be the absolute value of thedi�erene between the parameters, as they are numerial. The probe_out funtion writes,in the output �le, a new line ontaining the basi blok number given as a parameterand, if any, every (sub)expression value in the memory vetor. An example of an output�le is also presented in Figure 4.3.In the system startup, program branhes are deteted from the ontrol �ow graph andbound with a population of individuals reated by sampling a uniform distribution.One this is done, the test ase generation iterative proess begins. Assuming that thebranh de�ned by ar (2, 3) is seleted as the objetive in a round, an EDA will pursueits overage. Following equation 3.1, with K = 1, the objetive funtion is
f(x) =







M if blok 2 not reahed
|(b2 − 4 · a · c)− 0|+ 1 if blok 2 reahed and blok 3 not reahed
0 otherwisewhere x = (a, b, c) and M is the highest omputable value.Representing eah integer-valued parameter with 16 bits, an individual will be a 0-1 stringof length 48. For its evaluation, this string is translated into a program input whih willbe given to the instrumented program for exeution. Supposing that the input obtainedis (1, 20, 31), then the instrumentation results are those of Figure 4.3. The �tness of theindividual will be the value of f for the input. As the exerised branh was (2, 4), in theline of blok 4 the result of |(b2 − 4 · a · c)− 0| is given, so f(1, 20, 31) = 276 + 1 = 277.Although the individual is already evaluated, the performed exeution is not disardedand the output �le is used to alulate the funtion value for every branh di�erentfrom the objetive. If the value improves the �tness of the worst individual in the setassoiated with a branh, then this worst individual is replaed by the atual one andthe branh is marked as untreated.The EDA will run for branh (2, 3) until a maximum number of generations is reahedor the minimum of f is found. In the �rst ase, the branh is marked as treated butunovered and in the latter as overed. One the EDA �nishes, another iteration of theoverall proess begins.
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4 Software Test Data Generation by means of EDAs4.5 Experimental EvaluationIn order to observe how this approah performs in pratie, several experiments werearried out. A handful of EDAs overviewed in Setion 2.3 are onsidered to generatetest inputs for a number of programs extrated from the literature [143; 235; 248℄. Thepurpose of the evaluation is twofold: analyzing the performane of the approah withdi�erent EDAs and omparing their results with those attained by other alternatives.4.5.1 Experimental SettingThe experiments involved seven lassial programs whih are ommonly used for vali-dation in the �eld. Although most of these programs implement relatively simple al-gorithms, their soure odes inlude a number of hallenging branhes for a test datagenerator. Anyhow, di�ultness of branh overage depends on the soure ode, sothe implementations used here were those employed for experimentation in other works.Programs are outlined next.ClassifyTriangleThis is a popular program in software testing experimentation. An input is omposedof three numerial parameters, eah representing the length of a segment. The aim isto detet the triangle type, if any, assoiated with the input. Four di�erent versionswere used. The Triangle1 program [248℄ has three integers as input parameters, whihin the experiments took values in the interval [−16384, 16383]. Triangle2 [248℄ is thesame as Triangle1 with �oating point parameters instead; the interval for eah was
[−98304, 98304]. On the other hand, Triangle3 [143℄ is a new implementation where theparameters are integers for whih the interval [−512, 511] was hosen. Finally, Triangle4[235℄ onstitutes a distint implementation one again; the seleted interval for its integer-valued parameters was [−512, 511].AtofGiven a string of haraters as input, Atof [248℄ transforms it into a �oating point numberif possible. For the experiments, the input string length was 10 haraters odi�ed with7 bits eah (the ASCII harater set).
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4 Software Test Data Generation by means of EDAsRemainderThis funtion [235℄ alulates the remainder of the division of two integers. There-fore, an input is omposed of two interger-valued parameters for whih the interval
[−32768, 32767] was hosen during experimentation.ComplexbranhIn this ase, there is no spei� funtionality as it is a funtion arti�ially reated fortesting purposes [248℄. Its main harateristi is the existene of several hard to overbranhes in the ode. Six integer-valued parameters form an input taking values in theinterval [−512, 511].In order to have an idea about the programs harateristis, Table 4.1 re�ets the valuesfor several strutural omplexity measurements [228℄. The branh number olumn showsthe number of branhes, i.e. the number of optimization problems to be solved. Branhnesting depth points out the maximum nesting level for the branhes in the ode, that is,the maximum number of onditional statements that must be adequately ful�lled to overa branh. In Myers interval, the lower bound is the number of onditional statementsplus 1 and the upper bound is the number of expressions of onditional statements plus1, thus referring to the ompound expressions.These measurements give a lue about the intriay level of the struture of the soureode. However, are must be taken of misinterpreting them as they do not neessarilyrepresent the omplexity of the program with regard to branh overage. Aording tothe approah here exposed, the omplexity of an objetive branh attainment will bede�ned by two soures:
• the di�ulty in reahing the assoiated onditional statement; if it is hard, thenmany individuals will take the value M as �tness and the landsape will be plateaushaped,
• the funtion determined by the distane when the onditional statement is ahieved.The experiments involved several EDAs desribed in Setion 2.3, namely: UMDA, PBIL,MIMIC, TREE, EBNAK2+pen and EBNABIC. That is, two EDAs from eah of the threetypes desribed in Setion 2.3 were hosen. For the PBIL algorithm, the value of the αparameter was set at 0.5. For eah EDA and eah program, four di�erent population sizesas well as four values for the maximum number of generations were onsidered. Notiethat the evaluation of an individual implies the exeution of a program, whih may turn
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4 Software Test Data Generation by means of EDAsProgram name Branh number Branh nesting depth Myers intervalTriangle1 26 7 (14 : 21)Triangle2 26 7 (14 : 21)Triangle3 20 6 (11 : 18)Triangle4 26 12 (14 : 14)Atof 30 13 (16 : 41)Remainder 18 5 (10 : 10)Complexbranh 22 5 (11 : 23)Table 4.1: Charateristis of experimental programs.max. generationspop.size 50 100UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 3965 3205 3625 2945 3700 3960 5145 5480 4460 5035 7545 666596.92 98.08 97.69 98.46 96.92 96.15∗ 97.69 97.31 98.08 97.31 96.54 96.92100 6900 6530 5210 4360 6330 5540 6380 7920 7060 7100 13110 1008097.31 98.08 98.46 99.23 97.69 98.08 99.23 98.85 98.85 98.46 96.15∗ 97.31200 10900 13120 10300 8660 10160 6120 10300 13000 10720 8860 7120 962098.46 98.08 99.62 99.62 98.08 99.62 99.62 100 99.62 100 100 99.23400 21640 25320 18120 16600 13480 12000 21160 30560 19400 14520 13360 1484099.62 99.23 99.23 99.62 100 99.62 100 99.62 100 100 100 99.62200 300UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 6535 8250 7055 7755 11690 10765 8005 14135 5675 10475 19090 2211598.46 97.69 99.23 98.08 96.92 96.92 98.46 96.92 99.62 97.69 96.15∗ 96.15∗100 16050 10580 6150 8120 15430 16560 8000 13790 11130 15530 21340 2072097.69 99.23 100 99.23 98.08 97.31 99.62 98.85 99.23 98.46 97.69 98.08200 16640 12840 16640 8900 14200 17200 14680 20380 8820 14260 13160 656099.23 100 99.23 100 99.23 98.85 99.62 99.62 100 99.62 99.62 100400 21080 30440 20840 16320 21720 17960 31960 27960 21400 17680 25320 22920100 100 100 100 99.62 99.62 99.62 100 100 100 99.62 99.62Table 4.2: Results for Triangle1.the test data generation in a omputationally expensive proess. Thus, we restrited toten exeutions of the generator for eah ombination of the parameters.Within an EDA, at eah generation, half of the population was seleted aording to arank-based strategy. New individuals were simulated from the learnt probability distri-bution by means of Probabilisti Logi Sampling [104℄, and the population was reatedin an elitist way.In Tables 4.2 to 4.8, the results from the experiments are shown. In eah ell, the averageresults from the ten exeutions are provided. The �rst row provides the average numberof generated test inputs during the proess and the following is the average overagemeasurement. If the highest overage ahieved in the ten exeutions is not 100%, thenthis value is labelled with an asterisk.
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4 Software Test Data Generation by means of EDAs
max. generationspop.size 50 100UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 3315 4215 3225 4920 5145 4305 7365 7620 5565 7385 6215 888596.92 96.54 98.08 97.69 95.77 96.15 96.92 97.31 98.46 96.15 97.69 98.85100 7330 6330 5730 4420 9860 9020 9120 9980 10430 6980 13150 1812097.69 98.46 97.69 98.46 96.54 95.39 98.46 98.08 98.08 98.85 97.31 96.54200 8840 9780 7360 8220 9660 8320 10940 6200 16300 19920 19980 840098.85 98.85 99.23 99.23 97.69 98.85 99.23 100 98.85 97.69 97.69 99.23400 12440 15720 16520 11680 11760 10920 211160 15160 13680 18160 16680 9360100 100 99.62 99.62 99.23 100 100 100 99.62 99.23 99.23 100200 300UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 4085 7960 8555 10225 13825 17230 149755 25495 12795 10715 11385 1677099.23 99.23 98.85 98.85 98.85 97.69 97.69 96.92 98.08 98.85 99.23 99.62100 11080 14220 11510 16790 20360 21520 15470 21210 20600 17820 33980 2315098.46 98.46 98.85 98.46 98.46 98.08 99.23 98.08 98.85 99.23 98.85 98.46200 14920 23280 17960 17500 20820 12960 29060 13820 35100 32800 49000 23940100 99.23 99.23 99.62 99.23 99.23 98.85 99.62 98.46 98.85 97.69 99.23400 10640 14000 33400 12920 33960 26080 16280 12880 10800 21840 55320 22560100 100 99.85 100 99.23 99.62 100 100 100 99.62 98.85 99.62Table 4.3: Results for Triangle2.
max. generationspop. size 50 100UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 3150 2950 2960 3700 4485 4450 3090 3570 3780 4435 4990 767598 98 99 96 94 94.5 99.5 98.5 98 97.5 97.5 95.5100 5440 5780 5990 3820 6930 5640 4790 5780 6740 3880 7240 473098.5 97.5 98 99.5 95 97.5 100 100 99 100 98 99200 10500 9600 7820 8160 8300 8520 9300 11080 10340 8920 12940 1056099 97.5 100 99.5 98 99 100 100 99.5 100 98 100400 17600 21960 18840 18520 15480 16240 19400 27200 22320 15960 15320 1532098.5 95.5 99.5 99.5 100 99.5 100 100 99.5 100 100 100200 300UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 4540 4700 5965 4965 9585 11500 3875 6750 4805 6580 15920 1640599 99 99 99 98 98.5 100 98.5 99.5 99.5 98.5 98100 5990 6220 7460 5330 7930 8010 6320 9240 8990 4080 12650 6660100 100 99.5 100 99.5 99.5 100 99.5 99.5 100 99 100200 10160 13960 10600 8600 13920 21380 10640 10420 8460 8640 13500 7080100 100 100 100 99 98.5 100 100 100 100 100 100400 18680 25000 21280 15440 21000 16440 20800 29600 21080 15200 21080 15800100 100 100 100 100 100 100 100 100 100 100 100Table 4.4: Results for Triangle3.
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4 Software Test Data Generation by means of EDAs
max. generationspop. size 50 100UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 21975 20500 26205 10535 12630 12530 30700 26355 28955 18460 24300 2414588.85∗ 89.62∗ 88.85∗ 89.23∗ 88.85∗ 85.39∗ 89.23∗ 88.08∗ 90.39∗ 89.62∗ 86.15∗ 88.08∗100 47600 48870 45870 24520 21140 16970 55660 48190 51010 30980 36930 4063090.77∗ 93.08∗ 93.46∗ 93.46 90.39∗ 90.77∗ 91.54 96.15 93.85 94.23 90∗ 90∗200 69820 96400 94980 37280 23500 17700 106960 99340 81320 31020 50560 2806097.31 98.08 94.23 97.69 95.39 96.92 96.54 96.54 96.92 99.23 93.46 97.69400 128120 119120 105400 43160 27960 22720 154000 158520 157480 45720 22760 4824096.54 96.92 97.31 99.62 99.23 100 98.08 98.08 98.46 100 100 98.46200 300UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 50030 49755 43105 35835 49445 42035 53630 57515 47260 47815 67930 7261089.62∗ 87.69∗ 91.15∗ 91.15∗ 86.92∗ 86.92∗ 93.46 91.15∗ 93.08∗ 90.77∗ 87.69∗ 86.92∗100 84000 77980 80290 51270 64230 68200 114520 113360 79920 55230 98600 11855093.08 95 91.92 93.08∗ 90.39∗ 90.39∗ 92.69 92.31∗ 93.46 94.23∗ 90.77∗ 89.23∗200 92220 107560 130800 43780 73680 67100 180200 151800 133480 52620 138280 13252097.69 98.46 95.39 98.46 93.85 95.77 96.15 97.31 96.92 98.46 93.85 93.85∗400 147000 122040 168960 60840 50200 34560 225800 174880 141920 60800 86080 2408099.23 99.62 98.08 99.23 98.85 100 100 98.85 99.23 100 98.46 100Table 4.5: Results for Triangle4.
max. generationspop. size 50 100UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 13330 12675 13525 14350 6600 6555 9640 34050 12795 32230 7685 885087.33 87 89.33 87.33 97 98.33 98.33 81.33∗ 97 83.67 100 98100 28850 17740 28310 30080 20380 13840 36670 37050 18090 40360 21970 2077087 94.67 86.67 87 95 97.67 94.67 91.67 100 92 97 98200 73780 46180 63140 62760 59020 72000 139280 43400 92780 119920 50460 5482083 92.67 84.67 87 88.33 84.33 83 98.67 91.33 88.33 96.33 96400 165400 164920 148760 157640 150720 131320 193720 125040 146160 150480 158040 19656080.67∗ 88 88 87.33 80.67∗ 91.33 94 97 92.67 95 93.67 94.33200 300UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 9905 41790 9125 15665 11850 11015 17125 60995 13350 34315 14190 9505100 88.67 99.67 99.33 99 99.67 99.33 88 100 96.67 99 100100 31990 32340 22660 54370 28310 27800 32780 67940 30250 59550 27560 3138098.67 97.67 100 94 98.67 99 99.67 94∗ 100 99.33 99.33 99.33200 79920 89280 51400 104020 74760 68140 66100 119500 74020 115880 86260 6588098.33 95 100 96.67 97 97.67 99.33 94.67 99 98 98.67 98.67400 150520 105560 214480 259400 160160 147320 179920 180280 203200 203480 187520 22168098.67 99 96 95.33 98.33 98.67 98 98 100 98.67 98.67 97.33Table 4.6: Results for Atof.
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4 Software Test Data Generation by means of EDAs
max. generationspop. size 50 100UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 2525 3275 2560 2360 3235 2370 6870 5985 4570 4745 6010 551095.56 94.44 95.56 96.11 93.89 96.67 92.78∗ 93.89 95.56 95.56 93.89 94.44100 5310 6700 6310 4810 5130 5790 8410 14620 11690 7010 6260 786095 93.89 93.89 95.56 95.56 94.44 96.11 92.22 93.89 96.67 97.22 96.11200 14140 13360 11340 4240 4920 6000 20600 20180 25500 12140 15920 236092.78 93.89 94.44 98.89 98.33 97.78 95 95 93.33 97.22 96.11 100400 22520 28280 20640 10160 8200 5840 46640 43000 39000 15680 4200 1108095 93.89 95 98.33 98.89 99.44 93.89 94.44 95 98.33 100 98.89200 300UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 12460 9830 13350 10295 6700 10475 12715 18555 18410 12490 17025 1699593.33 95 92.78 95 96.67 94.44 95.56 93.89 93.33 95.56 94.44 93.89100 15410 17370 20890 20730 24760 16870 48440 31430 22270 13110 30850 2485096.11 95.56 94.44 94.44 93.33 96.67 91.11∗ 94.44 96.11 97.78 95 95.56200 26820 41920 26000 14360 18040 29540 73320 50860 49820 31820 25520 1974096.67 94.44 96.67 98.33 97.78 96.11 93.33 95.56 95.56 97.22 97.78 98.33400 83760 62440 74600 19160 4000 3800 99640 136120 99240 15920 3920 432094.44 96.11 95 98.89 100 100 95.56 93.89 95.56 99.44 100 100Table 4.7: Results for Remainder.
max. generationspop. size 50 100UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 8030 7145 7765 6885 6855 6710 10570 12085 9845 9515 8555 1014093.18 94.09 93.18∗ 94.55 92.73 92.27 95.46 95.46 96.82 95.46 96.36 95.46100 12150 13570 13690 11490 10440 10320 14090 16070 15010 16510 11060 1312096.36 95 95.46 95 95 95.91 97.27 99.09 97.27 95.91 99.09 99.09200 20600 19920 21500 18100 13640 14060 24780 20340 18000 21800 18800 1838097.73 96.82 95.91 97.73 97.27 97.73 96.82 98.64 99.09 97.73 98.18 98.64400 24560 18680 24600 22200 23840 23360 27560 25240 27960 22960 22080 2424098.18 99.55 98.18 99.55 97.27 97.27 99.09 99.09 100 100 100 99.55200 300UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 19875 17815 15480 17425 9320 10390 12275 22855 18760 18540 15510 1291596.82 95.91 98.18 96.82 99.09 97.27 98.64 95 98.18 97.27 98.64 99.09100 29050 20540 20070 16360 10860 11930 20920 22350 17130 21360 19400 1727098.18 97.73 98.64 98.18 99.55 100 99.55 98.64 100 100 99.09 100200 26200 21340 30300 22740 20780 21720 22440 30300 20580 25820 26200 3034099.55 100 99.09 100 99.55 99.09 100 100 100 100 100 100400 24040 25560 34360 39120 33880 31520 31320 42640 23960 27800 30400 33920100 100 100 100 100 100 100 99.55 100 100 100 100Table 4.8: Results for Complexbranh.
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4 Software Test Data Generation by means of EDAs4.5.2 EDAs PerformaneResults presented by Tables 4.2 to 4.8 reveal that in 94% of the ases the average overagesurpasses 90%, and if the population is big enough, 100% is reahed for every program.Although the tables do not show this, when the highest ahieved overage is not 100%(asterisk values) then the best exeution obtained a value higher than 90% in all asesexept three from the Triangle4 program, whih reahed more than 88%.The most di�ult programs for the test ase generator seem to be Triangle4 and Atof.Table 4.1 reveals that Triangle4 has no ompound expression in its onditional state-ments although the nesting depth is one of the largest. In fat, several of the expressionsare of the form A = B, whih are usually the most di�ult ones to ful�ll. With regardto the Atof program, the nesting depth is the highest one and three-quarters of theexpressions are ompound. The omparison operator in many of the subexpressions arealso equalities.In order to observe the behavior of the objetive seletion phase in the generator, for eahprogram, the number of times the searh for an objetive is repeated was reorded duringthe exeutions. The average is zero or almost zero for all the programs exept Triangle4and Atof. In these two, Triangle4 reahes higher values, with 7 as the maximum, andin Atof, the highest value is 1.8. In both ases, this value dereases as the maximumnumber of generations inreases. In fat, in Triangle4 it is near zero in most of theases for 300 generations, and in Atof the value is zero or near zero for 100, 200 and300 generations. Thus, aording to these results and onsidering the set of individualsassoiated with a given objetive, it seems that the number of times that an individualthat improves the �tness of the set is found, inreases with the program omplexity forbranh overage. Therefore, the number of optimization problems being solved duringthe proess and, onsequently, the number of generated inputs, beomes higher.Regarding the optimization phase in the test ase generator, Tables 4.2 to 4.8 also provideinteresting information onerning the di�erenes between EDAs. The overage value isa main gauge of the performane of a test data generator. However, the number ofinputs obtained re�ets the e�ort made during the proess. Therefore, it is importantfor a generator to obtain a overage value with the lowest ost, that is, produing as fewinputs as possible. This implies that, given two generators ahieving the same overage,the one yielding the fewest inputs is preferred. So, onsidering full overage a mandatoryrequirement, multivariate EDAs o�er the best results as they reate the lowest or seondlowest number of inputs in all the programs exept in Triangle3. Taking the ratiobetween generated inputs and ahieved overage into aount, the best values are sharedby bivariate and multivariate EDAs. Preisely, EBNAK2+pen has the best ratio in threeof the programs, and TREE and MIMIC in two of the programs eah. These best ratiosbelong to the ases of 50 individuals and 50 generations, with the exeption of Remainder,whih obtained the best ratio with 200 individuals and 100 generations.72



