An Optimization Approach for Software
Test Data Generation: Applications of
Estimation of Distribution Algorithms

and Scatter Search

Dissertation

Ramén Sagarna
Department of Computer Science and Artificial Intelligence
University of the Basque Country
Supervised by: J. A. Lozano

Dissertation submitted to the Department of Computer Science and Artificial Intelligence of
the University of the Basque Country in partial fulfilment of the requirements for the PhD

degree in Computer Science

Donostia - San Sebastian, January 2007

Acknowledgements

The present dissertation would had never been achieved without the support of a variety
of people.

I am particularly indebted to Jose Antonio Lozano, my thesis supervisor. Undoubtedly,
his wise, while at the same time friendly guidance along these years has made me grow
a lot. Jose Antonio, thanks for your invaluable help and patience.

I am also grateful to Pedro Larranaga, Inaki Inza, Alex Mendiburu, Endika Bengoetxea
and the rest of colleagues at the Intelligent Systems Group. Their encouragement and
advice have been decisive as well. T would like to make special mention of the lab pals:
Ruben Armananzas, Borja Calvo, Yosu Galdiano, Dinora Morales, Aritz Pérez, Juan
Diego Rodriguez, Guzman Santafé and Roberto Santana. Working with them has been
extremely easy because of the joyful ambience we have shared, both inside and outside the
lab. Those that have spent a temporary stay with us have also contributed beneficiously:
Robin Hons, Siddartha Shakya, Frederick Vincent and others. Thanks Robin for the
good time in Munich.

My most sincere gratitude to Walter Gutjahr and Immanuel Bomze, who hosted me in
the Department of Statistics and Decision Support Systems at the University of Vienna.
The enthusiastic long discussions with Walter have been enlightening, and the keen talks
with Immanuel very enriching. I cannot miss the opportunity of naming the rest of
people from that department and the friends I left in Vienna. The experience there is
somehow reflected in this work.

Acknowledgements to the Department of Computer Science and Artificial Intelligence
from the University of the Basque Country, and to the Basque Government for the
financial contribution.

Finally, I would like to thank my family and friends. “Ama” and “aita”, I am in debt
with you for the continuous support and understanding, which has been essential for
concluding the thesis.

This dissertation is dedicated to you all.

iii

v

Contents

1

Introduction
1.1 Outlook of the Dissertation

Modern Evolutionary Optimization Techniques

2.1 Introduction to Metaheuristics
2.2 Evolutionary Algorithms
2.2.1 The General Framework
2.2.2 Genetic Algorithms oo
2.2.3 Advanced Designs
2.3 Estimation of Distribution Algorithms
2.3.1 Without Dependencies
2.3.2 Pairwise Dependencies
2.3.3 Multiple Dependencies L.
2.3.4 Other Algorithms
2.4 Scatter Search
2.4.1 Basic SS Scheme Lo
24.2 Advanced SS Designs
2.4.3 Performance Results
2.5 Other Recent Metaheuristics

Fundamental Concepts on Software Testing

3.1 Software Quality
3.2 Software Testing L
3.3 Test Process e
3.4 Generation of Test Inputs
3.4.1 Code Coverage Criteria
3.5 Search Based Software Test Data Generation
3.5.1 The General Scheme
3.5.2 Improving the Objective Function
3.5.3 Applied Metaheuristics and Extensions
3.5.4 An Example of the General Scheme

10
11
13
15
16
17
22
25
32
33
34
35
37
39

44

Contents

4 Software Test Data Generation by means of EDAs

4.1 Motivation
4.2 The Optimization Approach
4.3 System Framework
4.3.1 Optimization Phase
4.3.2 Selection Phase
4.4 An Execution Example
4.5 Experimental Evaluation 0 000000
4.5.1 Experimental Setting 0L
4.5.2 EDAs Performance
4.5.3 Comparison with Other Works
4.6 Summary

Software Test Data Generation by means of SS
5.1 Motivation L e e
5.2 The SS Approach
5.3 Performance Evaluation of Scatter Search Designs
5.3.1 Scatter Search versus Estimation of Distribution Algorithms
5.4 Scatter Search and Estimation of Distribution Algorithms Collaboration .
5.5 Performance Evaluation of the Collaborative Approach
5.5.1 Collaborative Approach versus Others
5.6 Summary ...

Enhancing the Test Data Generation Process: the Role of the Search Space
and the Objective Function
6.1 Motivation L
6.2 The Influence of the Objective Function
6.3 The Self-Adaptive Approach oL
6.3.1 Algorithm Steps Description
6.3.2 Management of the Set of Inputs
6.4 An Execution Exampleo
6.5 Performance Evaluation 0L
6.5.1 Experimental Setting L.
6.5.2 MOA Performance
6.5.3 SOA Performance,
6.5.4 MOA vs. SOA vs. Other Approaches
6.5.5 Evaluation with Real-World Programs
6.6 Summary

vi

63

81
85
86

Contents

7 Conclusions 123
7.1 Contributions 123
7.2 Conclusions 124
7.3 Future Work L. 126

8 Bibliography 129

vil

Contents

viii

List of Figures

21
2.2
2.3

2.4

2.5
2.6

2.7
2.8
2.9

3.1
3.2

3.3
3.4
3.5
3.6

4.1
4.2
4.3

5.1
5.2

9.3

General framework for EAs. oo oo
Pseudo-code for EDAs.o
Process to update the probability vector in cGA. K is a constant value
fixed as a parameter.
Process to update the probability vector in DEUM. A is a learning rate
(values between 0 and 1) fixed as a parameter.
Pseudo-code for the EBNAgic, EBNAko; pen and EBNApe algorithms. . .
Structure, local probabilities and resulting factorization for a Bayesian
network with four variables (X7, X3 and X4 with two possible values, and
Xo with three possible values).
Pseudocode of basic SS.
Schematic of a basic SS design [126].
Pseudocode of extended SS.o

Scheme of usual testing strategies.
Example source code, its associated control flow graph (middle) and en-

larged control flow graph (right).
Subsumption relation between code coverage criteria.
Example of an infeasible branch.
General scheme for test input generation.
Example of source code, control flow graph, instrumented version, and

output information.

Selection algorithm pseudocode. oL
Example of source code, control flow graph, instrumented version, and
output information.

Example of local seach improvement method.
Coverage of SS methods for Improve After (above), Improve Before (mid-
dle) and No Improvement (below).
Proportion of inputs generated by SS methods for Improve After (above),
Improve Before (middle) and No Improvement (below).

1X

11

List of Figures

5.4

9.5

6.1
6.2
6.3
6.4
6.5

6.6

6.7

6.8

Proportion in the coverage of EDA-SS approach for Improve After (left)

and Improve Before (right). 00 88
Proportion of inputs generated by the EDA-SS approach for Improve After
(left) and Improve Before (right). 89
Example of two paths yielding different values for d.(v,v.). 96
Algorithms for the MOA (left) and SOA (right) approaches. 97
Schemas of the MOA (left) and SOA (right) approaches. 97
Schema of the grid search method. 100
Average number of branches covered (above) and inputs generated (below)
for each region in MOA. L 110
Average number of branches covered (above) and inputs generated (below)
for each region in SOA. 113
Average number of region enlargements per objective in MOA (above) and
MOA with no static objective (below). 117
Average number of region enlargements per objective in SOA (above) and
SOA with no static objective (below). 118

List of Tables

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1
5.2
5.3

5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

6.9
6.10
6.11

Characteristics of experimental programs. 68
Results for Trianglel. 68
Results for Triangle2. 69
Results for Triangle3. 69
Results for Triangled. 70
Results for Atof. 70
Results for Remainder. 71
Results for Complexbranch. 71
Rank of EDAs with regard to the number of generated inputs. 73
Rank of EDAs with regard to the coverage measurement. 74
Number of inputs generated by the EDA based approach and other ap-

proaches. L 75
Experimental results of the SS approach. 81
Results of the best SS and EDA approaches. 85
Results of EDA-SS approach with Improve After (above) and Improve

Before (below). 87
Results of best EDA-SS,; SS and EDA approaches. 90
Results obtained with the classic and advanced objective functions. 96
Experimental programs characteristics and parameters in the experiments. 106
Results of the MOA approach. 107
Results of the initial region obtainment heuristics. 108
Average number of branches sought in the MOA approach. 109
Results of the SOA approach. 112
Average number of branches sought in the SOA approach. 114
Results of the MOA approach with no static information based initial

CeNterS. e e e e 115
Results of the SOA approach with no static information based initial centers.115
Best results of the basic, MOA and SOA approaches. 119

Results of the basic approach, MOA and SOA on real world programs. . . 120

List of Tables

1 Introduction

The recurring concept in optimization is to select the best alternative among a number
of possible results or affairs. Mathematically, optimization is the minimization or max-
imization of a function subject to constraints on its variables. Therefore, three basic
elements may be recognized from this description: the function, the set of variables and
their constraints, and a strategy for finding the function extrema.

A first step in the optimization process is the identification of the function, variables
and constraints for a given practical problem. This task is sometimes referred in the
literature to as modeling [160]. The set of variables and constraints represents the features
that distinguish the results from one another, that is, they define the possible problem
solutions. The whole set of such solutions is usually called the search space. On the other
hand, the function provides with a quantitative criterion of merit, according to which one
solution can be classified as better or worse than others. This is known as the objective
function, as it depends on the goal to be attained. Construction of an appropriate model
is a relevant, and sometimes the hardest, issue. If the model is too simplistic, it may not
give useful insights into the problem, while if it is too complex, it could become extremely
difficult to solve.

The second topic in optimization lies on the choice or design of a suitable strategy for
proceeding. There is no universal optimization technique. Rather, there are numerous
methods, each of which is tailored to a particular type of problem. Most classical meth-
ods are founded on theoretical concepts regarding the necessary and sufficient conditions
for the existence of extrema. However, a long way exists usually from the stablishment
of such conditions to their determination. It often remains intrincate enough, if not im-
possible, to find the optimum for many problems. Even ezact methods, which ensure
reaching the optimum, have well-known computational limitations which turn them in an
unfeasible option, e.g. for NP-hard problems [84]. In tackling such problems, metaheuris-
tic techniques become one of the most successful alternatives since, although optimality
is not guaranteed often, a high quality solution at a reasonable computational cost is
usually obtained.

The large number of existing metaheuristics makes it difficult to classify them accurately.
One of the strategies that has grown into a popular field are Evolutionary Algorithms
(EAs) [7]. EAs are a family of probability based methods that take a model for the
natural evolution of species, formulated by Darwin [50], as a source of inspiration. More

1 Introduction

precisely, the search for the optimum proceeds by maintaining a population of solutions
that ewolves from one generation to the next. The evolution consists of selecting a
set of solutions from the population and applying to some subsets of it recombination
operators that create new solutions. A huge number of methods conforming to this
framework have been developed. Therefore, the choice of the appropriate alternative for
a particular application results an important matter, as it may determine whether the
problem is solved efficiently or, even, if the optimum is found at all.

Two modern emerging EAs techniques are Estimation of Distribution Algorithms (EDAs)
[131] and Scatter Search (SS) [126]. The term EDAs alludes to a group of algorithms
which, instead of using the typical recombination operators from EAs, sample a prob-
ability distribution previously built from the set of selected solutions. Indeed, this dis-
tribution is responsible for one of the main characteristics of these algorithms, that is,
the explicit description of the relationships between the problem variables. On the other
side, SS is a methodology based on the support of a low cardinality set of solutions which
is updated with new solutions obtained from the combination of the members of the set.
Probably the most genuine feature of SS is that it emphasizes the use of systematic rules
during the process, though stochasticity may be left to some extent.

A significant aspect in the study of optimization methods is their application to real-
world problems. This is appealing not just to demonstrate their usefulness, but also
to uncover limitations that only arise in realistic situations. Optimization and, more
specifically, EAs have been applied to problems from a wide range of areas such as
economics, manufacturing, physical systems, biology or operations research, just to name
a few. A relatively unexplored discipline is, however, software testing.

Testing is the means used in practice to verify the correctness of software produced.
Considering the crucial role of software nowadays, it is not difficult to imagine the signif-
icance of testing. In fact, it represents a major issue for quality assurance and it usually
accounts for 50% of project resources [17]. A huge amount of these resources is dedicated
to the generation of the input cases to be applied to the program under test. This task
is not trivial, as input cases must conform to the test type and its requirements. Since
most organizations perform this step manually, the automatic generation of test data is
worthwhile and has turned into one of the most challenging problems in the area. A
common strategy for facing this task consists of creating test inputs that fulfill an ade-
quacy criterion based on the program structure. That is, adequacy criteria come defined
by the entities revealed by the program source code. For example, entities such as the
branches the flow of control can take from a conditional statement define the branch
coverage criterion, i.e. every program branch must be exercised.

In the last few years, a number of approaches under the name of Search Based Software
Test Data Generation (SBSTDG) have been proposed, offering interesting results [144].
SBSTDG deals with the test data generation as a search for the appropriate inputs by

1 Introduction

formulating an optimization problem during the process. This problem may then be
solved using metaheuristic search techniques.

This dissertation is devoted to the treatment of the test data generation problem from
an optimization point of view. More precisely, the three major components of an opti-
mization problem are studied in the context of branch coverage, which is a mandatory
criterion nowadays.

Concerning problem modeling, both the search space and the objective function are in-
vestigated. In the literature related to this problem, little attention has been paid to
the search space topic. The present work aims at revealing its significance for obtaining
improved results in terms of efficiency and efficacy. For this, in order to select a promis-
ing region, a strategy that dynamically transforms the search space during the process is
developed. By contrast, a much more intensive effort has been deserved in the bibliogra-
phy to the objective function. It is worth to discuss then different functions previously
proposed and to study them in the present scope with the purpose of uncovering their
influence.

The current work emphasizes the optimization technique topic, focusing on the appli-
cation of EDAs and SS. The main objective regarding this subject is twofold: on the
one hand, to show that leading edge metaheuristics are able to perform successfully in
this problem and contribute new alternatives for its solution, on the other, to ascertain
whether EDAs and SS become practical methods in a demanding real world problem.

1.1 OQOutlook of the Dissertation

This dissertation is composed of seven chapters. Chapter 2 presents the optimization
methods studied throughout this work, namely, EDAs and SS. The general optimization
problem and the concept of metaheuristic are firstly introduced. EAs are then described
by giving a general framework to which every algorithm roughly conforms. Though the
origins of EDAs are not clearly stated, Genetic Algorithms seem to be one of their sources;
a little more attention is devoted to them. Finally, SS and, more extensively, EDAs
are overviewed. For the latter, existings methods are classified in three groups: those
where the probabilistic model assumes problem variables are conditionally independent,
algorithms with first order dependence probability distributions, and EDAs where the
model makes no restriction on the dependencies between variables. Apropos SS, apart
from the general methodology, advanced designs as well as applications are included.

The purpose of Chapter 3 is to explain the problem faced in the dissertation. The
need for software testing is motivated by describing its relevance with regard to quality
assurance. Discussion concentrates then on the generation of test inputs. The basic
strategies for accomplishing this task are explained, pointing their limitations. The most

1 Introduction

common strategy consists of fulfilling a code coverage criterion. This concept, together
with its complexity, are introduced. In the last part of the chapter, SBSTDG is dealt
with. There, a general schema followed by many approaches is described. Additionally,
two designs for the objective function are presented and the optimization methods used
in the literature reviewed.

The following three chapters study the topics involving the main novelty of the disserta-
tion.

In Chapter 4, the test data generation is formulated from an optimization perspective.
The application of EDAs to the general scheme from SBSTDG is then described in detail.
Several EDAs are chosen for their evaluation through extensive experimentation.

Chapter 5 studies the application of SS. Again, the general scheme is employed as the
basis for the approach. The role of the improvement method in the SS algorithm is ana-
lyzed by exposing different alternatives for its usage. Moreover, an EDA-SS combination
is proposed in order to take advantage of the benefits of both approaches.

Chapter 6 concerns with the two other elements of the optimization: the objective func-
tion and the search space. Two functions previously described are discussed and com-
pared empirically to check their adequacy. The bulk of the chapter, however, tackles the
search space issue. A strategy for the selection of a promising search region is widely de-
scribed and experimentally evaluated. Then, diverse analysis of the results are included
to validate its performance and obtain conclusions.

Finally, Chapter 7 lists the main contributions and conclusions of this work. Future lines
of research are suggested as well.

2 Modern Evolutionary Optimization
Techniques

In the past years, a significant research effort has been devoted to the study and devel-
opment of optimization methods and, more specifically, of metaheuristics. As a result
of this work, a number of methods are emerging which contribute new ideas in the field
and improve the results of more classical alternatives in certain problems. Two repre-
sentatives of such novel methods are Estimation of Distribution Algorithms (EDAs) and
Scatter Search (SS). The formers comply with a research line where optimization is based
in probabilistic models, while the latter emphasizes a more systematic approach.

The aim of this chapter is to serve as an introduction to such methods. Firstly, the
optimization problem, in general, and metaheuristics, in particular, are presented. EDAs
and SS are typically included under the framework of Evolutionary Algorithms. The very
basics of this framework are described then. Next, both EDAs and SS are overviewed.
The chapter ends by pointing some other optimization methods which are deserving the
interest of the community as well.

2.1 Introduction to Metaheuristics

The classical objective of optimization is to find variables values leading to an extremum
of a function. More formally, the general problem may be stated as follows: given a
function f: Q — IR, find x* € € such that
x*) = min f(x).

(@) = min /(@)
Function f is the objective function and the set Q C IR" is called the feasible region,
though the term search space is usually employed as well. Additionally, 2 may come
defined by a number of restrictions, formulated as functions on the problem variables,
that is, Q ={x € R" | gi(x) >0, g; : R" = IR, i € {1,...,m} }. If @ =1R", the problem
is called unconstrained, otherwise it is constrained.

Notice that according to the description above minimization is sought. This by no means
causes a loss in generality, since

max f(x) = —min(—f(x)).

e e

2 Modern Evolutionary Optimization Techniques

Moreover, f takes values in IR, even so it could be widened to f : @ — R, if k& >
1, a multiobjective optimization problem is being posed [43]. Many challenging real-
world problems involve, by nature, the attainment of multiple objectives, however, in
the present work, we will restrict to a single objective, i.e. k = 1. Different levels
of knowledge about the mathematical properties of f are possible. In the case of no
knowledge at all, the problem is named black-box optimization.

Regarding at the topology of f, different types of minima can be distinguished. A
minimum is called local if no smaller function value exists in the surroundings of the
corresponding point in 2. The deepest of the local minima is known as the global one.
More precisely, given a point @, € Q, f(x4) is a local minimum if an e > 0 exists such
that Ve € Q ||z —z.|| < e = f(xx) < f(x). In the case of a global minimum, this holds
for every ¢, that is, V& € Q f(xs) < f(x). It can be noted that the concept of local
minimum depends, to a large extent, on the metric. In the case of continuous problem
variables, a common practice is to adopt the Euclidean distance. If variables are discrete,
however, a mapping N : Q — 2% is defined on the basis of a metric; such a mapping is
referred to as a neighborhood.

An objective function that only shows one local minimum is named unimodal, otherwise
it is called multimodal. Obviously, we are interested in finding a global optimum of f,
therefore, in the previous description of an optimization problem, the solution point x*
alludes to a global minimum. From now on, terms optimum and minimum will be related
with globality, unless otherwise specified where confusion might arise.

Inherent to an optimization problem is the need for a suitable solution strategy. No
general-purpose effective method has been found, so the field is covered by procedures
that limit their application to specific problem cases each. A rough classification of these
methods can be drawn by considering the problem features. Thus, for instance, we may
discern between strategies for static and dynamic optimization (extrema are stationary
or of time-varying nature), parameter and functional optimization (problem variables
are scalars or functions), or constrained and unconstrained optimization.

One other possible distinction is between analytic and numerical optimization methods
[224]. Analytic (also known as indirect) procedures are based on the investigation of the
particular properties of f at the extrema points. For this, classical theoretical concepts
regarding the necessary and sufficient conditions for the existence of minima and maxima
are employed, resulting in systems of equations that a solution must satisfy. However,
difficulty, even possibility, of determination of this solution heavily depends on particular
problem conditions; so, aspects like continuity or differentiability of f, whether nonlinear
equations are involved, or the existence of constraints, strongly restrict the application
of such strategies. On the other hand, numerical (or direct) methods are more widely
spread than indirect. Direct methods consist of approaching the solution iteratively,
attempting to improve the value of f at each step. Not achieving this improvement

2 Modern Evolutionary Optimization Techniques

causes a trial and error process which, in the uttermost case, leads to an exhaustive
exploration of the search space. Indeed, strategies that ensure the achievement of the
optimum, commonly known as complete or exact, are based on the examination of a large
proportion of the search space. Unfortunately, limitations arise when their computation
is addressed. Computational complexity associated to a procedure grows with the size
of the search space; in case of an exponential growth, the problem is deemed intractable.
Furthermore, a huge number of problems from diverse areas as economics, biology or
operations research belong to the NP-hard category [84], which implies no algorithm that
attains the optimum in a polynomial time complexity scale is known. In consequence,
these problems are considered to be intractable.

Hence, we arrive to a lack of feasible solution strategies for a significant number of
problems. The unavoidable question is: how can they be tackled? An alternative is to
approximate the optimum by means of heuristics [198]|. A heuristic is a rule of thumb that
gives guidance in the solution of a problem. Although optimality is not guaranteed, a high
quality solution at a reasonable computational cost is usually achieved. This efficiency is
very appreciated when facing complicated real-world problems and constitutes the clue
for the extended application of these techniques.

Many heuristic methods consist of a search process over the feasible region [180]. Such
heuristic search procedures can be further divided into deterministic and nondetermin-
istic algorithms. In the formers, deterministic rules are used at each step of the process,
that is, given a problem, two executions of the algorithm under identical conditions result
in the same solution. By contrast, in nondeterministic approaches, several options are
feasible at some decision points during the search. It is common to resort to stochastic
rules at these points and, accordingly, different solutions might be attained in two runs
of the same algorithm, given a problem and identical execution conditions. Examples of
deterministic and nondeterministic approaches are, respectively, coordinate hill climbing
[224] and random directions algorithms [263].

Taking the type of the extrema into account, search heuristics may also be classified
as local or global methods. Local methods operate in the surroundings of a solution
point at each step of the search, until an optimum is found'. If f is multimodal then a
local optimum, different to the global, is often reached [263|. On the other hand, global
methods aim at covering the search space to some extent, with the purpose of obtaining
the global optimum. Respective instances of local and global algorithms comprise the
best first procedure [180] and grid search strategies [224]. It is important to remark that,
in many cases, these two types of methods are combined in order to build other global
procedures, e.g. multistart algorithms [221] typically consist of multiple applications of
a local search heuristic departing from different initial points each.

! Other works from the literature [32] simply refer to local methods as those employing a neighborhood.
Notice that a stronger description is used here [7; 224; 263].

2 Modern Evolutionary Optimization Techniques

An enormous effort has been devoted in the past years to the study and development of
heuristic methods. One of the main objectives of this work has been the improvement
of the traditional heuristic algorithms, resulting in increasingly advanced designs. These
have been included under the relatively recent term of metaheuristics [32; 87; 198|.
Glover used this term for the first time to describe procedures consisting of “... a master
strategy that guides and modifies other heuristics to produce solutions beyond those that
are normally generated in a quest for local optimality.” [88]. Nonetheles, in practice,
metaheuristics involve sophisticated as well as modern approaches [198]. The similar
term of hiper-heuristics can also be found in the literature [203], though its meaning is
clearly different, as it alludes to methods which seek through a search space of heuristic
algorithms. A few well known examples of search metaheuristics are Simulated Annealing
[121], Tabu Search [88] and Evolutionary Algorithms [7].

2.2 Evolutionary Algorithms

Evolutionary Algorithms (EAs) [7; 8; 9; 67] is the term used to group a number of stochas-
tic (nondeterministic) global search metaheuristic techniques. All these techniques share
as a source of inspiration the theory of natural evolution of species enunciated by Dar-
win [50]. According to Darwin’s model, the evolution of a population of individuals in
an environment with limited resources is based on two cornerstones: natural selection
and phenotypic variations. Natural selection favors reproduction of the best adapted
members in the population, allowing their genetic information to spread through their
offspring. Phenotypic variations given by genes recombination during reproduction and,
occasionally, by small mutations of a gene, produce new individuals in the population.

EAs come motivated by the interpretation of adaptation as a successive progress of
improvement of structures in order to attain a better performance in their environment.
Natural evolution can be then observed as an optimization process which is worthy of
imitation. This was the idea followed by three approaches developed separately during the
60s. In the USA, Holland introduced Genetic Algorithms [108], while Fogel, Owens and
Walsh invented Evolutionary Programming [74]. Meanwhile, in Germany, Rechenberg
and Schwefel implemented Evolution Strategies [197; 224]. Such techniques have been
considered the mainstreams of the field since their development. EAs, however, comprise
many more methods than these. Due to their extended use and their connection with
the scope of this thesis, Genetic Algorithms will be briefly introduced later on. For a
detailed explanation of these approaches and EAs in general, the reader is referred to
[8;9; 67; 74; 89; 224].

10

2 Modern Evolutionary Optimization Techniques

2.2.1 The General Framework

As a consequence of the evolutionary metaphor, much of the biological terminology has
been transferred to the field of EAs. For instance, a candidate solution point for the
problem at hand is represented by an individual, which is in turn composed by a set of
genes or variables. The term population alludes to a set of individuals, that is, a set of
representations of the candidate solutions. The objective function is referred to as the
fitness function and, accordingly, the function value of an individual is called its fitness.

An EA lies on the basis formed by three stochastic operators, namely, selection, recom-
bination and mutation. Recombination and mutation are not simultaneously included in
all designs, though one of them is always present, e.g. basic Evolution Strategies only
involve mutation. Many techniques, however, contain both operators.

The search for the optimum point consists basically of an iterative process departing
from a population of individuals. At each round or generation, the selection operator is
applied to choose a set of parent individuals from the current population. For this, fitter
individuals are assigned a higher probability of being chosen. Recombination merges the
genes of several parents (commonly two) into offspring individuals. The choice of the
genes to be combined as well as the manner of combination are determined probabilis-
tically. Even the application of the operator depends on a probability value. Mutation
performs random transformations on the genes of one individual. Similarly to recom-
bination, each of these transformations occurs with a certain probability. Finally, new
individuals compete with the old ones for a place in the next generation. Figure 2.1 shows
the pseudocode of a general framework to which every EA conforms to some extent. In
the pseudocode, D; represents the population of the [-th generation; analogously, Dlsel,
DlReC and DlNew denote the set of selected individuals, the offspring after recombination
and the new individuals after mutation, respectively.

Dy < Obtain initial population
Evaluate each individual from Dy
Repeat for [= 1,2, ..., until stopping criterion is met
Dls_ei «— Select individuals from D;_4
DlR_ef < Recombine individuals from Dls_ei
Dl]\ielw +— Mutate individuals from Dl}ief
Evaluate each individual from Dljielw

D; «— Build next population with individuals from D;_; and Dlj\ielw

Figure 2.1: General framework for EAs.
From an optimization point of view, EAs are based on two assumptions. On the one

hand, each solution point is a container of knowledge about the features of the objective
function. On the other, when solutions are combined, their knowledge is transmitted to

11

2 Modern Evolutionary Optimization Techniques

the resulting solutions. Since fitter individuals have higher chances of being selected, it
is expected the parents to encode suitable features. As a result of their combination,
better individuals could then be obtained, and the population might eventually evolve
towards promising areas of the search space.

At this point, it is important to notice the significance of the encoding scheme used by
individuals to represent candidate solutions. This scheme can be described as a mapping
h:Q — Qp, where 2 is the set of individuals. The search proceeds in €2, so the objective
function of the problem actually being tackled is fr : Q7 — IR, instead of f : Q@ — IR.
In some cases, an individual is a solution point (h is the identity function) and, hence,
fr = f, while, in others, more elaborated mappings are required. Therefore, both h and
fr must be carefully defined in order to preserve the properties of the originals search
space and objective function. A convenient approach, though not always feasible, is to
make h bijective, so that f; = f o h™L.

The framework in Figure 2.1 reveals the remaining elements that characterize EAs. While
some of these components are often specified following general rules, others tend to
be tailored to the particular technique at hand. Thus, the initial population can be
obtained independently from the algorithm through several alternative procedures, e.g.
at random. By contrast, design of the evolutionary operators is usually influenced by the
method. Below, a few operators are described in detail for the case of Genetic Algorithms.
Apropos the construction of the next population, relatively simple rules, like choosing the
individuals with highest fitness, are popular. It is worth noting a practice called elitism,
which consists of preserving for the next population the best individual from the current
one. The use of elitism is widely spread as it has shown good results in many problems as
well as necessary properties for theoretical convergence to the global optimum [137; 206].
For the termination condition, specific strategies exist for a few EAs [5], though the usual
approach is to resort to general criteria. For instance, if the optimal value is known, an
obvious halting condition is the attainment of such a fitness. Further basic criteria
are, among others, reaching a maximum number of fitness evaluations or computational
resources, no improvement of the mean fitness of the population in succesive generations,
or the convergence of the population to the same individual. In order to fully define
an KA, parameters that come together with these elements should also be specified.
Parameter values that need to be set in most techniques are the population size, the
number of individuals selected, and probabilities of recombination and mutation. Of
course, additional parameters may arise from the particular details of each component.

When compared with classical optimization methods, EAs own a number of advantages
which turn them to be an interesting option. First, EAs may be applied to a wide
variety of scenarios. They are able to deal with functions where no derivatives exist,
multimodality, discontinuities, constraints, or with noisy functions. Even problems not
completely defined or black-box optimization can be tackled. Second, EAs do not make
any assumption about the search space. Third, the effort to adapt an EA to a new

12

2 Modern Evolutionary Optimization Techniques

problem is relatively low. Finally, some EAs can run interactively, i.e. it is possible to
change the parameter values during execution.