4 Software Test Data Generation by means of EDAsProgram name UMDA PBIL MIMIC TREE BIC K2Triangle1 32 39 27 21 30 25Triangle2 17 18 19 20 20 17Triangle3 19 27 20 16 24 19Triangle4 32 31 31 19 20 20Atof 20 24 18 26 16 16Remainder 25 27 25 18 17 16Complexbranh 19 20 19 17 16 16Total 164 186 159 137 143 129Table 4.9: Rank of EDAs with regard to the number of generated inputs.In general, EBNAs obtain the worst results when the population is small, in whih aseunivariate EDAs beome ompetitive. However, as population size grows, multivari-ate EDAs improve their average overage and, when 100% is reahed, the number ofgenerated inputs is usually lower than in the rest of EDAs. This indiates that, whenadequate parameter values are met, EBNAs obtain the optimum in fewer generationsthan the other alternatives. These results reinfore the suggestion made in Setion 4.3.1about the adequay of multivariate EDAs when dealing with this problem.In order to statistially validate these onepts, two rankings based on hypothesis testswere arried out, one over the number of generated inputs and the other over the overagemeasurement. For eah program and for eah value of population size and maximumnumber of generations, EDAs were ranked as follows. First, EDAs are ordered aordingto their average value in the result being onsidered, i.e. number of generated inputs(inreasing order) or overage (dereasing order). If a tie ours, the involved EDAs areordered by their variane. Then, following the order obtained, several Mann-Whitneytests are performed, eah of whih designates a rank value to an EDA. The �rst samplein the test is formed by the data from the i-th EDA in the order, and the seond sampleis the data from the (i + 1)-th EDA. If the test �nds signi�ative di�erenes at a 0.05on�dene level, then the rank value of the i-th EDA plus 1 is given to the (i + 1)-thEDA. Otherwise, this EDA is designated with the same rank value as the i-th EDA andthe �rst sample of the next test is extended with the data from the (i+1)-th EDA. Onea rank is obtained for all the di�erent ombinations of population size and maximumnumber of generations, the sum of the rank values of eah EDA is alulated.Tables 4.9 and 4.10 show the ranks for the number of generated inputs and overagemeasurement respetively. The last row of eah table provides, for eah EDA, the sum ofthe ranks in all the programs. The best values are marked in bold. As an be observed,with regard to the number of inputs, multivariate EDAs take a larger number of thebest values than do other types of EDAs. Considering the last row, the best EDA is73



4 Software Test Data Generation by means of EDAsProgram name UMDA PBIL MIMIC TREE BIC K2Triangle1 16 17 16 16 18 18Triangle2 16 16 16 17 17 16Triangle3 16 17 16 16 20 16Triangle4 20 19 20 16 26 26Atof 22 24 18 22 19 17Remainder 24 23 22 17 17 16Complexbranh 17 18 16 18 16 16Total 131 134 124 122 133 125Table 4.10: Rank of EDAs with regard to the overage measurement.EBNAK2+pen, followed by TREE and EBNABIC. The PBIL algorithm is the worst EDA,although it must be noted that its results heavily depend on the α parameter, as wasshown in [90℄. Taking the overage measurement into aount, the di�erenes are notso lear. The total rank in the last row reveals that the values of the �rst three EDAsare quite similar and that there is a 12-unit di�erene between the �rst and the lastEDA. In this ase, TREE o�ers the lowest value, MIMIC is the seond best EDA andEBNAK2+pen, the third. Thus, it an be onluded that the best overall EDAs in theexperiments, with regard to the overage and generated inputs results, are TREE andEBNAK2+pen.4.5.3 Comparison with Other WorksThe programs here onsidered for experimentation were extrated from previous works inthe literature: Triangle1, Triangle2 Atof and Complexbranh from [248℄, Triangle3from [143℄, and Triangle4 and Remainder from [235℄. All these works use a GA as theoptimization tehnique. Next, the results obtained by suh GAs based approahes arefaed to those of the EDAs based test data generator.When omparing the results from Tables 4.2 to 4.8 with those of their respetive works, itmust be noted that the plain form of EDAs was applied in the experiments, while in thereferred works, sophistiated forms of GAs are used. In [248℄, a oarse grained parallelGA is hosen, in [235℄, di�erent geneti operators and parameters are onsidered, and in[143℄, a simple GA and a di�erential GA are employed.Besides the Evolutionary Algorithm, two other aspets must be kept in mind during theomparison. On the one hand, the �tness funtion in the EDA based approah di�ersfrom the one in two of the works. In [248℄, �tness is alulated from a funtion of thetype desribed in equation 3.2. In the ase of Sthamer [235℄, a funtion of the type in74



4 Software Test Data Generation by means of EDAsApproah Triangle1 Triangle2 Triangle3 Triangle4 Atof Remainder ComplexrbranhOther work 16915 42086 - 27876 35263 644 28978EDA based 6150 6200 3875 22720 7685 2360 11930Proportion 36% 15% - 82% 22% 366% 41%Table 4.11: Number of inputs generated by the EDA based approah and other ap-proahes.equation 3.1 is presented taking two distanes for eah program into aount: one is theabsolute value of the di�erene between the numerial representations of the operands(like in here), and the other is the Hamming distane between the binary representations.On the other hand, the interval of values taken by the input parameters also has to beonsidered. Neither in [248℄ nor in [143℄ are the intervals used in the experiments lear.In [235℄, for eah program, the results with several intervals are presented.Fixing the overage at 100% and taking the best results reahing this value, Table 4.11shows the number of inputs generated by the EDA based approah and the other works.The last row provides the perentage of inputs of the EDA based approah with regardto the other work.In the ase of Triangle3 no value is inluded, sine the number of generated inputs isnot revealed in the results presented in [143℄, and the average overage attained in the�ve performed exeutions is 93%. However, it must be taken into aount that this workdeals with ondition/deision overage, whih is a riterion subsuming branh overage.Apropos of [248℄, onsidering the input parameter intervals used in the experiments, theEDA based approah generated less than half the inputs in this other work for all theprograms.The best results in [235℄ for the Triangle4 were obtained with the [−100, 100] parameterinterval for the inputs and the distane based on the absolute value of di�erenes. Re-garding Remainder, however, the outstanding results orresponded to the [−20000, 20000]parameter interval and the Hamming distane, Therefore, the values in Table 4.11 orre-spond to these on�gurations. For Triangle4, aside from the improvement shown in thetable, the number of inputs generated by the EDA based approah is 88% of the inputsin [235℄ for the Hamming distane. However, in the Remainder program, the results arenot outperformed, neither for the Hamming distane (as the table shows), nor for thedistane based on the absolute value of di�erenes. In this last distane, the number ofinputs generated by the EDA based approah was 250% of the inputs in the work bySthamer.The results of these experiments onform, in general terms, to those in the appliation ofEDAs to other problems [112℄. Although in EDAs the quality of the solution is similarto the one ahieved by GAs, the number of generations required and, hene, individualsgenerated is remarkably lower. 75



4 Software Test Data Generation by means of EDAs4.6 SummaryIn this hapter, we have desribed an approah for the appliation of EDAs to the testdata generation problem in the ontext of branh overage. Several EDAs omprisingdi�erent orders of dependenies in the probability distribution to be learnt were evaluatedempirially.Analyzing the results obtained from the experiments, a general onlusion an be drawn:EDAs prove to be a powerful option for takling this problem. The overage attainedwas 100% in all the experimental programs and the number of inputs generated was sig-ni�antly lower than in other works, exepting a few ases. Among the di�erent EDAs,algorithms using nontrivial probabilisti models seem to be a promising alternative. Morepreisely, TREE and EBNAK2+pen have shown the best overall performane. The apa-bility of these EDAs for expressing the dependenies between problem variables ould bea key point, as suh dependenies usually exist when trying to over a partiular branh.
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5 Software Test Data Generation bymeans of SSThe use of EDAs for test data generation in the previous hapter supports the appliationof other modern metaheuristis for solving this problem. While EDAs rely on a typiallystohasti strategy, SS is oneived as a more systemati optimization method. In thishapter, the suitability of SS to generate tests inputs for branh overage is studied.Additionally, EDAs and SS are ombined in a ollaborative sheme that aims at pro�ttingfrom the bene�ts of both methods.The hapter is arranged as follows. One motivated, the SS approah is desribed, to-gether with di�erent alternatives for using the improvement method in the SS algorithm.Then, the results of the onduted experiments are analyzed. Appealing onlusions onthe performane of the SS approah and the role of the improvement method in this on-text are obtained. In the seond half of the hapter, the ombination of EDAs and SS isexplained and evaluated through experiments. Finally, EDAs, SS and their ombinationare ompared to identify the best method.5.1 MotivationAs pointed out in Chapter 3, when dealing with the generation of a test input overing abranh, the assoiated searh spae is usually large and omplex. A well-known onjeturein Operations Researh is that an appropriate management of the diversi�ation andintensi�ation onepts during the searh in suh spaes yields good solutions. Theseare the priniples on whih SS is based. This, together with the �exibility of the SSmethodology, make it worth of onsideration for solving the test data generation problem.In fat, SS has already been applied to several di�ult optimization problems [33℄. Ithas been ompared with GAs in permutation problems [142℄, produing high qualitysolutions in fewer evaluations than GAs. Moreover, in [127℄, Laguna and Martí presentedseveral SS designs to solve a set of nonlinear funtion minimization problems, obtainingenouraging results. Sine the test data generation an be takled as the resolution of anumber of optimization problems, SS seems to be a promising tehnique to be studied.
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5 Software Test Data Generation by means of SSIn the work by Laguna and Martí [127℄, however, no improvement method was employedin the algorithms proposed. Thus, in order to shed some light on the SS methodologyinternals, we investigate the in�uene of this optional omponent in our ontext.On the other hand, EDAs have been applied in the previous hapter with enouragingresults, so they onstitute an adequate benhmark for omparison. This represents anopportunity for faing a stohasti optimization tehnique, like EDAs are, with a moredeterministially oriented method, namely SS, in the ontext of a real-world problem.Furthermore, EDAs beome a promising option from whih SS may bene�t in order toimprove its performane.So, the approah here exposed deals with inputs generation for branh overage makinguse of the previous optimization methods in two di�erent ways. Firstly, pure SS alter-natives are presented in order to evaluate their performane and ompare them with theEDAs based approah. Seondly, EDAs and SS are ombined in a ollaborative strategy.5.2 The SS ApproahSimilarly to the EDAs test data generator, the SS alternative proposed here is based onthe general sheme in Figure 3.5. In fat, the only algorithmial di�erene between bothapproahes onerns the optimization step. Here, the optimization problem assoiatedto the objetive branh is takled by means of an SS algorithm, instead of by an EDA.An input is represented as in the EDA approah, that is, as a 0-1 string, and the objetivefuntion value is obtained aording to equation 3.1 as well.The set of solutions assoiated to an objetive branh, whih has the same size as the setof diverse solutions P , is overturned in P at the beginning of eah SS exeution. Thus, inpratie, the set of solutions an be viewed as a partiular initial P set for eah branh.At the test data generation proess start-up, the set of solutions of eah branh b isreated by introduing distint solutions obtained via diversi�ation and, if suh is thease, via improvement. The evaluation of a solution is not only performed in relationto b, but for any other branh b′ with no ompletely onstruted set. If the evaluatedsolution outperforms the worst in the set of b′ and the solution is not in the set yet, thenit is introdued. It is important to note that, in ase an improvement method is used,only the best solution found for b′ is onsidered for inlusion in its set, thus avoidingthe introdution of solutions oming from the same seed. When starting the reation ofthe set of solutions for b, a number of them may already be in the set. However, theyare not improved with regard to b beause they were found during the improvement ofanother branh, so the improvement method is applied to these solutions. Nonetheless,no matter how many solutions are already in the set, the inlusion of half of them via
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5 Software Test Data Generation by means of SSdiversi�ation (and improvement) is fored in order to guarantee a degree of diversity inthe set.As may be notied, one the proess start-up �nishes, every solution in the set of abranh is improved with regard to it. In order to maintain this property during test datageneration, when a solution is evaluated and is to be inluded in the set of solutions ofthe branh, the improvement method is applied before entering the set. This way, atevery moment the solutions in the set of a branh are improved with regard to it.The SS stopping riterion onsists of �nding the minimum (overing the objetive branh)or reahing a maximum number of iterations. If the urrent iteration is not the last andno new solution was added to RefSet, a rebuilding step is arried out. To be preise, anew set P is reated and the half worst solutions in RefSet is replaed by the solutionsin P that inrease the most the diversity in RefSet. We measure the diversity of asolution x ∈ {0, 1}n as min{d(x,x′) | x′ is a solution in the urrent referene set}, where
d(x,x′) =

∑n
i=1 |xi − x′i|.In [127℄, none of the SS designs used by Laguna and Martí applied an improvementmethod, and this might be an important element during the searh. Thus, in the presentapproah, with the purpose of shedding some light on how the use of the improvementa�ets the optimization proess, the following options are given:Improve After The lassial way of improving the solutions, that is, after diversi�ationor ombination (Figure 2.8).Improve Before An alternative onsisting of using the improvement method just beforeentering RefSet. One a solution has been reated via diversi�ation, it is inludedin P , and improvement is applied only if the solution is one of the b1 = |RefSet|/2high quality solutions used to onstrut RefSet. The remaining b2 solutions of

RefSet are not improved sine they are assumed to be diverse solutions. Notiethat in the rebuilding step it is not neessary to improve the solutions from P . Onthe other hand, if a solution omes from the ombination method, improvement isperformed only if it is to enter RefSet.No Improvement In this ase no improvement is inluded in the SS algorithm.Exepting those reahing the optimum, during an SS exeution a number of solutionsare obtained, improved and rejeted if they do not gain entrane to RefSet. Therefore,the idea behind the Improve Before alternative is to redue the number of generatedsolutions by restriting improvement to those entering RefSet. Taking suh idea furtheryields then the No Improvement option.In order to omplete the SS design desription, the �ve methods needed to implementthe algorithm are explained next. 79



5 Software Test Data Generation by means of SS
1 0 1 | 0 1 1 | 1 1 0

1 1 1 | 0 1 1 | 0 1 0

1 0 1 | 0 0 1 | 0 1 0

1 0 1 | 0 1 1 | 0 0 0

1st

2nd

3rd

4th

1 0 1 | 0 1 1 | 0 1 01 0 1 | 0 1 1 | 0 1 01 0 1 | 0 1 1 | 0 1 0

Figure 5.1: Example of loal seah improvement method.Diversi�ation Generation MethodA simple implementation is adopted. Eah solution is randomly generated aording toa uniform distribution.Improvement MethodThe improvement method is a best �rst loal searh where the neighbors of a solution areto a Hamming distane of one. More preisely, the bit substrings odifying eah inputparameter are taken into aount to de�ne the order of evaluation of the neighbors. Fora solution di�ering from the previous in the i-th bit of the substring odifying the j-thinput parameter, the next neighbor to evaluate is obtained by hanging the value ofthe most signi�ant bit, previously unhanged, in the substring assoiated with the nextparameter. To be exat, in the ase of a parameter odi�ation where the most signi�antbits are ordered from left to right, if the j-th parameter is not the last, the i-th bit of thesubstring belonging to the (j +1)-th parameter will be �ipped. Otherwise, the (i+1)-thbit of the substring of the �rst parameter is hanged.Figure 5.1 presents an example of the loal searh method. The solution to the leftis the initial solution odifying an input with three parameters; a vertial line dividesthe substrings representing eah parameter. It is supposed that this initial solution wasobtained by hanging the signed bit. The neighbors onsidered in a hypothetial searhstep are shown to the right. The horizontal arrow indiates the assumed new best solutionhosen for the next step.Referene Set Update MethodThe referene set updating follows a stati update strategy. New solutions obtained viaombination are plaed in a pool. One the pool is full, RefSet is formed by the highestquality solutions already in it and the pool.80



5 Software Test Data Generation by means of SSImprovement Triangle1 Triangle2 Triangle3 Triangle4 Atof Remainder ComplexbranhAfter 10356 28761 31534 32646 1520023 145 30835100 100 100 100 82.33 100 100Before 1575 2661 8325 10267 27087 240 9105100 98.46 99 100 67.33 100 93.18No Loal 2374 7561 3196 2549 27686 1235 502496.54 97.31 95 98.08 64.67 97.78 94.55Table 5.1: Experimental results of the SS approah.Subset Generation MethodAll two-solutions subsets are reated. Obviously, only the solution pairs not previouslygenerated are taken into aount.Solution Combination MethodFor eah pair of solutions, their input representations x ∈ Ω and x′ ∈ Ω are obtained,and four new solutions are reated from the following linear ombinations:
x1 = x + d (5.1)
x2 = x− d (5.2)
x3 = x′ + d (5.3)
x4 = x′ − d (5.4)where d = |x− x′|/2.5.3 Performane Evaluation of Satter Searh DesignsIn order to observe how the SS approah performs in pratie, several experiments werearried out. Test data was generated for all the programs used to evaluate the EDAsbased approah, taking the same intervals of values for eah input parameter (see Setion4.5.1).After preliminary experimentation, the maximum number of generations for the SS wasset at 10, the size of set P was 100 and the referene set size was 10. The resultsof the experiments for the three improvement strategies are shown in Table 5.1. Foreah improvement strategy and eah program, the average values in ten exeutions areprovided. The �rst row is the average number of generated test inputs during the proess,and the following is the average overage measurement.It an be seen in Table 5.1 that when the lassial improvement strategy (Improve Af-ter) is adopted, the attained overage is equal or larger than in the two other ases.81



5 Software Test Data Generation by means of SSNonetheless, Improve Before o�ers good results, as it generates a onsiderably lowernumber of inputs (solutions) than Improve After while keeping the same or almost thesame overage, exepting Atof and Complexbranh programs. On the other hand, in theNo Improvement option, overage is generally lower than in the two other strategies; infat, full overage is reahed for no program. Considering the number of inputs, as itould be expeted, No Improvement obtains in general a lower value than Improve After.However, this is not held with regard to Improve Before, whih generates less inputs thanNo Improvement in four programs.Statistial tests were onduted to hek whether signi�ant di�erenes exist amongthese results. Comparing Improve After and Improve Before, the Mann-Whitney testrevealed di�erenes at a 0.05 on�dene interval for the overage in Triangle2, Atofand Complexbranh, and for the number of inputs in all the programs. Faing ImproveAfter with No Improvement, dissimilarities were stastially signi�ant for the overageand the number of inputs in every program. Finally, in Improve Before versus No Im-provement, di�erenes were observed for the overage in all the programs but Triangle2and Complexbranh, and for the number inputs in every ase but Triangle3 and Atof.Thus, these results indiate that, although the improvement method is an optional ele-ment of the SS methodology, its relevane is high. The lak of improvement hinders theSS design from attaining the best performane. Indeed, the number of solutions an SSalgorithm generates during the optimization proess depends to a great extent on theway improvement is applied. More preisely, in our ontext, the Improve After strategyattains the highest quality solutions, however, the less intensive Improve Before optionmay reah the optimum in some ases, generating less solutions. So, aording to theoutomes from the statistial tests, taking overage as a primary fator and the numberof inputs as a seondary one, we may onlude that Improve After obtains the best per-formane for Triangle2, Atof, Remainder and Complexbranh, while Improve Before isthe best for Triangle1, Triangle3 and Triangle4.An interesting aspet whih may be useful when onsidering an SS algorithm is thein�uene of eah method during the searh. This an be seen in Figures 5.2 and 5.3 inthe ontext of test data generation.Figure 5.2 shows the overage attained by the SS methods for the Improve After, Im-prove Before and No Improvement strategies. Spei�ally, the results of the diversi�-ation (divers), improvement (improv) - if suh is the ase - and ombination (omb)methods are presented, together with the overage obtained when evaluating a solutionwith regard to other objetives (eval). In the Improve After alternative, almost all theoverage is reahed through improvement and evaluation of other objetives. However,in the Improve Before option, where improvement is not so intense, the overage of theloal searh dereases and the weight of diversi�ation inreases. This also holds for NoImprovement, but ompletely eliminating the role of the loal searh.82
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5 Software Test Data Generation by means of SSApproah Triangle1 Triangle2 Triangle3 Triangle4 Atof Remainder Complexbranh
SSbest 1575 28761 8325 10267 1520023 145 30835100 100 99 100 82.33 100 100
EDAbest 6150 6200 3875 22720 7685 2360 11930100 100 100 100 100 100 100Table 5.2: Results of the best SS and EDA approahes.On the other side, Figure 5.3 reveals the proportion of inputs generated by eah SSmethod. Notie that, in general and where applied, improvement generates most of thesolutions during the searh; this is espeially lear in the Improve After option. Aninteresting point is the e�ieny shown by diversi�ation in the ase of Improve Beforeand No Improvement, sine it generates a relatively low amount of inputs while o�eringmost of the overage. Indeed, the opposite happens for the ombination method in NoImprovement, whih generates almost every input and ontributes a low overage.A lear onlusion derives from these results. When used in a lassial way, the im-provement method plays a main role during the searh, as it signi�antly a�ets thenumber and quality of generated solutions. In ontrast, if improvement is applied dif-ferently, the behavior of other SS methods hanges, espeially in onnetion with theahievement of high quality solutions. More exatly, in this ase the diversity methodbeomes apparently the main soure of optima ahievement. Additionally, if no improve-ment is employed, signi�ane of the ombination method inreases with regard to theattainment of high quality solutions. However, the number of solutions generated by thismethod is huge in omparison to diversi�ation, suggesting so a poor e�ieny.5.3.1 Satter Searh versus Estimation of Distribution AlgorithmsIn the previous hapter, EDAs were applied to the test data generation problem o�eringpromising results. Hene, the EDA approah may be regarded as an appropriate benh-mark for omparison with the SS test data generator. For the omparison, the best EDAand SS approahes in eah ase are taken into aount. These approahes are identi�edby giving preferene to overage, that is, the best approah is the one that ahieves thehighest overage and, if there is a tie, the approah with the lowest number of generatedinputs.Table 5.2 presents the results. SSbest and EDAbest denote the best SS and EDA ap-proahes respetively; the format is the same as in Table 5.1.The Mann-Whitney test was onduted to validate the results. Di�erenes were foundat a 0.05 on�dene interval for overage in Atof, and for the number of inputs in all theprograms but Triangle3. So, we may onlude that in three of the seven programs, SSsigni�antly outperforms EDA. More preisely, two of these SS approahes orrespond tothe Improve Before strategy, whih makes it an interesting option for test data generation.85



5 Software Test Data Generation by means of SSIn ontrast, although the Improve After strategy equal the overage of the EDAs (exeptAtof), the number of inputs generated is higher in all ases (exept Remainder). Thisis speially lear for the Atof program, where SSbest o�ers a poor behavior ompared to
EDAbest.5.4 Satter Searh and Estimation of DistributionAlgorithms CollaborationThe results obtained in some of the experimental programs suggest that SS approahesan generate good solutions with a low number of evaluations. Indeed, these resultsonform to those obtained in [127℄ and [142℄, where SS reahed high quality solutionsin fewer evaluations than GAs. Nonetheless, here, as well as in those works, it hasbeen shown that there are funtions for whih the SS approah does not o�er a goodperformane.On the other side, EDAs were suessfully applied to the automati generation of testdata in the previous hapter. However, in EDAs, it is di�ult to set an expliit ontrol ofthe diversi�ation and intensi�ation balane. By ontrast, in SS this an be performedin a diret way due to its �exibility.These observations motivated the idea of ombining both optimization tehniques. BothSS and EDA based approahes aim at generating test data for a given program bythemselves. However, they ould be entirely used in order to deal with the same problem,thus leading to a ollaborative approah whih may pro�t from the bene�ts of SS andEDAs.The proposed ollaboration onsists of an EDA-SS approah where eah searh methodats separately. In other words, the EDA based generator is used �rst and, one it has�nished, the SS based generator is employed over the remaining unovered branhes.This way, the general sheme in Figure 3.5 is �rst applied with an EDA and, if it wasnot able to solve the omplete problem, the sheme is repeated with SS.An important feature of the implementation developed is that, after the exeution of theEDA generator, the SS approah initializes the set of inputs of eah unovered branhwith the set resulting from the EDA. Thus, the SS generator starts the searh using thebest solutions found by the EDA. Although this seeding ould involve a lak of diversity,the SS an reover from it through the diversi�ation method in the rebuilding step.5.5 Performane Evaluation of the Collaborative ApproahThe ollaborative approah was applied to the previous experimental programs in orderto observe its performane. 86