EAs have also drawbacks. First, there is no guarantee of finding the global optimum
and, in most cases, no reliable stopping criteria are known. Second, EAs are complex
systems that make their theoretical analysis fairly intrincate, leading to a lack of enough
theoretical basis in the field. Moreover, comparison between different EAs is difficult
unless experimentally. Third, they are often computationally expensive. Fourth, it is
not possible to know how far the solution obtained is from the global optimum. Finally,
perhaps their worst characteristic is a strong dependency on the set of parameters, which
usually has to be experimentally tuned for the problem at hand. In fact, in some al-
gorithms, this tuning itself becomes an optimization problem [94]. Exceptionally, the
tuning process can be avoided by Evolution Strategies and other self-adaptive EAs [66].
To summarize, it is important to think that EAs are not a set of techniques ready to be
applied, but a set of mechanisms to modify and tailor to the particular problem.

Nonetheless, the high quality results obtained in many problems have caused an expo-
nential growth of the field. The literature is plenty of successful applications to real-world
problems [51] as well as their abstract forms, like, for example, the Traveling Salesman
Problem [7]. These encouraging results led a number of works from the 80s to conclusions
on the superiority of EAs with regard to other techniques [89]. Still, the No Free Lunch
Theorem [254] showed later on that, averaging over the space of possible problems; all
black-box algorithms exhibit the same performance. The perspective of researchers since
then has completely changed. Instead of seeking the best overall method, current efforts
are addressed towards the identification of the suitable methods for a given problem, or
the study of the problems where a method performs well. Undoubtedly, much of this
work has been devoted to the, probably, most popular EA: the Genetic Algorithm.

2.2.2 Genetic Algorithms

Origins of Genetic Algorithms (GAs) lie on the work by Holland [108], although their
popularity is mainly due to Goldberg [89]. The pseudocode in Figure 2.1 can be straightly
brought to GAs, since both recombination and mutation operators are contained in the
algorithm. The Simple Genetic Algorithm (SGA) is the most elementary implementation
of this method. Basic representation issues, together with the selection, recombination
and mutation operators of the SGA, are described next. Additionally, a few advanced
designs are included. Excelent in-depth discussions of GAs can be found in the literature;
for instance, the reader may consult the book by Goldberg [89], or the more recent one
by Vose [245].

13

2 Modern Evolutionary Optimization Techniques

Representation of a solution

An individual in the SGA encodes a solution point from the original problem as a binary
string of n genes, i.e. an individual can be denoted as * = (z1, 9, ...,z,), with & €
{0,1}™. This encoding implies a mapping function must be defined to transform original
solutions into 0-1 strings. For instance, an integer variable could be mapped to a binary

string following a sign-magnitude representation [246].

Another possibility is to encode each solution in a natural, non binary, way, resulting
in strings of integers or reals. A disadvantage of these encodings is that most of the
evolutionary operators are built with regard to the SGA, and they might not be used
with non 0-1 strings. More precisely, many of the operators can be applied to integer
encodings, but not to reals. In these cases, specific operators usually need to be designed

[106].

Selection

The purpose of selection is to push the search towards high quality areas. In the SGA,
the number of individuals to be selected is a parameter of the algorithm and the operator
is known as proportional-based selection. Assuming a population size N and an objective
function f to maximize, the probability of choosing an individual @; with this operator

; f(@4)
Z;'V:1 f(z5)

A well known drawback of proportional-based selection is that it is not invariant under
translation nor under a change in scale of the objective function. Therefore, more ad-
vanced strategies are used in practice. For example, in linear rank-based selection [10],
previous drawbacks vanish, since a rank of the fitness values in the population is em-
ployed to elicite the probability of selection for an individual. Let 7 denote the expected
number of times the best individual 1. is selected, i.e. 7 = N - p(x1.n), and 5~ the
minimum expected value assigned to N, i.e. = = N -p(xN:.N), then the probability
assigned to individual ;. is elicited following a linear mapping, that is,

p(x;) = (2.1)

pain) = 5+ (= (=) 1) (22)

and the constraints Ziilp(:ci,N) =1land p(zsN) > 0Vi € {1,2,..., N} imply 1 < nt <
2 and = = 2 —nT. As it can be noticed, the implementation of this operator involves a
new parameter n*.

14

2 Modern Evolutionary Optimization Techniques

Recombination

According to the EAs hypothesis, recombination is the way to spread the information of

individuals. In the SGA, this operator is applied with a certain probability, which is given

as a parameter. The probability value tends to be high (nearly 1) in order to facilitate

the exploration of the search space. Two parents (x1,z3,...,xL) and (22,23, ...,22) are

mixed and two children are obtained. The procedure consists of choosing an index k

from a uniform distribution over {1,2,...,n — 1}. Then, the first child is composed of
2

genes m%, ...,a:}c_l and xi, ..., X5, while the second is created with genes m%, ...,x%_l and
1

zh, .. zb.

The underlying idea behind this cut point based operator is that neighbor genes contain
the useful knowledge to obtain improved individuals. However, even if this is true, there
is no apparent reason to assume that the neighborhood is given by adjacent variables in
the string. Hence, several approaches have proposed to extend the number of cut points
to two or more. The general situation is the uniform recombination operator [237]|, where
for each gene one of the parents is chosen randomly and independently of the rest of the
variables.

Other recombination operators have investigated the possibility of merging more than two
parents. In the Bit-based Simulated Crossover [238], the value of each gene is obtained
from the value of the same variable in an individual chosen from the whole population.
The selection of the individual consists of sampling from a probability distribution that
depends on the fitness value of the individuals.

Mutation

The role of mutation is to inject diversity in the population, enhancing the exploration
capabilities of the algorithm. In the SGA, the value of each gene is flipped with a
probability value which is a parameter of the system. In contrast to recombination, this
value is kept low (a rule of thumb is to use 1/n [150]) to avoid the excessive disruption
of the effect of the recombination operator.

2.2.3 Advanced Designs

An intensive research has been committed to EAs in the past years. To a great extent,
these efforts have concentrated on the alleviation of the drawbacks previously introduced
or the improvement of the techniques performance. It is worth to remark then a number
of approaches in the literature making use of advanced designs.

The hybridization of EAs with other techniques [22] is an active working line supported
by the impressive results obtained in practice, e.g. in graph coloring problems [80]. One

15

2 Modern Evolutionary Optimization Techniques

other appealing area is based on the study of strategies for the self-adaptation of the
parameters values of the EA [6; 66]. The purpose of these developments is to make
the algorithm less dependant on the parameters by allowing the evolutionary process to
change their values during the search. A more spread approach is the generalization of
this idea, that is, designing EAs where a number of basic components are self-adaptive
[66]. In this context, the bulk of the works concentrate on the employment of variable
length representations of a solution [123; 252]. Finally, much of the research efforts are
concerned with the parallelization of EAs [34; 205]. This field is not only interesting
from an efficiency point of view, but also from a methodological one, since some parallel
methods imply a different behavior from the classical EA and constitute themselves a
new domain, e.g. island models GAs [34].

Of course, these approaches are just a few instances from the body of extensions and
innovative ideas concerning EAs. In fact, such is the level of sophistication achieved by
many recent developments that they do not fit exactly into the framework in Figure 2.1.
The notion of EA is becoming increasingly blur, favouring the inclusion of several tech-
niques that follow some evolutionary concepts under its umbrella. Next, we review two
leading edge techniques amongst these, namely, Estimation of Distribution Algorithms
[131] and Scatter Search [126].

2.3 Estimation of Distribution Algorithms

In the last decade, GAs have been widely used to solve different problems, improving
in many cases the results obtained by other algorithms. However, as it was pointed in
previous section, this kind of algorithms has a large number of parameters that need to
be correctly tuned in order to obtain good results. Generally, only experienced users can
do this correctly and, moreover, the task of selecting the best choice of values for all
these parameters has been suggested to constitute itself an optimization problem [94].
In addition, GAs show a poor performance in some problems (deceptive and separable
problems) in which the existing operators of crossover and mutation do not guarantee
that better individuals will be obtained changing or combining existing ones.

Some authors [108] have pointed out that making use of the relations between genes can
be useful to drive a more “intelligent” search through the solution space. This concept,
together with the limitations of GAs, contributed to spread a new type of algorithms
grouped under the name of Estimation of Distribution Algorithms (EDAsS).

EDAs were introduced in the field of EAs in [158], although similar approaches can be
previously found in [263]. In EDAs there are neither crossover nor mutation operators.
Instead, the new population of individuals is sampled from a probability distribution,
which is estimated from a database that contains the selected individuals from the pre-
vious generation. Thus, the interrelations between the different variables that represent

16

2 Modern Evolutionary Optimization Techniques

Dy «— Generate M individuals and evaluate each of them

Repeat for [= 0,1,2, ..., until stopping criterion is met
Dls"‘l «— Select N individuals from the D; population following a selection method
Induce from D7¢ an n (size of the individual) dimensional probability model
Djy1 < Generate a new population of M individuals based on the sampling of the
probability distribution p;(x) learnt in the previous step
Evaluate individuals in D; 4

Figure 2.2: Pseudo-code for EDAs.

the individuals may be explicitly expressed through the joint probability distribution as-
sociated with the individuals selected at each generation. Figure 2.2 presents a common
outline for all EDAs.

A review of different EDAs is presented in the following sections, classified on the basis of
the different probability models that can be used to represent the dependencies between
the variables that constitute the individuals. Algorithms have been grouped according
to the way dependencies between variables are considered: all variables are independent,
pairwise dependencies, or multiple dependencies. For the sake of convenience to the
thesis objectives, we restrict the review to EDAs for optimization in discrete domains;
for an excelent review including continuous variables the reader is referred to [131].

Firstly, some notation that will be used throughout the dicussion is introduced. Given
an n-dimensional random variable X = (X1, X, ..., X},) and a possible instantiation & =
(z1, 22, ..., Ty), the joint probability distribution of X will be denoted by p(x) = p(X =
x). In the case of two unidimensional random variables X;, X; and their respective
possible values x;, x;, the conditional probability of X; given X; = x; will be represented
as p(zi|lzj) = p(X; = x;|X; = x;). In the context of EAs, an individual with n genes
can be considered an instantiation x = (1,22, ...,2,) of X = (X1, Xs,..., X,;). Let the
population of the I-th generation be D;. The individuals selected, Dlse, constitute a
dataset of N cases of X = (X1, Xs,..., X;;). EDAs estimate p(x) from Dlse7 therefore,
the joint probability distribution of the [-th generation will be represented by p;(x) =
p(m|Dle1)-

2.3.1 Without Dependencies
All the models that belong to this category consider all variables as independent. There-

fore, the joint probability distribution is factorized as a product of univariate and inde-
pendent probability distributions. That is, p;(x) = [[;_ pi(x:).

17

2 Modern Evolutionary Optimization Techniques

UMDA
Univariate Marginal Distribution Algorithm (UMDA). Introduced in [151], this algorithm
uses the simplest way to estimate the joint probability distribution:

n

pi(@) = p(x| D)) = [[mi(e:) (2.3)
=1

where each univariate marginal distribution is estimated from marginal frequencies:

N Se
1 05(X; = 24| Dpe
pi(x;) = 2= 0 ¥ milDi) (2.4)

being
1 if in the jth case of Dls_e17 X, =x;
0 otherwise

8j(Xi = x| D)) = { (2.5)
UMDA has been successfully applied to different problems: feature subset selection [4],

learning of Bayesian networks from data [23; 202|, or to solve linear and combinatorial
problems using Laplace correction [178].

Other works focus on the behavior of the algorithm, performing a mathematical analysis
of UMDA [154; 155], studying its convergence when UMDA is used to maximize a number
of pseudo-boolean functions [91], or analyzing the genetic drift phenomenon [110; 111;
227].

Finally, several modifications have also been introduced in UMDA trying to improve its
performance: modifications on the simulation phase [215; 216], use of a repair method
for solving constraint satisfaction problems [96], adaptive population sizing [109], use of
memory schemes for dynamic optimization problems [258], or introducing the bitwise
mutation operator [97].

BSC

Bit-Based Simulated Crossover (BSC) [238] originated as a recombination operator for
GAs. This approach uses the fitness value of the selected individuals to estimate each
marginal distribution:
f(@)
oi(es) = 2 ()5, (Xi=ai| DEe,)=1} €
) =
Z{xeDlel} e/ (T)

(2.6)

where function §; maintains the meaning expressed in Equation 2.4.

18

2 Modern Evolutionary Optimization Techniques

In Equation 2.6, the numerator alludes to the sum of the evaluation function values of
the individuals with value z; in the variable X;, and the denominator is the sum of
evaluation values of the selected individuals.

This algorithm has been applied to problems such as feature subsect selection [114] and
partition clustering tasks [204].

PBIL

Population Based Incremental Learning (PBIL) [11; 12] uses a probability vector to
represent the characteristics of the population:

p(x) = (pi(x1), .- i), - pi(an)) (2.7)

where p;(z;) refers to the probability of obtaining a value of 1 in the i** variable of the
[th population.

The vector is initialized using the first population, and then it is used to sample a new
set of M individuals. From this set, only the best N individuals are selected. We denote
them by:

l l l
T s Ty TN (2.8)

Based on the following Hebbian inspired rule, the probability vector is updated:

N
pa(e) = (1 - a)p(@) + o > @hs (2.9
k=1

where « € (0, 1] is a parameter of the algorithm (the reader may note that when a = 1,
this algorithm performs as UMDA).

The following population will be sampled from this new (updated) probability vector.
In contrast to the general EDA behavior, it must be remarked that this algorithm uses
the probability vector of the previous generation in addition to the recently sampled
individuals to obtain the new probability vector.

PBIL has been applied to different problems, such as: optimization of parameters of
a solution in the field of tactical driving [236], search for optimal weights in a neural
network structure [47; 82|, classifier selection [207], optimization of parameters for the
simple supply chain model [92], or learning of Bayesian networks [23].

Some theoretical studies of PBIL have been completed in [90; 107].

Finally, there are works that use characteristics of PBIL or even modify parts of the
algorithm. In [136], the Statistical and Inductive Tree Based Evolution algorithm is
presented. This approach mixes ideas from PBIL (probability vector) with inductive

19

2 Modern Evolutionary Optimization Techniques

For:=1,...,n
If xé,m # 335,2;2
If xé,m =1
pi(xs) = pio1(z) + +
If 2!, =0
() = pr—1(xi) — %

Figure 2.3: Process to update the probability vector in cGA. K is a constant value fixed
as a parameter.

decision trees. In general terms, it works as follows: starting with a randomly created
population, individuals are split into three groups (best, mediocre, and bad) and Induc-
tion of Decision Trees is used to induct a decision tree, extracting the set of equivalent
rules. Then, PBIL is used together with the rules to sample new individuals. The process
is repeated until some termination criteria is fulfilled.

Related to dynamic problems, there are two different proposals: using a dual probability
vector and competing with the main probability vector to generate samples [260], and
using a memory scheme to store the best sample and the working probability vector [259].

cGA

The compact Genetic Algorithm (cGA) [99] is quite similar to PBIL. It also uses a
probability vector to guide the search through the space of possible solutions.

This algorithm completes the following steps: first, the probability vector is initialized
(each component follows a Bernoulli distribution with parameter 0.5). Then, two indi-
viduals are randomly sampled from the probability vector, and evaluated. Taking into
account their fitness value, one of them will be the best (2!.,) and the other the worst
(ale:Q). The process to update the probability vector is presented in Figure 2.3.

It must be noted that the probability vector is updated in an independent way for each
variable. This process of adaptation of the vector of probabilities towards the winning
individual continues until the vector of probabilities has converged.

c¢GA has been applied to feature subset selection [35] and to the pruning of neural net-
works used in classification problems [36].

A runtime analysis of ¢cGA using different linear functions is presented in [63].

Finally, several modifications on ¢cGA have been presented in the literature. In [81], a
modified compact GA is developed for the intrinsic evolution of continuous time recurrent
neural networks. In [1], two elitism-based cGAs are presented: persistent elitist compact

20

2 Modern Evolutionary Optimization Techniques

genetic algorithm (pe-cGA), and nonpersistent elitist compact genetic algorithm (ne-

cGA).

RELEDA

The Reinforcement Learning Estimation of Distribution Algorithm (RELEDA) was in-
troduced in [179].

In this algorithm, an agent explores an environment perceiving its current state as well
as information about the environment. Based on that information, the agent takes some
decisions, making the environment change and receiving the value of this transition as a
scalar reinforcement sign.

This algorithm is similar to UMDA, but the probability of each variable is updated
applying a reinforcement learning method. The search for probability distributions is
reduced to a number of parameters denoted by 8 = {61, 62, ..., 6,} where §; € R
is a parameter related to the probability of the variable X; through a function. The
correlation between p(z;) and 6; is expressed through the sigmoid function:

plrc) = 5 (1 + tanh(56,)) (2.10)

where [is the sigmoid gain.

In each generation, the value of the parameters 6; is modified by a A; value following:
Ab; = a(b; — p(z:))(1 — d;) (2.11)

bt = bt + (1=)i (2.12)

where b; is the reinforcement signal (baseline), d; is the marginal distribution of the

variable X;, x; is the value of the variable X; in the best individual in that generation,
« is the learning rate, and -y is the baseline factor.

This algorithm has been compared in [179] to other EDAs (UMDA and PBIL) using two
well-known problems: four peaks and bipolar function, showing that it requires fewer
fitness evaluations to obtain an optimal solution.

DEUM

Distribution Estimation Using MRF with direct sampling (DEUM) |225]. This algorithm
uses the Markov Random Field (MRF) modelling approach to update the probability
vector. It can be seen as an adaptation of the PBIL approach by replacing marginal
frequencies with an MRF model on a selected set of solutions.

21

2 Modern Evolutionary Optimization Techniques

For:=1,...,n
If o; <0
pi=pi(l=A)+A
If o; >0
pi = pi(1 =)

Figure 2.4: Process to update the probability vector in DEUM. A is a learning rate (values
between 0 and 1) fixed as a parameter.

In [29], MRF theory was used to provide a formulation of the joint probability distribu-
tion that relates solution fitness to an energy function calculated from the values of the
solution variables. Mathematically:

__f@) U
) =S f) T 5, e 0 219
therefore
n(f(x)) = U() (2.14)

where f(x) is the fitness function of an individual and U(z) an energy function that
specifies the joint probability distribution. Generally, the energy function involves inter-
action between variables but, for this particular approach, all the variables are considered
independent. Therefore, the previous equation can be rewritten as:

—In(f(x)) = arzy + axa + ... + apzy, (2.15)

Each solution in any given population gives an equation satisfying the model. Therefore,
selecting N promising solutions from a population allows us to estimate the distribution
by solving Ao = F', where A is the N xn dimensional matrix of values in the selected set,
a is the vector of MRF parameters a = (a1, a9,...,ay), and F' is the N dimensional
vector containing the value —In(f(x)) of the selected set of solutions.

Finally, the probability vector will be updated using the MRF parameters (see Fig-
ure 2.4).

This algorithm has been modified in [226], proposing an approach called DEUMy in
which a MRF model is directly sampled to generate the new population.

2.3.2 Pairwise Dependencies

Algorithms in this second group consider only dependencies between pairs of variables.
In this way, estimation of the joint probability can still be done quickly. However, it must

22

2 Modern Evolutionary Optimization Techniques

be noted that an additional step is required (not necessary in the previous algorithms):
the construction of a structure that best represents the probabilistic model.

MIMIC

Mutual Information Maximization for Input Clustering (MIMIC) [53]. This approach
searches (in each generation) for the best permutation between the variables. The goal
is to find the probability distribution, p['(x), that is closest to the empirical distribution
of the set of selected points, p;(x), when using the Kullback-Leibler divergence, where

P (®) = pi(@iy | Tiy) - pi(Tiy | @) - pi(wi,_y | @0,) - Di(24,) (2.16)

and 7 = (i1,42,...,1,) denotes a permutation of the set of indexes {1,2,...,n}.

The Kullback-Leibler divergence between two probability distributions, p;(x) and pJ (x),
can be expressed as:

n—1

Hi(z) = h(X;,) + > (X, | Xi,,) (2.17)
j=1

where

Zp z)log p(X =) (2.18)
denotes the Shannon entropy of the X variable, and

h(X|Y)= ZhX\Y—y p(Y =y) (2.19)

where

MX|Y =y) = Zp =z|Y = y)logp(X =z|Y =y) (2.20)

denotes the mean uncertainty in X given Y.

Therefore, the problem of searching for the best p[(z) can be solved by searching for the
permutation 7* that minimizes H (x).

As a search over the n! possible permutations will be unfeasible for most of the problems,
a greedy search is proposed to find the 7* permutation. The process starts with the
variable X; with the smallest estimated entropy. In the following steps, the variable
with the smallest average conditional entropy with respect to the variable selected in the
previous step is chosen (obviously from the set of variables not yet chosen).

23

2 Modern Evolutionary Optimization Techniques

MIMIC has been used to solve several problems: the traveling salesman problem [201],
feature subset selection |114], partial abductive inference problem in Bayesian networks
[54], or learning of Bayesian networks [202].

In addition, some modifications of this algorithm have also been proposed, applying a
repair method for solving constraint satisfaction problems [96], or introducing a mutation
operator [97].

COMIT

Combining Optimizers with Mutual Information Trees (COMIT) [13]. This algorithms
hybridizes the EDA approach with local optimizers. Estimation of the probability dis-
tribution of the selected individuals in each generation is done using a tree structured
Bayesian network, learnt using the algorithm Maximum Weight Spanning Tree (MWST)
proposed in [41].

In general terms, MWST looks for the probabilistic tree structure (p{(z)) that best
matches the probability distribution of the selected individuals (p;(x)). To consider the
quality of each possible tree, the Kullback-Leibler cross-entropy measure is used. The
distance is minimized by projecting pf(aj) on any MWST, where the weight of the branch
(Xi, X;) is defined by the mutual information measure:

P(X;,X;) (zi,25)

px; (zi)px; (z;) (2.21)

I(X;, X;) = Z pex;.x;) (@i, ;) log

Zq,TLj

Once an estimation of p;(«) has been obtained, COMIT samples a number of individuals
from it and selects the best as the initial solutions of a local search method. The resulting
individuals are then used to create a new population.

TREE

TREE [131] refers to an adaption of COMIT where the local search step is eliminated.
Thus, new individuals to enter in the next population are created directly by sampling
the distribution that estimates p;(x).

TREE has been applied to several problems. To name a few, the traveling salesman
problem [201], feature subset selection [113|, partitional clustering [204], rule induction
[73; 229] and software test data generation [212].

24

2 Modern Evolutionary Optimization Techniques

BMDA

Bivariate Marginal Distribution Algorithm (BMDA) [189]. This algorithm uses a factor-
ization of the joint probability distribution that only needs second-order statistics.

It is based on an acyclic (but not necessarily connected) dependency graph. This graph
is constructed as follows: first, a variable is chosen arbitrarily and it is added as a node
of the graph. This first variable is the one with the greatest dependency on the rest of
the variables measured by Pearson’s x? statistic.

Second, the variable with the greatest dependency between any of those previously added
and the set of those not yet added is incorporated to the graph. This second step is
repeated until there is no dependency surpassing a previously fixed threshold between
already added variables and the rest. If this is the case, a variable is chosen at random
from the set of those not yet used to create a new tree structure. The whole process is
repeated until all variables are added into the dependency graph.

In each generation the factorization obtained with the BMDA is given by:

n@ =[] me) [] w o) (2.22)
XreR, X;eV\R;
where V' denotes the set of n variables, R; denotes the set containing the root variable
—in generation [— for each of the connected components of the dependency graph, and
Xj(i) returns the variable connected to the variable X; and added before X;.

2.3.3 Multiple Dependencies

Different works [26; 185] have shown the limitations of using simple approaches to solve
difficult problems. It must be noted that in this kind of problems, different dependency
relations can appear between variables and, hence, considering all of them independent
or taking into account only dependencies between pairs of variables may provide a model
that does not represent the problem accurately.

Several algorithms have been proposed in the literature using statistics of order greater
than two to factorize the probability distribution. In this way, dependencies between
variables can be expressed properly without any kind of initial restriction. However, it
must be also noticed that the probability model required for some problems could be
excessively complex and, sometimes, unaffordable in computational terms.

ECGA

Extended Compact Genetic Algorithm (ECGA) [98]. This algorithm divides the variables
into a number of groups (clusters) which are considered independent. Therefore, in each

25

2 Modern Evolutionary Optimization Techniques

generation, the factorization of the joint probability distribution is expressed as a product
of marginal distributions of variable size. These distributions are related to the variables
that are contained in the same group and to the probability distributions associated with
them. In this way, the factorization of the joint probability distribution on the n variables
is:

pi(x) = 1] milx) (2.23)

ceCy

where C; denotes the set of groups in the {** generation, and p;(x.) represents the
marginal distribution of the variables X, that is, the variables that belong to the ¢*
group in the [*" generation.

The grouping is carried out using a greedy forward algorithm that obtains a partition
between the n variables (as mention above, each group of variables is assumed to be
independent of the rest).

The process starts considering n clusters (one variable in each cluster) and then continues
trying to unify the pair of clusters that reduce the most a measure value. This value
conjugates the sum of the entropies of the marginal distributions with a penalty for the
complexity of the model based on the minimum description length principle (MDL) [200].

ECGA has been applied to feature subset selection [35] and to the pruning of neural
networks used in classification problems [36].

From a theoretical point of view, in [219] empirical relations for population sizes and
convergence times are presented.

Finally, some modifications of this algorithm have been proposed. In [134], a hybrid
ECGA that combines crossover and mutation operators. The proposed algorithm com-
bines the Building Blocks-wise crossover operator from ECGA with a recently proposed
Building Blocks-wise mutation operator that is also based on the probabilistic model of
ECGA [220]. In [218], a sub-structural niching method is proposed and applied to ECGA
aiming to maintain diversity at the sub-structural level.

FDA

Factorized Distribution Algorithm (FDA) [157|. It must be noted that this algorithm
differs from the others in regard to the probabilistic model. Instead of creating a new one
at each generation, the same model is used throughout the entire execution. Therefore,
this algorithm needs the factorization and decomposition of the task to be given by
an expert which is not a common situation. Generally, due to this characteristic, it is
intended to be applied to additively decomposable functions for which, using the running
intersection property [132], a factorization of the mass-probability based on residuals, zy,,
and separators, x.,, is obtained.

26

2 Modern Evolutionary Optimization Techniques

BNy « (Sp,0%) where Sy is an arc-less DAG, and 6° is uniform
po(x) =TTy p(wi) = [Tin 7
Dy <+ Sample M individuals from pg(x)
For [=1,2,... until the stopping criterion is met
Dlsfl + Select N individuals from D;_;
S} « Find the best structure according to a criterion:
e penalized maximum likelihood+search (if EBNAgc)
e penalized Bayesian score + search (if EBNAka, pen)
e conditional (in)dependence tests (if EBNAp(c)
0! — Calculate 9§jk using DlS_e1 as the data set
BNy — (57,0
D; «— Sample M individuals from BN; using PLS

Figure 2.5: Pseudo-code for the EBNAgic, EBNAko;pen and EBNApe algorithms.

The joint probability distribution can be factorized as:
k
pi(@) = | [oo, |2c,) (2.24)
i=1

As this factorization remains valid for all the iterations, the only changes are those in
the estimation of probabilities.

Theoretical results for FDA can be found in [152; 153; 154; 155; 157; 262]. In addition,
the space complexity of the algorithm is studied by [83] using random additive functions
as the prototype.

EBNA

In this section, three different algorithms (EBNApc, EBNAkg,pen, and EBNAgc),
grouped under the name of Estimation of Bayesian Networks Algorithms (EBNAs), are
presented. Introduced in [69; 130], their main characteristic is that the factorization
of the joint probability distribution is encoded by a Bayesian network, learnt from the
database containing the selected individuals in each generation. A common scheme for
these approaches can be seen in Figure 2.5.

Before explaining the different variations of EBNAs, we proceed with a brief introduction
to Bayesian networks that will be helpful to better understand the algorithms.

Bayesian networks Formally, a Bayesian network [40] over a domain X = (X1,...,X,,)
is a pair (5,0) that represents a graphical factorization of a probability distribution. The

27

2 Modern Evolutionary Optimization Techniques

structure S is a Directed Acyclic Graph (DAG) which reflects the set of conditional
(in)dependencies between the variables. The factorization of the probability distribution
is codified by S:

n
ple) = [[plailpas) (2.25)
i=1
where Pa; is the set of parents of X; (variables from which there exists an arc to X; in
the graph S). In Figure 2.6 for example, Pag—{X;,X5} (X7 and X5 are the parents of
X3).

The second part of the pair, 8, is a set of parameters for the local probability distributions
associated with each variable. If variable X; can take r; possible values, mil, ...,z the

local distribution, p(xi|pag,0i) is an unrestricted discrete distribution:
kloal 0.) = 0, 296
p(zi|pa;, 0;) = Oy (2.26)

where pa%,. .. ,pag" denote the values of Pa; and the term ¢; denotes the number of
possible different instances of the parent variables of X;. In other words, parameter 0
represents the conditional probability of variable X; being in its k** value, knowing that
the set of its parent variables is in its j'* value. Therefore, the local parameters are given
by 0; = (((HZ]k)lel)g;l) i=1,...,n. An example of a Bayesian network can be seen in
Figure 2.6.

In the context of EDAs, EBNAs comprise a group of algorithms that use Bayesian net-
works to codify the dependencies between variables. At each generation, given a set of
individuals (population), a Bayesian network must be learnt trying to reflect properly
the relations between variables. After that, the Bayesian network is sampled in order to
obtain the new population.

Related to the learning process, there are mainly two different methods: “score + search”
and “detecting conditional (in)dependencies”.