5 Software Test Data Generation by means of SSEDA Triangle1 Triangle2 Triangle3 Triangle4 Atof Remainder ComplexbranhUMDA 4015 4250 6281 ‡ 41912 ‡ 570306 6202 ‡ 24154100 100 100 100 91.33 100 100TREE 3272 10210 3870 24495 795693 6532 ‡ 34900100 100 100 100 86.67 100 100EBNAK2+pen 5185 7452 7369 45902 ‡ 1081907 4377 ‡ 31653100 100 100 99.62 82.33 † 100 100UMDA 3311 4700 3927 41440 ‡ 28278 3012 11298100 98.85 99.5 99.23 79.67 † 100 96.36 †TREE 3776 4857 3439 19560 30529 2614 9428100 98.85 100 98.46 † 78.67 † 100 96.82 †EBNAK2+pen 3317 4860 3548 12554 33620 2197 9189100 98.08 † 99 98.46 † 71.67 † 100 95 †Table 5.3: Results of EDA-SS approah with Improve After (above) and Improve Before(below).Reall that in Chapter 2 EDAs were lassi�ed in three types, aording to the orderof dependenies among the variables in the probabilisti model. Following the rankingarried out in the previous hapter, the best EDAs from eah type were used in theexperiments, i.e. UMDA, TREE and EBNAK2+pen. Within an EDA, half of the popula-tion was seleted at eah generation aording to a rank-based strategy. New individualswere simulated from the learnt probability distribution by means of Probabilisti LogiSampling, and the population was reated in an elitist way. Population size was the sameas the one for set P . Sine the SS generator may be used after the EDA, the maximumnumber of generations was relaxed to 10. In fat, a few preliminary experiments wereonduted and the best results orresponded to this value. In the EDA literature, otherworks that have obtained good results with low parameter values in the experiments anbe found [112℄.The Improve After option of the SS approah attained, in four of the programs, a higheroverage value than the Improve Before alternative. However, the latter learly generatedfewer inputs than the former. Therefore, the SS generator was evaluated taking bothoptions into aount. The No Improvement strategy was not inluded in the experimentsas it o�ered, with statistial evidene, an inferior behavior in every program. The SSparameter values were the same as in Setion 5.3: |P | = 100, |RefSet| = 10, and 10iterations at most.Table 5.3 shows the results of the experiments; one again, the format is the same asin previous tables. The best approah (with preferene to overage) for eah program ismarked in gray.As an be seen, these results onform to the ones obtained in Table 5.1, sine the ImproveAfter strategy reahes, in general, a higher overage than Improve Before. Instead, the87
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Figure 5.4: Proportion in the overage of EDA-SS approah for Improve After (left) andImprove Before (right).latter generates a lower number of inputs than the former.Statistial tests were used to validate the best performane values. Sine overage is aprimary measurement, for eah program and eah approah, the Mann-Whitney test wasonduted with regard to the best overage value (in gray). Then, for the ases where nodi�erene was found, the test was again used over the best number of inputs generated.Table 5.3 presents the outomes of the tests; symbol `†' denotes the ases where overagedissimilarities (0.05 on�dene interval) were found, while `‡' refers to the number ofinputs.In �ve programs, Improve After attains the best results. However, di�erenes are sta-tistially signi�ant with regard to Improve Before in three of them: Triangle4, Atofand Complexbranh (and Triangle2 just for EBNAK2+pen). Improve Before, by on-strast, o�ers a statistially sound improvement with regard to the other alternative onlyin Remainder (and in Triangle3 for UMDA). Thus, Improve After shows a rough supe-riority to Improve Before.In order to have an idea of the behavior of eah generator in the ollaborative sheme,Figures 5.4 and 5.5 present the proportion of overage and generated inputs in the EDAand SS methods respetively. 88
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Figure 5.5: Proportion of inputs generated by the EDA-SS approah for Improve After(left) and Improve Before (right).
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5 Software Test Data Generation by means of SSApproah Triangle1 Triangle2 Triangle3 Triangle4 Atof Remainder Complexbranh
EDA− SSbest 3272 ‡ 4250 3439 24495 ‡ 570306 2197 ‡ 24154 ‡100 100 100 100 91.33 † 100 100
SSbest 1575 28761 ‡ 8325 10267 1520023 145 30835 ‡100 100 99 100 82.33 † 100 100
EDAbest 6150 ‡ 6200 ‡ 3875 22720 ‡ 7685 2360 ‡ 11930100 100 100 100 100 100 100Table 5.4: Results of best EDA-SS, SS and EDA approahes.Figure 5.4 reveals that the EDA based generator overs most of the objetives, sine itoperates �rst and an attain, among others, the easiest objetives. However, the EDAmethod is not able to reah a 100% overage by itself, whilst this an be obtained byusing the SS generator. In fat, the SS method always inreases the overage attainedby the EDA based. On the other hand, Figure 5.5 shows how the use of improvementa�ets the results of the ollaborative sheme, as the proportion of inputs generated bythe SS with the Improve After alternative is higher than with Improve Before.5.5.1 Collaborative Approah versus OthersThe omparison of the EDA-SS approah with regard to the SS and EDA based test datagenerators an be observed in Table 5.4. In order to onform with the omparison inTable 5.2, the best EDA-SS ollaboration (EDA−SSbest) is ompared with the best SS(SSbest) and EDA (EDAbest) approahes. One again, the best approah (with prefereneto overage) for eah program is marked in gray.In order to validate the best values, the previous analysis with the Mann-Whitney testwas applied here. So, analogously, Table 5.4 shows the outomes from the tests; symbol`†' denotes the ases where overage di�erenes (0.05 on�dene interval) were observed,while `‡' alludes to the number of inputs.

SSbest obtains the best values with statistial evidene in three programs, EDAbest intwo, and EDA−SSbest in one (no dissimilarity was found in Triangle3). It may notied,however, that exluding the programs where EDA−SSbest is best, this approah generallylies between the two other approahes. Further statistial tests on�rmed this at a 0.05on�dene level.Similarly to Setion 5.3, a poor performane is ahieved in Atof. An explanation forthis is that, even though preliminary experiments o�ered better results with the seletedparameter values, in the ase of Atof these values may not be appropriate. Nevertheless,Table 5.4 shows an inrease in the overage and a derease in the inputs generated for
EDA− SSbest when ompared to SSbest.In any ase, aording to these results, the ollaborative sheme may be onsidered aompetitive alternative for test inputs generation.90



5 Software Test Data Generation by means of SS5.6 SummaryThis hapter has been devoted to the appliation of SS for solving the test data gen-eration. The EDAs based approah is followed to ful�ll the branh overage riterion,though a SS algorithm is used instead of an EDA.Three alternatives regarding the improvement method have been studied in this ontext.After experimental evaluation, it may be onluded that, despite being optional, theimprovement method plays a main role in the SS methodology for this problem. Theweight of improvement is re�eted in the number of solutions generated (inputs) and thenumber of optima found during the searh. Moreover, the way in whih improvementis used in the algorithm a�ets the behavior of other SS methods. Following this idea,the Improve Before option proposed attained better results than Improve After in someprograms, thus being an interesting alternative to the lassial strategy. Clearly, the worstperformane in the experiments is obtained if no improvement method is employed. Insuh a ase, the ombination method generates most of the solutions while reahing arelatively low number of optima by itself, so that the diversi�ation method plays a mainrole in the searh.On the other hand, an EDA-SS ollaborative sheme has been desribed to take advantageof the bene�ts of both methods. The experiments onduted on this alternative o�eredenouraging results. The ollaborative approah o�ered the best or seond best resultsin most of the test programs. However, in order to onlude this approah overomes theisolated generators, future experiments have to on�rm these results. Anyhow, the useof SS as a seondary optimization method improved the overage of the previous EDAbased method. Hene the ollaborative strategy proves to be useful.
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6 Enhaning the Test Data GenerationProess: the Role of the Searh Spaeand the Objetive FuntionWhen faing the test data generation as an optimization problem two signi�ant topisare the objetive funtion and the searh spae. Although an ative work is undergoing forthe former, little attention has been paid to the seletion of an appropriate searh spae.Hene, while making some hints on the in�uene of the objetive funtion, this hapteronentrates on desribing an alternative to the searh spae issue. More preisely, twoapproahes whih employ an EDA as the metaheuristi tehnique are explained. In bothases, di�erent regions are onsidered in the searh for the test inputs. Moreover, in orderto depart from a region lose to the one ontaining the optimum, the de�nition of theinitial searh spae inorporates stati information extrated from the soure ode of thesoftware under test. If this information is not enough to omplete the de�nition, thena grid searh method is used. Aording to the results of the experiments onduted, itis onluded that this is a promising option that an be used to enhane the test datageneration proess.Remaining setions are organized as follows. After providing motivation, the bene�ts ofan advaned form of objetive funtion are empirially studied. Next, the alternativedeveloped for seleting the searh spae is explained. Then, the experiments and theanalysis of their results are shown.6.1 MotivationAs we have seen throughout this dissertation, takling the test data generation as theresolution of a set of optimization problems is o�ering promising results, and it onstitutesnowadays a serious alternative to aomplish this task [144℄. Nonetheless, depending onthe program at hand, omplexity in solving suh optimization problems may be huge.In fat, in the ontext of branh testing, the searh spae de�ned by the inputs is oftenlarge and the objetive funtion intriate, making the overage of a branh a di�ulttask.
93



Test Data Generation Enhanement: the Role of Searh Spae and Objetive FuntionMost of the e�orts to enhane the test data generation to date have onentrated on theoptimization tehnique and the objetive funtion. We have proposed in previous hap-ters modern metaheuristis that have shown enouraging results and present theirselvesas a promising alternative to more lassial methods. On the other hand, attempts onthe objetive funtion relate to the onepts in Setion 3.5.2 for improving the funtionin equation 3.1.Surprisingly, so far little attention has been paid to the seletion of an appropriate searhspae. This is an interesting matter, as fousing the searh on a promising region ouldsimplify the problem, while making an inadequate hoie an optimal solution (an inputovering the branh) may not even exist.An alternative faing this question is suggested in [100℄. There, a dependene analysis isapplied to the variables in the soure ode to identify the input parameters that annota�et the overage of a given branh. This way, a number of problem variables an beeliminated and the searh spae redued.In the ontext of EAs, the searh spae matter an be takled by Self-Adaptive Represen-tation methods. These proedures may be lassi�ed as a form of parameter ontrol [66℄that, aording to the behavior of the exeution, dynamially transforms an individual'srepresentation and, thus, the searh spae. Although it depends on the method, gener-ally, the purpose of the transformation is to diret the searh towards the most promisingregion found so far and avoid getting stuk in loal optima [252℄.This hapter is devoted to the enhanement of the test data generation by studying thein�uene of the objetive funtion and, with more emphasis, by dealing with the searhspae. In both ases, we depart from the EDAs based approah presented in Chapter 4,so, from now on, in order to make the disussion more agile this will be referred to asthe basi approah.Regarding the objetive funtion, we will hek whether an advaned design for theobjetive funtion, previously developed in [248℄, onstitutes an improvement for thebasi approah.On the other side, the bulk of hapter onentrates on a novel alternative to the searhspae seletion issue. The two major onepts whih support this alternative are the useof a-priori knowledge on the problem instane to hoose a searh region, and modifyingthis region through the solution's representation. These onepts are applied to the basiapproah. Initially, the EDA seeks for in a region hosen from the whole feasible searhspae. In order to selet a promising region, its de�nition is based on stati informationextrated from the program's soure ode. In ase this information is not useful to thede�nition, then a grid searh method is applied. Additionally, during the proess, the sizeof the region is inreasingly widened. This way, if the objetive entity is not exerised, anew searh is performed on a larger region. This enlargement is applied to the approahfrom two points of view, giving rise to two algorithms.94



Test Data Generation Enhanement: the Role of Searh Spae and Objetive Funtion6.2 The In�uene of the Objetive FuntionGiven the objetive branh, �nding the minimum of the orresponding objetive funtionmay be extremely hard owing to program semantis. As pointed in Setion 3.5.2, fun-tion de�ned in equation 3.1 owns some limitations that make the problem even harder.More preisely, a main drawbak is the fat that every input not reahing the onditionalstatement assoiated to the branh reeives the same funtion value, yielding a �at land-sape. Funtion de�ned in equation 3.2 aims at alleviating this by returning a distaneto the ondition for suh inputs.To be exat, given a branh b and an input x, let vc denote the vertex representingthe onditional statement assoiated to b in the ontrol �ow graph, and let p be thepath from s to e (see Setion 3.4.1) representing the �ow of the program's ontrol whenexeuted with x. We all a vertex v ontrol dependent of a vertex w i� w represents aondition (i.e. outdegree(w) > 1) and there are both a path from w to v and a pathfrom w to e not ontaining v. The ondition distane dc from a vertex v ∈ p to vc,
dc(v, vc), is de�ned then as the number of verties in the path from v to vc, on whih vcis ontrol dependent. For the sake of onveniene, in the partiular ase where no pathexists from v to vc, an in�nite number of ontrol dependent verties is assumed, that is,
dc(v, vc) =∞. Equation 3.2 returns minv∈pdc(v, vc) for the inputs not reahing vc.One notieable problem of this ondition distane is the fat that several paths mayexist from v ∈ p to vc. Thus, it ould be the ase of two paths ontributing distintvalues for dc(v, vc). Suh a situation is illustrated in Figure 6.1, where a soure odesegment and the orresponding portion of ontrol �ow graph are shown. In the �gure,the two paths from v to vc, i.e. v, 2, 3, vc and v, 2, 5, 7, vc, own respetively 2 and 3verties on whih vc is ontrol dependent. In [16℄, this problem was takled throughoptimisti and pessimisti approahes, depending on whether dc(v, vc) is taken as theminimum or maximum number of ontrol dependent verties respetively. Experimentsunder di�erent senarious were onduted for omparing both alternatives, however, noonlusion ould be drawn about the superiority of any.Sine equation 3.2 augments granularity with regard to equation 3.1, it appears to bemore adequate. Yet, to the best of the author's knowledge, no evaluation that heksthis has been published. In order to ompare both objetive funtions, we run thetest data generator desribed in the basi approah using equation 3.2 and the bestoverall EDA from Chapter 4, i.e. TREE. All the experimental programs used there werehosen. For eah program, the parameter values o�ering the best results (with priorityto the overage) for TREE were seleted for exeution. None of the programs shows theproblemati situation in Figure 6.1, so there is no need to handle it.Table 6.1 presents the results obtained with the lassi (equation 3.1) and advaned(equation 3.2) funtions. For eah program, the table ollets the average values in ten95



Test Data Generation Enhanement: the Role of Searh Spae and Objetive Funtion
         .   .   .   .   .
1      if (a > b) {
2           if (c >d) {
3                if (e > f)
4                     return 0; }
5           else if (g > j)
6                return 0;
7                else if (i > j)
8                     return 0;
9           if (k > l)
         .   .   .   .   . vc
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.   .   .   ..   .   .   .Figure 6.1: Example of two paths yielding di�erent values for dc(v, vc).funtion Triangle1 Triangle2 Triangle3 Triangle4 Atof Remainder Complexbranh% # % # % # % # % # % # % #lassi 100 8860 100 12920 100 3880 100 45720 99.33 15665 99.44 15920 100 21360advaned 99.62 9940 100 5880 100 4180 99.62 51560 100 3475 100 1240 98.64 21420Table 6.1: Results obtained with the lassi and advaned objetive funtions.exeutions for the overage (%) and the number of inputs generated (#).It an be noted that di�erenes between both funtions are slight for the overage mea-surement and more prominent for the number of inputs in some ases. The Mann-Whitney statistial test was onduted over both measurements to validate the results.No signi�ant dissimilarity was observed at a 0.05 on�dene interval for the overage.By ontrast, di�erenes were found for the number of inputs in Triangle2, Atof andRemainder, where the advaned funtion beats the lassi.Therefore, using the basi approah and aording to these results, it may be onludedthat the objetive funtion from equation 3.2 improves or equals the performane offuntion from equation 3.1.6.3 The Self-Adaptive ApproahIf a test data generation system deals with this task as the proess of solving a set ofoptimization problems, the searh spae beomes an important element. The rest of thehapter is devoted to the study of an alternative whih takes this into onsideration,inspired by the onepts on Self-Adaptive Representations from EAs.So, the underlying idea in the Self-Adaptive alternative proposed here is to selet aninitial searh spae and modifying its size for eah unovered branh. More preisely, theregion where the metaheuristi seeks for is initially de�ned with heuristi informationobtained from the program's soure ode. During the proess, the size of the region is96



Test Data Generation Enhanement: the Role of Searh Spae and Objetive Funtioninreasingly widened so that, if the optimum was not found in the urrent spae, a newsearh is performed in a larger one. Next a detailed desription of this approah is given.The spae of an objetive branh is de�ned by the interval of values that eah inputparameter of a program an take. To be exat, for eah branh and eah parameter,a value is hosen to be the enter of the interval, and a maximum inrement over theenter de�nes the amplitude. The proess departs from a small range of values foreah parameter and, as branhes remain unovered, the range is inreasingly augmented.Centers of the intervals are �xed for the whole proess, thus, in order to start seeking ona promising region, stati heuristi information from the program is used to loate thesepoints. In ase this information is not useful to identify a enter, a grid searh methodis applied.Two approahes following this line have been developed. One of them adapts the size ofthe searh spae for all the unovered branhes at a time. In the other approah, eahregion enlargement involves a single objetive branh.(1) Assign initial searh region to eah branh(2) Repeat until stopping riterion is met(3) Repeat until stopping riterion is met(4) O ← Selet objetive branh(5) Apply EDA to over O(6) Enlarge region (1) Assign initial searh region to eah branh(2) Repeat until stopping riterion is met(3) O ← Selet objetive branh(4) Repeat until stopping riterion is met(5) Apply EDA to over O(6) Enlarge regionFigure 6.2: Algorithms for the MOA (left) and SOA (right) approahes.
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Figure 6.3: Shemas of the MOA (left) and SOA (right) approahes.
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Test Data Generation Enhanement: the Role of Searh Spae and Objetive FuntionMultiple Objetive Adaptation (MOA)The idea behind this method an be learly stated: to use the general sheme in Figure3.5 over widening regions. This leads to the left side algorithm in Figure 6.2. Therefore,the basi approah is applied initially with a redued interval of values for an inputparameter and, one it is �nished, if unovered branhes exist, it is applied again with alarger interval. The left side of Figure 6.3 depits an illustration of this idea.Single Objetive Adaptation (SOA)This alternative is similar to the basi approah exept for the optimization step. Startingfrom a small searh spae, the EDA exeutes several times over inreasingly augmentedregions while the overage of the objetive branh is not attained. The right side ofFigures 6.2 and 6.3 represent the algorithm assoiated with this method and a shemaof the proess, respetively.In the next pages, these two approahes are disussed in detail by �rst explaining thesteps of their algorithms, and later, how the set of inputs is managed.6.3.1 Algorithm Steps DesriptionThe desription applies to both MOA and SOA, sine the same steps for eah algorithmimplement the same onepts.Region Initialization - step 1 (MOA, SOA)Eah branh is assigned an initial searh region whih will have the smallest size. Aredued region allows for a fast searh, although the hanes of ontaining the globaloptimum may be few. Hene, in order to reah a high degree of e�ieny, it is importantto obtain an initial region that is near the optimal input. Obviously, this is a di�ulttask, sine the topology of the spae should be known in advane (and no searh wouldbe required then).Instead, it is possible to approximate the problem by using stati heuristi informationfrom the program's soure ode. Although di�erent soure ode aspets ould be re-garded, in the present work, this information is obtained from the expression in theonditional statement orresponding to a branh. Assuming, with no loss of generality,that an input is omposed of three parameters (a, b, c), then, the enter of the initialregion may be eliited through the following two heuristi rules:
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Test Data Generation Enhanement: the Role of Searh Spae and Objetive Funtion
• If an expression follows the form F (a, b, c) OP K, where F is a known funtion ofthe input parameters, K is a onstant and OP is a omparison operator, then theregion is entered at point (Ca, Cb, Cc) suh that F (Ca, Cb, Cc) = K.
• If an expression follows the form F (a, b, c) OP F ′(a, b, c), where F and F ′ are knownfuntions of the input parameters, and OP is a omparison operator, then theregion is entered at point (Ca, Cb, Cc) suh that F (Ca, Cb, Cc) = F ′(Ca, Cb, Cc).Notie that the above rules refer to spei� types of expressions. Many possibilities existfor the form of funtions F and F ′ in an expression. For instane, it ould depend on anumber of soure ode variables or it might inlude alls to other programs. These rulesonstitute a �rst approximation to the problem by restriting F and F ′ to depend onlyon the input parameters, e.g. F (a, b, c) = 7a+25c. Furthermore, eah point (Ca, Cb, Cc)was alulated manually for the experimental programs employed to evaluate the presentwork. In order to reah omplete automation of this step, a alulus tool ould beemployed, for example, Mathematia1.In ase none of the above rules an be applied, the enter of the initial region for a branhis obtained through a heuristi strategy based on the program's dynami information;to be exat, a grid searh method is employed. For eah input parameter, the ompleterange of values is partitioned into τ intervals. The enter of eah of these intervals is takenas a referene value. Then, the inputs resulting from the ombination of the referenevalues of all the parameters are evaluated with regard to the branh. The best input isseleted as the enter of the initial region. Notie that the granularity of the strategymay be tuned with the number of intervals τ , sine the number of inputs generated is τpfor a program with p parameters.The idea behind a grid searh is to explore a number of equally distant points from thewhole searh spae. As τ grows, the number of points being onsidered approahes theomplete number of points and, hene, the quality of the solution found might inrease.On the other hand, reahing a ertain value of τ may result in an unavoidable numberof points. As a onsequene, τ is regarded as a parameter of the approah. Figure 6.4illustrates the strategy for the ase of two parameters and τ = 6; among the 62 points,the one inside the irle represents the input hypothetially hosen as the enter.One the enter is obtained using whihever of the strategies above, the spei�ation ofthe initial searh region of the branh is ompleted by de�ning an amplitude. This isahieved by setting, for eah input parameter, an inrement over the enter. These initialinrements are given as parameters to the test data generation system.Thus, in essene, attending to the strategy used to eliite the initial region, we maylassify branhes in two types. On one hand, those with the region entered at a point1Mathematia is a software pakage that solves equations symbolially. Web site:http://www.wolfram.om/mathematia/ 99
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P1

P2

Figure 6.4: Shema of the grid searh method.obtained through stati heuristi information and, on the other hand, the branhes withthe region enter hosen by means of a grid searh, i.e. using dynami information.Stopping Criteria - steps 2 and 3 (MOA), steps 2 and 4 (SOA)The stopping riterion at step 3, for MOA, and step 2, for SOA, refers to the generalsheme (Figure 3.5). It is de�ned in the same way as in the basi approah, that is, fulloverage ahievement or unsuessful treatment of every unovered branh.In ontrast, the riterion in step 2, for MOA, and step 4, for SOA, alludes to the Self-Adaptive approah. Therefore, it states the point where the searh spae stops beingenlarged. To obtain this point, a limit to the size of the region is given as a parameterto the system. Aordingly, in the ase of MOA, the stopping riterion is to obtain fullbranh overage or reah the size limit, while in SOA, the searh stops when the objetivebranh is overed or the spae attains its size limit.Branh Seletion - step 4 (MOA), step 3 (SOA)The objetive branh is seleted following the strategy of the basi approah. Hene, thebranh with the highest quality set of inputs at the moment is hosen, that is, the branhwith the highest average objetive funtion value over the inputs in the set.
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Test Data Generation Enhanement: the Role of Searh Spae and Objetive FuntionEDA - step 5 (MOA, SOA)The EDA seeks the optimal input in a searh region entered at a �xed point. Therefore,an individual is a bit string representing an inrement on the enter of the urrent region.To be preise, the individual onsists of a bit substring for eah input parameter. Eahsubstring represents an inrement on the enter of the interval of the orrespondingparameter.In the evaluation, the inrement represented by the individual is added to the enter of theregion, resulting in the input for the objetive funtion. In the urrent implementation ofthe approah, three parameter types are onsidered: integers, reals and haraters. In thease of an integer, the bit substring represents the inrement following a sign-magnitudeodi�ation. For real numbers, the IEEE �oating point odi�ation is used instead. Inboth ases, the input parameter value is obtained by summing the inrement to theenter. Finally, for a harater type, a sign-magnitude odi�ation is employed againin the substring. Then, the inrement is summed to the enter of the parameter, andthe value obtained results in a harater, aording to the ASCII ode table. Similarly,for more omplex parameter types, an appropriate transformation ould be de�ned toobtain the input parameter value.As in the basi approah, the input is evaluated with regard to all the other unoveredbranhes and the sets of best inputs are updated aordingly.The length of the individuals may vary between di�erent EDA exeutions and, in on-sequene, it is not advisable to keep the same parameter values for the whole proess.This is overomed by making some of the parameters adaptive [66℄.A ommon pratie in EAs is to �x the population size proportionally to the number ofvariables. For instane, in [155℄, several rules of thumb are suggested for a number ofEDAs under spei� onditions. In the present work, the population size is set at twiethe length of the individual.On the other hand, it would be desirable to halt the searh when no improvement anbe obtained. This is a relatively unexplored matter in the �eld of EDAs, although afew reent works are emerging [162℄. Here, a novel strategy has been developed. Theproblem is approximated by identifying the generation where the estimated probabilitydistribution pl(x) is similar to the empirial distribution of the seleted individuals. Thus,the riterion adopted is to stop the EDA when the Kullbak-Leibler ross-entropy from
pl(x) to p(x) falls below a value α given as a parameter to the system.Region Enlargement - step 6 (MOA, SOA)The size of a searh region is determined by the amplitude of the interval assoiatedto eah input parameter. In other words, this size is de�ned by a maximum inrement101



Test Data Generation Enhanement: the Role of Searh Spae and Objetive Funtionon the enter of the interval of eah parameter. In the EDA, an inrement for eahparameter is represented as a substring of bits. Therefore, the number of bits in eahsubstring spei�es the size of the region.The searh region is enlarged by augmenting the amplitude of the interval assoiatedwith a hosen input parameter. A bit is added to the substring representing the nextparameter in the order given by the input, from left to right.6.3.2 Management of the Set of InputsThe ontrol of the set of inputs of eah branh introdues disparities between the ap-proahes whih require a separate explanation.Operation in MOAIn the MOA alternative, during the EDA exeution, it is possible that an input beingevaluated for a branh distint from the objetive falls outside the urrent searh spae.Therefore, when the branh is seleted as the new objetive and the EDA is to be ini-tialized with the inputs in the set of the branh, some of these inputs might be out ofthe region.Hene, instead of using only one set of inputs, two sets are assoiated with eah branh.One of them keeps the best inputs inside the urrent searh region - inside set - and theother one, those falling outside - outside set. This implies that, during the evaluationin the EDA, the input is stored in the required set and, this way, the initialization isdiretly performed from the inside set. More preisely, for eah input in the set, theorresponding inrement on the enter is obtained (in its binary form) and added to thepopulation.In order to maintain the sets, before starting a new run of the general sheme (step 3),the inside set is updated with the inputs in the outside set whih belong to the newregion.Operation in SOARegarding the SOA approah, eah time the EDA exeutes the searh region is di�erentfrom the previous. In this situation no advantage is obtained with two sets, so just oneontaining all the inputs is used.To initialize the EDA, �rstly, the inrements assoiated with the inputs in the set arealulated. Then, the inrements inside the urrent region are inluded in the population.Those falling outside are trunated to �t into the region and, then, are added to the102



Test Data Generation Enhanement: the Role of Searh Spae and Objetive Funtionpopulation. A possible disadvantage of this strategy is that, as the population onvergesto similar individuals, if these are high quality solutions, they will be inluded in the set.Thus, initialization for the next region might ause a low diversity between individualsand result in a poor searh. With the intention of alleviating this phenomenon, half ofthe EDA's initial population is randomly generated.Another problem in SOA onerns the retrieval of the initial searh region for the EDA.If the objetive branh is seleted for the �rst time, the initial region is given by itsenter and the initial inrement. However, it an so happen that, in the EDA evaluation,the input enters the set of a branh already treated and, therefore, makes this branh aandidate objetive one again. Supposing that the branh is seleted for a seond time,the initial searh region should not be taken as before, sine the new inputs in the setould be in a larger spae and, hene, would not be used to seed the population. Thesolution adopted here has been to obtain the initial region size of the smallest new inputin the set.6.4 An Exeution ExampleAs an illustration of the approah, some steps of an hypothetial exeution of MOA andSOA are explained next. The example of Figure 3.6 will be used one again. Hene, testases are to be generated for a program where an input is omposed of three integers a,
b and c.First of all, both algorithms require the assignment of an initial searh region to eahbranh (step 1). Thus, for eah branh and input parameter, an initial interval of valuesmust be de�ned. This is attained by �xing the enter of the interval and an inrementon the enter.Two strategies are proposed for the enter eliitation: stati information and dynamiinformation based. The branh represented by ar (2, 3) in the graph is assoiated toondition if((b*b)-(4*a*)<0), so the stati atrategy is used. A point satisfying b2 −
4ac = 0 is hosen as the enter, for instane, (0, 0, 0). In ontrast, the ondition ofbranh (7, 8) is if((a*x*x+b*x+)==0), so the grid searh method must be employed.If an integer is odi�ed with 15 bits in two's omplement representation, the ompleteinterval of values of eah parameter is [−32768, 32767]. With τ = 8, the number of pointsgenerated and evaluated is 83 = 512. The best is (4095, 4095,−20480), whih is taken asthe enter of the region.One the enter of eah branh is �xed for a, b and c, the initial region is obtained withan inrement on eah enter. To keep the example simple, 5 bits are given to representan inrement for eah input parameter, resulting in a maximum inrement of ±31. Thus,the initial region for branh (2, 3) is [−31, 31]× [−31, 31]× [−31, 31] and for branh (7, 8)it is [4064, 4126] × [4064, 4126] × [−20511,−20449].103