“score + search”: This method uses a score (metric) to measure the quality of the
Bayesian network. Among the different scores used, we can point out the Bayesian
Information Criterion (BIC) [223] or the Bayesian Dirichlet equivalence (BDe) [103].
Once the Bayesian network has been assigned a score, the goal is to complete a
search step, changing the structure of the Bayesian network with the aim of im-
proving the current score.

Generally, the search step begins with an empty Bayesian network (without arcs)
and, in the following steps, arcs will be added based on the score used to measure
the quality of the network. In order to have an effective algorithm, it is necessary
to find an adequate model as soon as possible (even if it is not optimal).

28

2 Modern Evolutionary Optimization Techniques

Structure Local probabilities

01 = (01-1,01-2) p(x1),p(a3)
° @ 02 = (92_1702_2,92_3) p(IE%) (x%),p(xg)
e 03 = (0311, 0321, 0331, p(zjlzl, 23), p(zh|at, 23), p(x3| 21, 23),
0341, 0351, 0361, p(xs|z], 3), p(as|a], #3), p(as|=], 23),
0312, 0322, 0332, p(x3lay, x3), plad|el, a3), p(a3 |2, 23),
(x,) Osiz, Osoz Oac2) plalat,2d), p(a3la?, a), p(adlad, o)
04 = (0411, 0421, 0412, 0122) p(ay|ad), p(a)|a3), p(af|zy), p(2F]23)

Factorization of the joint mass-probability

p(x1, 2, 3, 24) = p(x1)p(w2)p(w3|T1, 22)p(Ts]T3)

Figure 2.6: Structure, local probabilities and resulting factorization for a Bayesian net-
work with four variables (X7, X3 and X4 with two possible values, and Xo
with three possible values).

For example, Algorithm B [31] is a common method used to learn Bayesian net-
works. This algorithm uses a hill climbing strategy. Starting with an arc-less
structure, it adds in each step the arc that maximizes the score. When no improve-
ment can be achieved, the algorithm stops. An alternative to Algorithm B could
be the use of the model created in the previous generation, instead of beginning
each time with an empty structure.

Some of the algorithms that belong to this group are EBNAg;c and EBNAgo pen-
Both use Algorithm B as a search method, but EBNAgic uses the BIC score
to measure the quality of the Bayesian network, and EBNAxg,en combines the
Bayesian approach to calculate the marginal likelihood [44] with a penalizing term,
introduced to avoid an excessively complex Bayesian network.

“detecting conditional (in)dependencies”: The techniques that belong to this group
complete several tests to detect the relations between variables. These algorithms
usually start with the complete undirected graph, and then independence tests are
performed to remove edges. When no more edges can be removed, an orientation
process is completed to create the Bayesian network. For example, EBNAp(, one
of the algorithms that belongs to this family, uses the PC' algorithm [234] to detect
the dependencies. Starting with the complete graph, it is “thinned” by removing

29

2 Modern Evolutionary Optimization Techniques

edges with zero order conditional independence relations, “thinned” again using first
order conditional relations, then second order conditional relations are taken into
account, and so on. The set of variables conditioned on need only to be a subset of
the set of variables adjacent to one of the variables of the pair. The independence
test is performed based on the x? distribution. When there are no more tests to
do, the orientation process begins, giving a direction to each edge in the graph.

Finally, once the Bayesian network has been learnt, new individuals are sampled to create
the new population. Among the different methods, EBNAs use the Probabilistic Logic
Sampling method [104]. In this method, the instances are generated one variable at a
time in a forward way. That is, a variable is sampled after all its parents have already
been sampled. To do that an ancestral ordering of the variables is given (7(1),...,7(n))
where parent variables are before children variables. Once the values of Pa ;) have been
assigned, we simulate a value for X,), using the distribution p(2)|Par())-

EBNA approaches have been applied to several problems; for instance, graph matching
[19], partial abductive inference in Bayesian networks |54|, feature subset selection [112;
113], job scheduling problem [139], rule induction [229], traveling salesman problem [201],
partitional clustering [204], knapsack problems [208] or software testing [212; 213|.

In [96] EBNA was modified by applying a repair method for solving constraint satisfaction
problems, and in [97] a mutation operator is introduced.

Parallel approaches for EBNAgjc and EBNApc have been presented in [140; 145]; a
parallel and multi-objective version of EBNARgic to solve a chemical problem is shown
in [146].

In [83], the space complexity of the EBNA algorithm has been studied using random
additive functions.

BOA

Bayesian Optimization Algorithm (BOA) [181; 182; 185; 186; 187] uses a “score + search”
method (B Algorithm) to construct the model, using as metric the Bayesian Dirichlet
equivalence (BDe) [103]. In each generation, the process starts with an empty structure.
In order to reduce the cardinality of the search space, the number of parents that each
node can have is limited to k.

This algorithm has been extended and applied to several problems. In [183] BOA is
modified in order to model hierarchical problems using a type of hybrid model called
a Huffman network. In [187] it is adapted to include local structures by using decision
graphs to guide the network construction.

30

2 Modern Evolutionary Optimization Techniques

Other extension named Mixed BOA that uses decision trees with mixed decision nodes
is presented in [166]. In [163] MBOA is combined with variance adaptation in order to
improve its behavior in the continuous domain.

Some theoretical studies have been completed using Bayesian networks to estimate the
fitness of the individuals [190] or to reduce the number of parameters needed to execute
the BOA algorithm [188].

The real-coded Bayesian Optimization Algorithm (rBOA) algorithm is proposed in [2],
as an extension of BOA to the area of real-value optimization. It performs a factor-
ization of a mixture of probability distributions, and finds maximal connected graphs
(substructures) of the factorization graph (probability model). Then, it fits each sub-
structure independently by a mixture distribution estimated for clustering results in the
corresponding partial-string space. Finally, offspring is obtained by a sampling method
based on independent subspaces.

Two parallel approaches have been presented for BOA using a pipelined parallel archi-
tecture [164] and clusters of computers [165]|. Recently, in [167] the parallelization of the
learning of decision trees using multi-threaded techniques has been proposed.

The different BOA approaches have been applied to feature subset selection [35], to the
pruning of neural networks used in classification problems [36], ising spin-glass systems
and maximum satisfiability problems [184]. In [118; 119]| a comparative review of some
EAs (including MBOA) is presented, evaluating them on a different number of test
functions in the continuous domain.

LFDA, FDA;, FDA-BC, FDA-SC

Learning Factorized Distribution Algorithm (LFDA), introduced in [153], essentially fol-
lows the same steps as EBNAg;c. The main difference is that in the LEFDA the complexity
of the model learnt is controlled by the BIC metric in conjunction with a restriction on
the maximum number of parents that each variable can have in the Bayesian network.

An initial algorithm FDAj is proposed in [170], to learn by means of conditional
(in)dependence tests— a junction tree from a database. The underlying idea is to return
the junction tree that best satisfies the previous independences, once a list of dependen-
cies and independencies between the variables is obtained.

Also, in [168], a structure learning algorithm that takes into account questions of reliabil-
ity and computational cost is presented. The algorithm, called FDA-BC, studies the class
of Factorized Distribution Algorithm with Bayesian networks of Bounded Complexity.

Similar ideas are introduced in the FDA-SC [169]. In this case the factorization of
the joint probability distribution is done using simple structures, i.e. trees, forests or
polytrees.

31

2 Modern Evolutionary Optimization Techniques

PADA

Polytree Approximation of Distribution Algorithms (PADA) |231|. The factorization is
done using a Bayesian network with polytree structure (no more than one undirected
path connecting every pair of variables). The proposed algorithm can be considered a
hybrid between a method for “detecting conditional (in)dependencies” and a procedure
based on “score + search”.

MN-EDA

Markov Network Estimation of Distribution Algorithm (MN-EDA) [214]. The authors
introduce a method that approximates probability distributions using what they call
“messy factorizations”. In order to learn the factorizations, the algorithm combines a re-
formulation of a probability approximation procedure used in statistical physics (Kikuchi
approximations), with a novel approach for selecting the initial inputs required by the
procedure.

In addition, a new method for sampling solutions from the approximation is also used
(Gibbs Sampling). The learning and sampling methods are the primary components of
this MN-EDA.

2.3.4 Other Algorithms

e An EDA in the permutation representation domain that uses Edge Histogram Based
Sampling Algorithms (EHBSAs) is presented in [243]. The algorithm starts gen-
erating random permutation strings for each individual in the population. Then,
individuals are evaluated and the most promising solutions are used to construct
a symmetrical Edge Histogram Matrix (EHM) where an edge is a link between
two variables in an individual. Finally, new individuals will be sampled from that
EHM, replacing the old population. The behavior of the algorithm is tested on the
traveling salesman problem.

e Estimation of Distribution Programming (EDP) is presented in [256]. This program
is codified using a probabilistic graphical model given by a Bayesian network. The
search method follows the common scheme of EDAs to solve Genetic Programming
applicable problems. This work is extended in [257], where the proposed EDP is
mixed with a GP algorithm.

e Dependency Detection for Distribution Derived from df (DDDDD or D) [242].
This approach combines EDAs with linkage identifications in order to detect de-
pendencies. It has three parts: (1) calculation of fitness differences each variable

32

2 Modern Evolutionary Optimization Techniques

is perturbed and then fitness difference for the perturbation is calculated , (2) clas-
sification of individuals according to the fitness difference, and (3) estimation of
the classified individuals based on entropy measures.

e The algorithm presented in [255] uses marginal frequencies to constrain the esti-
mated probability distribution. A schema is a subset of the search space where the
values of some variables are defined (fixed) and the values of the others are variable
(represented by *). The order of the schema is defined by the number of *. Given
a frequency distribution over the search space and a schema, the corresponding
schema frequency is just the sum of the relative frequencies of the elements of that
schema.

The entropy of this distribution is subsequently maximized and the distribution is
sampled to produce a new population. In this work, only contiguous order-2 schema
families are used, proposing as a future work the use of higher order schemas.

e In[196] a Learning Automata based Estimation of Distribution Algorithm (LAEDA)
is presented. This algorithm follows the general EDA scheme, and uses a variable
structure learning automata as the probability model.

e Finally, Unsupervised Estimation of Bayesian Network Algorithm (UEBNA) is in-
troduced in [191]. This approach uses a Bayesian network for data clustering in
order to factorize the joint probability distribution of the individuals selected at
each iteration. The goal of this approach is to optimize multimodal problems.

2.4 Scatter Search

The Scatter Search (SS) technique [86; 124; 126] is presented in the literature as a novel
instance of EAs. Though this method shares with EAs some of their features, it also
sets a number of fundamental differences. In fact, principles of SS were established by
concepts developed independently from the evolutionary paradigm.

According to Glover [86], the notion of combining solutions or rules to create new solu-
tions originated in the 1960s. Researchers in the field of scheduling proposed the merging
of rules to obtain improved local decisions. Such an approach was motivated by the con-
jecture that information about the relative desirability of a choice is captured in different
ways by alternative rules. This notion was extended soon to the field of mathemati-
cal relaxation for optimization, where the creation of surrogate constraints was devised
through a heuristic [85] which was, in turn, the stem of SS.

In the same manner as EAs maintain a population of individuals, SS operates on a set
of solution points, the reference set, by combining them to create new solutions. Hence,
both methodologies assume that solutions encode useful information about the problem,

33

2 Modern Evolutionary Optimization Techniques

and that this information is transferred to new solutions when merged. On the other
hand, the main conceptual dissimilarity lies on the management of the diversification and
intensification notions. While in EAs, selection, recombination and mutation of individ-
uals are probabilistic, in SS, selection and combination of solutions follow systematic
strategies. Moreover, intensification may be forced through the application of a heuristic
improvement procedure to each new solution, and the diversity in the reference set can
be explicitly controled during the search.

The following discussion attempts to introduce basic concepts of SS. Detailed descrip-
tions, together with more sophisticated extensions, can be found in the book by Laguna
and Marti [126] or in any of the excellent reviews available in the bibliography, e.g. [86].

2.4.1 Basic SS Scheme

The SS algorithm departs from the construction of a set P of solutions to guarantee a
critical level of diversity. In other words, this phase promotes the generation of solutions
increasing the diversity in P. Optionally, a heuristic method is applied to each solution
before entering the set; if so, a local search is generally employed. Next phase of the
algorithm consists of an iterative process. In the first round, the reference set, RefSet, is
built by extracting the best solutions from P. The meaning of “best” in this context is not
limited to a measure given exclusively by the objective function. In particular, a solution
may be added to RefSet if the diversity of the set is enhanced, though the objective value
of such solution is worse than other competitors. In the next step, a number of subsets
of solutions is systematically generated. The members of these subsets are combined to
generate new solutions that might replace others in RefSet. As in the initial phase,
new solutions are, optionally, improved with a local search method before considering
their inclusion in RefSet. The “best” solutions (broad brush meaning, once again) are
added to RefSet. If a new solution has been included, new subsets are generated and
the process repeats. Otherwise, the algorithm finishes.

Structurally, a SS algorithm is composed of the following five interacting methods. The
functionality of each method is clearly specified. However, its definition remains open to
the problem being solved, which grants this technique a suitable flexibility.

Diversification Generation Method A method that generates a number of diverse solu-
tions.

Improvement Methad Once a solution is obtained, this method aims at improving it,
usually through a local search method. Although this method is not strictly re-
quired, the common trend is to include it in the SS methodology.

Reference Set Update Method This method manages RefSet by defining the strate-
gies necessary to build and update it. Both, building and updating, may be based

34

2 Modern Evolutionary Optimization Techniques

P20
P « Add |P| distinct solutions obtained by diversification and improvement
RefSet «— Add the by solutions in P with best objective function value and delete them from P
RefSet «— Add the by most diverse solutions in P in relation to the solutions in RefSet
Repeat while new solutions are in RefSet

Generate all new subsets of solutions from RefSet

Obtain new solutions by combination and improvement

RefSet «— Update RefSet with new solutions

Figure 2.7: Pseudocode of basic SS.

on the objective function value, the diversity between solutions or an alternative
criterion. If no new solution is added to RefSet, the algorithm stops. Nonetheless,
in many cases, a maximum number of iterations is established in order to avoid too
long executions.

Subset Generation Method The subsets of solutions are systematically generated from
RefSet. At least, all subsets formed by two solutions are created. As the number
of subsets tends to be high, there is a need for keeping RefSet small; generally,
|RefSet| = |P|/10.

Solution Combination Method This method creates new solutions by combining the
solutions in a given subset.

The interaction of the five methods can be observed in the basic SS algorithm proposed
in Figure 2.7. A common size for P is 100 solutions and, therefore, |RefSet| = 10.
Notice the improvement method has been included in the algorithm, though it is an
optional component. A classical strategy for constructing the reference set is to select
from P the by = |RefSet|/2 solutions with the best objective function value, and the
remaining by most diverse solutions. As noticeable, the subset generation method only
considers the new subsets associated with the solutions introduced in the previous step.
If the maximum number of iterations is not reached and no solution has been added to
RefSet, then the process halts.

Figure 2.8 presents a schematic illustrating the roles of the SS methods, assuming im-
provement is applied. Circles represent new solutions, uncoloured before the application
of the improvement method, and black afterwards.

2.4.2 Advanced SS Designs

The advanced features of SS are related to the way the five methods described above are
implemeted. In other words, the sophistication level is given by the implementation of
the SS methods, instead of the decision to include or exclude some elements from the

35

2 Modern Evolutionary Optimization Techniques

dlversﬂlcatlor
method STOP
Y no

? n

SJeRSEt jon
solutions? %etﬁr(%

ew
yes
nRhoL e i
i ® ? o
RefSet combination
method
P v

°- H%‘%'ﬁlc?d improvermient
i
e

Figure 2.8: Schematic of a basic SS design [126].

approach. Next, a few interesting advanced strategies are described in brief; details may
be consulted in [126].

Reference set rebuilding

The basic SS process finishes when no new solution is added to RefSet. This implies
the algorithm has converged, since no new solution would be generated from a further
combination. A possibility for scaping from such a situation could lie on the injection
of diversity in RefSet. Thus, if no solution is added to the set, a common practice is
to perform a rebuilding step and run the algorithm once again. For instance, a simple
rebuiding strategy consists of creating a new set P and replacing the half of worst so-
lutions in RefSet with the solutions in P which most increase the diversity in RefSet.
As a result of such strategy, the SS algorithm is extended as shown in Figure 2.9.

Reference set dynamic update

In the basic design from Figure 2.7, new solutions that are to become members of RefSet
are not combined until the next iteration of the algorithm. This strategy is known as
static update. On the other hand, the dynamic update strategy applies the combination
method to new solutions in a manner that is faster than in the basic design. That is,
if a new solution is to be admitted in RefSet, the goal is to allow this new solution to
be subjected to combination as quickly as possible. For this, the solution is inmediately
included in the RefSet, instead of waiting for the rest of parent solutions to be combined.

36

2 Modern Evolutionary Optimization Techniques

P—0
P « Add |P| distinct solutions obtained by diversification and improvement
RefSet «— Add the by solutions in P with best objective function value and delete them from P
Repeat for [= 1,2, ..., MaximumlIteration
RefSet «— Add the by most diverse solutions in P in relation to the solutions in RefSet
NewSolutions «— TRUFE
Repeat while NewSolutions = TRUFE
NewSolutions «— FALSE
Generate all new subsets of solutions from RefSet
Obtain new solutions by combination and improvement
RefSet «— Update RefSet with new solutions
If RefSet changed
NewSolutions «— TRUFE
Else
RefSet «— Delete the by solutions with worst objective function value from RefSet
P—0
P « Add |P] distinct solutions obtained by diversification and improvement

Figure 2.9: Pseudocode of extended SS.

Multiple solutions combination

The combination mechanism in SS is not limited in its general form in combining
just two solutions. However, the mechanism cannot handle all subsets of size 7, i €
{1,2,...,|RefSet|} (there are 2V — N — 1 subsets, with N = |RefSet|). A procedure to
control the total number of subsets consists of a strategy to expand pairs into subsets
of larger size. The following approach selects representative subsets of different sizes by
creating subset types:

e Subset Type 1: all 2-element subsets.

e Subset Type 2: 3-element subsets derived from the 2-element subsets by augment-
ing each subset of type 1 to include the best solution not in this subset.

e Subset Type 3: 4-element subsets derived from the 3-element subsets by augment-
ing each subset of type 2 to include the best solution not in this subset.

e Subset Type 4: the subsets consisting of the best i solutions, i € {5,6, ..., |RefSet|}.

2.4.3 Performance Results

Although being based on mathematical foundations and classical methods, SS suffers,
likewise other metaheuristics, from a lack of theoretical works. Nonetheless, this tech-
nique is nowadays one of the centres of attention of the optimization community. Its

37

2 Modern Evolutionary Optimization Techniques

suitability is mainly due to the increasingly number of successful aplications in a wide
variety of problems. Improved benchmarks for solving such problems have resulted from
these applications, along with new advances for solving a significant range of real-life
situations.

Just to name a few examples, in [127]| e-optimal solutions were obtained for 30 from up
to 40 multimodal function optimization problems. Moreover, the SS design showed to
find solutions in fewer evaluations than a GA. In [142], several implementations of SS are
compared with GAs to solve four black-box permutation problems, resulting in a slight
superiority of the formers. The linear ordering problem was dealt in [33]. A number
of diversification procedures are studied and show to be competitive when compared to
other classical methods. SS has also been applied to practical optimization problems like
neural network training, arc crossing minimization in graphs, maximum clique problem,
graph coloring, vehicle routing or job-shop scheduling; see [126] for discussions on these
works. More recently, the knapsack problem [48] and software test data generation [213]
have been faced using SS.

The procedures employed in the previous works, as well as in others, have yielded a
number of SS designs differing from the basic template. Taking the results obtained by
these designs into account, lessons for future developments are presented in [125].

Regarding the diversification generation method, it is suggested in this work that the
use of a memory structure to create solutions provides with a proper balance between
diversity and quality. By contrast, while a pure random method generates highly diverse
solutions, their quality tends to be low.

A conclusion related to the improvement method concerns its influence on the computa-
tional complexity of the SS algorithm. This method may imply such an overload that the
investigation of its selective use is proposed. Additionally, the application of improve-
ment to every solution accelerates the convergence of RefSet, suggesting this method
should be studied from a methodological perspective as well.

A hint which may be useful for further approaches is that solution quality is more impor-
tant than diversity when updating RefSet. Albeit the possible strategies for this step,
according to the experimental results, it seems that best performance is not achieved if
diversity is used as a main updating criterion.

Apropos te subset generation method, it has been observed that most of the searching
power can be atributed to the combination of 2-solution subsets. In [33], different sub-
set types were empirically employed one after the other. The outcomes showed that at
least 80% of the solutions to enter RefSet came from combinations of 2-element sub-
sets. Nonetheless, this result should be carefully taken, as a distinct sequence of subsets
combination could modify this percentage.

Finally, a lesson stated in [125], about the combination method, is that the use of multiple
strategies can be effective. This is inspired by GAs implementations where good results

38

2 Modern Evolutionary Optimization Techniques

have been attained by generating new individuals from recombination and mutation
operators.

2.5 Other Recent Metaheuristics

The field of optimization has been experiencing in the last years a resurgence of proce-
dures, mainly from the area of metaheuristics. Though these are out of the scope of the
present thesis, we find interesting to draw some comments on the subject, since they are
modern optimization techniques that are deserving the attention of researches in some
contexts.

The Greedy Randomized Adaptive Search Procedure (GRASP) [71| combines in an it-
erative process a solution construction with a local search. At the construction step, a
feasible solution is iteratively built in a semi-greedy way. A set of possible element candi-
dates to be part of the solution is recalculated at each generation. These candidates are
a “piece” of the induced solution. One element is selected and added to the solution. The
element candidate list is evaluated with respect to a greedy scoring function in order to
select the next element to be added to the construction. The evaluation of the elements is
used to create a list, which consists of the best. The element to be added into the partial
solution is randomly chosen from the list. Once an element is included in the partial
solution, the list is updated. The solution induced is then applied a local search method.
A particularly appealing characteristic of GRASP is that it is easy to implement and,
usually, a small number of parameters is needed [126].

Ant Colony Optimization (ACO) [62] is a search method that mimics the foraging be-
havior of ants. Ants deposit an amount of pheromone on the ground, thus influencing
the choices of other members. The larger the load of pheromone in a path, the higher
the probability that an ant selects this path. In ACO, pheromone is seen as a heuristic
value that is assigned to partial solutions based on the frequency of its presence in good
solutions. As the construction of the new solutions is carried out by using an auxiliary
probabilistic value based on the pheromone value, there is a bias in the algorithm to form
solutions which contain building blocks that have shown to be good in previous steps.

Roughly speaking, the idea behind the Variable Neigborhood Search (VNS) [149] is a
local search where the neighborhood is sistematically changed. VNS explores increasingly
distant neighborhoods of the current solution at each step of the process. More precisely,
a solution is drawn at random from the current neighborhood of the current solution and
a local search is applied departing from this neighbor. If the resulting solution improves
the current, then the current best is updated and the process restarts; otherwise, a wider
neighborhood is tried.

39

2 Modern Evolutionary Optimization Techniques

40

3 Fundamental Concepts on Software
Testing

Testing is a crucial part of the software development process. It plays a main role in
the search for the quality required as it constitutes the primary way used in practice to
verify the correct behavior of the software produced. One of the most important issues in
software testing is the generation of the input cases to be applied to the program under
test. Due to the expensive cost of this task, its automatization has become a key aspect.
A number of options for this has been proposed under the name Search Based Software
Test Data Generation. The aim of such approaches is the creation of test data by means
of heuristic search optimization methods. More precisely, most developments over the
last years have concentrated on metaheuristic methods, offering promising results.

This chapter is devoted to the introduction of such approaches. Firstly, the motivation
for software testing is presented. Different aspects of the test process, together with
the classical alternatives for test data generation, are briefly overviewed next. Finally,
the field of input generation methods based on heuristic search is dealt. Owing to the
extensive scope of the field, the discussion is intended to provide insights on the basic
elements to achieve the automatic obtention of test data.

3.1 Software Quality

Considering the crucial role software plays nowadays, quality assurance becomes a main
issue in the field. Software is so deeply present in daily life that the effects of an un-
desirable behavior can be dramatic [233], even for human beings [133]. In contrast to
other products, such as manufacturing goods, where a balance between productivity and
quality is sought, in software development, these two concepts are almost indistinguish-
able [17]. Moreover, complexity of software systems is continuously growing in order to
exploit the huge advances in computer hardware, resulting in an increasing development
cost. As some authors state [115; 116], no other product in the industrialized world is so
labor-intensive and error-prone as software. In fact, software quality has been suggested
to be the most critical and difficult technological challenge of modern times [20; 59; 60].

The elusive concept of software quality may be defined either from a technical or customer
oriented perspective. From the technical side, quality is the fulfillment of the specified

41

3 Fundamental Concepts on Software Testing

requirements [192; 233]. From the customer point of view, quality is the conformance
of software to the user needs or expectations [68; 233|'. Regardless of the perspective,
definition remains extremely vague, as the meaning of terms “requirement”; “expectation”
or “need” connotes a subjective evaluation. We require more specific means of assessing
whether software quality has been achieved or not. Thus, requirements or expectations
are represented by a number of desirable software characteristics, and quality attainment
consists then of their satisfaction. Usually, description of a characteristic is still not
precise enough so that it can be quantified. There are however related attributes which
can be measured to express the degree of excellence in this characteristic, allowing to
elicite the achieved quality level [93].

In order to settle a standard basis, researchers and organizations, such as ISO and IEEE,
have developed models that describe quality characteristics and their interrelations [64;
173; 75|. Despite the lack of consistency and unity in some of the terms [192], as well as
in the characteristics involved and their treatment, a few elements are common to most of
the approaches. Hence, characteristics such as usability (extent to which the software is
praticable to use), maintainability (capability of updating) or reliability are usual among
quality models [64]. Reliability is defined as the probability that software functions
without failure for a given period of time under specified conditions [193]. Description of
a software failure is an area for open debate; we resort to IEEE [172]. An error refers to
a mental mistake made by the programmer or designer. The manisfestation of that error
in the code is called a fault. The occurrence of an incorrect output resulting from an
input value that is received with respect to the specification is named a failure. Quality
is mainly influenced by failures [192], so reliability is considered to be the most important
software characteristic [60; 64; 68]. Indeed, it is a prerequisite of other properties, e.g.
usability, and it is often mistakenly used as a synonym of quality [68].

Owing to the fact that a population of identical software systems, operating under similar
environmental conditions, fail at different points in time, failure phenomena are typically
explained in probabilistic terms. Furthermore, as, in general, the whole set of faults in a
program is unknown, true reliability cannot be elicited, so it is estimated, mainly through
probabilistic models. Certain models try to assess the number of faults in a program,
while others study the failure rate (failures per unit time in a time interval) or the number
of observed failures by time ¢. Some approaches measure and predict the improvement of
reliability during the software development process or even take environmental factors,
as the programmer skill, into account. Anyhow, most of the models in the literature
require a considerable amount of failure data to estimate their parameters [25]. For an
interesting formal description of reliability models the reader is referred to [193].

Basically, attempts to improve software reliability consist of preventing or reducing faults
introduced during the development process. A common way of fault prevention is to fo-

Tt is worth to emphasize both definitions since one does not necessarily imply the other.

42

3 Fundamental Concepts on Software Testing

cus on the most complex modules in a system and to assign them larger resources. On
the other hand, fault reduction involves software verification, detection and correction of
faults. So, improvement efforts can be applied at the different stages of the so-called soft-
ware lifecycle [24], that is, analysis (requirements and functional specifications), design,
coding, testing and operating. Among these, testing is the most significant with regard
to reliability [17; 60; 68; 193].

3.2 Software Testing

Testing may be described as the process of executing a software program to expose
failures [17; 68]. In other words, testing consists of operating the program with an input
and checking whether the obtained behavior is correct or not. An input refers to an
assignment of values to the program parameters, which are, in turn, the set of variables
whose values need to be fixed to enable an execution.

The high relevance of testing with respect to reliability comes as a consequence that both
concern with failures. As the primary way of failure detection |68], testing becomes crucial
for reducing faults in the software. In addition, it represents a powerful fault prevention
method, since the knowledge on the system and the reasonings carried out to create a
test may avoid errors [17]. Indeed, testing is not only significant for improving reliability,
but also for its evaluation. The measurement of software reliability cannot be performed
without previously discovered failure data [193]. Moreover, testing intrinsically involves
a validation process, so it serves as a means of gaining confidence that the software is
reliable enough.

Nonetheless, the rest of phases from the software lifecycle are still needed to improve reli-
ability, i.e. testing by itself is not sufficient [60]. Finding an input revealing a failure may
be extremely difficult. The software conditions that trigger a fault can be remarkably
complex, a fault might remain latent for a period of time only to arise in a particular
environment, or even it could be masked by other faults [79]. Thus, due to the intrin-
cate dynamic behavior of faults, not all the failures in a program are usually detected.
Anyhow, in order to ensure that all failures have been found, the whole set of program
inputs, i.e. the input domain, should be checked. Although finite in essence, such input
domain is often so huge that a complete exploration results unfeasible. In fact, this in-
ability for an exhaustive validation constitutes the most basic limitation of testing: it can
show the presence, but not the abscence of faults [61]. This implies testing is not able to
provide a proof that the software is correct. The alternative approach for demonstrating
the correctness of software is formal verification, that is, mathematical proofs that the
system meets all the conditions required of it. However, this method also suffers from
some well-known disadvantages which fairly restrict its application [17]. Just to name

43

3 Fundamental Concepts on Software Testing

two, it shows a lack of scalability to the complexity of modern programs, and each of the
mathematical proofs is in turn subject to failures.