Test Data Generation Enhanement: the Role of Searh Spae and Objetive FuntionMOA ExampleMOA applies the basi approah (steps 3 to 5) over inreasing searh regions until amaximum size is ahieved (step 2). Using a maximum of 10 bits to represent an inre-ment for eah input parameter, the maximum region for branh (2, 3) is [−1023, 1023] ×
[−1023, 1023] × [−1023, 1023] and for branh (7, 8) it is [3072, 5118] × [3072, 5118] ×
[−21503,−19457].Now, assume that the size of the region in the urrent round is de�ned with 7 bits for aand b, and 6 bits for c. This implies that, in the previous region, 6 bits were used for b.Remember that two sets of inputs are assoiated to eah branh: the inside set andthe outside set. The seletion strategy (step 4) hooses the branh with the highestquality inside set. If branh (2, 3) was seleted, the initial population of the EDA (step5) is seeded with the inside set of this branh. In this partiular ase, an individualrepresenting the inrement (98,−34, 15) would result in input (98,−34, 15), as the regionenter is (0, 0, 0). Aside from alulating the objetive funtion value of this input,it is also evaluated for the rest of the branhes. For instane, evaluating the inputfor branh (7, 8) implies that its assoiated inrement must be indued. Thus, input
(98,−34, 15) results in inrement (−3997,−4129, 20495) for branh (7, 8). To representsuh an inrement, 12 bits would be neessary for parameters a and b, and 15 bits for
c, so it falls outside the urrent region. In onsequene, the outside set is updated if itsquality is improved with this input.One the basi approah �nishes without overing all the branhes, the urrent region isenlarged. In the previous region the interval of b was inreased, so now c is augmented to7 bits, resulting in a searh region where a, b and c represent an inrement with 7 bits.SOA ExampleIn SOA, the optimization phase is applied over inreasing regions (steps 4 to 6). Therest of steps are those in the basi approah, so they are not illustrated here. Nowon, thefollowing is assumed. Branh (2, 3) is seleted as the objetive and the urrent region ofthe optimization phase is de�ned with 7 bits for a and b, and 6 bits for c.In this algorithm, only one set of inputs is maintained for eah branh during the proess.Half of the EDA's initial population is randomly reated and the other half is seededfrom the inputs in the set. For instane, in order to seed the population with input
(509,−11, 35), the inrement assoiated to branh (2, 3) must be indued �rst. The resultis inrement (509,−11, 35) (remember that the enter was (0, 0, 0)). This inrement fallsoutside the urrent region beause 9 bits are needed to odify the 509. Therefore, thebit substring representing the 509 is trunated to 7 bits to �t in a's interval. In ontrast,an input (45, 117,−21) would result in the inrement (45, 117,−21), whih is inside theurrent region and is to enter diretly in the initial population.104



Test Data Generation Enhanement: the Role of Searh Spae and Objetive FuntionAs in the basi approah, one the value of an input is obtained for branh (2, 3), it isevaluated for the remaining branhes. If the quality of the set of the branh is improved,then the input enters the set.After the EDA �nishes, the urrent region is enlarged in the way desribed above forMOA.6.5 Performane EvaluationIn order to observe the performane of the presented approahes, test ases were gener-ated for all the programs taken for experimentation in the basi approah. The goal ofthe evaluation was threefold: analyzing the behavior of the approahes, omparing theirresults with those attained by other alternatives, and heking whether they onstitutea solid alternative in the real world. Regarding the former goal, performane of eah al-gorithm, MOA and SOA, was studied in isolation. In the seond goal, three topis wereonsidered. Firstly, MOA was ompared to SOA. Then, the stati information basedheuristi employed to de�ne the initial searh region was ompared to the dynami one.Finally, MOA and SOA results were faed to those by the basi test data generator. Forthe later goal, MOA and SOA were evaluated over a number of �real-world� programs.6.5.1 Experimental SettingReall that, among the EDAs evaluated in Chapter 4, TREE was onluded to showthe best performane overall. In onsequene, TREE was the EDA hosen here forthe optimization step in both MOA and SOA approahes. At eah generation, half ofthe population was seleted aording to a rank-based strategy. New individuals weresimulated by means of Probabilisti Logi Sampling, and the population was reatedin an elitist way. The objetive funtion employed in the experiments was formulatedaording to equation 3.2. Notie that the stopping riterion adopted for the EDA seemsto be speially suitable for TREE. This algorithm obtains the tree dependent fatorizationminimizing the Kullbak-Leibler divergene to the empirial distribution. Sine the EDAstops when this divergene value is lower than α, the value of the optimal model is diretlybeing onsidered. For the experiments, α was determined after a number of preliminaryexeutions.Other system parameters that need to be �xed are the size of the initial and the largestpossible region. Given a program, this is ahieved by setting, for eah input parame-ter, the minimum and maximum possible amplitude of its assoiated interval of values.Obviously, a di�erent amplitude may be linked to eah input parameter and, thus, theshape of searh regions ould be ontroled. However, for the experiments, no a priori105



Test Data Generation Enhanement: the Role of Searh Spae and Objetive Funtionknowledge is assumed and, therefore, amplitude values were kept onstant for all theinput parameters of a program.Table 6.2 presents, for eah program, the values seleted for the system parameters, i.e.number of bits for the inrement on the initial region (minimum), number of bits for theinrement on the largest allowed region (maximum), and α value.Also shown in Table 6.2 is the number of branhes, and for how many of them the entersof eah input parameter were obtained through the stati information based (stati) andthe dynami information based heuristi (dynami). As it an be seen, in all the programsbut three, almost every branh is stati. Remainder is relatively balaned in this sense,while in Atof, outstanding branhes are dynami.program harateristis parametersbranhes stati dynami minimum maximum αTriangle1 26 24 2 5 15 2Triangle2 26 24 2 5 7 2Triangle3 20 16 4 5 10 2Triangle4 26 20 6 5 10 2Atof 30 2 28 5 7 25Remainder 18 10 8 5 16 5Complexbranh 22 18 4 5 10 15Table 6.2: Experimental programs harateristis and parameters in the experiments.Remember that the dynami information based strategy onsisted of a grid searh. Inthis method, the value of parameter τ de�nes the number of inputs being onsideredandidate enters. More preisely, for a program with p parameters, τp inputs are reatedfor evaluation. On the other hand, the larger the τ , the �ner the granularity of thestrategy and, hene, the hanes of �nding a high quality initial searh region inrease.In the experiments, τ was set from 1 up to 5 for all the programs exepting Atof, whihused τ up to 3.Additionally, in order to avoid too long exeutions, a limit of 150000 inputs generated wasestablished. As soon as this limit was deteted, the experiment was fored to terminate.6.5.2 MOA PerformaneTable 6.3 presents the results of the experiments onduted. For eah value of τ andeah program, the table ollets the average values in ten exeutions for the perentageof overed branhes (%) and the number of inputs generated during the proess (#).The best values of τ for eah of these two measures and eah program are highlighted ingray. 106



Test Data Generation Enhanement: the Role of Searh Spae and Objetive Funtion
τ Triangle1 Triangle2 Triangle3 Triangle4 Atof Remainder Complexbranh% # % # % # % # % # % # % #1 100 212 99.62 579 100 302 100 2223 98.33 68936 99.44 629 95† 1499522 100 282 99.62 995 100 338 100 1967 43.33† 150062 98.89 1628 100 18563 100 190 99.23 1143 100 311 100 2436 96.33 134849‡ 100 186 95.45† 1027114 100 440‡ 99.23 880 100 285 100 1922 - - 100 84 100 16096‡5 100 381‡ 100 990 100 330 100 1738 - - 100 57 95.91† 117213Table 6.3: Results of the MOA approah.As an be notied, in all programs exept Atof, full overage is reahed. Atof seems tobe the hardest, sine the lowest overage and the largest number of inputs are attainedin this program.Overall Performane AnalysisRegarding at Table 6.3, no apparent relation exists between τ and the best results, sinethese are obtained with alternative values of τ , ranging from the lowest to the largestvalue.In order to validate the best performane values in MOA, an analysis based on statistialtests was onduted. Sine overage is a primary measurement, for eah program andeah value of τ , the Mann-Whitney test with regard to the best τ value (in gray) wasapplied to the overage results. Then, for the ases where no di�erene was found, thetest was again used over the number of inputs generated. Table 6.3 presents the outomesof these tests; symbol `†' denotes the ases where overage dissimilarities (p < 0.01) werefound, while `‡' refers to the number of inputs.In less than half the ases (8 from up to 26 possibilities), the best values of τ onstitutean improvement with statistial evidene. It an be seen that statistially signi�antdi�erenes were obtained for the overage reahed in Atof and Complexbranh for a fewvalues of τ . In the number of inputs generated, a few dissimilarities were observed inTriangle1, Atof, and Complexbranh. Hene, onsidering to these results, we annotonlude whether the best τ makes a di�erene.Initial Region Heuristis PerformaneAording to the previous analysis, no lear onlusion an be stated on the most suitable
τ value for a program. In order to better understand the relevane of τ in the results,it ould be interesting to examine the in�uene of the initial heuristis used to eliit theinitial regions.Table 6.4 shows, for eah program, the number of branhes overed (#o) and number ofinputs generated (#i) by the stati and dynami heuristis from the region initialization107
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τ Triangle1 Triangle2 Triangle3 Triangle4 Atof Remainder Complexbranh

#o #i #o #i #o #i #o #i #o #i #o #i #o #istati 2 12 2 12 1 8 1 10 1 1 1 5 10 9dynami, τ = 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1dynami, τ = 2 1 8 0 8 2 8 3 8 0 1024 7 4 2 64dynami, τ = 3 0 27 0 27 2 27 3 27 0 59049 7 9 2 729dynami, τ = 4 1 64 0 64 3 64 6 59 - - 8 14 2 4096dynami, τ = 5 1 125 0 125 3 125 6 119 - - 8 22 2 15625Table 6.4: Results of the initial region obtainment heuristis.phase. The �rst row presents the values of the stati heuristi, while the rest orrespondto the dynami heuristi (grid searh) with the di�erent values of τ . Notie that theoverall ontribution of these heuristis onsists of the sum of the stati and the dynamiresults for a hosen τ . For instane, in Triangle1 with τ = 2, after applying the statiand dynami strategies, 2+1=3 branhes were overed (whih implies a 11.54% overage)and 12+8=20 inputs were generated.It an be seen that, regarding the stati strategy, a number of branhes are overed inall the programs just by the appliation of the two heuristi rules. Moreover, in someases this is a signi�ant number. In Complexbranh, 10 out of the 18 stati branhes areovered, and in Atof, one of the two stati branhes are attained. Anyhow, onsideringthat most of the branhes are stati in the main body of the programs and that 100%overage was obtained in almost all of them, the heuristi rules appear to be e�etive.The dynami heuristi is a grid searh method. In suh a method, given a problem,as τ inreases, more points are generated and the quality of the best solution foundis expeted to grow. In the ontext of the test data generator, this implies that thenumber of branhes overed is expeted to inrease with growing values of τ . However,a main drawbak of a grid searh is that the value of τ needed to reah an outstandingsolution may be large, produing a prohibitive number of solutions. This ould be thease even for small values of τ , if the number of problem variables is relatively big[7℄. Aordingly, Table 6.4 shows alternating behaviors. In Triangle3, Triangle4 andRemainder, the overage inreases as τ grows, while, for the rest of the programs, thisis not held. Moreover, omparing the values in Table 6.3 and Table 6.4 for Triangle1and Triangle3, it an be observed that, with τ = 5, a signi�ant part of the inputs aregenerated by the grid method; the same ours in Atof with τ = 3. In onsequene,results do not neessarily improve by inreasing the value of τ .This observation an also be extrapolated to the best overall results in Table 6.3, sinethese are obtained with di�erent values of τ . Furthermore, reall that, in the previousstatistial analysis, no signi�ant in�uene of τ on the best overage values was found,exepting a few ases. Thus, these results suggest that the e�et of the grid searh isneutralized by the rest of the phases in MOA.
108
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τ Triangle1(26) Triangle2(26) Triangle3(20) Triangle4(26) Atof(30) Remainder(18) Complexbranh(22)1 2.2 2.3 2.7 5.1 15.2 0.7 2.52 2 3.4 1.9 5.3 17 0.8 1.93 1.7 3 2.1 4.9 15.5 0.5 1.54 2.4 2.5 2.4 4 - 0.6 2.15 1.9 2.8 2.1 4.7 - 0.4 1.6Table 6.5: Average number of branhes sought in the MOA approah.Region Enlargment PerformaneAnother fator that ontributes to the performane of the generator is the number ofregion enlargements. New regions may inlude unovered objetives. Instead, as moreinrements are arried out, the number of inputs reated is expeted to grow, sine moresearh steps are exeuted.During the experiments, eah run was reorded with the purpose of studying how thesystem operates. Using this information, given a searh region and an objetive branh,the number of inputs generated and whether the objetive was overed or not an beeliited. This is shown in Figure 6.5. The graphis above relate to the number of branhesovered in eah region. More spei�ally, they only onsider the branhes whih wereovered by the initial region heuristis or those seleted as objetives and overed by theEDA. Notie that not all the branhes need to be expliitly searhed, beause duringthe �tness evaluation in the EDA, branhes distint from the objetive may eventuallybe overed. Thus, in eah graphi ahead of Figure 6.5, the x-axis takes values in therange of possible regions, while the y-axis onerns the number of branhes overedby the initial heuristis or by the EDA. The points depited orrespond to the results(averaged over the ten exeutions) in eah region, for eah value of τ . To �nish withthe spei�ation, Table 6.5 shows the average total number of branhes searhed by theEDA; aside from a program name, the number of branhes in the program is provided inbrakets. Analogously, the bottom part of Figure 6.5 presents the aumulated averagenumber of inputs generated (y-axis) for eah region (x-axis), given a value of τ and aprogram.As an be observed in the upper half, with the exeption of Atof, almost all the branheswere attained in the very �rst searh regions. To some extent, this is not surprising,sine the �rst region inludes the overage of the initial heuristis and the EDA, whilethe rest of regions only involve the EDA ontribution. In the bulk of the programs,the number of stati objetives is high (see Table 6.2), so the graphis suggest that thestati information based heuristi used to eliit the initial region is an adequate strategy.Indeed, this ould be the ause of the poor behavior of Atof, sine it ontains a reduednumber of stati branhes. Moreover, owing to the quite large set of parameters of aninput in this program, τ only takes values up to 3, whih seems to be insu�ient forthe grid searh to obtain a promising initial enter. Another program with a relevant109
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Figure 6.5: Average number of branhes overed (above) and inputs generated (below)for eah region in MOA. 110