Therefore, in spite of its drawbacks, testing remains the foremost mechanism in practice
for detecting failures and verifying the correct behavior of software. In consequence, it
is a major way of improving and assesing reliability and, hence, attaining quality [60].
Quantitative arguments from the real world also support this relevance. Testing usually
accounts for 50% of the project resources [17; 24|, growing up to 80% in some safety-
critical systems [28]. Even so, a recent study [239] estimated U.S.A. users suffer annual
economic losses derived from software faults totaling more than $59.5 billion. More
important from the standpoint of software developers, however, is the finding that more
than a third of those losses could have been saved via better testing.

3.3 Test Process

The test process involves a large number of activities, strategies and elements which
make of testing a vast field. Next, we point out a few ideas that are useful to introduce
the following discussions. An immense literature on software testing topics exists; for
instance, the reader might consult the classical book by Beizer [17]| or the more recent
one by Kaner et al. [117].

Given a software program, testing is generally applied at different levels, each built on
the last:

Unit testing A unit refers to the minimal software module that can be tested, e.g. in
object-oriented programming, a class method. Thus, at this level, a unit is tested
in isolation from the rest of the system.

Component testing A component is a module formed of a number of units, e.g. in
object-oriented programming, a class. Obviously, a unit is a component, and so is
the whole system.

Integration testing At this level, the purpose of a test is to expose failures in the inter-
faces and dependencies between software components.

System testing These tests are oriented towards the verification that the complete soft-
ware system meets its requirements.

Acceptance testing It alludes to the user validation. This involves testing the software
system under simulated real-world operating conditions as well as delivering the
so-called beta program versions to a limited audience.

44

3 Fundamental Concepts on Software Testing

Typically, testing proceeds from unit to acceptance level, since the cost of correcting a
fault grows superlinear in this direction [68]. A further reason is that up to 65% of the
failures may be detected with unit testing [17].

Being one of the stages from the software lifecycle, testing is an arranged process including
many activities. For example, system requirements need to be studied, tests must be
designed and executed, results observed, and conclusions reported. Each activity is in
turn subject to faults, so, if a failure is found, both the software and the test process
should be explored for the cause. Moreover, during the correction of a fault, new ones
could be injected in the software or others which were previously masked could arise.
This implies once the fault is fixed, tests need to be processed again, yielding an iterative
procedure; such situation is known as regression testing.

Among the previous activities, the generation of a set of test cases is of great importance.
A test case can be described as a piece of information concerning one software execution.
This information includes an input with which the program will be executed, the expected
program behavior for that input, and any additional useful data for processing the test,
e.g. an identification number. Then, it may be inferred that a mandatory task within
this activity is the generation of a set of inputs to be applied to the program under test.

3.4 Generation of Test Inputs

As remarked above, exhaustive testing is generally prohibitive due to the huge size of
the input domain. Furthermore, real-world demands and modern development tools
are dramatically increasing programmers productivity, so claiming a growing amount of
testing in less and less time. Thus, tests are designed with the purpose of addressing
particular aspects of the software system. This makes the generation of a set of test
inputs a non-trivial task, as it must be adequate to the test type and its requirements.

Input generation methods mainly conform to two testing strategies [76]: random and
subdomain based. In this context, random testing alludes to the employment of inputs
sampled from the input domain according to a probability distribution. For instance,
due to its simplicity, a well-known approach is to generate test data simulating a uniform
distribution on the input domain [65]. A more sophisticated alternative, instead, is to
employ the operational profile of the program, that is, the expected run time probability
distribution of the inputs [159]. The purpose of this approach, then, is to test the program
in a way close to its real usage. However, input generation is not straightforward, as
knowledge on the system is needed to estimate the probability distribution, which can
be a costly task [95]. On the other hand, the underlying idea in subdomain based testing
is specifying subsets from the input domain, called subdomains, and requiring the set of
inputs to include an element from each of the subsets. A common assumption for the
subdomains is that their union must lead to the input domain, so in the particular case

45

3 Fundamental Concepts on Software Testing

random — uniform distribution simulation, operational profile based

testing strategies functional — states based testing, time performance testing
subdomain based

structural — statement testing, branch testing, path testing

Figure 3.1: Scheme of usual testing strategies.

where they are disjoint, the strategy is known as partition testing [251]. In any case, it is
important to note that, rather than explicitly, subdomain specification is often implicitly
driven by the purpose of the particular testing approach.

Considering the criteria used for splitting the input domain, subdomain based testing
may be further classified as functional or structural [18; 76]. In functional (also known
as black box) testing, each subdomain consists of the inputs satisfying a condition or
combination of conditions asserted in the program specification. Therefore, the aim of
this strategy is to test aspects regarding the functionality of software. For example,
a general approach is assigning a subdomain to each of the functional states of the
program [175]; test data generation consists then of finding a set of inputs that visits
each state. A more specific functional criterion is time performance testing [18], which
tests whether the response time constraints of the program are fulfilled or not, i.e. there
is a subdomain for each time constraint. By constrast, structural (or white boz) testing
relies on the intuition that faults are exposed if certain parts of the source code execute.
More precisely, in structural approaches, subdomains come specified by the so-called
code coverage criteria. For example, in statement testing |17|, the inputs implying the
execution of a code statement (instruction) describe a subdomain. Consequently, a set of
inputs must be generated so that each statement is covered. Other coverage criteria will
be discussed in detail below. Figure 3.1 shows a basic scheme of the testing strategies
just described, together with some of their instances as examples.

3.4.1 Code Coverage Criteria

Structural testing is probably the most widely used class of strategies to test programs
[17; 161]. Based on the assumption that a fault is exposed when certain portions of code

46

3 Fundamental Concepts on Software Testing

are executed, code coverage criteria are defined in order to detect as many failures as
possible.

The source code of the program reveals different control or data flow entities, such as
statements, branches, paths, defs, p-uses or c-uses. The first three examples are control
flow entities, while the others are data flow ones. A branch refers to one of the possibilities
for the flow of control from a conditional statement in the code. A path, instead, is a
sequence of statements that the control flow may traverse. A def alludes to a definition,
that is, the assignment of a value to a program variable. A variable is used if its value is
fetched; an use in a conditional statement is called a p-use, and if it is elsewhere in the
code, it is named a c-use.

Structural entities of a program can be represented by means of a graph. Although many
alternatives exist in the literature [102|, we will restrict our attention to the control flow
graph [70]. A control flow graph G = (X,U) is defined by a set X of vertices and a
set U C X x X of arcs. Each vertex in X denotes a code basic block, excepting two
vertices labeled s and e, which refer to the program entry and exit. A code basic block
is a maximal sequence of code statements such that if one is executed, then all of them
are. An arc (z,y) € U, with and y distinct from s and e, is such that the control
of the program can be transferred from block x to y without crossing any other block.
Analogously, for every arc (s,z) € U or (y,e) € U, it will be possible to transfer the flow
of control from the entry to block x and from block y to the exit, respectively. We call a
vertices sequence 1,9, ..., T, wWith (z;_1,2;) € U, Vi € {2,...,n}, n € IN, a path from
x1 to Ty.

In this kind of graph, a statement is then represented by a vertex, a branch by an arc
(z,y) where outdegree(x) > 1, and a program path by a path from s to e in the graph.
Instead, to reflect defs, c-uses or p-uses associated to a program variable, the graph
needs to be enlarged with appropriate labels on the vertices. Such a modified control
flow graph is sometimes referred to as a data flow graph [49]. For a vertex z labeled
u, if outdegree(x) > 1, then a p-use is represented, otherwise a c-use associates. So,
given a program variable, a definition or an use in a code basic block might be reflected
by respective d or u labels in the corresponding vertex. Figure 3.2 illustrates a source
code together with derived control and data flow graphs. The source code corresponds
to a function, written in the C programming language [120], which, given three integers
representing the coefficients of a quadratic equation, elicites an integer-valued solution,
if it exists. The control flow graph of the function is shown in the middle of the figure,
and the data flow graph regarding variable x in the code, on the right side.

A code coverage criterion specifies a group of structural entities which have to be exercised
with a set of program inputs. Several coverage criteria have been developed in the
literature so far, which leads to different structural testing approaches. A few well-known
instances are described next; a more exhaustive list can be consulted in [17; 77; 78; 117].

47

3 Fundamental Concepts on Software Testing

int quad (int a, int b, int c)
1
double d=0, x=0;
if (a=0)
2 if ((b*b)-(4*a*c)<0)
3 x=0;
4 else {
d=(b*b)-(4*a*c);
x=(=b+(int)sqrt(d))/(2*a); }
5 else
x=(=c)/b;
6 if ((a*x*x+b*x+c)==0)
7 printf(“integer solution: %d" x);
8 else
printf("no integer solution");
9 }

Figure 3.2: Example source code, its associated control flow graph (middle) and enlarged
control flow graph (right).

e In statement coverage, every code statement is chosen to be exercised by a set of
program inputs, i.e. the whole set of vertices in the corresponding control flow
graph must be covered.

e Branch coverage is a classical criterion stating that every branch in the source code
must be exercised at least once. Thus, in the associated control flow graph, this
implies the coverage of every arc (z,y) with outdegree(z) > 1.

e All c-uses coverage involves the defs and c-uses of all the program variables. Ac-
cording to this criterion, the set of inputs must exercise, for every variable, a
definition-clear path from each def to each c-use. Given a def and an use (ei-
ther c-use or p-use) of a variable v, a definition-clear path is a sequence of state-
ments between def and the use such that no other definition of v is contained in
it. From the graphical point of view, this criterion settles that, in the data flow
graph G = (X, U) of each program variable, V{x1,z2} € X with x; labeled d and
x9 labeled u and outdegree(xs) < 1, a path x1,y1, ..., Yn, T2 where y; is not labeled
d, Vi€ {1,...,n}, n € IN, must be found.

e Similarly to the previous criterion, all p-uses coverage requires the set of program
inputs to exercise, for every variable in the code, a definition-clear path from each
def to each p-use. The analogy in the data flow graph G = (X, U) of each variable,
is that V{z1,z2} € X with z; labeled d and x2 labeled u and outdegree(xzy) > 1,
a path ©1,y1, ..., Yn, T2 where y; is not labeled d, Vi € {1,...,n}, n € IN, must be
found.

48

3 Fundamental Concepts on Software Testing

e Path coverage is the most demanding coverage criterion, as all the paths in the
program structure are considered for execution. That is, in the associated control
flow graph G = (X, U), every path from s to e needs to be covered.

Complexity of code coverage criteria

Depending on the coverage criterion and the program at hand, generating a set of inputs
that satisfies a testing approach may result in an extremely hard task.

Several relations have been proposed in the literature to compare coverage criteria; to
name a few, power, narrows, probbetter or properly covers |77; 249; 250]. Regarding the
relative difficulty of satisfying criteria, the subsumption relation is one of the most popular
[52; 249]. Informally, given a program and two criteria C; and Cy, Cj subsumes Cj if
any set of inputs which fulfills C; also fulfills C5. Subsumption is reflexive, antisymetric
and transitive, so it is a partial ordering. According to this, statement coverage is the
easiest amongst the previous criteria while path coverage is the most difficult. Figure 3.3
shows this relation for some classical code coverage criteria. An arc from criterion Cj to
criterion Cy denotes that C'; subsumes Cs.

path coverage

| all DU coverage|

| all uses coverage|

N

all c-uses and some all p-uses and some
p-uses coverage c-uses coverage
| all defs coverage| | all p-uses coverage|

| all branches coverage|

™~

| all statements coverage

Figure 3.3: Subsumption relation between code coverage criteria.
Path coverage is exhaustive in the sense that the whole structure of the program is tested.

However, it usually becomes unfeasible due to the prohibitive number of paths; this can
be noted just by considering the loops in the graph. Instead, statement testing is the

49

3 Fundamental Concepts on Software Testing

/* previous code segment */

if (x==0 & & y>0)
/* basic block where variabley is not defined */

if (y<0)
/* basic block */

/* next code segment */

Figure 3.4: Example of an infeasible branch.

less demanding criterion, though its restriction to the coverage of the code basic blocks
is deemed insufficient. Nowadays, branch testing is referred as the minimum mandatory
coverage criterion [17].

On the other hand, program computations and semantics determine the inputs exercising
a given entity, making the test data generation arbitrarily complex. In fact, not all the
entities are exercised often. Moreover, the effect of program semantics may result in an
entity whose coverage is impossible. Such a case may occur when the program finishes
unexpectedly due to a failure, or when the entity is infeasible. An entity is called infeasible
if there is no input capable of exercising it. For example, the branch represented by the
second if statement in the code segment of Figure 3.4 is infeasible, since y > 0 and
y < 0 must occur in order for it to be covered. Unfortunately, the problem of discovering
whether an entity is infeasible results undecidable |77; 251|, so executable entities cannot
be known a priori in every case.

Hence, there is a need to determine the level of completion attained by a set of inputs.
This is what the coverage measurement indicates, i.e. the percentage of entities exercised
for the particular code coverage criterion.

Automatic test data generation for code coverage criteria

As noted above, the creation of program inputs fulfilling a given code coverage criterion
is not trivial. This, together with the fact that in most organizations input generation
is performed manually [68; 144[, results in a high amount of resources dedicated to such
task. The automatic generation of test data is hence worthwhile, and some authors
suggest it is even vital for the software testing area [176].

Though many are the possibilities, automated structural testing is typically reached by
means of random, static or dynamic input generation methods [72].

A random method relies upon a probability distribution for sampling all the inputs. In
spite of its simplicity, the performance obtained tends to be poor for complex programs

20

3 Fundamental Concepts on Software Testing

[72], since the distribution is often chosen without regard to any information on the
program at hand. Therefore, the most popular random method so far consists of the
uniform distribution, which is used to serve as a basic benchmark for comparison with
more sophisticated techniques.

On the other hand, static and dynamic methods are based on knowledge derived from
the program structure. The main feature of static methods is that program execution
is not required to create test inputs, since they are obtained through a static analysis
of the source code. Most of the approaches are inspired on the technique named sym-
bolic execution [42]. This technique consists of choosing an entity from the program
structure, and assigning a system of inequalities in terms of the input parameters. The
system is built by substituting variables affecting the entity with symbolic values while
respecting the constraints associated with the conditions in the code. A solution to the
system is then an input exercising the selected entity. In [57], a more recent work using
this technique can be consulted. Symbolic execution suffers, however, from well-known
problems which limit its performance. The method requires a lot of computational re-
sources, as expressions in the source code have to be resolved and transformed. In case
a program variable depends on a function call, no related inequality can be constructed
if the source code of the function is unavailable. Furthermore, the resulting system of
inequalities could be hardly solved, e.g. if it is nonlinear. Other difficulties arise with
array structures, pointers and loops [122; 143].

In contrast to static, dynamic methods execute the program in order to generate the
test inputs [122; 148]. While such methods must incur the overhead associated with
actually executing the program under test, many of the drawbacks of static methods are
overcomed. Moreover, the information available at run-time is exploited to guide the
generation of inputs. More precisely, the underlying idea is addressing the automatic
generation of test data as an optimization problem [148]. An instrumented version of the
program is constructed, i.e. the program is expanded with instructions that will extract
information concerning the execution of an input. The collected information is used to
assess the closeness of the executed inputs to cover the desired structural entities and
guide the search towards new inputs to be executed. In [122], the obtained information
determined a function value assigned to each input after execution. The objective was
to find an input minimizing its function value, which only occured when reaching the
target entity.

Finally, attempts have been developed to combine both the static and dynamic methods.
For instance, in [174], a technique called Dynamic Domain Reduction is presented which
traverses the control flow graph by symbolically executing the code associated to each
vertex.

ol

3 Fundamental Concepts on Software Testing

3.5 Search Based Software Test Data Generation

The automatic generation of test inputs has turned into one of the most challenging
problems in the software testing area. An alternative which is deserving the interest of
researchers in recent years is Search Based Software Test Data Generation (SBSTDG)
[144]. This field alludes to the selection of program inputs making use of heuristic search
techniques during the process. The manner in which the heuristic technique takes part
remains open, so the optimization point of view in dynamic test data generation is gen-
eralized to any other testing approach. In fact, the idea of employing such optimization
methods has also been applied in the testing of other manufacturing products, e.g. hard-
ware integrated circuits [46].

Most of the works to date have concentrated on functional and structural testing. Ap-
pealing approaches have been proposed for the functional strategy, e.g. safety critical
software testing [240] or temporal behavior testing [194]. However, these are out of the
scope of the present work, so, in the following, only the structural perspective is dis-
cussed, emphasizing branch testing where remarked. A well crafted and extensive review
of SBSTDG can be consulted in [144].

3.5.1 The General Scheme

Many of the works developed for structural testing are based on a dynamic test data
generation strategy. So, these works consist of choosing the entities to be exercised and,
then, searching for the inputs covering them via a heuristic search method. Thus, it
is common to more or less follow the general scheme in Figure 3.5. This scheme is an
iterative two-step process where, firstly, a previously identified structural entity is selected
(a branch, for instance) and marked as an objective. In the second step, the objective
entity is assigned a function dependent on the program input, and its optimization is
sought. This objective function is formulated in such a way that, if an executed input
exercises the objective, the value is optimum. Otherwise, the value is proportional to
how close the input is to the objective coverage. Consequently, in order to obtain the
function value of an input it must be previously executed on an instrumented version of
the program which will provide the information necessary.

Repeat until stopping criterion is met
E — Select objective entity to exercise
Obtain input optimizing function for £

Figure 3.5: General scheme for test input generation.

This way, the test data generation is tackled as the resolution of a number of optimization
problems, one for each objective entity. Early approaches relied on the use of classical

02

3 Fundamental Concepts on Software Testing

numerical optimization [148] and simple local search methods [122]. By constrast, more
recent works resort to global metaheuristics motivated by the fact that the search space
defined by the inputs is generally large and complex. Previous classical methods perform
poorly in such spaces, as they easily fall into local optima or become unfeasible com-
putationally. Therefore, more sophisticated optimization techniques become a suitable
alternative.

For the selection step in Figure 3.5, rather than applying a general rule to determine the
objective entity, each approach usually implements a particular alternative [30; 143; 177;
248|. In any case, a common practice is to determine the objective entity somehow with
the help of the control flow graph of the program at hand.

The next step of the scheme in Figure 3.5 tackles an optimization problem. That is,
given the search space {2 formed by the program inputs and a function f :) — IR, find
x* € Q such that f(x*) < f(x) Y& € Q. From now on, we restrict our attention to
the case where entities are branches. Once again, the reader is referred to the survey by
McMinn [144] for a discussion about other entities; in [247|, a recent study on objective
functions for path coverage can be found.

Thus, for branch testing, a classical strategy to create the objective function is the follow-
ing. Given an objective branch b and an expression A OP B of the conditional statement
COND associated with b in the code, with OP denoting a comparison operator, the
value for an input « is determined by:

M if COND not reached
f(®) =1 d(Ag,Bg)+ K if COND reached and b not attained (3.1)
0 otherwise

where M is the largest computable value, Ag and By are appropriate representations of
the values taken by A and B in the execution, d is a distance measurement, and K > 0
is a previously defined constant. Typically, if A and B are numerical, then Ag and By
are their values and d(Ag,Bx) = |Ax — Bx|. In the case of more complex data types,
a binary representation of the values for A and B can be obtained and, for instance, let
d(Ag, Bg) be the Hamming distance [235].

In case COND involves a compound expression, the overall objective function is con-
structed from the partial functions for each subexpression. Given two subexpressions C
and Cy with their respective functions f; and f5, and an input @, the value for the logical
expression Cy V Cy is min{ f1(x), fa(x)}, the logical expression C; A Cj is calculated as
fi(x) + fo(x), and for =C the value is known by propagating the negation inside Cj.
By applying the associative and commutative properties to different logical expressions,
the overall value for f is obtained.

93

3 Fundamental Concepts on Software Testing

3.5.2 Improving the Objective Function

The previous type of objective function suffers from well-known drawbacks, some of which
have no clear solution yet. For example, if the comparison operator in the conditional
expression is #, the function only takes three values and becomes plateau shaped. In
order to solve this flaw, several possibilities based on code transformations are described
in [101] and [15]. In [27|, other weaknesses are identified and a number of alternatives
are proposed to overcome them.

To a certain extent, these limitations may be alleviated with the objective function
presented in [248]. In addition to the distance in the conditional statement COND of
the objective branch, a condition distance is used for the inputs not reaching COND.
This distance considers the path from s to e in the control flow graph, taken by an
input during program execution. Denoting by wv. the vertex in the control flow graph
representing COND, and by v, the nearest previous vertex to COND in the path
followed by the input, the distance value is calculated in terms of the number of branching
vertices straying from the path between v, and v,. Therefore, the function in equation
3.1 is extended, maintaining the notation, as follows:

de(ve, vp) if COND not reached
f(x) = Lf((;(lffigitff() if COND reached and b not attained (3.2)
0 otherwise

where d,. is the condition distance and L > 0 is a previously defined constant. Notice that
L is employed to ensure that the function value when COND is not reached surpasses
the value when COND is reached but b is not attained.

In this manner, if an input was unable to reach the condition, instead of assigning it the
worst value (M), the proximity to the condition is taken into account and the objective
function is smoothed with regard to equation 3.1.

3.5.3 Applied Metaheuristics and Extensions

Apropos the metaheuristic employed to solve the optimization problem, the most preva-
lent choice has been the GA. This technique was applied for branch coverage by Sthamer
[235] and Wegener et al. [248]. The former compared binary and gray coded represen-
tations of the program inputs. However, no clear conclusion could be drawn as to which
of them was superior. In the latter work, excellent coverage results where obtained with
a parallel GA using a function of the form of equation 3.2 to calculate the fitness of the
individuals. In contrast, in the work by Pargas et al. [177], fitness is only the condition
distance described above. GAs have also been chosen for other testing criteria like, for
instance, path coverage [135] and condition/decision coverage [143]. This last coverage

o4

3 Fundamental Concepts on Software Testing

criterion has been recently faced through Evolution Strategies [3]. Metaheuristics pro-
posed in other works include Simulated Annealing [241|, Tabu Search [58] and EDAs
[212]; all tackling branch coverage with the classical objective function. In [213], Scatter
Search was selected for the optimization step. Besides, a collaborative scheme between
this method and EDAs was developed.

Although the metaheuristic technique deals with one optimization problem at a time, the
real goal of the test case generation is to solve a set of problems. Several approaches in
the literature have taken this into consideration to improve the process. The alternative
suggested by some works is to profit from the good solutions found by not only evaluating
an input for the current objective entity, but also with regard to all the others. Each
entity is assigned a set containing the best inputs so far which are used to seed the initial
phase of the metaheuristic [248; 212|. Similarly, in [143], the set of an entity is composed
of the inputs just reaching the condition associated with the entity. Moreover, this type
of strategy is employed for different testing criteria. For instance, the work by Bueno
and Jino [30] deals with path coverage, and a set of inputs exercising a selected path
is sought at each step; thus, the initial population of a GA is seeded with the closest
sets of inputs to covering the path from those stored in a base pool. In contrast, in
the approach for path coverage described in [105]|, a multiobjective optimization view is
adopted. This system uses a GA where an individual represents an input and the fitness
value is obtained from a weighted sum of the proximities to the coverage of each path.
An appealing alternative is developed in [209; 211], where strategies are proposed for
searching in the most promising regions of the input space with the aim of enhancing the
test data generation process.

Indeed, it should be marked that there are other strategies for structural test data gener-
ation, aside from the one outlined in Figure 3.5. For example, in [230], a GA is used once
again. However, in this case, an individual corresponds to a set of test inputs, and the
fitness is the coverage reached by the set after execution. This way, the problem of gener-
ating a set of test cases to fulfill an adequacy criterion is faced from a pure Evolutionary
Algorithm view, where an individual represents a solution to the whole problem.

3.5.4 An Example of the General Scheme

To sum up, the preprocessing required to automate the generation of test data for branch
coverage following the general scheme in Figure 3.5 should be noticed. Figure 3.6 illus-
trates this by showing an example program, written in the C programming language,
and the elements to be induced from it: the control flow graph and the instrumented
program version. The reduced box on the right represents the information supplied by a
hypothetical execution of the instrumented program.

The graph is used to select the next objective branch whose coverage will be pursued,
for example, branch (2,3). A GA could be used in the optimization phase. Thus, an

95

3 Fundamental Concepts on Software Testing

int quad (int a, int b, int c)
1 {
double d=0, x=0;
if (al=0)
2 if ((b*b)-(4*a*c)<0)
3 x=0;
4 else {
d=(b*b)-(4*a*c);
x=(=b+(int)sqrt(d))/(2*a); }
5 else
x=(=c)/b;
6 if ((@*x*x+b*x+c)==0)
7 printf("integer solution: %d",x); int quad_instr (int a, int b, int c)
8 else 1 { be. init(
intf("'no i ion™): robe_ini
9 }p”ntf(e mteW \\ Brobe outgl)
probe_ d|st(0 a 0)

double d=0
if (a!=0) {
2 probe_out(2);
O s R
3 Iprobe out(3);

1 N\
4 eIs% @, 21
probe_out 4276
d=§b b)-(4*a*c); 5
b+(int)sqrt(d))/(2*a); } 7
> pr%bé out(5); 95
X=(-C)Ib; 10

6 probe_ out(6)
probe_dist(0,(a*x*x+b*x+c),0);
If ((a*x*x+b*x+c)==0) {
7 probe out(7);
printf(‘integer solution: %d",x); }
8 else
probe out(8);
printf("no integer solution"); }
9 }probe - out(9);

Figure 3.6: Example of source code, control flow graph, instrumented version, and output
information.

o6

3 Fundamental Concepts on Software Testing

individual is a representation of the program input, i.e. three integers. If the inputs set
strategy described above is applied, the initial population of the GA could be seeded
with the set associated to branch (2,3).

Each input generated during the search is executed on the instrumented program version
in order to elicit its fitness function value. The instrumentation results shown in the
reduced box of Figure 3.6 correspond to input (1,20,31). The first number in each line
of the box contains the traversed basic block and, if the previous block had a condition
with an expression A OP B, one more number is included which is the value of | A—B| in
the execution. Using this information, the value of the condition distance (d.) shown in
equation 3.2 can be obtained. However, this is not necessary, as input (1,20, 31) reaches
the condition of branch (2,3). Hence, according to equation 3.2 and taking K = 1 and
L = 1000, f(1,20,31) = % = 0.2169. Although the input is already evaluated
for the GA, the instrumentation results are used to calculate f(1,20,31) with regard to
the rest of the branches. This way, if (1,20,31) is a high quality input for a different
branch, it is stored in the set of the corresponding branch.

Once the search finishes, a new round of the scheme in Figure 3.5 is performed until, for
instance, every branch has been selected as an objective.

o7

3 Fundamental Concepts on Software Testing

o8

4 Software Test Data Generation by
means of EDAs

One of the most important issues in software testing is the generation of the program
inputs used during the test. Particularly, branch coverage is considered nowadays a
basic criterion to be fulfilled. On the other hand, EDAs are deserving the attention of
the Evolutionary Algorithms community, partially supported by the outstanding results
obtained in some problems. This chapter is devoted then to the application of EDAs to
the problem of finding test inputs for satisfying branch coverage.

Firstly, the system developed for coping with test data generation is explained. Then,
the performance of a handful of EDAs, involving several types of probabilistic models, is
evaluated through extensive experimentation. In addition, results of EDAs are compared
with those of previous works using GAs, yielding interesting conclusions on the adequacy
of the formers for tackling this problem.

4.1 Motivation

As remarked in the previous chapter, a major issue in software testing is the automatic
generation of the inputs to be applied to the program under test. Approaches based
on SBSTDG have been offering promising results and, hence, they constitute nowadays
a serious alternative to accomplish this task [144]|. Until now, works in the SBSTDG
literature have concentrated on the use of GAs and, occasionally, on other methods, e.g.
Simulated Annealing [121] or Tabu Search [88]. Many other metaheuristics can be ex-
ploited however; for instance, most modern techniques could be an appealing alternative.

Thus, considering the high relevance of the test data generation, we deem worth to study
the application of EDAs. The wide range of possible probabilistic models offered by
EDAs turn them into a flexible tool for tackling arbitrarily complex problems. In fact,
these metaheuristics have already been applied to several problems with excellent results.
Just to name a few works, in [112|, Feature Subset Selection was dealt with by means
of an EDA which required fewer generations to obtain the same quality results of other
Evolutionary Algorithms. In [156], EDAs were compared with other approaches for the
resolution of the Graph Bipartitioning problem; EDAs reached the best solution values
in all the problem instances.

29

4 Software Test Data Generation by means of EDAs

Indeed, tackling the test data generation is also interesting from the EDAs point of view as
it allows to evaluate their performance when applied to a demanding and significant real-
world problem. By employing alternative probabilistic models, able to reflect different
orders of dependencies between variables, it can be checked whether sophisticated EDAs
become more adequate than simple ones in this context.

Amongst the different levels at which the test proceeds, unit testing usually accounts for
the bulk of the failures detected [17]. On the other hand, a common strategy for test
data generation consists of obtaining a set of inputs fulfilling a code coverage criterion.
Branch coverage is specially relevant, since it is considered the minimum mandatory
criterion [17]. So, in the alternative described here, we deal with branch coverage for
unit testing of programs writen in the C or C++ language.

4.2 The Optimization Approach

The approach follows a dynamic strategy, that is, the coverage of a branch consists
of finding the minimum of a function previously assigned to it. Hence, the test data
generation can be posed, in general terms, as a set of optimization problems to be solved.

Each of these problems may be stated as follows: given the input domain €2 and a function
f: Q2 — R, find z* € Q such that f(x*) < f(x) V& € Q. The problem is constrained,
as € is bounded by the finite representation capability of computers and, occasionally,
by the program specification. However, due to the arbitrary nature of programs, the
rest of characteristics to locate the problem remains open, e.g. input parameters can
be scalars or functions, or f can be multimodal or not. Nonetheless, in order to enable
the automatization of the process, we will assume a black-box optimization problem,
that is, no knowledge is inferred from the objective function. To depart from a simple
approximation, f is formulated according to equation 3.1.