Test Data Generation Enhanement: the Role of Searh Spae and Objetive Funtionnumber of dynami branhes is Remainder. In this ase, both the dynami and thestati heuristis appear to behave suessfully, as all the dynami branhes were overeddiretly by the grid method (see also omments on Table 6.4) and most of the stati oneswere attained in the initial region.Anyhow, the e�et of the di�erent searh spaes should not be underestimated. In 5 ofthe 7 programs, a few objetives are still overed in advaned regions and, therefore, theoverage measurement grows.As for the inputs generated, Figure 6.5 below shows that their number stays relativelylow at the initial stages, although it inreases as branhes remain unovered. If ompleteoverage is attained, the urve stabilizes, in other ase, it keeps growing. More espeif-ially, the urve grows smoothly in a number of ases (e.g. Triangle2), although forother instanes it augments rapidly with ertain values of τ (Complexbranh and τ = 1,for example). In these last ases, the latter regions o�er more promising solutions thanin the previous stages and the searh intensi�es. This means that the EDA operatesfor a larger number of generations and, thus, more solutions are generated. This anbe learly remarked in the Remainder and Complexbranh programs. The low overagereahed by Atof for τ = 2 an be understood by observing the number of inputs gener-ated. The �gure reveals that the limit of 150000 inputs was attained in the early regions,so the generator stopped prematurely and no more objetives ould be overed (see Atofabove).To summarize, it ould be dedued that, on one side, the searh over di�erent regionsallows the MOA generator to obtain the highest overage (e�etiveness). On the otherside, the answer of the dynami heuristi seems to be more unstable than for the statiinformation based strategy. In fat, the high quality values of the early spaes suggestthat the stati heuristi is useful to ahieve objetives soon and, therefore, generate aredued number of inputs (inrease e�ieny). In order to shed more light on this matter,this will be further studied in a following analysis in Setion 6.5.4.6.5.3 SOA PerformaneApropos the SOA algorithm, Table 6.6 shows the results of the experiments for theprograms. The ell format is the same as in Table 6.3. Similarly to the MOA approah,the most di�ult program for the test ase generator is Atof. However, in this ase,100% overage neither ould be obtained for Triangle4.Overall Performane AnalysisStatistial tests were used to identify the best performane values. Thus, the null hy-pothesis of equal distribution densities between the best τ values and the others wasevaluated in the manner explained in the previous setion.111



Test Data Generation Enhanement: the Role of Searh Spae and Objetive Funtion
τ Triangle1 Triangle2 Triangle3 Triangle4 Atof Remainder Complexbranh% # % # % # % # % # % # % #1 100 401 100 333 100 250 99.23 3630 96 65078 100 58‡ 95.91† 1228132 100 282 100 374 100 237 98.46 5476 49.33† 150049 100 33 100 184063 100 246 100 293 100 222 99.23 6003‡ 95 133649‡ 100 30 98.18 107144‡4 100 391 100 266 100 297 98.46 2663 - - 100 59‡ 98.18 684855 100 399‡ 100 765‡ 100 314‡ 99.23 2546 - - 100 91‡ 97.73 106698‡Table 6.6: Results of the SOA approah.Di�erenes were statistially signi�ant (p < 0.01) with regard to the overage measure-ment in a pair of ases (Atof with τ = 2 and Complexbranh with τ = 1). In ontrast,for the number of inputs generated, the 10 di�erenes obtained (p < 0.01), from up to24 possibilities, spread over all the programs. The outomes from this analysis reinforethe onlusions of the MOA approah. Taking the programs used here into aount andrespeting the best results, the τ value has no signi�ant in�uene regarding the overagemeasure. On the other hand, for the number inputs, not enough dissimilarities to makea reliable onlusion were found.Initial Region Heuristis PerformaneMOA and SOA share the same initial region eliitation step. Therefore, results in Table6.4 also apply here, as well as the omments on the behavior of the stati and dynamiheuristis.Conerning the lak of in�uene of τ on the best overage results, the outomes of SOAare almost equal to those in MOA. In onsequene, here, the orresponding reason issuggested, that is, the remaining steps of SOA anel the e�et of the grid searh.Region Enlargment PerformaneAordingly to the MOA alternative, the experiment exeutions were monitored and thevalues raised by a searh step were stored. Figure 6.6 reveals, for eah possible searhregion, the average number of objetives overed by the initial heuristis and the EDA(above), and the inputs generated (below) during the proess. The �gure format is thesame as in the previous setion. Table 6.7 assists in the understanding of the �gure bypresenting the average total number of branhes searhed by the EDA and, in brakets,the number of branhes in a program.Drawing a rough omparison of Figure 6.6 and Figure 6.5, it an be notied that, ingeneral, the behavior of both approahes is similar. Although di�erenes appear withsome programs (Remainder in the number of inputs), the remarks on the MOA algorithman also be applied to SOA. 112
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Test Data Generation Enhanement: the Role of Searh Spae and Objetive Funtion
τ Triangle1(26) Triangle2(26) Triangle3(20) Triangle4(26) Atof(30) Remainder(18) Complexbranh(22)1 3.4 2.6 2.7 5.1 6.7 1 12 3.3 2.6 2.7 4.9 1.9 0.7 2.63 2.9 2 2 4 6.6 0 14 3.3 2.3 2.4 4.4 - 0.5 2.55 3.6 2.5 2.4 3.8 - 0.5 1Table 6.7: Average number of branhes sought in the SOA approah.6.5.4 MOA vs. SOA vs. Other ApproahesNext, eah Self-Adaptive algorithm is ompared to other approahes to evaluate its per-formane and know if it represents a ompetitive alternative.MOA vs. SOAIn the MOA approah, eah region enlargement onentrates on the test ase generatoras a whole. In ontrast, eah inrement of the SOA alternative refers to an independentEDA searh phase. Therefore, a formal omparison of both algorithms in terms distintfrom the overage and inputs generated beomes a di�ult task. However, it mightbe suspeted from the ommon onlusions raised in Setions 6.5.2 and 6.5.3, and fromthe mathing behavior shown in Figures 6.5 and 6.6, that important similarities existbetween them.In order to know whether MOA and SOA o�er a similar behavior in terms of overageand inputs reated, Table 6.3 and Table 6.6 were used to �nd statistially signi�antdi�erenes between the results. To be preise, the Mann-Whitney non-parametri testwas applied to eah approah and value of τ . Considering overage, the null hypothesis ofequal distributions was rejeted (p < 0.01) only for Atof with τ = 2 and Complexbranhwith τ = 3. For the number of inputs generated, di�erenes (p < 0.01) were obtainedin six ases: Triangle1 with τ = 1, Triangle2 with τ = 3, Triangle3 with τ = 3,Triangle4 with τ = 2 and τ = 3, and Remainder with τ = 3. Sine half of the bestresult values in these ases orresponded to eah approah, it annot be stated whih onebehaves better.Aording to the tests, it may be onluded that, exepting a few ases, the perfor-mane of MOA and SOA algorithms is similar in terms of overage and number of inputsgenerated.Stati vs. Dynami Information CentersAn element whih appears to be important in the Self-Adaptive approah is the initialsearh spae. If this is loated in an adequate region, the e�ort in �nding the optimal114



Test Data Generation Enhanement: the Role of Searh Spae and Objetive Funtion
τ Triangle1 Triangle2 Triangle3 Triangle4 Atof Remainder Complexbranh% # % # % # % # % # % # % #1 96.15† 150032‡ 100 1688‡ 100 453 100 1497 99 89230 99.44 838 95.45 1452722 76.92† 150024‡ 11.54† 150024‡ 100 5324‡ 94.62† 64131‡ 43.33 150050 99.44 7825‡ 90.91† 150047‡3 11.54† 150020‡ 11.54† 150017‡ 99 7829‡ 88.85† 44311‡ 92.67 138653 100 49 95.45 1122694 100 61916‡ 11.54† 150018‡ 100 154‡ 93.85† 29048‡ - - 100 6726‡ 97.73 114918‡5 100 74577‡ 11.54† 150024‡ 100 185‡ 91.54† 37602‡ - - 100 42‡ 95.45 134630Table 6.8: Results of the MOA approah with no stati information based initial enters.
τ Triangle1 Triangle2 Triangle3 Triangle4 Atof Remainder Complexbranh% # % # % # % # % # % # % #1 94.62† 150026‡ 100 2314‡ 100 376‡ 98.46 3778 95 91148 100 71 98.18 878912 76.92† 150023‡ 23.08† 150024‡ 100 3691‡ 89.62† 28819‡ 47.33 150064 100 9931‡ 93.64† 128868‡3 56.15† 150028‡ 34.62† 150020‡ 99 4442‡ 89.23† 28566‡ 95.67 125487 100 33 97.27 1118954 100 25031‡ 65† 145067‡ 100 125‡ 89.23† 24322‡ - - 100 8377‡ 96.36 1132305 100 30808‡ 23.08† 150014‡ 100 185‡ 90† 25134‡ - - 100 42‡ 98.18 116060Table 6.9: Results of the SOA approah with no stati information based initial enters.solution may be low. On the other hand, if the EDA departs from an unsuitable region,a huge number of interval inrements ould be neessary to reah the optimum, or itould not even be attained. In the present work, the de�nition of the initial spae ofeah branh is based on stati or dynami heuristi information. In order to omparethese two strategies, the previous experiments were repeated hanging stati informationbased enters to be dynami information based. Tables 6.8 and 6.9 show the results forthe MOA and SOA algorithms, respetively.The di�erenes between the stati and dynami strategies for the overage and number ofinputs were studied through statistial tests. In other words, the Mann-Whitney test wasemployed to evaluate the equality between the distribution densities of the algorithmswith and without stati strategy. Similarly to previous tables, the symbols `†' and `‡'beside a ell in Table 6.8 denote a statistially signi�ant di�erene (p < 0.01) betweenthe experiments in the ell and the orresponding values in Table 6.3. Analogously, thesame applies to Table 6.9 and Table 6.6.As an be observed, in MOA, the di�erenes assoiated with the overage onentrateon three programs: Triangle1, Triangle2 and Triangle4. However, onerning thenumber of inputs generated, from up to 33 tests, dissimilarities were obtained in 23ases. All in all, the programs with a large proportion of stati to dynami branhes(see Table 6.2) o�ered di�erenes, exepting Complexbranh for a few values of τ whihshown an inferior performane in Table 6.3. In ontrast, the programs with a moresigni�ant number of dynami branhes, revealed, in general, fewer dissimilarities. Inthe SOA algorithm, di�erenes were found in almost the same ases as in MOA.Regarding these signi�antly di�erent instanes in Tables 6.3 to 6.9, it an be notied115



Test Data Generation Enhanement: the Role of Searh Spae and Objetive Funtionthat in almost all of them, the best results orrespond to the approah using the statistrategy. The only exeptions are Triangle3 with τ = 4 and τ = 5, and Remainder with
τ = 5 for both MOA and SOA, in the number of inputs generated.The remarks from these tests are aptured by Figures 6.7 and 6.8 for MOA and SOA,respetively. In eah graphi, the di�erent objetives are represented in the x-axis, whilethe y-axis takes values in the range of possible region enlargements. Thus, given aprogram, the graphi in the upper half in a �gure shows the number of inrementsperformed for eah stati (labeled with a ross) and dynami (labeled with a irle)objetive. To be exat, the average and the standard deviation over τ and the tenexeutions are depited for eah objetive. Analogously, in the bottom part of a �gure,the values assoiated with the variant using only dynami objetives are presented.Both �gures show lear disparities between the stati-dynami and the dynami ap-proahes in programs where the bulk of the statistial tests observed di�erenes (thatis, Triangle1, Triangle2, Triangle4). In ontrast, in Atof, where no signi�ant dis-similarity was found, behavior is almost the same. Remaining programs fall somewherein between; they respond di�erently for a few objetives, although, in most of them,response is alike.The signi�ant di�erenes obtained in the number of inputs generated are also re�etedby the �gures. In all the statistially distint programs, the sum of the average numberof inrements in the dynami approah is larger than in the stati-dynami one. Indeed,it an be notied that the main body of the objetives where hanges our between bothapproahes orresponds to stati ases whih had turned out to be dynami.Thus, it may be onluded that the suggestions raised in Setion 6.5.2 on the statiinformation based strategy are on�rmed. This strategy an make a di�erene in theoverage reahed but, most of all, in the number of region enlargements and, onsequently,in the number of inputs reated. Moreover, the stati heuristi improves or equals thedynami one, with the exeption of a few ases.Self-Adaptive vs. Basi ApproahIn order to have an idea of the quality of the results of the Self-Adaptive alternative,they were ompared with those obtained by the basi test data generator.The range of input parameter values for the basi approah was obtained entering theinterval in 0 and adding the maximum inrement shown in Table 6.2. To make theomparison as fair as possible, the EDA hosen was TREE and its parameters werethe same as in Setion 6.5.1, apart from two of them. The population size and themaximum number of generations were �xed with the values in Chapter 4 o�ering thebest performane for TREE. 116
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Figure 6.8: Average number of region enlargements per objetive in SOA (above) andSOA with no stati objetive (below).118
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τ Triangle1 Triangle2 Triangle3 Triangle4 Atof Remainder Complexbranh% # % # % # % # % # % # % #Basi 99.62 9940‡ 100 5880‡ 100 4180‡ 99.62 51560‡ 100 3475 100 1240‡ 98.64 21420‡MOA 100 190 100 990‡ 100 285 100 1738 98.33 68936‡ 100 57‡ 100 1856SOA 100 246 100 266 100 222 99.23 2546 96† 65078 100 30 100 18406Table 6.10: Best results of the basi, MOA and SOA approahes.Table 6.10 shows the best values (with priority to overage) of the MOA, SOA and basiapproahes. The outstanding results are highlighted in gray.It an be observed that the Self-Adaptive alternative outperforms the basi approahin the overage reahed as well as the number of generated inputs in all the programsexept Atof. In fat, the poor behavior shown in the results of previous tables for thisprogram beomes evident here, mostly with regard to the number of inputs. In Atof, anumber of objetives an only be overed when the largest searh region is reahed. Sinethe Self-Adaptive approah departs from a redued region and the grid searh methodseems to provide an unsuitable initial enter, performane is worse than for the basialternative, whih operates over the largest region diretly.The purpose of the urrent omparison is to identify the approah o�ering the best per-formane. Hene, the statistial analysis explained in Setion 6.5.2 was used to validatethese results. Similarly to the previous table, Table 6.10 provides the outomes of theanalysis.Signi�ant di�erenes (p < 0.01) in the overage values were notied just for Atof,between the basi approah and SOA. In ontrast, MOA revealed a di�erene in thisprogram for the number of inputs generated. Thus, it an be dedued that the basigenerator improves SOA and MOA with statistial evidene in Atof. In spite of this, forthe rest of the programs, the basi approah presents dissimilarities (p < 0.01) in thenumber of inputs reated with regard to the best result.Therefore, it an be inferred that in almost all the programs the Self-Adaptive approahoutperforms the basi one.6.5.5 Evaluation with Real-World ProgramsThe experiments onduted in the previous setions involve typial programs whih areknown to inlude several hallenging branhes. Obviously, test data generation for �real-world� programs may be as di�ult, although it ould result in a simple task as well.In order to verify whether the Self-Adaptive algorithms onstitute a solid option in the�real world�, they were ompared to the basi approah for a number of non-aademiprograms. In [210℄, test ases were generated with the basi approah for several programstaken from the book �Numerial Reipes in C. The Art of Sienti� Computing.� [195℄.119