4.3 System Framework

The system conforms the general scheme in Figure 3.5. The selection phase follows the
option proposed in [248], where a set with the best inputs found so far was associated with
a branch during the process, and the branch with the highest quality set was selected as
the objective. The optimization step of the scheme allows for the application of several
EDAs. Each code branch is associated with one of the three following states: covered,
treated but uncovered, and untreated. The stopping criterion is full coverage achievement
(all branches in the covered state) or unsuccesful treatment of every unexercised objective
branch (branch in the treated but uncovered state).

60

4 Software Test Data Generation by means of EDAs

The system manages infeasible branches like any other one and, therefore, it seeks their
coverage. Once the inputs generation process finishes, these branches will be labelled as
treated but uncovered, and it might be determined whether their coverage is impossible
or whether the system was merely unable to find an input exercising them.

Next, both the optimization and selection steps are described in detail.

4.3.1 Optimization Phase

Given the objective branch, this phase tries to solve the optimization problem raised in
Section 4.2 by means of an EDA.

An individual is composed of a 0-1 string representing an input, so that each input pa-
rameter is associated a 0-1 substring. In the current implementation of the approach,
three parameter types are considered: integers, reals and characters. In the case of an
integer, the 0-1 substring represents the parameter following a 2’s complement represen-
tation. For real numbers, the IEEE floating point codification is used instead, and for a
character type, a sign-magnitude codification is employed. In this last case, the number
obtained results in a character, according to the ASCII code table. The reason for choos-
ing such representation systems [246] relies in the fact that they are usually employed
by computers for making the same transformations to internal variables. Since program
inputs are to be run in computers, these representations make sense then. Anyhow,
for more complex parameter types, an appropriate transformation should be defined to
obtain the input parameter value.

The fitness value of an individual is given by function f, defined as in equation 3.1.
Information needed to calculate the fitness value is obtained from the performed instru-
mentation on the program. This instrumentation returns the values of expressions for
conditional statements during the execution of the input represented by the individual.

Each branch is bound with a set of individuals which is used as the seed population for
the EDA when the branch is the objective. Thus, although the objective branch is fixed,
each individual is evaluated according to every other uncovered branch. If the branch is
exercised, its state is marked as covered and the input is stored. Otherwise, if the fitness
of the current individual is better than the worst individual in the set associated with
the branch, then the latter is replaced by the new better individual and, if the branch
had previously been treated, its state is marked as untreated. This notion of seeding has
also been exploited in other works [143; 248|. Figure 4.1 shows the evaluation algorithm
for an individual x;. The value of function f associated with branch b for a given input
x is represented by fy(x).

The EDA finishes when either the minimum is found, i.e. an input covering the objective
branch is found, or a maximum number of generations is reached. In the first case, the
objective branch state is marked as covered and in the second as treated but uncovered.

61

4 Software Test Data Generation by means of EDAs

x « Translate individual x; to input
Execute instrumented program with x
Repeat for each uncovered branch b

Iy — folz)
fi’ « Find the fitness of the worst individual x,, in the set associated with b
If f; < f'
Substitute x,, by @; in the set associated with b
If fg =0
Mark b as covered
else

Mark b as untreated
If b is the objective
fitness «— fg
Return fitness

Figure 4.1: Evaluation algorithm pseudocode.

Any EDA approach can be applied. However, assumming the use of the relations between
variables benefits the search, multivariate EDAs seem to be more adequate for this prob-
lem than simpler alternatives, as the existence of variable interdependencies appears to
be evident. Often, input parameters act over program variables which, in turn, interact
affecting other variables and so on, leading to non-linear combinations that determine
the branches followed by the control flow.

As can be noted, at each generation, a probability distribution is learnt and used to
generate new individuals. In other words, the input domain is sampled according to a
probability distribution. Therefore, the EDA follows a random test data creation strategy
inside each generation. On the other hand, the probability distribution is obtained from
the selected individuals, and these are chosen with respect to their fitness, i.e. a dynamic
test data generation tactic is adopted. Consequently, this approach can be described
as a hybrid between random and dynamic test data generation. This allows for the
outlining of the behavior of the referred method, from the testing perspective, as a
random generation of inputs which, at each generation, updates its distribution on the
basis of the ones already generated.

4.3.2 Selection Phase

A control flow graph is used to identify the branches at the initialization stage and to
help deciding which branch to select next during the process. Recall that, in a control
flow graph, branches come defined by every arc (z,y) with outdegree(x) > 1.

62

4 Software Test Data Generation by means of EDAs

fbest 0
objective «— ()
tie — false
Repeat for each untreated branch b
f, «— Average fitness of the individuals associated with b
If iy < [oest
fbest — fb
objective < b
tie — false
If fb = fbest
tie < true
If tie = true
objective « Breadth first search between branches with f,,., value
Return objective

Figure 4.2: Selection algorithm pseudocode.

Candidate objective branches are those in the untreated state. The branch objective
will be the one for which the mean fitness of its associated individuals is the best. In
case there is a tie, then a breadth first search is carried out, i.e. from the tied branches,
the one with the lowest level in the control flow graph is selected. A pseudocode of the
selection algorithm can be observed in Figure 4.2.

The underlying idea is facing the optimization problem with the most promising popu-
lation seed available at that moment. As one can see, it is possible for a branch already
treated to be a candidate objective once again if, during optimization, a new individual
is introduced in its set. The reason for this is that the mean fitness in the set is better
than in the previous optimization process and could result in a promising population
seed.

4.4 An Execution Example

As an illustration of the developed approach, some of the steps of a hypothetical system
execution will be explained. The example function used in the previous chapter will be
employed once again. Recall that the input of this function consists of three integer-
valued parameters. For the sake of clarity, Figure 4.3 presents again the function and
the elements to be induced from it.

First of all, the control flow graph is obtained and an instrumented version of the program
constructed; both are shown in Figure 4.3.

63

4 Software Test Data Generation by means of EDAs

A WN

w0 ~NO®

int quad (int a, int b, int c)

{
double d=0, x=0;
if (al=0)
if ((b*b)—(4*a*c)<0)
x=0;
else {
d=(b*b)-(4*a*c);
x=(=b+(int)sqrt(d))/(2*a); }
else
x=(=c)/b;
if ((@*x*x+b*x+c)==0)
printf("integer solution: %d",x);

else
printf("no integerSolution™);
}

int quad_instr (int a, int b, int ¢)

probe_init(
probe_ outel)

probe_ d|st(0 a 0)
double d=0
if (a!=0) {

probe_out(2);
probe_dist(0,((b*b)—(4*a*c)),0);
if ((b*b)—(4*a*c)<0) {

probe out(3);

els% t(4);

probe ou

dzéb b)-(4*a*c);
{b+(|nt)sqrt(d))/(2*a) }

else
probe_out(5);

x=(=c)/b;

probe_ out(6)
probe_dist(0,(a*x*x+b*x+c),0);

If ((a*x*x+b*x+c)==0) {

probe out(7);

printf(‘integer solution: %d",x); }
else

probe out(8);

printf("no integer solution"); }
probe_out(9);

PO~NUDNPR

Figure 4.3: Example of source code, control flow graph, instrumented version, and output

information.

64

4 Software Test Data Generation by means of EDAs

After an execution of the instrumented code, an output file contains, at each line, the
traversed basic block and, if the previous block had a conditional statement, the values
of the (sub)expression(s) in it calculated according to equation 3.1. As seen in the figure,
the instrumentation uses three artificially created probe functions. At the beginning,
the call to probe init initialises the output file and a required memory vector. The
probe_ dist function calculates an appropriate distance measurement between the second
and third parameters and stores the result in the position of the memory vector given by
the first parameter. In this example, the distance will always be the absolute value of the
difference between the parameters, as they are numerical. The probe out function writes,
in the output file, a new line containing the basic block number given as a parameter
and, if any, every (sub)expression value in the memory vector. An example of an output
file is also presented in Figure 4.3.

In the system startup, program branches are detected from the control flow graph and
bound with a population of individuals created by sampling a uniform distribution.

Once this is done, the test case generation iterative process begins. Assuming that the
branch defined by arc (2, 3) is selected as the objective in a round, an EDA will pursue
its coverage. Following equation 3.1, with K = 1, the objective function is

M if block 2 not reached
f(x)=1< |(0*—4-a-c)—0]+1 ifblock 2 reached and block 3 not reached
0 otherwise

where & = (a,b,c) and M is the highest computable value.

Representing each integer-valued parameter with 16 bits, an individual will be a 0-1 string
of length 48. For its evaluation, this string is translated into a program input which will
be given to the instrumented program for execution. Supposing that the input obtained
is (1,20, 31), then the instrumentation results are those of Figure 4.3. The fitness of the
individual will be the value of f for the input. As the exercised branch was (2,4), in the
line of block 4 the result of |(b> —4-a-c) — 0] is given, so f(1,20,31) = 276 + 1 = 277.
Although the individual is already evaluated, the performed execution is not discarded
and the output file is used to calculate the function value for every branch different
from the objective. If the value improves the fitness of the worst individual in the set
associated with a branch, then this worst individual is replaced by the actual one and
the branch is marked as untreated.

The EDA will run for branch (2,3) until a maximum number of generations is reached
or the minimum of f is found. In the first case, the branch is marked as treated but
uncovered and in the latter as covered. Once the EDA finishes, another iteration of the
overall process begins.

65

4 Software Test Data Generation by means of EDAs

4.5 Experimental Evaluation

In order to observe how this approach performs in practice, several experiments were
carried out. A handful of EDAs overviewed in Section 2.3 are considered to generate
test inputs for a number of programs extracted from the literature [143; 235; 248]. The
purpose of the evaluation is twofold: analyzing the performance of the approach with
different EDAs and comparing their results with those attained by other alternatives.

4.5.1 Experimental Setting

The experiments involved seven classical programs which are commonly used for vali-
dation in the field. Although most of these programs implement relatively simple al-
gorithms, their source codes include a number of challenging branches for a test data
generator. Anyhow, difficultness of branch coverage depends on the source code, so
the implementations used here were those employed for experimentation in other works.
Programs are outlined next.

ClassifyTriangle

This is a popular program in software testing experimentation. An input is composed
of three numerical parameters, each representing the length of a segment. The aim is
to detect the triangle type, if any, associated with the input. Four different versions
were used. The Trianglel program [248] has three integers as input parameters, which
in the experiments took values in the interval [-16384,16383]. Triangle2 [248] is the
same as Trianglel with floating point parameters instead; the interval for each was
[—98304,98304]. On the other hand, Triangle3 [143] is a new implementation where the
parameters are integers for which the interval [-512,511] was chosen. Finally, Triangle4
[235] constitutes a distinct implementation once again; the selected interval for its integer-
valued parameters was [—512, 511].

Atof
Given a string of characters as input, Atof [248| transforms it into a floating point number

if possible. For the experiments, the input string length was 10 characters codified with
7 bits each (the ASCII character set).

66

4 Software Test Data Generation by means of EDAs

Remainder

This function [235| calculates the remainder of the division of two integers. There-
fore, an input is composed of two interger-valued parameters for which the interval
[—32768,32767] was chosen during experimentation.

Complexbranch

In this case, there is no specific functionality as it is a function artificially created for
testing purposes [248]. Its main characteristic is the existence of several hard to cover
branches in the code. Six integer-valued parameters form an input taking values in the
interval [—512, 511].

In order to have an idea about the programs characteristics, Table 4.1 reflects the values
for several structural complexity measurements [228]. The branch number column shows
the number of branches, i.e. the number of optimization problems to be solved. Branch
nesting depth points out the maximum nesting level for the branches in the code, that is,
the maximum number of conditional statements that must be adequately fulfilled to cover
a branch. In Myers interval, the lower bound is the number of conditional statements
plus 1 and the upper bound is the number of expressions of conditional statements plus
1, thus referring to the compound expressions.

These measurements give a clue about the intricacy level of the structure of the source
code. However, care must be taken of misinterpreting them as they do not necessarily
represent the complexity of the program with regard to branch coverage. According to
the approach here exposed, the complexity of an objective branch attainment will be
defined by two sources:

e the difficulty in reaching the associated conditional statement; if it is hard, then
many individuals will take the value M as fitness and the landscape will be plateau
shaped,

e the function determined by the distance when the conditional statement is achieved.

The experiments involved several EDAs described in Section 2.3, namely: UMDA, PBIL,
MIMIC, TREE, EBNAko 4 pen and EBNAgjc. That is, two EDAs from each of the three
types described in Section 2.3 were chosen. For the PBIL algorithm, the value of the «
parameter was set at 0.5. For each EDA and each program, four different population sizes
as well as four values for the maximum number of generations were considered. Notice
that the evaluation of an individual implies the execution of a program, which may turn

67

4 Software Test Data Generation by means of EDAs

Program name Branch number Branch nesting depth Myers interval

Trianglel 26 7 (14 : 21)
Triangle2 26 7 (14 :21)
Triangle3 20 6 (11:18)
Triangled 26 12 (14 :14)
Atof 30 13 (16 : 41)
Remainder 18 5 (10 : 10)
Complexbranch 22 5 (11 :23)
Table 4.1: Characteristics of experimental programs.
max. generations
pop.size 50 100
UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K2
50 3965 3205 3625 2945 3700 3960 5145 5480 4460 5035 7545 6665
96.92 98.08 97.69 98.46 96.92 96.15* 97.69 97.31 98.08 97.31 96.54 96.92
100 6900 6530 5210 4360 6330 5540 6380 7920 7060 7100 13110 10080
97.31 98.08 98.46 99.23 97.69 98.08 99.23 98.85 98.85 98.46 96.15* 97.31
200 10900 13120 10300 8660 10160 6120 10300 13000 10720 8860 7120 9620
98.46 98.08 99.62 99.62 98.08 99.62 99.62 100 99.62 100 100 99.23
400 21640 25320 18120 16600 13480 12000 21160 30560 19400 14520 13360 14840
99.62 99.23 99.23 99.62 100 99.62 100 99.62 100 100 100 99.62
200 300
UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K2
50 6535 8250 7055 7755 11690 10765 8005 14135 5675 10475 19090 22115
98.46 97.69 99.23 98.08 96.92 96.92 98.46 96.92 99.62 97.69 96.15* 96.15*
100 16050 10580 6150 8120 15430 16560 8000 13790 11130 15530 21340 20720
97.69 99.23 100 99.23 98.08 97.31 99.62 98.85 99.23 98.46 97.69 98.08
200 16640 12840 16640 8900 14200 17200 14680 20380 8820 14260 13160 6560
99.23 100 99.23 100 99.23 98.85 99.62 99.62 100 99.62 99.62 100
400 21080 30440 20840 16320 21720 17960 31960 27960 21400 17680 25320 22920
100 100 100 100 99.62 99.62 99.62 100 100 100 99.62 99.62

Table 4.2: Results for Trianglel.

the test data generation in a computationally expensive process. Thus, we restricted to
ten executions of the generator for each combination of the parameters.

Within an EDA, at each generation, half of the population was selected according to a
rank-based strategy. New individuals were simulated from the learnt probability distri-
bution by means of Probabilistic Logic Sampling [104], and the population was created
in an elitist way.

In Tables 4.2 to 4.8, the results from the experiments are shown. In each cell, the average
results from the ten executions are provided. The first row provides the average number
of generated test inputs during the process and the following is the average coverage
measurement. If the highest coverage achieved in the ten executions is not 100%, then
this value is labelled with an asterisk.

68

4 Software Test Data Generation by means of EDAs

max. generations

pop.size 50 100
UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K2
50 3315 4215 3225 4920 5145 4305 7365 7620 5565 7385 6215 8885
96.92 96.54 98.08 97.69 95.77 96.15 96.92 97.31 98.46 96.15 97.69 98.85
100 7330 6330 5730 4420 9860 9020 9120 9980 10430 6980 13150 18120
97.69 98.46 97.69 98.46 96.54 95.39 98.46 98.08 98.08 98.85 97.31 96.54
200 8840 9780 7360 8220 9660 8320 10940 6200 16300 19920 19980 8400
98.85 98.85 99.23 99.23 97.69 98.85 99.23 100 98.85 97.69 97.69 99.23
400 12440 15720 16520 11680 11760 10920 211160 15160 13680 18160 16680 9360
100 100 99.62 99.62 99.23 100 100 100 99.62 99.23 99.23 100
20 30
UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K2
50 4085 7960 8555 10225 13825 17230 149755 25495 12795 10715 11385 16770
99.23 99.23 98.85 98.85 98.85 97.69 97.69 96.92 98.08 98.85 99.23 99.62
100 11080 14220 11510 16790 20360 21520 15470 21210 20600 17820 33980 23150
98.46 98.46 98.85 98.46 98.46 98.08 99.23 98.08 98.85 99.23 98.85 98.46
200 14920 23280 17960 17500 20820 12960 29060 13820 35100 32800 49000 23940
100 99.23 99.23 99.62 99.23 99.23 98.85 99.62 98.46 98.85 97.69 99.23
400 10640 14000 33400 12920 33960 26080 16280 12880 10800 21840 55320 22560
100 100 99.85 100 99.23 99.62 100 100 100 99.62 98.85 99.62
Table 4.3: Results for Triangle2.
max. generations
pop. size 50 100
UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K2
50 3150 2950 2960 3700 4485 4450 3090 3570 3780 4435 4990 7675
98 98 99 96 94 94.5 99.5 98.5 98 97.5 97.5 95.5
100 5440 5780 5990 3820 6930 5640 4790 5780 6740 3880 7240 4730
98.5 97.5 98 99.5 95 97.5 100 100 99 100 98 99
200 10500 9600 7820 8160 8300 8520 9300 11080 10340 8920 12940 10560
99 97.5 100 99.5 98 99 100 100 99.5 100 98 100
400 17600 21960 18840 18520 15480 16240 19400 27200 22320 15960 15320 15320
98.5 95.5 99.5 99.5 100 99.5 100 100 99.5 100 100 100
201 30
UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K2
50 4540 4700 5965 4965 9585 11500 3875 6750 4805 6580 15920 16405
99 99 99 99 98 98.5 100 98.5 99.5 99.5 98.5 98
100 5990 6220 7460 5330 7930 8010 6320 9240 8990 4080 12650 6660
100 100 99.5 100 99.5 99.5 100 99.5 99.5 100 99 100
200 10160 13960 10600 8600 13920 21380 10640 10420 8460 8640 13500 7080
100 100 100 100 99 98.5 100 100 100 100 100 100
400 18680 25000 21280 15440 21000 16440 20800 29600 21080 15200 21080 15800
100 100 100 100 100 100 100 100 100 100 100 100

Table 4.4: Results for Triangle3.

69

4 Software Test Data Generation by means of EDAs

max. generations

pop. size 50 100
UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K2

50 21975 20500 26205 10535 12630 12530 30700 26355 28955 18460 24300 24145

88.85* 89.62* 88.85* 89.23* 88.85* 85.39* 89.23* 88.08* 90.39* 89.62* 86.15% 88.08™

100 47600 48870 45870 24520 21140 16970 55660 48190 51010 30980 36930 40630

90.77* 93.08* 93.46™ 93.46 90.39* 90.77* 91.54 96.15 93.85 94.23 90* 90*

200 69820 96400 94980 37280 23500 17700 106960 99340 81320 31020 50560 28060

97.31 98.08 94.23 97.69 95.39 96.92 96.54 96.54 96.92 99.23 93.46 97.69

400 128120 119120 105400 43160 27960 22720 154000 158520 157480 45720 22760 48240

96.54 96.92 97.31 99.62 99.23 100 98.08 98.08 98.46 100 100 98.46

200 300
UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K2

50 50030 49755 43105 35835 49445 42035 53630 57515 47260 47815 67930 72610

89.62* 87.69* 91.15* 91.15* 86.92* 86.92* 93.46 91.15* 93.08* 90.77* 87.69* 86.92*

100 84000 77980 80290 51270 64230 68200 114520 113360 79920 55230 98600 118550

93.08 95 91.92 93.08™ 90.39* 90.39* 92.69 92.31* 93.46 94.23* 90.77* 89.23*

200 92220 107560 130800 43780 73680 67100 180200 151800 133480 52620 138280 132520

97.69 98.46 95.39 98.46 93.85 95.77 96.15 97.31 96.92 98.46 93.85 93.85*

400 147000 122040 168960 60840 50200 34560 225800 174880 141920 60800 86080 24080

99.23 99.62 98.08 99.23 98.85 100 100 98.85 99.23 100 98.46 100

Table 4.5: Results for Triangle4.
max. generations
pop. size 50 100

UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K2
50 13330 12675 13525 14350 6600 6555 9640 34050 12795 32230 7685 8850
87.33 87 89.33 87.33 97 98.33 98.33 81.33* 97 83.67 100 98
100 28850 17740 28310 30080 20380 13840 36670 37050 18090 40360 21970 20770
87 94.67 86.67 87 95 97.67 94.67 91.67 100 92 97 98
200 73780 46180 63140 62760 59020 72000 139280 43400 92780 119920 50460 54820
83 92.67 84.67 87 88.33 84.33 83 98.67 91.33 88.33 96.33 96
400 165400 164920 148760 157640 150720 131320 193720 125040 146160 150480 158040 196560
80.67* 88 88 87.33 80.67* 91.33 94 97 92.67 95 93.67 94.33

200 300

UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K2
50 9905 41790 9125 15665 11850 11015 17125 60995 13350 34315 14190 9505
100 88.67 99.67 99.33 99 99.67 99.33 88 100 96.67 99 100
100 31990 32340 22660 54370 28310 27800 32780 67940 30250 59550 27560 31380
98.67 97.67 100 94 98.67 99 99.67 94* 100 99.33 99.33 99.33
200 79920 89280 51400 104020 74760 68140 66100 119500 74020 115880 86260 65880
98.33 95 100 96.67 97 97.67 99.33 94.67 99 98 98.67 98.67
400 150520 105560 214480 259400 160160 147320 179920 180280 203200 203480 187520 221680
98.67 99 96 95.33 98.33 98.67 98 98 100 98.67 98.67 97.33

Table 4.6: Results for Atof.

70

4 Software Test Data Generation by means of EDAs

max. generations

pop. size 50 100
UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K2
50 2525 3275 2560 2360 3235 2370 6870 5985 4570 4745 6010 5510
95.56 94.44 95.56 96.11 93.89 96.67 92.78* 93.89 95.56 95.56 93.89 94.44
100 5310 6700 6310 4810 5130 5790 8410 14620 11690 7010 6260 7860
95 93.89 93.89 95.56 95.56 94.44 96.11 92.22 93.89 96.67 97.22 96.11
200 14140 13360 11340 4240 4920 6000 20600 20180 25500 12140 15920 2360
92.78 93.89 94.44 98.89 98.33 97.78 95 95 93.33 97.22 96.11 100
400 22520 28280 20640 10160 8200 5840 46640 43000 39000 15680 4200 11080
95 93.89 95 98.33 98.89 99.44 93.89 94.44 95 98.33 100 98.89
201 300
UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K2
50 12460 9830 13350 10295 6700 10475 12715 18555 18410 12490 17025 16995
93.33 95 92.78 95 96.67 94.44 95.56 93.89 93.33 95.56 94.44 93.89
100 15410 17370 20890 20730 24760 16870 48440 31430 22270 13110 30850 24850
96.11 95.56 94.44 94.44 93.33 96.67 91.11* 94.44 96.11 97.78 95 95.56
200 26820 41920 26000 14360 18040 29540 73320 50860 49820 31820 25520 19740
96.67 94.44 96.67 98.33 97.78 96.11 93.33 95.56 95.56 97.22 97.78 98.33
400 83760 62440 74600 19160 4000 3800 99640 136120 15920 3920 4320
94.44 96.11 95 98.89 100 100 95.56 93.89 95.56 99.44 100 100
Table 4.7: Results for Remainder.
max. generations
pop. size 50 100
UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K2
50 8030 7145 7765 6885 6855 6710 10570 12085 9845 9515 8555 10140
93.18 94.09 93.18* 94.55 92.73 92.27 95.46 95.46 96.82 95.46 96.36 95.46
100 12150 13570 13690 11490 10440 10320 14090 16070 15010 16510 11060 13120
96.36 95 95.46 95 95 95.91 97.27 99.09 97.27 95.91 99.09 99.09
200 20600 19920 21500 18100 13640 14060 24780 20340 18000 21800 18800 18380
97.73 96.82 95.91 97.73 97.27 97.73 96.82 98.64 99.09 97.73 98.18 98.64
400 24560 18680 24600 22200 23840 23360 27560 25240 27960 22960 22080 24240
98.18 99.55 98.18 99.55 97.27 97.27 99.09 99.09 100 100 100 99.55
200 300
UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K2
50 19875 17815 15480 17425 9320 10390 12275 22855 18760 18540 15510 12915
96.82 95.91 98.18 96.82 99.09 97.27 98.64 95 98.18 97.27 98.64 99.09
100 29050 20540 20070 16360 10860 11930 20920 22350 17130 21360 19400 17270
98.18 97.73 98.64 98.18 99.55 100 99.55 98.64 100 100 99.09 100
200 26200 21340 30300 22740 21720 22440 30300 20580 25820 26200 30340
99.55 100 99.09 100 9. 99.09 100 100 100 100 100 100
400 24040 25560 34360 39120 33880 31520 31320 42640 23960 27800 30400 33920
100 100 100 100 100 100 100 99.55 100 100 100 100

Table 4.8: Results for Complexbranch.

71

4 Software Test Data Generation by means of EDAs

4.5.2 EDAs Performance

Results presented by Tables 4.2 to 4.8 reveal that in 94% of the cases the average coverage
surpasses 90%, and if the population is big enough, 100% is reached for every program.
Although the tables do not show this, when the highest achieved coverage is not 100%
(asterisk values) then the best execution obtained a value higher than 90% in all cases
except three from the Triangle4 program, which reached more than 88%.

The most difficult programs for the test case generator seem to be Triangle4 and Atof.
Table 4.1 reveals that Triangle4 has no compound expression in its conditional state-
ments although the nesting depth is one of the largest. In fact, several of the expressions
are of the form A = B, which are usually the most difficult ones to fulfill. With regard
to the Atof program, the nesting depth is the highest one and three-quarters of the
expressions are compound. The comparison operator in many of the subexpressions are
also equalities.

In order to observe the behavior of the objective selection phase in the generator, for each
program, the number of times the search for an objective is repeated was recorded during
the executions. The average is zero or almost zero for all the programs except Triangle4
and Atof. In these two, Triangle4 reaches higher values, with 7 as the maximum, and
in Atof, the highest value is 1.8. In both cases, this value decreases as the maximum
number of generations increases. In fact, in Triangle4 it is near zero in most of the
cases for 300 generations, and in Atof the value is zero or near zero for 100, 200 and
300 generations. Thus, according to these results and considering the set of individuals
associated with a given objective, it seems that the number of times that an individual
that improves the fitness of the set is found, increases with the program complexity for
branch coverage. Therefore, the number of optimization problems being solved during
the process and, consequently, the number of generated inputs, becomes higher.

Regarding the optimization phase in the test case generator, Tables 4.2 to 4.8 also provide
interesting information concerning the differences between EDAs. The coverage value is
a main gauge of the performance of a test data generator. However, the number of
inputs obtained reflects the effort made during the process. Therefore, it is important
for a generator to obtain a coverage value with the lowest cost, that is, producing as few
inputs as possible. This implies that, given two generators achieving the same coverage,
the one yielding the fewest inputs is preferred. So, considering full coverage a mandatory
requirement, multivariate EDAs offer the best results as they create the lowest or second
lowest number of inputs in all the programs except in Triangle3. Taking the ratio
between generated inputs and achieved coverage into account, the best values are shared
by bivariate and multivariate EDAs. Precisely, EBNAgo, en has the best ratio in three
of the programs, and TREE and MIMIC in two of the programs each. These best ratios
belong to the cases of 50 individuals and 50 generations, with the exception of Remainder,
which obtained the best ratio with 200 individuals and 100 generations.

72

4 Software Test Data Generation by means of EDAs

Program name UMDA PBIL MIMIC TREE BIC K2

Trianglel 32 39 27 21 30 25
Triangle?2 17 18 19 20 20 17
Triangle3 19 27 20 16 24 19
Triangle4 32 31 31 19 20 20
Atof 20 24 18 26 16 16
Remainder 25 27 25 18 17 16
Complexbranch 19 20 19 17 16 16
Total 164 186 159 137 143 129

Table 4.9: Rank of EDAs with regard to the number of generated inputs.

In general, EBNAs obtain the worst results when the population is small, in which case
univariate EDAs become competitive. However, as population size grows, multivari-
ate EDAs improve their average coverage and, when 100% is reached, the number of
generated inputs is usually lower than in the rest of EDAs. This indicates that, when
adequate parameter values are met, EFBNAs obtain the optimum in fewer generations
than the other alternatives. These results reinforce the suggestion made in Section 4.3.1
about the adequacy of multivariate EDAs when dealing with this problem.

In order to statistically validate these concepts, two rankings based on hypothesis tests
were carried out, one over the number of generated inputs and the other over the coverage
measurement. For each program and for each value of population size and maximum
number of generations, EDAs were ranked as follows. First, EDAs are ordered according
to their average value in the result being considered, i.e. number of generated inputs
(increasing order) or coverage (decreasing order). If a tie occurs, the involved EDAs are
ordered by their variance. Then, following the order obtained, several Mann-Whitney
tests are performed, each of which designates a rank value to an EDA. The first sample
in the test is formed by the data from the ¢-th EDA in the order, and the second sample
is the data from the (i + 1)-th EDA. If the test finds significative differences at a 0.05
confidence level, then the rank value of the i-th EDA plus 1 is given to the (i 4+ 1)-th
EDA. Otherwise, this EDA is designated with the same rank value as the i-th EDA and
the first sample of the next test is extended with the data from the (i 4 1)-th EDA. Once
a rank is obtained for all the different combinations of population size and maximum
number of generations, the sum of the rank values of each EDA is calculated.

Tables 4.9 and 4.10 show the ranks for the number of generated inputs and coverage
measurement respectively. The last row of each table provides, for each EDA, the sum of
the ranks in all the programs. The best values are marked in bold. As can be observed,
with regard to the number of inputs, multivariate EDAs take a larger number of the
best values than do other types of EDAs. Considering the last row, the best EDA is

73

4 Software Test Data Generation by means of EDAs

Program name UMDA PBIL MIMIC TREE BIC K2

Trianglel 16 17 16 16 18 18
Triangle?2 16 16 16 17 17 16
Triangle3 16 17 16 16 20 16
Triangle4 20 19 20 16 26 26
Atof 22 24 18 22 19 17
Remainder 24 23 22 17 17 16
Complexbranch 17 18 16 18 16 16
Total 131 134 124 122 133 125

Table 4.10: Rank of EDAs with regard to the coverage measurement.

EBNAK2pen, followed by TREE and EBNAgjc. The PBIL algorithm is the worst EDA,
although it must be noted that its results heavily depend on the a parameter, as was
shown in [90]. Taking the coverage measurement into account, the differences are not
so clear. The total rank in the last row reveals that the values of the first three EDAs
are quite similar and that there is a 12-unit difference between the first and the last
EDA. In this case, TREE offers the lowest value, MIMIC is the second best EDA and
EBNAk2pen, the third. Thus, it can be concluded that the best overall EDAs in the
experiments, with regard to the coverage and generated inputs results, are TREE and
EBNAk2pen-

4.5.3 Comparison with Other Works

The programs here considered for experimentation were extracted from previous works in
the literature: Trianglel, Triangle2 Atof and Complexbranch from [248], Triangle3
from [143], and Triangle4 and Remainder from [235]. All these works use a GA as the
optimization technique. Next, the results obtained by such GAs based approaches are
faced to those of the EDAs based test data generator.

When comparing the results from Tables 4.2 to 4.8 with those of their respective works, it
must be noted that the plain form of EDAs was applied in the experiments, while in the
referred works, sophisticated forms of GAs are used. In [248], a coarse grained parallel
GA is chosen, in [235], different genetic operators and parameters are considered, and in
[143], a simple GA and a differential GA are employed.

Besides the Evolutionary Algorithm, two other aspects must be kept in mind during the
comparison. On the one hand, the fitness function in the EDA based approach differs
from the one in two of the works. In [248], fitness is calculated from a function of the
type described in equation 3.2. In the case of Sthamer [235], a function of the type in

74

4 Software Test Data Generation by means of EDAs

Approach Trianglel Triangle2 Triangle3 Triangle4 Atof Remainder Complexrbranch
Other work 16915 42086 - 27876 35263 644 28978
EDA based 6150 6200 3875 22720 7685 2360 11930
Proportion 36% 15% - 82% 22% 366% 41%

Table 4.11: Number of inputs generated by the EDA based approach and other ap-
proaches.

equation 3.1 is presented taking two distances for each program into account: one is the
absolute value of the difference between the numerical representations of the operands
(like in here), and the other is the Hamming distance between the binary representations.
On the other hand, the interval of values taken by the input parameters also has to be
considered. Neither in [248| nor in [143] are the intervals used in the experiments clear.
In [235], for each program, the results with several intervals are presented.

Fixing the coverage at 100% and taking the best results reaching this value, Table 4.11
shows the number of inputs generated by the EDA based approach and the other works.
The last row provides the percentage of inputs of the EDA based approach with regard
to the other work.

In the case of Triangle3 no value is included, since the number of generated inputs is
not revealed in the results presented in [143|, and the average coverage attained in the
five performed executions is 93%. However, it must be taken into account that this work
deals with condition/decision coverage, which is a criterion subsuming branch coverage.

Apropos of [248], considering the input parameter intervals used in the experiments, the
EDA based approach generated less than half the inputs in this other work for all the
programs.

The best results in [235] for the Triangle4 were obtained with the [—100, 100] parameter
interval for the inputs and the distance based on the absolute value of differences. Re-
garding Remainder, however, the outstanding results corresponded to the [—20000, 20000]
parameter interval and the Hamming distance, Therefore, the values in Table 4.11 corre-
spond to these configurations. For Triangle4, aside from the improvement shown in the
table, the number of inputs generated by the EDA based approach is 88% of the inputs
in [235] for the Hamming distance. However, in the Remainder program, the results are
not outperformed, neither for the Hamming distance (as the table shows), nor for the
distance based on the absolute value of differences. In this last distance, the number of
inputs generated by the EDA based approach was 250% of the inputs in the work by
Sthamer.

The results of these experiments conform, in general terms, to those in the application of
EDAs to other problems [112]. Although in EDAs the quality of the solution is similar
to the one achieved by GAs, the number of generations required and, hence, individuals
generated is remarkably lower.

6]

4 Software Test Data Generation by means of EDAs

4.6 Summary

In this chapter, we have described an approach for the application of EDAs to the test
data generation problem in the context of branch coverage. Several EDAs comprising
different orders of dependencies in the probability distribution to be learnt were evaluated
empirically.

Analyzing the results obtained from the experiments, a general conclusion can be drawn:
EDAs prove to be a powerful option for tackling this problem. The coverage attained
was 100% in all the experimental programs and the number of inputs generated was sig-
nificantly lower than in other works, excepting a few cases. Among the different EDAs,
algorithms using nontrivial probabilistic models seem to be a promising alternative. More
precisely, TREE and EBNAkspen have shown the best overall performance. The capa-
bility of these EDAs for expressing the dependencies between problem variables could be
a key point, as such dependencies usually exist when trying to cover a particular branch.

76

5 Software Test Data Generation by
means of SS

The use of EDAs for test data generation in the previous chapter supports the application
of other modern metaheuristics for solving this problem. While EDAs rely on a typically
stochastic strategy, SS is conceived as a more systematic optimization method. In this
chapter, the suitability of SS to generate tests inputs for branch coverage is studied.
Additionally, EDAs and SS are combined in a collaborative scheme that aims at profitting
from the benefits of both methods.

The chapter is arranged as follows. Once motivated, the SS approach is described, to-
gether with different alternatives for using the improvement method in the SS algorithm.
Then, the results of the conducted experiments are analyzed. Appealing conclusions on
the performance of the SS approach and the role of the improvement method in this con-
text are obtained. In the second half of the chapter, the combination of EDAs and SS is
explained and evaluated through experiments. Finally, EDAs, SS and their combination
are compared to identify the best method.

5.1 Motivation

As pointed out in Chapter 3, when dealing with the generation of a test input covering a
branch, the associated search space is usually large and complex. A well-known conjecture
in Operations Research is that an appropriate management of the diversification and
intensification concepts during the search in such spaces yields good solutions. These
are the principles on which SS is based. This, together with the flexibility of the SS
methodology, make it worth of consideration for solving the test data generation problem.

In fact, SS has already been applied to several difficult optimization problems [33]. It
has been compared with GAs in permutation problems [142]|, producing high quality
solutions in fewer evaluations than GAs. Moreover, in [127], Laguna and Marti presented
several SS designs to solve a set of nonlinear function minimization problems, obtaining
encouraging results. Since the test data generation can be tackled as the resolution of a
number of optimization problems, SS seems to be a promising technique to be studied.

7

5 Software Test Data Generation by means of SS

In the work by Laguna and Marti [127], however, no improvement method was employed
in the algorithms proposed. Thus, in order to shed some light on the SS methodology
internals, we investigate the influence of this optional component in our context.

On the other hand, EDAs have been applied in the previous chapter with encouraging
results, so they constitute an adequate benchmark for comparison. This represents an
opportunity for facing a stochastic optimization technique, like EDAs are, with a more
deterministically oriented method, namely SS, in the context of a real-world problem.
Furthermore, EDAs become a promising option from which SS may benefit in order to
improve its performance.

So, the approach here exposed deals with inputs generation for branch coverage making
use of the previous optimization methods in two different ways. Firstly, pure SS alter-
natives are presented in order to evaluate their performance and compare them with the
EDASs based approach. Secondly, EDAs and SS are combined in a collaborative strategy.

5.2 The SS Approach

Similarly to the EDAs test data generator, the SS alternative proposed here is based on
the general scheme in Figure 3.5. In fact, the only algorithmical difference between both
approaches concerns the optimization step. Here, the optimization problem associated
to the objective branch is tackled by means of an SS algorithm, instead of by an EDA.

An input is represented as in the EDA approach, that is, as a 0-1 string, and the objective
function value is obtained according to equation 3.1 as well.

The set of solutions associated to an objective branch, which has the same size as the set
of diverse solutions P, is overturned in P at the beginning of each SS execution. Thus, in
practice, the set of solutions can be viewed as a particular initial P set for each branch.

At the test data generation process start-up, the set of solutions of each branch b is
created by introducing distinct solutions obtained via diversification and, if such is the
case, via improvement. The evaluation of a solution is not only performed in relation
to b, but for any other branch b with no completely constructed set. If the evaluated
solution outperforms the worst in the set of b and the solution is not in the set yet, then
it is introduced. It is important to note that, in case an improvement method is used,
only the best solution found for ¢’ is considered for inclusion in its set, thus avoiding
the introduction of solutions coming from the same seed. When starting the creation of
the set of solutions for b, a number of them may already be in the set. However, they
are not improved with regard to b because they were found during the improvement of
another branch, so the improvement method is applied to these solutions. Nonetheless,
no matter how many solutions are already in the set, the inclusion of half of them via

78

5 Software Test Data Generation by means of SS

diversification (and improvement) is forced in order to guarantee a degree of diversity in
the set.

As may be noticed, once the process start-up finishes, every solution in the set of a
branch is improved with regard to it. In order to maintain this property during test data
generation, when a solution is evaluated and is to be included in the set of solutions of
the branch, the improvement method is applied before entering the set. This way, at
every moment the solutions in the set of a branch are improved with regard to it.

The SS stopping criterion consists of finding the minimum (covering the objective branch)
or reaching a maximum number of iterations. If the current iteration is not the last and
no new solution was added to RefSet, a rebuilding step is carried out. To be precise, a
new set P is created and the half worst solutions in RefSet is replaced by the solutions
in P that increase the most the diversity in RefSet. We measure the diversity of a
solution « € {0,1}" as min{d(x, x’) | £’ is a solution in the current reference set}, where
d(z,x") = 327 |zi — i

In [127], none of the SS designs used by Laguna and Marti applied an improvement
method, and this might be an important element during the search. Thus, in the present
approach, with the purpose of shedding some light on how the use of the improvement
affects the optimization process, the following options are given:

Improve After The classical way of improving the solutions, that is, after diversification
or combination (Figure 2.8).

Improve Before An alternative consisting of using the improvement method just before
entering RefSet. Once a solution has been created via diversification, it is included
in P, and improvement is applied only if the solution is one of the by = |RefSet|/2
high quality solutions used to construct RefSet. The remaining be solutions of
RefSet are not improved since they are assumed to be diverse solutions. Notice
that in the rebuilding step it is not necessary to improve the solutions from P. On
the other hand, if a solution comes from the combination method, improvement is
performed only if it is to enter RefSet.

No Improvement In this case no improvement is included in the SS algorithm.

Excepting those reaching the optimum, during an SS execution a number of solutions
are obtained, improved and rejected if they do not gain entrance to RefSet. Therefore,
the idea behind the Improve Before alternative is to reduce the number of generated
solutions by restricting improvement to those entering RefSet. Taking such idea further
yields then the No Improvement option.

In order to complete the SS design description, the five methods needed to implement
the algorithm are explained next.

79

5 Software Test Data Generation by means of SS

1st 101]011[V10

v 2n 111]011]010
101]011]010 -
3rd -
101|0011|010
4th -

101]011]000 —=—

Figure 5.1: Example of local seach improvement method.

Diversification Generation Method

A simple implementation is adopted. Each solution is randomly generated according to
a uniform distribution.

Improvement Method

The improvement method is a best first local search where the neighbors of a solution are
to a Hamming distance of one. More precisely, the bit substrings codifying each input
parameter are taken into account to define the order of evaluation of the neighbors. For
a solution differing from the previous in the ¢-th bit of the substring codifying the j-th
input parameter, the next neighbor to evaluate is obtained by changing the value of
the most significant bit, previously unchanged, in the substring associated with the next
parameter. To be exact, in the case of a parameter codification where the most significant
bits are ordered from left to right, if the j-th parameter is not the last, the ¢-th bit of the
substring belonging to the (j+ 1)-th parameter will be flipped. Otherwise, the (i 4 1)-th
bit of the substring of the first parameter is changed.

Figure 5.1 presents an example of the local search method. The solution to the left
is the initial solution codifying an input with three parameters; a vertical line divides
the substrings representing each parameter. It is supposed that this initial solution was
obtained by changing the signed bit. The neighbors considered in a hypothetical search
step are shown to the right. The horizontal arrow indicates the assumed new best solution
chosen for the next step.

Reference Set Update Method
The reference set updating follows a static update strategy. New solutions obtained via

combination are placed in a pool. Once the pool is full, RefSet is formed by the highest
quality solutions already in it and the pool.

80

5 Software Test Data Generation by means of SS

Improvement Trianglel Triangle2 Triangle3 Triangle4 Atof Remainder Complexbranch
After 10356 28761 315634 32646 1520023 145 30835
100 100 100 100 82.33 100 100

Before 1575 2661 8325 10267 27087 240 9105
100 98.46 99 100 67.33 100 93.18

No Local 2374 7561 3196 2549 27686 1235 5024
96.54 97.31 95 98.08 64.67 97.78 94.55

Table 5.1: Experimental results of the SS approach.

Subset Generation Method

All two-solutions subsets are created. Obviously, only the solution pairs not previously
generated are taken into account.

Solution Combination Methaod

For each pair of solutions, their input representations x € Q and x’ € Q are obtained,
and four new solutions are created from the following linear combinations:

1 = z=+d (5.1)
T2 = xT—d (5.2)
x3 = x' +d (5.3)
xy = a' —d (5.4)

where d = | — 2| /2.

5.3 Performance Evaluation of Scatter Search Designs

In order to observe how the SS approach performs in practice, several experiments were
carried out. Test data was generated for all the programs used to evaluate the EDAs
based approach, taking the same intervals of values for each input parameter (see Section
4.5.1).

After preliminary experimentation, the maximum number of generations for the SS was
set at 10, the size of set P was 100 and the reference set size was 10. The results
of the experiments for the three improvement strategies are shown in Table 5.1. For
each improvement strategy and each program, the average values in ten executions are
provided. The first row is the average number of generated test inputs during the process,
and the following is the average coverage measurement.

It can be seen in Table 5.1 that when the classical improvement strategy (Improve Af-
ter) is adopted, the attained coverage is equal or larger than in the two other cases.

81

5 Software Test Data Generation by means of SS

Nonetheless, Improve Before offers good results, as it generates a considerably lower
number of inputs (solutions) than Improve After while keeping the same or almost the
same coverage, excepting Atof and Complexbranch programs. On the other hand, in the
No Improvement option, coverage is generally lower than in the two other strategies; in
fact, full coverage is reached for no program. Considering the number of inputs, as it
could be expected, No Improvement obtains in general a lower value than Improve After.
However, this is not held with regard to Improve Before, which generates less inputs than
No Improvement in four programs.

Statistical tests were conducted to check whether significant differences exist among
these results. Comparing Improve After and Improve Before, the Mann-Whitney test
revealed differences at a 0.05 confidence interval for the coverage in Triangle2, Atof
and Complexbranch, and for the number of inputs in all the programs. Facing Improve
After with No Improvement, dissimilarities were stastically significant for the coverage
and the number of inputs in every program. Finally, in Improve Before versus No Im-
provement, differences were observed for the coverage in all the programs but Triangle?2
and Complexbranch, and for the number inputs in every case but Triangle3 and Atof.

Thus, these results indicate that, although the improvement method is an optional ele-
ment of the SS methodology, its relevance is high. The lack of improvement hinders the
SS design from attaining the best performance. Indeed, the number of solutions an SS
algorithm generates during the optimization process depends to a great extent on the
way improvement is applied. More precisely, in our context, the Improve After strategy
attains the highest quality solutions, however, the less intensive Improve Before option
may reach the optimum in some cases, generating less solutions. So, according to the
outcomes from the statistical tests, taking coverage as a primary factor and the number
of inputs as a secondary one, we may conclude that Improve After obtains the best per-
formance for Triangle2, Atof, Remainder and Complexbranch, while Improve Before is
the best for Trianglel, Triangle3 and Triangle4.

An interesting aspect which may be useful when considering an SS algorithm is the
influence of each method during the search. This can be seen in Figures 5.2 and 5.3 in
the context of test data generation.

Figure 5.2 shows the coverage attained by the SS methods for the Improve After, Im-
prove Before and No Improvement strategies. Specifically, the results of the diversifi-
cation (divers), improvement (improv) - if such is the case - and combination (comb)
methods are presented, together with the coverage obtained when evaluating a solution
with regard to other objectives (eval). In the Improve After alternative, almost all the
coverage is reached through improvement and evaluation of other objectives. However,
in the Improve Before option, where improvement is not so intense, the coverage of the
local search decreases and the weight of diversification increases. This also holds for No
Improvement, but completely eliminating the role of the local search.

82

¢'¢ o3I

"(mofaq) jusurarordui] oN pue

€8
(erpprut) aa0jog oaoadwy ‘(ssoqe) I0Jy oaoldmy 10] SPOYILU GG JO 9FRIOA0))

Japureway Jo1v vol|buen L c9albuen] zo|buen Tolbuen |

youeigxadwod

oz

coverage
B @ @
o o o

divers
comb
eval

divers
comb
eval

e207 OoN

00T

vers
mb
val

v}
o
o}
o
g
1)
coverage
=
N A ()] @ (=]
o (=} (=} o (=} o
= ‘dlvers
» improv
Q comb
1)
s eval
= _d|vers
2 improv |
Q comb
[
N eval
= divers
3. .
) improv
3
@ comb
& eval
= ‘d|vers
p improv |
Q comb
[
S eval
divers
> improv |
S comb
eval
byl
Fy djvers
3 improv
5 cdmb
& gval
[
0
o
3
T
V]
X
o
g
B}
=3
(e}
=3

vol|buen L calbuen] zo|buen Tolbuen)

jory

youeligxajdwod Jopureway

coverage
N A [@ .S
o (=} o o (=} o
! T " diver§
improv
i comb |
I
| divers
o mprov
l comb
eval
divers
improv
comb]
eval
i divers
L improv
comb
e
1 divers
| improv
i comb 7
I
divers
] imprd
i comb|

Joyv

GS jo sueaUI Aq UOIIRIDUDL) BIB(] ISI], 9IBMIOG G

5 Software Test Data Generation by means of SS

mmm mmm mmm mmm mmm mmm mm.m
S =% Lo o S =% =%
After SES SES SES SES SES SES SEs
100
80 -
£ 60
o
£
X 40
20 -
0= N N - -
Trianglel Triangle2 Triangle3 Triangle4 Atof Remainder Complexbranch
0 3o
Before © 3o T 5E
100 S S E S£8
S EGQ il
80
£ 60
o
£
X 40
20
o -
Trianglel Triangle2 Triangle3 Triangle4 Atof Remainder Complexbranch
2 o © o
No Local o £ [£ © o
= S =]
100 (22 o =3 2 £
T) Ab arw T = T T = T m m Anm
> = = S = S
2 5 S o o o S 8
80 - = © @ £
= <]
5 3
£ 60
Q
£
S 40
20 -
o - - - "
Trianglel Triangle2 Triangle3 Triangle4 Atof Remainder Complexbranch

Figure 5.3: Proportion of inputs generated by SS methods for Improve After (above),
Improve Before (middle) and No Improvement (below).

84

5 Software Test Data Generation by means of SS

Approach Trianglel Triangle2 Triangle3 Triangle4 Atof Remainder Complexbranch
SShest 1575 28761 8325 10267 1520023 145 30835
100 100 99 100 82.33 100 100
EDApest 6150 6200 3875 22720 7685 2360 11930
100 100 100 100 100 100 100

Table 5.2: Results of the best SS and EDA approaches.

On the other side, Figure 5.3 reveals the proportion of inputs generated by each SS
method. Notice that, in general and where applied, improvement generates most of the
solutions during the search; this is especially clear in the Improve After option. An
interesting point is the efficiency shown by diversification in the case of Improve Before
and No Improvement, since it generates a relatively low amount of inputs while offering
most of the coverage. Indeed, the opposite happens for the combination method in No
Improvement, which generates almost every input and contributes a low coverage.

A clear conclusion derives from these results. When used in a classical way, the im-
provement method plays a main role during the search, as it significantly affects the
number and quality of generated solutions. In contrast, if improvement is applied dif-
ferently, the behavior of other SS methods changes, especially in connection with the
achievement of high quality solutions. More exactly, in this case the diversity method
becomes apparently the main source of optima achievement. Additionally, if no improve-
ment is employed, significance of the combination method increases with regard to the
attainment of high quality solutions. However, the number of solutions generated by this
method is huge in comparison to diversification, suggesting so a poor efficiency.

5.3.1 Scatter Search versus Estimation of Distribution Algorithms

In the previous chapter, EDAs were applied to the test data generation problem offering
promising results. Hence, the EDA approach may be regarded as an appropriate bench-
mark for comparison with the SS test data generator. For the comparison, the best EDA
and SS approaches in each case are taken into account. These approaches are identified
by giving preference to coverage, that is, the best approach is the one that achieves the
highest coverage and, if there is a tie, the approach with the lowest number of generated
inputs.

Table 5.2 presents the results. SSpest and ED Ay denote the best SS and EDA ap-
proaches respectively; the format is the same as in Table 5.1.

The Mann-Whitney test was conducted to validate the results. Differences were found
at a 0.05 confidence interval for coverage in Atof, and for the number of inputs in all the
programs but Triangle3. So, we may conclude that in three of the seven programs, SS
significantly outperforms EDA. More precisely, two of these SS approaches correspond to
the Improve Before strategy, which makes it an interesting option for test data generation.

85

5 Software Test Data Generation by means of SS

In contrast, although the Improve After strategy equal the coverage of the EDAs (except
Atof), the number of inputs generated is higher in all cases (except Remainder). This
is specially clear for the Atof program, where 5SS offers a poor behavior compared to

EDApest.

5.4 Scatter Search and Estimation of Distribution
Algorithms Collaboration

The results obtained in some of the experimental programs suggest that SS approaches
can generate good solutions with a low number of evaluations. Indeed, these results
conform to those obtained in [127] and [142], where SS reached high quality solutions
in fewer evaluations than GAs. Nonetheless, here, as well as in those works, it has
been shown that there are functions for which the SS approach does not offer a good
performance.

On the other side, EDAs were successfully applied to the automatic generation of test
data in the previous chapter. However, in EDAS, it is difficult to set an explicit control of
the diversification and intensification balance. By contrast, in SS this can be performed
in a direct way due to its flexibility.

These observations motivated the idea of combining both optimization techniques. Both
SS and EDA based approaches aim at generating test data for a given program by
themselves. However, they could be entirely used in order to deal with the same problem,
thus leading to a collaborative approach which may profit from the benefits of SS and
EDAs.

The proposed collaboration consists of an EDA-SS approach where each search method
acts separately. In other words, the EDA based generator is used first and, once it has
finished, the SS based generator is employed over the remaining uncovered branches.
This way, the general scheme in Figure 3.5 is first applied with an EDA and, if it was
not able to solve the complete problem, the scheme is repeated with SS.

An important feature of the implementation developed is that, after the execution of the
EDA generator, the SS approach initializes the set of inputs of each uncovered branch
with the set resulting from the EDA. Thus, the SS generator starts the search using the
best solutions found by the EDA. Although this seeding could involve a lack of diversity,
the SS can recover from it through the diversification method in the rebuilding step.

5.5 Performance Evaluation of the Collaborative Approach

The collaborative approach was applied to the previous experimental programs in order
to observe its performance.

86

5 Software Test Data Generation by means of SS

EDA Trianglel Triangle2 Triangle3 Triangle4 Atof Remainder Complexbranch
UMDA 4015 4250 6281 1 419121 | 570306 6202 1 24154
100 100 100 100 91.33 100 100
TREE 3272 10210 3870 24495 795693 6532 1 34900
100 100 100 100 86.67 100 100
EBNAKk24pen 5185 7452 7369 459021 1081907 4377 % 31653
100 100 100 99.62 82.33 1 100 100
UMDA 3311 4700 3927 41440 % 28278 3012 11298
100 98.85 99.5 99.23 79.67 F 100 96.36
TREE 3776 4857 3439 19560 30529 2614 9428
100 98.85 100 98.46 1 78.67 100 96.82 1
EBNAk24pen 3317 4860 3548 12554 33620 2197 9189
100 98.08 t 99 98.46 1 71.67 7 100 95 ¢

Table 5.3: Results of EDA-SS approach with Improve After (above) and Improve Before
(below).

Recall that in Chapter 2 EDAs were classified in three types, according to the order
of dependencies among the variables in the probabilistic model. Following the ranking
carried out in the previous chapter, the best EDAs from each type were used in the
experiments, i.e. UMDA, TREE and EBNAko pen. Within an EDA, half of the popula-
tion was selected at each generation according to a rank-based strategy. New individuals
were simulated from the learnt probability distribution by means of Probabilistic Logic
Sampling, and the population was created in an elitist way. Population size was the same
as the one for set P. Since the SS generator may be used after the EDA, the maximum
number of generations was relaxed to 10. In fact, a few preliminary experiments were
conducted and the best results corresponded to this value. In the EDA literature, other
works that have obtained good results with low parameter values in the experiments can
be found [112].

The Improve After option of the SS approach attained, in four of the programs, a higher
coverage value than the Improve Before alternative. However, the latter clearly generated
fewer inputs than the former. Therefore, the SS generator was evaluated taking both
options into account. The No Improvement strategy was not included in the experiments
as it offered, with statistical evidence, an inferior behavior in every program. The SS
parameter values were the same as in Section 5.3: |P| = 100, |RefSet| = 10, and 10
iterations at most.

Table 5.3 shows the results of the experiments; once again, the format is the same as
in previous tables. The best approach (with preference to coverage) for each program is
marked in gray.

As can be seen, these results conform to the ones obtained in Table 5.1, since the Improve
After strategy reaches, in general, a higher coverage than Improve Before. Instead, the

87

5 Software Test Data Generation by means of SS

Hl EDA
C1ss
Co,K2 Co,K2 []
Co,TREE Co,TREE []
Co,UMDA Co,UMDA []
Re,K2 Re,K2
Re, TREE Re, TREE
Re,UMDA Re,UMDA
At,K2 [] B At,K2 [] B
At, TREE [] B At TREE [] B
At,UMDA [] A At,UMDA [] E
T4,K2 [] T4,K2 []
T4, TREE [] T4,TREE
T4,UMDA T4,UMDA [|
T3,K2 T3,K2 []
T3,TREE T3,TREE
T3,UMDA T3,UMDA []
T2,K2 T2,K2]
T2, TREE T2, TREE []
T2,UMDA T2,UMDA I
T1,K2 T1,K2
T1,TREE T1,TREE
T1,UMDA T1,UMDA
0 20 40 60 80 100 0 20 40 60 80 100
coverage coverage

Figure 5.4: Proportion in the coverage of EDA-SS approach for Improve After (left) and
Improve Before (right).

latter generates a lower number of inputs than the former.

Statistical tests were used to validate the best performance values. Since coverage is a
primary measurement, for each program and each approach, the Mann-Whitney test was
conducted with regard to the best coverage value (in gray). Then, for the cases where no
difference was found, the test was again used over the best number of inputs generated.
Table 5.3 presents the outcomes of the tests; symbol ‘i’ denotes the cases where coverage
dissimilarities (0.05 confidence interval) were found, while ‘}’ refers to the number of
inputs.

In five programs, Improve After attains the best results. However, differences are sta-
tistically significant with regard to Improve Before in three of them: Triangle4, Atof
and Complexbranch (and Triangle2 just for EBNAkoypen). Improve Before, by con-
strast, offers a statistically sound improvement with regard to the other alternative only
in Remainder (and in Triangle3 for UMDA). Thus, Improve After shows a rough supe-
riority to Improve Before.

In order to have an idea of the behavior of each generator in the collaborative scheme,
Figures 5.4 and 5.5 present the proportion of coverage and generated inputs in the EDA
and SS methods respectively.

88

5 Software Test Data Generation by means of SS

At, TREE

At,UMDA

T4,K2
T4,TREE
T4,UMDA
T3,K2
T3, TREE
T3,UMDA
T2,K2
T2, TREE
T2,UMDA
T1,K2
T1,TREE
T1,UMDA

Figure 5.5: Proportion of inputs generated by the EDA-SS approach for Improve After

20

.
40
% inputs

1
60

80

100

(left) and Improve Before (right).

89

Co,K2
Co,TREE
Co,UMDA
Re,K2
Re, TREE
Re,UMDA
At,K2

At, TREE
At,UMDA
T4,K2
T4, TREE
T4,UMDA
T3,K2
T3, TREE
T3,UMDA
T2,K2
T2, TREE
T2,UMDA
T1,K2
T1,TREE
T1,UMDA

20

. .
40 60
% inputs

80

100

5 Software Test Data Generation by means of SS

Approach Trianglel Triangle2 Triangle3 Triangle4 Atof Remainder Complexbranch
EDA — SSyest 3272 % 4250 3439 244951 570306 21971 24154 %
100 100 100 100 91.33 1 100 100
SShest 1575 28761 % 8325 10267 1520023 145 308351
100 100 99 100 82.33 100 100
EDApest 6150 1 6200 3875 22720 1 7685 2360 1 11930
100 100 100 100 100 100 100

Table 5.4: Results of best EDA-SS, SS and EDA approaches.