Test Data Generation Enhanement: the Role of Searh Spae and Objetive FuntionThus, up to 16 instanes that showed di�erent levels of di�ulty for the basi approahwere hosen from this study, and the Self-Adaptive alternative was applied to them.Apropos the parameters for the basi approah in [210℄, the EDA applied was TREE.The population onsisted of 100 individuals, and the stopping riterion was reahing amaximum of 100 generations. The rest of the parameters in the EDA were the same asin Setion 6.5.1. Additionaly, the test ase generation was halted as soon as a limit of100000 inputs was deteted.In the experiments with the Self-Adaptive approah, the EDA took the parameter valuespreviously desribed, with two exeptions. As explained in Setion 6.3.1, the EDA'spopulation size is �xed to be twie the length of the individual. Moreover, in order tomake a fair omparison, instead of using the Kullbak-Leibler divergene based stoppingriterion, a maximum number of generations equal to the population size was set. Again,the whole proess was fored to terminate as soon as the generation of 100000 inputs wasdeteted. In all the programs, the parameters of an input were integers or real numbers.Tentative values were adopted for the number of bits used to represent the initial and the�nal searh regions, i.e. 5 and 10 bits for integers, and 5 and 7 bits for real parameters.The experiments were onduted for MOA and SOA, with τ ranging from 1 to 5. Table6.11 presents the results of the best τ for eah algorithm, together with the values of thebasi approah. The outstanding values are highlighted in gray.program basi MOA SOA% # % # % #bessj 100 220 100 21 100 45bnldev 80.77 54100 84.62 100007 84.72 100018aldat 75 20100 87.5 1550 87.5 1481yfun 75 40100 75 100009 75 100011fatln 87.5 10330 87.5 1543 87.5 1477fit 100 3760 100 101 100 101flmoon 98.33 2530 100 29 100 29gasdev 75 10100 75 1541 75 1476irbit2 50 10100 50 1511 50 1476kendl1 100 100 100 61 100 61laguer 100 3590 100 2149 100 2185ran1 66.67 20100 66.67 4730 66.67 3649ratint 100 330 100 163 100 74snndn 93.75 10100 93.75 3089 93.75 3021tred2 100 240 100 61 100 61tridag 91.25 10790 100 157 100 157Table 6.11: Results of the basi approah, MOA and SOA on real world programs.In all the programs but one, MOA or SOA improve the outomes of the basi approah.In this exeption (yfyn), the basi generator obtained a 75% overage and stopped at40100 inputs. The Self-Adaptive algorithms were unable to attain a better overage,120



Test Data Generation Enhanement: the Role of Searh Spae and Objetive Funtionbut they ontinued the searh over larger regions until the maximum limit of inputswas reahed. Athough this behavior results undesirable in this ase, it an also be verysuitable. For instane, in bnldev, the overage of the basi approah is augmented andthe limit of 100000 is attained one again. The other programs where the overage isoutperformed are aldat, flmoon and tridag. For the rest of the ases, the enhaementorresponds to the number of inputs generated.Thus, these outomes present the Self-Adaptive approah as a viable alternative forappliation in the real world. Furthermore, the results learly support the onlusionfrom the previous setion: the Self-Adaptive algorithms perform better than the basiapproah, mainly with regard to the number of inputs generated.6.6 SummaryIn this hapter, two signi�ant topis, when the generation of test inputs is posed as anoptimization problem, have been dealt: the objetive funtion and searh spae.The former topi has been brie�y takled by omparing a funtion following equation 3.1with a funtion using equation 3.2, in the ontext of the basi approah. Experimentalresults have shown that the seond equation improves or equals the performane of the�rst.On the other hand, the issue of seleting an appropriate searh spae was faed bydesribing two new approahes, namely, MOA and SOA. In order to enhane the testase generation proess, the optimization step of both alternatives departs from an initialsmall region whih is inreasingly enlarged as branhes remain unovered. The startingsearh spae is de�ned upon heuristi information from the program. More preisely, twooptions ould be adopted: the appliation of a set of rules onerning the soure ode'sstati information, or using a heuristi proedure based on dynami information, whihonsisted of a grid searh method.The analysis of the experiments onduted revealed promising results for both approahes.First of all, the searh over di�erent regions allows for the ahievement of the highestoverage values, whih is a primary performane measurement. Apropos the two heuris-ti strategies to obtain the initial region, it was onluded that the stati option makes adi�erene and an at least improve the e�ieny of the approah in terms of the numberof inputs generated. On the other hand, the dynami heuristi showed to be more un-stable. The τ parameter of the method did not provide a relevant in�uene on the bestvalues.Comparing the performane of the MOA and SOA algorithms, in general terms, no sig-ni�ant di�erene was found between them. Additionally, the algorithms were omparedto the basi approah. With the exeption of the inferior results in one test program, the121



Test Data Generation Enhanement: the Role of Searh Spae and Objetive Funtionformers outperformed the latter with statistial evidene. Moreover, this improvementover the basi generator repeated for a number of �real-world� programs, presenting theSelf-Adaptive strategy as a solid alternative.
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7 ConlusionsIn this hapter, the main ontributions exposed throughout the dissertation are summa-rized. Conlusions arising from the work developed in previous hapters are inludedand, additionally, diretions for future lines of researh are suggested.7.1 ContributionsAmong the issues related to software testing, the automati generation of the input asesto be applied to the program under test is espeially relevant and di�ult. A ommonstrategy for takling this task onsists of reating inputs that ful�ll an adequay riterionbased on the program struture. The present dissertation has addressed the test datageneration problem, fousing on branh testing, a mandatory riterion nowadays. Thistask has been posed as a set of optimization problems to be solved. Then, the threesigni�ant elements related to eah optimization problem have been studied, that is, theoptimization method, the searh spae and the objetive funtion. Among these, speialattention has been paid to the optimization tehnique. After overviewing EDAs and SS,their appliation to this problem has been studied. Apropos the two other elements, sineresearh in the �eld is being ative for the objetive funtion, the searh spae topi hasbeen emphasized.More spei�ally, the ontributions of the present work may be summarized as follows:
• An overview of EDAs and SS, two modern metaheuristi tehniques urrently de-serving the attention of the EAs ommunity.
• In some optimization methods, there is a lak of works dealing with real-worldproblems, whih is an important aspet for unovering their limitations or knowingwhether they represent a pratial alternative. Here, EDAs and SS have beenapplied to the generation of test inputs for branh overage, a demanding real-world problem.
• The appliation of EDAs has been studied in the ontext of an iterative two-stepproess. In the �rst step, a branh is hosen as the objetive and, in the seond,the orresponding optimization problem is takled through an EDA. Three types123



7 Conlusionsof EDAs have been evaluated empirially: those where the probabilisti model as-sumes problem variables are onditionally independent (UMDA and PBIL), algo-rithms with �rst order dependene probability distributions (MIMIC and TREE),and EDAs where the model makes no restrition on the dependenies betweenvariables (EBNAK2+pen and EBNABIC).
• The SS methodology has been employed following the same test data generationframework as for EDAs, enabling so their omparison. Additionally, light hasbeen shed on SS internals, whih an sarely be found in the literature to date.More preisely, the role of the improvement method in the SS algorithm has beendealt by studying three appliation options. Namely, these are: using improvementin the lassial way (Improve After), i.e. after diversi�ation or ombination, orjust improving the solutions to enter in the referene set (Improve Before), or notemploying improvement at all. Suh alternatives have been analyzed empirially.Moreover, for eah alternative, the weight of eah SS method has been apturedduring the searh.
• Both, EDAs and SS, have been ombined to solve the test data generation. Aollaborative sheme has been developed where, �rstly, the EDAs based approah isapplied and, one it has �nished, the SS based generator is used over the remainingunovered branhes.
• Regarding the objetive funtion, an advaned formulation (equation 3.2) has beendisussed and ompared with a basi funtion (equation 3.1) through experimen-tation.
• The issue of seleting an appropriate searh spae has been explored by developinga Self-Adaptive strategy that seeks for a promising feasible region. Two algorithmsonforming to this strategy have been desribed: MOA and SOA. The underlyingidea in MOA is to apply the EDAs based framework over widening regions. Byontrast, in SOA, the basi framework is used one, though the EDA exeutes overinreasingly augmented regions. In both approahes, the initial searh spae isde�ned upon stati or dynami heuristi information from the soure ode of theprogram. Additionally, parameters of the EDA are made self-adaptive. Populationsize is set to twie the length of the individual and, for the stopping riterion,a novel rule based on the Kullbak-Leibler divergene from the estimated to theempirial probability distribution is proposed.7.2 ConlusionsThe main general onlusion that an be drawn from the dissertation is that treatmentof the test data generation from an optimization point of view proves to be suessful.124



7 ConlusionsTo sum up, the following ideas ollet the major onlusions from the work developed:
• Considering the optimization method, EDAs as well as SS are solid options forsolving the test data generation. Furthermore, they are able to improve the resultsahieved by other methods. To be preise, upoming onepts may be inferred fromtheir appliation:� In the EDAs based approah, the overage attained was 100% in all the exper-imental programs and, exepting a few ases, the number of inputs generatedwas learly lower than in other works based on GAs. Among the di�erentEDAs, algorithms using nontrivial probabilisti models seem to be a promis-ing alternative. A ranking based on statistial tests was developed to identifythe best algorithms; TREE and EBNAK2+pen showed the best overall perfor-mane. The apability of these EDAs for expressing the dependenies betweenproblem variables ould be a key point, as suh dependenies usually existwhen trying to over a partiular branh.� The SS based approah shows ompetitive with regard to the EDAs test datagenerator: in three of the seven test programs, SS improved the results ofEDAs with statistial evidene, and no di�erenes where found in anotherprogram. Conerning the in�uene of the improvement method, it may beonluded that, despite being optional, this element plays a main role in theSS methodology. The weight of improvement is re�eted in the number ofsolutions generated and the number of optima found during the proess. TheImprove Before option proposed obtained statistially signi�ant better resultsthan the lassial strategy in three of the seven test programs, thus presentingas an interesting alternative. Clearly, the worst performane was obtainedif no improvement method is employed. Moreover, the behavior of otherSS methods depends on the way improvement is used. In fat, a ommonobservation to the three ases of study is the unability of the ombinationmethod to reah an important number of high quality solutions by itself. So,in this ontext and aording to our experiments, in SS, the two prominentmethods for optima attainment are improvement and diversi�ation.� The empirial omparison of the EDA-SS ollaborative approah with the twoother points at the former as a method lying in between the latters, from thepoint of view of performane.
• The evaluation of the objetive funtion on�rmmed that the funtion de�nedaording to equation 3.2 outperforms or equals that from 3.1.
• Apropos the study of the searh spae seletion, this issue shows highly relevant toreah improved results. Although no signi�ant di�erene was appreiated between125



7 ConlusionsMOA and SOA approahes, the results of the basi EDAs test data generator werelearly enhaned, with the exeption of one test program. The outomes of theexperiments reveal that the searh over di�erent regions allows for the ahievementof the highest overage values. For the two heuristi strategies to obtain the initialregion, it was onluded that the stati information based option makes a di�ereneand an at least improve the e�ieny of the approah in terms of the number ofinputs generated. On the other hand, the dynami heuristi showed to be moreunstable.7.3 Future WorkUndoubtedly, muh researh is to be undertaken on the area of optimization and, moreexatly, on metaheuristis suh as EDAs and SS. Just to name a few ideas, theoretialworks on their behavior, parallel designs, new algorithms for EDAs, advaned methodsfor SS, or stopping riteria. Progress in these (and muh other) topis are important forbetter understanding suh tehniques and, ultimately, to yield wiser appliations in thereal world. Though this must be bore in mind, we fous next on a number of hints forfuture lines of work whih might be interesting in our partiular ontext.
• In the �eld of EDAs, a relevant topi is the seletion of an appropriate algorithmfor a given problem. Several works have already been developed, suggesting thatsimple EDAs (e.g. UMDA) are more limited in �nding high quality solutions thanomplex EDAs (like TREE or EBNA) [261℄, or that the probabilisti model shouldapture the interations between the objetive funtion variables [26℄. To some ex-tent, results obtained in the dissertation onform to these studies, however, furtherresearh is needed.
• Considering SS, very few publiations have been devoted to the internals of itsoperation. Yet we have rised a slight ontribution on this matter, intensive e�ortsshould be addressed towards the e�et of eah SS method during the searh proess.This would help in the design of the adequate SS algorithm for a given problem.
• Additional work an be onduted on the EDAs based test data generator. Forinstane, an appealing option is employing di�erent EDAs for eah branh to beovered, instead of a �xed one. Notie results on the seletion of an appropriateEDA would be useful here.
• Conerning the EDA-SS ollaborative approah, the proper balane between theparameter values of eah generator should be studied with the purpose of obtainingthe maximum bene�t. Moreover, other forms of the ollaborative sheme ould beonsidered; for example, a SS-EDA ombination.126



7 Conlusions
• In the Self-Adaptive approah, several elements an be further studied. In thedissapointing experimental results, almost all the initial regions where reated withthe dynami information heuristi. Sine the stati strategy behaves superiorly, away to enhane the response of the approah ould be to expand the set of heuristirules. On the other hand, in order to make the approah more �exible, anotherinteresting line of future work is the eliitation of an α value for the stoppingriterion of the EDA, whih takes into aount the size of the searh spae.
• The general sheme (Figure 3.5) followed throughout this dissertation owns twoelements apart from the optimization phase, namely, the branh seletion step andthe stopping riterion. So, attention may be deserved to them as well. For instane,an interesting option is to deal with the seletion step, whih determines the orderfor solving the optimization problems. Advantage may be taken from ideas thathave been developed for reduing the number of branhes to be overed throughontrol �ow graph analysis [141℄.
• Finally, we propose to extend the test data generation problem to the appliationof other �elds from Arti�ial Intelligene. More preisely, in [210℄, a new line ofwork was opened with the appliation of Data Mining tehniques in this ontext.The underlying idea was to study the apability of software omplexity metristo predit the performane of the EDAs based test data generator. This is aworthwhile issue, as it is a �rst step towards the predition of the most desirableapproah for a given program.
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