Figure 5.4 reveals that the EDA based generator covers most of the objectives, since it
operates first and can attain, among others, the easiest objectives. However, the EDA
method is not able to reach a 100% coverage by itself, whilst this can be obtained by
using the SS generator. In fact, the SS method always increases the coverage attained
by the EDA based. On the other hand, Figure 5.5 shows how the use of improvement
affects the results of the collaborative scheme, as the proportion of inputs generated by
the SS with the Improve After alternative is higher than with Improve Before.

5.5.1 Collaborative Approach versus Others

The comparison of the EDA-SS approach with regard to the SS and EDA based test data
generators can be observed in Table 5.4. In order to conform with the comparison in
Table 5.2, the best EDA-SS collaboration (EDA — SSpes) is compared with the best SS
(SSpest) and EDA (ED Apest) approaches. Once again, the best approach (with preference
to coverage) for each program is marked in gray.

In order to validate the best values, the previous analysis with the Mann-Whitney test
was applied here. So, analogously, Table 5.4 shows the outcomes from the tests; symbol
‘t’ denotes the cases where coverage differences (0.05 confidence interval) were observed,
while ‘I’ alludes to the number of inputs.

S Spest Obtains the best values with statistical evidence in three programs, ED Ay in
two, and EDA— S Spes in one (no dissimilarity was found in Triangle3). It may noticed,
however, that excluding the programs where 2D A—S Sy is best, this approach generally
lies between the two other approaches. Further statistical tests confirmed this at a 0.05
confidence level.

Similarly to Section 5.3, a poor performance is achieved in Atof. An explanation for
this is that, even though preliminary experiments offered better results with the selected
parameter values, in the case of Atof these values may not be appropriate. Nevertheless,
Table 5.4 shows an increase in the coverage and a decrease in the inputs generated for
EDA — 5Spes; when compared to SSpes:.

In any case, according to these results, the collaborative scheme may be considered a
competitive alternative for test inputs generation.

90

5 Software Test Data Generation by means of SS

5.6 Summary

This chapter has been devoted to the application of SS for solving the test data gen-
eration. The EDAs based approach is followed to fulfill the branch coverage criterion,
though a SS algorithm is used instead of an EDA.

Three alternatives regarding the improvement method have been studied in this context.
After experimental evaluation, it may be concluded that, despite being optional, the
improvement method plays a main role in the SS methodology for this problem. The
weight of improvement is reflected in the number of solutions generated (inputs) and the
number of optima found during the search. Moreover, the way in which improvement
is used in the algorithm affects the behavior of other SS methods. Following this idea,
the Improve Before option proposed attained better results than Improve After in some
programs, thus being an interesting alternative to the classical strategy. Clearly, the worst
performance in the experiments is obtained if no improvement method is employed. In
such a case, the combination method generates most of the solutions while reaching a
relatively low number of optima by itself, so that the diversification method plays a main
role in the search.

On the other hand, an EDA-SS collaborative scheme has been described to take advantage
of the benefits of both methods. The experiments conducted on this alternative offered
encouraging results. The collaborative approach offered the best or second best results
in most of the test programs. However, in order to conclude this approach overcomes the
isolated generators, future experiments have to confirm these results. Anyhow, the use
of SS as a secondary optimization method improved the coverage of the previous EDA
based method. Hence the collaborative strategy proves to be useful.

91

5 Software Test Data Generation by means of SS

92

6 Enhancing the Test Data Generation
Process: the Role of the Search Space
and the Objective Function

When facing the test data generation as an optimization problem two significant topics
are the objective function and the search space. Although an active work is undergoing for
the former, little attention has been paid to the selection of an appropriate search space.
Hence, while making some hints on the influence of the objective function, this chapter
concentrates on describing an alternative to the search space issue. More precisely, two
approaches which employ an EDA as the metaheuristic technique are explained. In both
cases, different regions are considered in the search for the test inputs. Moreover, in order
to depart from a region close to the one containing the optimum, the definition of the
initial search space incorporates static information extracted from the source code of the
software under test. If this information is not enough to complete the definition, then
a grid search method is used. According to the results of the experiments conducted, it
is concluded that this is a promising option that can be used to enhance the test data
generation process.

Remaining sections are organized as follows. After providing motivation, the benefits of
an advanced form of objective function are empirically studied. Next, the alternative
developed for selecting the search space is explained. Then, the experiments and the
analysis of their results are shown.

6.1 Motivation

As we have seen throughout this dissertation, tackling the test data generation as the
resolution of a set of optimization problems is offering promising results, and it constitutes
nowadays a serious alternative to accomplish this task [144]|. Nonetheless, depending on
the program at hand, complexity in solving such optimization problems may be huge.
In fact, in the context of branch testing, the search space defined by the inputs is often
large and the objective function intricate, making the coverage of a branch a difficult
task.

93

Test Data Generation Enhancement: the Role of Search Space and Objective Function

Most of the efforts to enhance the test data generation to date have concentrated on the
optimization technique and the objective function. We have proposed in previous chap-
ters modern metaheuristics that have shown encouraging results and present theirselves
as a promising alternative to more classical methods. On the other hand, attempts on
the objective function relate to the concepts in Section 3.5.2 for improving the function
in equation 3.1.

Surprisingly, so far little attention has been paid to the selection of an appropriate search
space. This is an interesting matter, as focusing the search on a promising region could
simplify the problem, while making an inadequate choice an optimal solution (an input
covering the branch) may not even exist.

An alternative facing this question is suggested in [100]. There, a dependence analysis is
applied to the variables in the source code to identify the input parameters that cannot
affect the coverage of a given branch. This way, a number of problem variables can be
eliminated and the search space reduced.

In the context of EAs, the search space matter can be tackled by Self-Adaptive Represen-
tation methods. These procedures may be classified as a form of parameter control [66]
that, according to the behavior of the execution, dynamically transforms an individual’s
representation and, thus, the search space. Although it depends on the method, gener-
ally, the purpose of the transformation is to direct the search towards the most promising
region found so far and avoid getting stuck in local optima [252].

This chapter is devoted to the enhancement of the test data generation by studying the
influence of the objective function and, with more emphasis, by dealing with the search
space. In both cases, we depart from the EDAs based approach presented in Chapter 4,
so, from now on, in order to make the discussion more agile this will be referred to as
the basic approach.

Regarding the objective function, we will check whether an advanced design for the
objective function, previously developed in [248], constitutes an improvement for the
basic approach.

On the other side, the bulk of chapter concentrates on a novel alternative to the search
space selection issue. The two major concepts which support this alternative are the use
of a-priori knowledge on the problem instance to choose a search region, and modifying
this region through the solution’s representation. These concepts are applied to the basic
approach. Initially, the EDA seeks for in a region chosen from the whole feasible search
space. In order to select a promising region, its definition is based on static information
extracted from the program’s source code. In case this information is not useful to the
definition, then a grid search method is applied. Additionally, during the process, the size
of the region is increasingly widened. This way, if the objective entity is not exercised, a
new search is performed on a larger region. This enlargement is applied to the approach
from two points of view, giving rise to two algorithms.

94

Test Data Generation Enhancement: the Role of Search Space and Objective Function

6.2 The Influence of the Objective Function

Given the objective branch, finding the minimum of the corresponding objective function
may be extremely hard owing to program semantics. As pointed in Section 3.5.2, func-
tion defined in equation 3.1 owns some limitations that make the problem even harder.
More precisely, a main drawback is the fact that every input not reaching the conditional
statement associated to the branch receives the same function value, yielding a flat land-
scape. Function defined in equation 3.2 aims at alleviating this by returning a distance
to the condition for such inputs.

To be exact, given a branch b and an input x, let v. denote the vertex representing
the conditional statement associated to b in the control flow graph, and let p be the
path from s to e (see Section 3.4.1) representing the flow of the program’s control when
executed with . We call a vertex v control dependent of a vertex w iff w represents a
condition (i.e. outdegree(w) > 1) and there are both a path from w to v and a path
from w to e not containing v. The condition distance d. from a vertex v € p to v,
dc(v,v.), is defined then as the number of vertices in the path from v to v, on which v,
is control dependent. For the sake of convenience, in the particular case where no path
exists from v to v., an infinite number of control dependent vertices is assumed, that is,
dc(v,v.) = oco. Equation 3.2 returns minyepde(v, ve) for the inputs not reaching v,.

One noticeable problem of this condition distance is the fact that several paths may
exist from v € p to v.. Thus, it could be the case of two paths contributing distinct
values for d.(v,v.). Such a situation is illustrated in Figure 6.1, where a source code
segment and the corresponding portion of control flow graph are shown. In the figure,
the two paths from v to v, i.e. v,2,3,v. and v,2,5,7,v., own respectively 2 and 3
vertices on which v, is control dependent. In [16], this problem was tackled through
optimistic and pessimistic approaches, depending on whether d.(v,v.) is taken as the
minimum or maximum number of control dependent vertices respectively. Experiments
under different scenarious were conducted for comparing both alternatives, however, no
conclusion could be drawn about the superiority of any.

Since equation 3.2 augments granularity with regard to equation 3.1, it appears to be
more adequate. Yet, to the best of the author’s knowledge, no evaluation that checks
this has been published. In order to compare both objective functions, we run the
test data generator described in the basic approach using equation 3.2 and the best
overall EDA from Chapter 4, i.e. TREE. All the experimental programs used there were
chosen. For each program, the parameter values offering the best results (with priority
to the coverage) for TREE were selected for execution. None of the programs shows the
problematic situation in Figure 6.1, so there is no need to handle it.

Table 6.1 presents the results obtained with the classic (equation 3.1) and advanced
(equation 3.2) functions. For each program, the table collects the average values in ten

95

Test Data Generation Enhancement: the Role of Search Space and Objective Function

if (@>b){
if (c>d) {
if (e>f)
return O; }
eseif (g>])
return O;
elseif (i >j)
return O;
if (k>1)

©CoO~NOUAWNEPER

Figure 6.1: Example of two paths yielding different values for d.(v,v.).

function Trianglel Triangle2 Triangle3 Triangled Atof Remainder Complexbranch
% # % # % # % # % # % # % #
classic 100 8860 100 12920 100 3880 100 45720 99.33 15665 99.44 15920 100 21360

advanced 99.62 9940 100 5880 100 4180 99.62 51560 100 3475 100 1240 98.64 21420

Table 6.1: Results obtained with the classic and advanced objective functions.

executions for the coverage (%) and the number of inputs generated (#).

It can be noted that differences between both functions are slight for the coverage mea-
surement and more prominent for the number of inputs in some cases. The Mann-
Whitney statistical test was conducted over both measurements to validate the results.
No significant dissimilarity was observed at a 0.05 confidence interval for the coverage.
By contrast, differences were found for the number of inputs in Triangle2, Atof and
Remainder, where the advanced function beats the classic.

Therefore, using the basic approach and according to these results, it may be concluded
that the objective function from equation 3.2 improves or equals the performance of
function from equation 3.1.

6.3 The Self-Adaptive Approach

If a test data generation system deals with this task as the process of solving a set of
optimization problems, the search space becomes an important element. The rest of the
chapter is devoted to the study of an alternative which takes this into consideration,
inspired by the concepts on Self-Adaptive Representations from EAs.

So, the underlying idea in the Self-Adaptive alternative proposed here is to select an
initial search space and modifying its size for each uncovered branch. More precisely, the
region where the metaheuristic seeks for is initially defined with heuristic information
obtained from the program’s source code. During the process, the size of the region is

96

Test Data Generation Enhancement: the Role of Search Space and Objective Function

increasingly widened so that, if the optimum was not found in the current space, a new
search is performed in a larger one. Next a detailed description of this approach is given.

The space of an objective branch is defined by the interval of values that each input
parameter of a program can take. To be exact, for each branch and each parameter,
a value is chosen to be the center of the interval, and a maximum increment over the
center defines the amplitude. The process departs from a small range of values for
each parameter and, as branches remain uncovered, the range is increasingly augmented.
Centers of the intervals are fixed for the whole process, thus, in order to start seeking on
a promising region, static heuristic information from the program is used to locate these
points. In case this information is not useful to identify a center, a grid search method
is applied.

Two approaches following this line have been developed. One of them adapts the size of
the search space for all the uncovered branches at a time. In the other approach, each
region enlargement involves a single objective branch.

(1) Assign initial search region to each branch (1) Assign initial search region to each branch
(2) Repeat until stopping criterion is met (2) Repeat until stopping criterion is met
(3) Repeat until stopping criterion is met (3) O « Select objective branch

(4) O « Select objective branch (4) Repeat until stopping criterion is met
(5) Apply EDA to cover O (5) Apply EDA to cover O

(6) (6)

Enlarge region Enlarge region

Figure 6.2: Algorithms for the MOA (left) and SOA (right) approaches.

objective

Figure 6.3: Schemas of the MOA (left) and SOA (right) approaches.

97

Test Data Generation Enhancement: the Role of Search Space and Objective Function

Multiple Objective Adaptation (MOA)

The idea behind this method can be clearly stated: to use the general scheme in Figure
3.5 over widening regions. This leads to the left side algorithm in Figure 6.2. Therefore,
the basic approach is applied initially with a reduced interval of values for an input
parameter and, once it is finished, if uncovered branches exist, it is applied again with a
larger interval. The left side of Figure 6.3 depicts an illustration of this idea.

Single Objective Adaptation (SOA)

This alternative is similar to the basic approach except for the optimization step. Starting
from a small search space, the EDA executes several times over increasingly augmented
regions while the coverage of the objective branch is not attained. The right side of
Figures 6.2 and 6.3 represent the algorithm associated with this method and a schema
of the process, respectively.

In the next pages, these two approaches are discussed in detail by first explaining the
steps of their algorithms, and later, how the set of inputs is managed.

6.3.1 Algorithm Steps Description

The description applies to both MOA and SOA, since the same steps for each algorithm
implement the same concepts.

Region Initialization - step 1 (MOA, SOA)

Each branch is assigned an initial search region which will have the smallest size. A
reduced region allows for a fast search, although the chances of containing the global
optimum may be few. Hence, in order to reach a high degree of efficiency, it is important
to obtain an initial region that is near the optimal input. Obviously, this is a difficult
task, since the topology of the space should be known in advance (and no search would
be required then).

Instead, it is possible to approximate the problem by using static heuristic information
from the program’s source code. Although different source code aspects could be re-
garded, in the present work, this information is obtained from the expression in the
conditional statement corresponding to a branch. Assuming, with no loss of generality,
that an input is composed of three parameters (a,b,c), then, the center of the initial
region may be elicited through the following two heuristic rules:

98

Test Data Generation Enhancement: the Role of Search Space and Objective Function

e If an expression follows the form F'(a,b,c) OP K, where F' is a known function of
the input parameters, K is a constant and OP is a comparison operator, then the
region is centered at point (Cy, Cy, C.) such that F(C,, Cy,C,.) = K.

e If an expression follows the form F(a,b,c) OP F'(a,b,c), where F' and F’ are known
functions of the input parameters, and OP is a comparison operator, then the

region is centered at point (Cy, Cy, C.) such that F(Cy, Cy, C.) = F'(Cy, Cy, Ce).

Notice that the above rules refer to specific types of expressions. Many possibilities exist
for the form of functions ' and F’ in an expression. For instance, it could depend on a
number of source code variables or it might include calls to other programs. These rules
constitute a first approximation to the problem by restricting F' and F’ to depend only
on the input parameters, e.g. F(a,b,c) = Ta+ 25¢. Furthermore, each point (C,, Cy, C,)
was calculated manually for the experimental programs employed to evaluate the present
work. In order to reach complete automation of this step, a calculus tool could be
employed, for example, Mathematica'.

In case none of the above rules can be applied, the center of the initial region for a branch
is obtained through a heuristic strategy based on the program’s dynamic information;
to be exact, a grid search method is employed. For each input parameter, the complete
range of values is partitioned into 7 intervals. The center of each of these intervals is taken
as a reference value. Then, the inputs resulting from the combination of the reference
values of all the parameters are evaluated with regard to the branch. The best input is
selected as the center of the initial region. Notice that the granularity of the strategy
may be tuned with the number of intervals 7, since the number of inputs generated is 77
for a program with p parameters.

The idea behind a grid search is to explore a number of equally distant points from the
whole search space. As 7 grows, the number of points being considered approaches the
complete number of points and, hence, the quality of the solution found might increase.
On the other hand, reaching a certain value of 7 may result in an unavoidable number
of points. As a consequence, 7 is regarded as a parameter of the approach. Figure 6.4
illustrates the strategy for the case of two parameters and 7 = 6; among the 62 points,
the one inside the circle represents the input hypothetically chosen as the center.

Once the center is obtained using whichever of the strategies above, the specification of
the initial search region of the branch is completed by defining an amplitude. This is
achieved by setting, for each input parameter, an increment over the center. These initial
increments are given as parameters to the test data generation system.

Thus, in essence, attending to the strategy used to elicite the initial region, we may
classify branches in two types. On one hand, those with the region centered at a point

!Mathematica is a software package that solves equations symbolically. Web site:
http://www.wolfram.com/mathematica/

99

Test Data Generation Enhancement: the Role of Search Space and Objective Function

P2

: e o o o o o
-

| e o e o o o
o PN

: e o e, 0 0 o
T e ¢ o o o o
.

: e o o o o o
T e o o o o o
-

|
T

Figure 6.4: Schema of the grid search method.

obtained through static heuristic information and, on the other hand, the branches with
the region center chosen by means of a grid search, i.e. using dynamic information.

Stopping Criteria - steps 2 and 3 (MOA), steps 2 and 4 (SOA)

The stopping criterion at step 3, for MOA, and step 2, for SOA, refers to the general
scheme (Figure 3.5). It is defined in the same way as in the basic approach, that is, full
coverage achievement or unsuccessful treatment of every uncovered branch.

In contrast, the criterion in step 2, for MOA, and step 4, for SOA, alludes to the Self-
Adaptive approach. Therefore, it states the point where the search space stops being
enlarged. To obtain this point, a limit to the size of the region is given as a parameter
to the system. Accordingly, in the case of MOA, the stopping criterion is to obtain full
branch coverage or reach the size limit, while in SOA, the search stops when the objective
branch is covered or the space attains its size limit.

Branch Selection - step 4 (MOA), step 3 (SOA)
The objective branch is selected following the strategy of the basic approach. Hence, the

branch with the highest quality set of inputs at the moment is chosen, that is, the branch
with the highest average objective function value over the inputs in the set.

100

Test Data Generation Enhancement: the Role of Search Space and Objective Function

EDA - step 5 (MOA, SOA)

The EDA seeks the optimal input in a search region centered at a fixed point. Therefore,
an individual is a bit string representing an increment on the center of the current region.
To be precise, the individual consists of a bit substring for each input parameter. FEach
substring represents an increment on the center of the interval of the corresponding
parameter.

In the evaluation, the increment represented by the individual is added to the center of the
region, resulting in the input for the objective function. In the current implementation of
the approach, three parameter types are considered: integers, reals and characters. In the
case of an integer, the bit substring represents the increment following a sign-magnitude
codification. For real numbers, the IEEE floating point codification is used instead. In
both cases, the input parameter value is obtained by summing the increment to the
center. Finally, for a character type, a sign-magnitude codification is employed again
in the substring. Then, the increment is summed to the center of the parameter, and
the value obtained results in a character, according to the ASCII code table. Similarly,
for more complex parameter types, an appropriate transformation could be defined to
obtain the input parameter value.

As in the basic approach, the input is evaluated with regard to all the other uncovered
branches and the sets of best inputs are updated accordingly.

The length of the individuals may vary between different EDA executions and, in con-
sequence, it is not advisable to keep the same parameter values for the whole process.
This is overcomed by making some of the parameters adaptive [66].

A common practice in EAs is to fix the population size proportionally to the number of
variables. For instance, in [155], several rules of thumb are suggested for a number of
EDAs under specific conditions. In the present work, the population size is set at twice
the length of the individual.

On the other hand, it would be desirable to halt the search when no improvement can
be obtained. This is a relatively unexplored matter in the field of EDAs, although a
few recent works are emerging [162]. Here, a novel strategy has been developed. The
problem is approximated by identifying the generation where the estimated probability
distribution p;(z) is similar to the empirical distribution of the selected individuals. Thus,
the criterion adopted is to stop the EDA when the Kullback-Leibler cross-entropy from
pi(x) to p(x) falls below a value « given as a parameter to the system.

Region Enlargement - step 6 (MOA, SOA)

The size of a search region is determined by the amplitude of the interval associated
to each input parameter. In other words, this size is defined by a maximum increment

101

Test Data Generation Enhancement: the Role of Search Space and Objective Function

on the center of the interval of each parameter. In the EDA, an increment for each
parameter is represented as a substring of bits. Therefore, the number of bits in each
substring specifies the size of the region.

The search region is enlarged by augmenting the amplitude of the interval associated
with a chosen input parameter. A bit is added to the substring representing the next
parameter in the order given by the input, from left to right.

6.3.2 Management of the Set of Inputs

The control of the set of inputs of each branch introduces disparities between the ap-
proaches which require a separate explanation.

Operation in MOA

In the MOA alternative, during the EDA execution, it is possible that an input being
evaluated for a branch distinct from the objective falls outside the current search space.
Therefore, when the branch is selected as the new objective and the EDA is to be ini-
tialized with the inputs in the set of the branch, some of these inputs might be out of
the region.

Hence, instead of using only one set of inputs, two sets are associated with each branch.
One of them keeps the best inputs inside the current search region - inside set - and the
other one, those falling outside - outside set. This implies that, during the evaluation
in the EDA, the input is stored in the required set and, this way, the initialization is
directly performed from the inside set. More precisely, for each input in the set, the
corresponding increment on the center is obtained (in its binary form) and added to the
population.

In order to maintain the sets, before starting a new run of the general scheme (step 3),
the inside set is updated with the inputs in the outside set which belong to the new
region.

Operation in SOA

Regarding the SOA approach, each time the EDA executes the search region is different
from the previous. In this situation no advantage is obtained with two sets, so just one
containing all the inputs is used.

To initialize the EDA, firstly, the increments associated with the inputs in the set are
calculated. Then, the increments inside the current region are included in the population.
Those falling outside are truncated to fit into the region and, then, are added to the

102

Test Data Generation Enhancement: the Role of Search Space and Objective Function

population. A possible disadvantage of this strategy is that, as the population converges
to similar individuals, if these are high quality solutions, they will be included in the set.
Thus, initialization for the next region might cause a low diversity between individuals
and result in a poor search. With the intention of alleviating this phenomenon, half of
the EDA’s initial population is randomly generated.

Another problem in SOA concerns the retrieval of the initial search region for the EDA.
If the objective branch is selected for the first time, the initial region is given by its
center and the initial increment. However, it can so happen that, in the EDA evaluation,
the input enters the set of a branch already treated and, therefore, makes this branch a
candidate objective once again. Supposing that the branch is selected for a second time,
the initial search region should not be taken as before, since the new inputs in the set
could be in a larger space and, hence, would not be used to seed the population. The
solution adopted here has been to obtain the initial region size of the smallest new input
in the set.

6.4 An Execution Example

As an illustration of the approach, some steps of an hypothetical execution of MOA and
SOA are explained next. The example of Figure 3.6 will be used once again. Hence, test
cases are to be generated for a program where an input is composed of three integers a,
b and c.

First of all, both algorithms require the assignment of an initial search region to each
branch (step 1). Thus, for each branch and input parameter, an initial interval of values
must be defined. This is attained by fixing the center of the interval and an increment
on the center.

Two strategies are proposed for the center elicitation: static information and dynamic
information based. The branch represented by arc (2,3) in the graph is associated to
condition if ((b*b)-(4*axc)<0), so the static atrategy is used. A point satisfying b* —
4ac = 0 is chosen as the center, for instance, (0,0,0). In contrast, the condition of
branch (7,8) is if ((a*x*x+b*x+c)==0), so the grid search method must be employed.
If an integer is codified with 15 bits in two’s complement representation, the complete
interval of values of each parameter is [—32768,32767]. With 7 = 8, the number of points
generated and evaluated is 8% = 512. The best is (4095,4095, —20480), which is taken as
the center of the region.

Once the center of each branch is fixed for a, b and c, the initial region is obtained with
an increment on each center. To keep the example simple, 5 bits are given to represent
an increment for each input parameter, resulting in a maximum increment of +31. Thus,
the initial region for branch (2, 3) is [—31, 31] x [-31, 31] x [—31, 31] and for branch (7, 8)
it is [4064,4126] x [4064,4126] x [—20511, —20449].

103

Test Data Generation Enhancement: the Role of Search Space and Objective Function

MOA Example

MOA applies the basic approach (steps 3 to 5) over increasing search regions until a
maximum size is achieved (step 2). Using a maximum of 10 bits to represent an incre-
ment for each input parameter, the maximum region for branch (2, 3) is [-1023, 1023] x
[—1023,1023] x [—1023,1023] and for branch (7,8) it is [3072,5118] x [3072,5118] x
[—21503, —19457].

Now, assume that the size of the region in the current round is defined with 7 bits for a
and b, and 6 bits for ¢. This implies that, in the previous region, 6 bits were used for b.

Remember that two sets of inputs are associated to each branch: the inside set and
the outside set. The selection strategy (step 4) chooses the branch with the highest
quality inside set. If branch (2,3) was selected, the initial population of the EDA (step
5) is seeded with the inside set of this branch. In this particular case, an individual
representing the increment (98, —34, 15) would result in input (98, —34, 15), as the region
center is (0,0,0). Aside from calculating the objective function value of this input,
it is also evaluated for the rest of the branches. For instance, evaluating the input
for branch (7,8) implies that its associated increment must be induced. Thus, input
(98, —34,15) results in increment (—3997, —4129,20495) for branch (7,8). To represent
such an increment, 12 bits would be necessary for parameters a and b, and 15 bits for
¢, so it falls outside the current region. In consequence, the outside set is updated if its
quality is improved with this input.

Once the basic approach finishes without covering all the branches, the current region is
enlarged. In the previous region the interval of b was increased, so now c is augmented to
7 bits, resulting in a search region where a, b and ¢ represent an increment with 7 bits.

SOA Example

In SOA, the optimization phase is applied over increasing regions (steps 4 to 6). The
rest of steps are those in the basic approach, so they are not illustrated here. Nowon, the
following is assumed. Branch (2,3) is selected as the objective and the current region of
the optimization phase is defined with 7 bits for a and b, and 6 bits for c.

In this algorithm, only one set of inputs is maintained for each branch during the process.
Half of the EDA’s initial population is randomly created and the other half is seeded
from the inputs in the set. For instance, in order to seed the population with input
(509, —11, 35), the increment associated to branch (2, 3) must be induced first. The result
is increment (509, —11,35) (remember that the center was (0,0,0)). This increment falls
outside the current region because 9 bits are needed to codify the 509. Therefore, the
bit substring representing the 509 is truncated to 7 bits to fit in a’s interval. In contrast,
an input (45,117, —21) would result in the increment (45,117, —21), which is inside the
current region and is to enter directly in the initial population.

104

Test Data Generation Enhancement: the Role of Search Space and Objective Function

As in the basic approach, once the value of an input is obtained for branch (2,3), it is
evaluated for the remaining branches. If the quality of the set of the branch is improved,
then the input enters the set.

After the EDA finishes, the current region is enlarged in the way described above for

MOA.

6.5 Performance Evaluation

In order to observe the performance of the presented approaches, test cases were gener-
ated for all the programs taken for experimentation in the basic approach. The goal of
the evaluation was threefold: analyzing the behavior of the approaches, comparing their
results with those attained by other alternatives, and checking whether they constitute
a solid alternative in the real world. Regarding the former goal, performance of each al-
gorithm, MOA and SOA, was studied in isolation. In the second goal, three topics were
considered. Firstly, MOA was compared to SOA. Then, the static information based
heuristic employed to define the initial search region was compared to the dynamic one.
Finally, MOA and SOA results were faced to those by the basic test data generator. For
the later goal, MOA and SOA were evaluated over a number of “real-world” programs.

6.5.1 Experimental Setting

Recall that, among the EDAs evaluated in Chapter 4, TREE was concluded to show
the best performance overall. In consequence, TREE was the EDA chosen here for
the optimization step in both MOA and SOA approaches. At each generation, half of
the population was selected according to a rank-based strategy. New individuals were
simulated by means of Probabilistic Logic Sampling, and the population was created
in an elitist way. The objective function employed in the experiments was formulated
according to equation 3.2. Notice that the stopping criterion adopted for the EDA seems
to be specially suitable for TREE. This algorithm obtains the tree dependent factorization
minimizing the Kullback-Leibler divergence to the empirical distribution. Since the EDA
stops when this divergence value is lower than «a, the value of the optimal model is directly
being considered. For the experiments, a was determined after a number of preliminary
executions.

Other system parameters that need to be fixed are the size of the initial and the largest
possible region. Given a program, this is achieved by setting, for each input parame-
ter, the minimum and maximum possible amplitude of its associated interval of values.
Obviously, a different amplitude may be linked to each input parameter and, thus, the
shape of search regions could be controled. However, for the experiments, no a priori

105

Test Data Generation Enhancement: the Role of Search Space and Objective Function

knowledge is assumed and, therefore, amplitude values were kept constant for all the
input parameters of a program.

Table 6.2 presents, for each program, the values selected for the system parameters, i.e.
number of bits for the increment on the initial region (minimum), number of bits for the
increment on the largest allowed region (maximum), and « value.

Also shown in Table 6.2 is the number of branches, and for how many of them the centers
of each input parameter were obtained through the static information based (static) and
the dynamic information based heuristic (dynamic). As it can be seen, in all the programs
but three, almost every branch is static. Remainder is relatively balanced in this sense,
while in Atof, outstanding branches are dynamic.

program characteristics parameters

branches static dynamic minimum maximum «
Trianglel 26 24 2) 15 2
Triangle?2 26 24 2) 7 2
Triangle3 20 16 4 5] 10 2
Triangle4 26 20 6) 10 2
Atof 30 2 28) 7 25
Remainder 18 10 8 5 16 5
Complexbranch 22 18 4) 10 15

Table 6.2: Experimental programs characteristics and parameters in the experiments.

Remember that the dynamic information based strategy consisted of a grid search. In
this method, the value of parameter 7 defines the number of inputs being considered
candidate centers. More precisely, for a program with p parameters, 7P inputs are created
for evaluation. On the other hand, the larger the 7, the finer the granularity of the
strategy and, hence, the chances of finding a high quality initial search region increase.
In the experiments, 7 was set from 1 up to 5 for all the programs excepting Atof, which
used 7 up to 3.

Additionally, in order to avoid too long executions, a limit of 150000 inputs generated was
established. As soon as this limit was detected, the experiment was forced to terminate.

6.5.2 MOA Performance

Table 6.3 presents the results of the experiments conducted. For each value of 7 and
each program, the table collects the average values in ten executions for the percentage
of covered branches (%) and the number of inputs generated during the process (#).
The best values of T for each of these two measures and each program are highlighted in

gray.

106

Test Data Generation Enhancement: the Role of Search Space and Objective Function

T Trianglel Triangle2 Triangle3 Triangle4 Atof Remainder Complexbranch
% # % # % # % # % # % # % #
1 100 212 99.62 579 100 302 100 2223 98.33 68936 99.44 629 951 149952
2 100 282 99.62 995 100 338 100 1967 43.337 150062 98.89 1628 100 1856
3 100 190 99.23 1143 100 311 100 2436 96.33 1348491 100 186 95.451 102711
4 100 440% 99.23 880 100 285 100 1922 - - 100 84 100 160967
5 100 381% 100 990 100 330 100 1738 - - 100 57 95.911 117213

Table 6.3: Results of the MOA approach.

As can be noticed, in all programs except Atof, full coverage is reached. Atof seems to
be the hardest, since the lowest coverage and the largest number of inputs are attained
in this program.

Overall Performance Analysis

Regarding at Table 6.3, no apparent relation exists between 7 and the best results, since
these are obtained with alternative values of 7, ranging from the lowest to the largest
value.

In order to validate the best performance values in MOA, an analysis based on statistical
tests was conducted. Since coverage is a primary measurement, for each program and
each value of 7, the Mann-Whitney test with regard to the best 7 value (in gray) was
applied to the coverage results. Then, for the cases where no difference was found, the
test was again used over the number of inputs generated. Table 6.3 presents the outcomes
of these tests; symbol ‘1’ denotes the cases where coverage dissimilarities (p < 0.01) were
found, while ‘I’ refers to the number of inputs.

In less than half the cases (8 from up to 26 possibilities), the best values of 7 constitute
an improvement with statistical evidence. It can be seen that statistically significant
differences were obtained for the coverage reached in Atof and Complexbranch for a few
values of 7. In the number of inputs generated, a few dissimilarities were observed in
Trianglel, Atof, and Complexbranch. Hence, considering to these results, we cannot
conclude whether the best 7 makes a difference.

Initial Region Heuristics Performance

According to the previous analysis, no clear conclusion can be stated on the most suitable
7 value for a program. In order to better understand the relevance of 7 in the results,
it could be interesting to examine the influence of the initial heuristics used to elicit the
initial regions.

Table 6.4 shows, for each program, the number of branches covered (#,) and number of
inputs generated (#;) by the static and dynamic heuristics from the region initialization

107

Test Data Generation Enhancement: the Role of Search Space and Objective Function

T Trianglel Triangle2 Triangle3 Triangle4 Atof Remainder Complexbranch
#o H#i #o H#i #o H#i #o H#i #o #i #o H#i #o #i
static 2 12 2 12 1 8 1 10 1 1 1 5 10 9
dynamic, 7 =1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
dynamic, 7 =2 1 8 0 8 2 8 3 8 0 1024 7 4 2 64
dynamic, 7 =3 0 27 0 27 2 27 3 27 0 59049 7 9 2 729
dynamic, 7 =4 1 64 0 64 3 64 6 59 - 8 14 2 4096
dynamic, 7 =5 1 125 0 125 3 125 6 119 - 8 22 2 15625

Table 6.4: Results of the initial region obtainment heuristics.

phase. The first row presents the values of the static heuristic, while the rest correspond
to the dynamic heuristic (grid search) with the different values of 7. Notice that the
overall contribution of these heuristics consists of the sum of the static and the dynamic
results for a chosen 7. For instance, in Trianglel with 7 = 2, after applying the static
and dynamic strategies, 2+1—3 branches were covered (which implies a 11.54% coverage)
and 12+8=20 inputs were generated.

It can be seen that, regarding the static strategy, a number of branches are covered in
all the programs just by the application of the two heuristic rules. Moreover, in some
cases this is a significant number. In Complexbranch, 10 out of the 18 static branches are
covered, and in Atof, one of the two static branches are attained. Anyhow, considering
that most of the branches are static in the main body of the programs and that 100%
coverage was obtained in almost all of them, the heuristic rules appear to be effective.

The dynamic heuristic is a grid search method. In such a method, given a problem,
as 7T increases, more points are generated and the quality of the best solution found
is expected to grow. In the context of the test data generator, this implies that the
number of branches covered is expected to increase with growing values of 7. However,
a main drawback of a grid search is that the value of 7 needed to reach an outstanding
solution may be large, producing a prohibitive number of solutions. This could be the
case even for small values of 7, if the number of problem variables is relatively big
[7]. Accordingly, Table 6.4 shows alternating behaviors. In Triangle3, Triangle4 and
Remainder, the coverage increases as 7 grows, while, for the rest of the programs, this
is not held. Moreover, comparing the values in Table 6.3 and Table 6.4 for Trianglel
and Triangle3, it can be observed that, with 7 = 5, a significant part of the inputs are
generated by the grid method; the same occurs in Atof with 7 = 3. In consequence,
results do not necessarily improve by increasing the value of 7.

This observation can also be extrapolated to the best overall results in Table 6.3, since
these are obtained with different values of 7. Furthermore, recall that, in the previous
statistical analysis, no significant influence of 7 on the best coverage values was found,
excepting a few cases. Thus, these results suggest that the effect of the grid search is
neutralized by the rest of the phases in MOA.

108

Test Data Generation Enhancement: the Role of Search Space and Objective Function

Trianglel1(26) Triangle2(26) Triangle3(20) Triangle4(26) Atof(30) Remainder(18) Complexbranch(22)

r
1 2.2 2.3 2.7 5.1 15.2 0.7 2.5
2 2 3.4 1.9 5.3 17 0.8 1.9
3 1.7 3 2.1 4.9 15.5 0.5 1.5
4 2.4 2.5 2.4 4 - 0.6 2.1
5 1.9 2.8 2.1 4.7 - 0.4 1.6

Table 6.5: Average number of branches sought in the MOA approach.

Region Enlargment Performance

Another factor that contributes to the performance of the generator is the number of
region enlargements. New regions may include uncovered objectives. Instead, as more
increments are carried out, the number of inputs created is expected to grow, since more
search steps are executed.

During the experiments, each run was recorded with the purpose of studying how the
system operates. Using this information, given a search region and an objective branch,
the number of inputs generated and whether the objective was covered or not can be
elicited. This is shown in Figure 6.5. The graphics above relate to the number of branches
covered in each region. More specifically, they only consider the branches which were
covered by the initial region heuristics or those selected as objectives and covered by the
EDA. Notice that not all the branches need to be explicitly searched, because during
the fitness evaluation in the EDA, branches distinct from the objective may eventually
be covered. Thus, in each graphic ahead of Figure 6.5, the x-axis takes values in the
range of possible regions, while the y-axis concerns the number of branches covered
by the initial heuristics or by the EDA. The points depicted correspond to the results
(averaged over the ten executions) in each region, for each value of 7. To finish with
the specification, Table 6.5 shows the average total number of branches searched by the
EDA; aside from a program name, the number of branches in the program is provided in
brackets. Analogously, the bottom part of Figure 6.5 presents the accumulated average
number of inputs generated (y-axis) for each region (x-axis), given a value of 7 and a
program.

As can be observed in the upper half, with the exception of Atof, almost all the branches
were attained in the very first search regions. To some extent, this is not surprising,
since the first region includes the coverage of the initial heuristics and the EDA, while
the rest of regions only involve the EDA contribution. In the bulk of the programs,
the number of static objectives is high (see Table 6.2), so the graphics suggest that the
static information based heuristic used to elicit the initial region is an adequate strategy.
Indeed, this could be the cause of the poor behavior of Atof, since it contains a reduced
number of static branches. Moreover, owing to the quite large set of parameters of an
input in this program, 7 only takes values up to 3, which seems to be insufficient for
the grid search to obtain a promising initial center. Another program with a relevant

109

Test Data Generation Enhancement: the Role of Search Space and Objective Function

Trianglel
6
(%]
(<5}
=
e 4
@
S
e 2
=
f=
(0]
(0] 10 20 30
region
Triangle4
10
5
(0]
(o] 5 10 15
Complexbranch
15
10
5
(]
(o] 10 20 30
Trianglel
©« 400
=1
o
£
£
=1
=
(o]
(o] 10 20 30
region
Triangle4
2000
1000
(o]
(o] 5 10 15

15

10

1500

1000

15

10

Triangle2 Triangle3
6
4
2
0}
[0} 2 4 6 5 10 15
Atof Remainder
10
5
R > o Lie
[0} 10 20 10 20
—_—s— 1=1
—— 1=2
—— 1=3
—e—— T1=4
—*—— 1=5
Triangle2 Triangle3
400
**g -9 r-9
200
(o]
(o] 2 4 6 5 10 15
X 104 Atof Remainder
1500
1000
(o]
(o] 10 20

=1
=2
=3
=4
=5

Figure 6.5: Average number of branches covered (above) and inputs generated (below)
for each region in MOA.

110

Test Data Generation Enhancement: the Role of Search Space and Objective Function

number of dynamic branches is Remainder. In this case, both the dynamic and the
static heuristics appear to behave successfully, as all the dynamic branches were covered
directly by the grid method (see also comments on Table 6.4) and most of the static ones
were attained in the initial region.

Anyhow, the effect of the different search spaces should not be underestimated. In 5 of
the 7 programs, a few objectives are still covered in advanced regions and, therefore, the
coverage measurement grows.

As for the inputs generated, Figure 6.5 below shows that their number stays relatively
low at the initial stages, although it increases as branches remain uncovered. If complete
coverage is attained, the curve stabilizes, in other case, it keeps growing. More especif-
ically, the curve grows smoothly in a number of cases (e.g. Triangle2), although for
other instances it augments rapidly with certain values of 7 (Complexbranch and 7 =1,
for example). In these last cases, the latter regions offer more promising solutions than
in the previous stages and the search intensifies. This means that the EDA operates
for a larger number of generations and, thus, more solutions are generated. This can
be clearly remarked in the Remainder and Complexbranch programs. The low coverage
reached by Atof for 7 = 2 can be understood by observing the number of inputs gener-
ated. The figure reveals that the limit of 150000 inputs was attained in the early regions,
so the generator stopped prematurely and no more objectives could be covered (see Atof
above).

To summarize, it could be deduced that, on one side, the search over different regions
allows the MOA generator to obtain the highest coverage (effectiveness). On the other
side, the answer of the dynamic heuristic seems to be more unstable than for the static
information based strategy. In fact, the high quality values of the early spaces suggest
that the static heuristic is useful to achieve objectives soon and, therefore, generate a
reduced number of inputs (increase efficiency). In order to shed more light on this matter,
this will be further studied in a following analysis in Section 6.5.4.

6.5.3 SOA Performance

Apropos the SOA algorithm, Table 6.6 shows the results of the experiments for the
programs. The cell format is the same as in Table 6.3. Similarly to the MOA approach,
the most difficult program for the test case generator is Atof. However, in this case,
100% coverage neither could be obtained for Triangle4.

Overall Performance Analysis

Statistical tests were used to identify the best performance values. Thus, the null hy-
pothesis of equal distribution densities between the best 7 values and the others was
evaluated in the manner explained in the previous section.

111

Test Data Generation Enhancement: the Role of Search Space and Objective Function

T Trianglel Triangle2 Triangle3 Triangle4 Atof Remainder Complexbranch
% # % # % # % # % # % # % #
1 100 401 100 333 100 250 99.23 3630 96 65078 100 58% 95.911 122813
2 100 282 100 374 100 237 98.46 5476 49.331 150049 100 33 100 18406
3 100 246 100 293 100 222 99.23 60031 95 1336497 100 30 98.18 1071441
4 100 391 100 266 100 297 98.46 2663 - - 100 59% 98.18 68485
5 100 399% 100 765% 100 314} 99.23 2546 - - 100 91% 97.73 1066981

Table 6.6: Results of the SOA approach.

Differences were statistically significant (p < 0.01) with regard to the coverage measure-
ment in a pair of cases (Atof with 7 = 2 and Complexbranch with 7 = 1). In contrast,
for the number of inputs generated, the 10 differences obtained (p < 0.01), from up to
24 possibilities, spread over all the programs. The outcomes from this analysis reinforce
the conclusions of the MOA approach. Taking the programs used here into account and
respecting the best results, the 7 value has no significant influence regarding the coverage
measure. On the other hand, for the number inputs, not enough dissimilarities to make
a reliable conclusion were found.

Initial Region Heuristics Performance

MOA and SOA share the same initial region elicitation step. Therefore, results in Table
6.4 also apply here, as well as the comments on the behavior of the static and dynamic
heuristics.

Concerning the lack of influence of 7 on the best coverage results, the outcomes of SOA
are almost equal to those in MOA. In consequence, here, the corresponding reason is
suggested, that is, the remaining steps of SOA cancel the effect of the grid search.

Region Enlargment Performance

Accordingly to the MOA alternative, the experiment executions were monitored and the
values raised by a search step were stored. Figure 6.6 reveals, for each possible search
region, the average number of objectives covered by the initial heuristics and the EDA
(above), and the inputs generated (below) during the process. The figure format is the
same as in the previous section. Table 6.7 assists in the understanding of the figure by
presenting the average total number of branches searched by the EDA and, in brackets,
the number of branches in a program.

Drawing a rough comparison of Figure 6.6 and Figure 6.5, it can be noticed that, in
general, the behavior of both approaches is similar. Although differences appear with
some programs (Remainder in the number of inputs), the remarks on the MOA algorithm
can also be applied to SOA.

112

Test Data Generation Enhancement: the Role of Search Space and Objective Function

Trianglel
8 6
=
[=]
S 4
S
E 2
=
f=
(0]
(0] 10 20 30
region
Triangle4
10
5
(0]
(o] 5 10 15
Complexbranch
15
10
5
o " s
(o] 10 20 30
Trianglel
©« 400
=1
o
£ 200
=1
=
(o]
(o] 10 20 30
region
Triangle4
6000
4000
2000
(o]
(o] 5 10 15

N

N

Triangle2 Triangle3
6
4
2
& *—o (o]
[0} 2 4 6 [0} 5 10 15
Atof Remainder
10
5
@ﬁ._. - o
[0} 10 20 [0} 10 20
[———
—— 1=2
—v— 1=3
—e— 1=4
—*— 1=5
Triangle2 Triangle3
(o]
(o] 2 4 6 (o] 5 10 15
x 10 Atof Remainder
> 100
50 g
(o]
(o] 10 20 (o] 10 20

Figure 6.6: Average number of branches covered (above) and inputs generated (below)
for each region in SOA.

113

Test Data Generation Enhancement: the Role of Search Space and Objective Function

7 Trianglel(26) Triangle2(26) Triangle3(20) Triangle4(26) Atof(30) Remainder(18) Complexbranch(22)
1 3.4 2.6 2.7 5.1 6.7 1 1

2 3.3 2.6 2.7 4.9 1.9 0.7 2.6

3 2.9 2 2 4 6.6 0 1

4 3.3 2.3 2.4 4.4 - 0.5 2.5

b) 3.6 2.5 2.4 3.8 - 0.5 1

Table 6.7: Average number of branches sought in the SOA approach.

6.5.4 MOA vs. SOA vs. Other Approaches

Next, each Self-Adaptive algorithm is compared to other approaches to evaluate its per-
formance and know if it represents a competitive alternative.

MOA vs. SOA

In the MOA approach, each region enlargement concentrates on the test case generator
as a whole. In contrast, each increment of the SOA alternative refers to an independent
EDA search phase. Therefore, a formal comparison of both algorithms in terms distinct
from the coverage and inputs generated becomes a difficult task. However, it might
be suspected from the common conclusions raised in Sections 6.5.2 and 6.5.3, and from
the matching behavior shown in Figures 6.5 and 6.6, that important similarities exist
between them.

In order to know whether MOA and SOA offer a similar behavior in terms of coverage
and inputs created, Table 6.3 and Table 6.6 were used to find statistically significant
differences between the results. To be precise, the Mann-Whitney non-parametric test
was applied to each approach and value of 7. Considering coverage, the null hypothesis of
equal distributions was rejected (p < 0.01) only for Atof with 7 = 2 and Complexbranch
with 7 = 3. For the number of inputs generated, differences (p < 0.01) were obtained
in six cases: Trianglel with 7 = 1, Triangle2 with 7 = 3, Triangle3 with 7 = 3,
Triangle4 with 7 = 2 and 7 = 3, and Remainder with 7 = 3. Since half of the best
result values in these cases corresponded to each approach, it cannot be stated which one
behaves better.

According to the tests, it may be concluded that, excepting a few cases, the perfor-
mance of MOA and SOA algorithms is similar in terms of coverage and number of inputs
generated.

Static vs. Dynamic Information Centers

An element which appears to be important in the Self-Adaptive approach is the initial
search space. If this is located in an adequate region, the effort in finding the optimal

114

Test Data Generation Enhancement: the Role of Search Space and Objective Function

T Trianglel Triangle2 Triangle3 Triangle4 Atof Remainder Complexbranch
% # % # % # % # % # % # % #
1 96.151 1500321 100 1688% 100 453 100 1497 99 89230 99.44 838 95.45 145272
2 76.92f 1500241 11.541 1500241 100 5324F 94.621 64131 43.33 150050 99.44 78251 90.917 150047%
3 11.541 150020% 11.541 150017% 99 7829% 88.851 443111 92.67 138653 100 49 9545 112269
4 100 61916F 11.54t1 150018% 100 154% 93.851 290487 - 100 67261 97.73 114918%
5 100 745771 11.541 1500241 100 185% 91.54} 37602} - 100 42f 95.45 134630

Table 6.8: Results of the MOA approach with no static information based initial centers.

T Trianglel Triangle2 Triangle3 Triangled Atof Remainder Complexbranch
% # % # % # % # % # % # % #
1 94.621 1500261 100 23141 100 3761 98.46 3778 95 91148 100 71 98.18 87891
2 76.92f 1500231 23.081 1500241 100 3691f 89.621 28819f 47.33 150064 100 9931F 93.641 1288681
3 56.1561 150028% 34.621 150020% 99 4442F 89.231 285661 95.67 125487 100 33 97.27 111895
4 100 25031% 657 145067f 100 125§ 89.231 24322% - - 100 8377f 96.36 113230
5 100 308081 23.081 150014f 100 185% 901 251347 - 100 42f 98.18 116060

Table 6.9: Results of the SOA approach with no static information based initial centers.

solution may be low. On the other hand, if the EDA departs from an unsuitable region,
a huge number of interval increments could be necessary to reach the optimum, or it
could not even be attained. In the present work, the definition of the initial space of
each branch is based on static or dynamic heuristic information. In order to compare
these two strategies, the previous experiments were repeated changing static information
based centers to be dynamic information based. Tables 6.8 and 6.9 show the results for
the MOA and SOA algorithms, respectively.

The differences between the static and dynamic strategies for the coverage and number of
inputs were studied through statistical tests. In other words, the Mann-Whitney test was
employed to evaluate the equality between the distribution densities of the algorithms
with and without static strategy. Similarly to previous tables, the symbols ‘4" and ‘i’
beside a cell in Table 6.8 denote a statistically significant difference (p < 0.01) between
the experiments in the cell and the corresponding values in Table 6.3. Analogously, the
same applies to Table 6.9 and Table 6.6.

As can be observed, in MOA, the differences associated with the coverage concentrate
on three programs: Trianglel, Triangle2 and Triangle4. However, concerning the
number of inputs generated, from up to 33 tests, dissimilarities were obtained in 23
cases. All in all, the programs with a large proportion of static to dynamic branches
(see Table 6.2) offered differences, excepting Complexbranch for a few values of 7 which
shown an inferior performance in Table 6.3.
significant number of dynamic branches, revealed, in general, fewer dissimilarities. In
the SOA algorithm, differences were found in almost the same cases as in MOA.

In contrast, the programs with a more

Regarding these significantly different instances in Tables 6.3 to 6.9, it can be noticed

115

Test Data Generation Enhancement: the Role of Search Space and Objective Function

that in almost all of them, the best results correspond to the approach using the static
strategy. The only exceptions are Triangle3 with 7 =4 and 7 = 5, and Remainder with
7 =5 for both MOA and SOA, in the number of inputs generated.

The remarks from these tests are captured by Figures 6.7 and 6.8 for MOA and SOA,
respectively. In each graphic, the different objectives are represented in the x-axis, while
the y-axis takes values in the range of possible region enlargements. Thus, given a
program, the graphic in the upper half in a figure shows the number of increments
performed for each static (labeled with a cross) and dynamic (labeled with a circle)
objective. To be exact, the average and the standard deviation over 7 and the ten
executions are depicted for each objective. Analogously, in the bottom part of a figure,
the values associated with the variant using only dynamic objectives are presented.

Both figures show clear disparities between the static-dynamic and the dynamic ap-
proaches in programs where the bulk of the statistical tests observed differences (that
is, Trianglel, Triangle2, Triangle4). In contrast, in Atof, where no significant dis-
similarity was found, behavior is almost the same. Remaining programs fall somewhere
in between; they respond differently for a few objectives, although, in most of them,
response is alike.

The significant differences obtained in the number of inputs generated are also reflected
by the figures. In all the statistically distinct programs, the sum of the average number
of increments in the dynamic approach is larger than in the static-dynamic one. Indeed,
it can be noticed that the main body of the objectives where changes occur between both
approaches corresponds to static cases which had turned out to be dynamic.

Thus, it may be concluded that the suggestions raised in Section 6.5.2 on the static
information based strategy are confirmed. This strategy can make a difference in the
coverage reached but, most of all, in the number of region enlargements and, consequently,
in the number of inputs created. Moreover, the static heuristic improves or equals the
dynamic one, with the exception of a few cases.

Self-Adaptive vs. Basic Approach

In order to have an idea of the quality of the results of the Self-Adaptive alternative,
they were compared with those obtained by the basic test data generator.

The range of input parameter values for the basic approach was obtained centering the
interval in 0 and adding the maximum increment shown in Table 6.2. To make the
comparison as fair as possible, the EDA chosen was TREE and its parameters were
the same as in Section 6.5.1, apart from two of them. The population size and the
maximum number of generations were fixed with the values in Chapter 4 offering the
best performance for TREE.

116

Test Data Generation Enhancement: the Role of Search Space and Objective Function

Trianglel Triangle2 Triangle3
6 15
= 4 10
E=]
g 2 5
O [IPOOOOOPKOOOK | XOOOOOOOEEIOK
O [XXXXXXXXOOXXOOX XXX XX
[0} 10 20 [0} 10 20
objective
Triangle4 Atof Remainder
15 20
10
10
5
(0] « M%X 0 xx+xxxxxomooxx®®@o
[0} 10 20 [0} 5 10 15
Complexbranch
30
20 o
x static
10 .
® o dynamic
(o] 10 20
Trianglel Triangle2 Triangle3
30 6 15
= 20 4 [ﬂ% 10
o
=) ¢ + +
@ 40!} © 2 5 ®
Lo it °
o i [s)Iccleclololclolcloff ol
(o] 10 20 (o] 10 20
objective
Triangle4 Atof Remainder
15 {D 20 20
o b4
10 10
5 (oo} o} CID
[o¥o¥o)
0 [CE0EEED © © CEREEEED © © © 0 e P O %) 0L © COEEEEEEEEEEEEO
(o] 10 20 (o] 10 20 30 (o] 5 10 15
Complexbranch
30
20 o
10
o ¢ ¢ 0]
[e)} To'o} [00.0.0000) o)
(o] 10 20

Figure 6.7: Average number of region enlargements per objective in MOA (above) and
MOA with no static objective (below).

117

Test Data Generation Enhancement: the Role of Search Space and Objective Function

Trianglel Triangle2 Triangle3
6 15
= 4 10
E=]
g 2 5
SOOOOOOEDERK
0 O [XXXXXXXXOOXXOOX XXX XX
[0} 10 20 [0} 10 20
objective
Triangle4 Atof Remainder
15 20
10
10
. %
(o] (#O O’#xx%ooo« X[|x% O EXXXXXXXXOOOOXXOOOO
[0} 10 20 30 [0} 5 10 15
Complexbranch
30
20
o)
x static
10 .
+ o dynamic
0 (oM lo) *y \(\(y)o(i(x
(o] 10 20
Trianglel Triangle2 Triangle3
30 6 15
| bbb 4@ @0
c 20t ©44d 4 R 10
E=]
[=2)
@ 10} © (# [eXS] 2 5
¢ ° ©
0 0 [OO
(o] 10 20 (o] 10 20
objective
Triangle4 Atof Remainder
1
5 (% %) % 20
10
5 10 (0]
(oY) ¢
(o] 00 ©9 9 o]
(o] 10 20 (o] 10 20 30 (o] 5 10 15
Complexbranch
30
20 (#
10 (# %
0 lood - 15}
(o] 10 20

Figure 6.8: Average number of region enlargements per objective in SOA (above) and
SOA with no static objective (below).

118

Test Data Generation Enhancement: the Role of Search Space and Objective Function

T Trianglel Triangle2 Triangle3 Triangle4 Atof Remainder Complexbranch
% # % # % # % # % # % # % #
Basic 99.62 99401 100 5880f 100 4180f 99.62 51560% 100 3475 100 1240f 98.64 21420%
MOA 100 190 100 990f 100 285 100 1738 98.33 689361 100 5T} 100 1856
SOA 100 246 100 266 100 222 99.23 2546 961 65078 100 30 100 18406

Table 6.10: Best results of the basic, MOA and SOA approaches.

Table 6.10 shows the best values (with priority to coverage) of the MOA, SOA and basic
approaches. The outstanding results are highlighted in gray.

It can be observed that the Self-Adaptive alternative outperforms the basic approach
in the coverage reached as well as the number of generated inputs in all the programs
except Atof. In fact, the poor behavior shown in the results of previous tables for this
program becomes evident here, mostly with regard to the number of inputs. In Atof, a
number of objectives can only be covered when the largest search region is reached. Since
the Self-Adaptive approach departs from a reduced region and the grid search method
seems to provide an unsuitable initial center, performance is worse than for the basic
alternative, which operates over the largest region directly.

The purpose of the current comparison is to identify the approach offering the best per-
formance. Hence, the statistical analysis explained in Section 6.5.2 was used to validate
these results. Similarly to the previous table, Table 6.10 provides the outcomes of the
analysis.

Significant differences (p < 0.01) in the coverage values were noticed just for Atof,
between the basic approach and SOA. In contrast, MOA revealed a difference in this
program for the number of inputs generated. Thus, it can be deduced that the basic
generator improves SOA and MOA with statistical evidence in Atof. In spite of this, for
the rest of the programs, the basic approach presents dissimilarities (p < 0.01) in the
number of inputs created with regard to the best result.

Therefore, it can be inferred that in almost all the programs the Self-Adaptive approach
outperforms the basic one.

6.5.5 Evaluation with Real-World Programs

The experiments conducted in the previous sections involve typical programs which are
known to include several challenging branches. Obviously, test data generation for “real-
world” programs may be as difficult, although it could result in a simple task as well.
In order to verify whether the Self-Adaptive algorithms constitute a solid option in the
“real world”, they were compared to the basic approach for a number of non-academic
programs. In [210], test cases were generated with the basic approach for several programs
taken from the book “Numerical Recipes in C. The Art of Scientific Computing.” [195].

119

Test Data Generation Enhancement: the Role of Search Space and Objective Function

Thus, up to 16 instances that showed different levels of difficulty for the basic approach
were chosen from this study, and the Self-Adaptive alternative was applied to them.

Apropos the parameters for the basic approach in [210], the EDA applied was TREE.
The population consisted of 100 individuals, and the stopping criterion was reaching a
maximum of 100 generations. The rest of the parameters in the EDA were the same as
in Section 6.5.1. Additionaly, the test case generation was halted as soon as a limit of
100000 inputs was detected.

In the experiments with the Self-Adaptive approach, the EDA took the parameter values
previously described, with two exceptions. As explained in Section 6.3.1, the EDA’s
population size is fixed to be twice the length of the individual. Moreover, in order to
make a fair comparison, instead of using the Kullback-Leibler divergence based stopping
criterion, a maximum number of generations equal to the population size was set. Again,
the whole process was forced to terminate as soon as the generation of 100000 inputs was
detected. In all the programs, the parameters of an input were integers or real numbers.
Tentative values were adopted for the number of bits used to represent the initial and the
final search regions, i.e. 5 and 10 bits for integers, and 5 and 7 bits for real parameters.

The experiments were conducted for MOA and SOA, with 7 ranging from 1 to 5. Table
6.11 presents the results of the best 7 for each algorithm, together with the values of the
basic approach. The outstanding values are highlighted in gray.

program basic MOA SOA

% # % # % #
bessj 100 220 100 21 100 45
bnldev 80.77 | 54100 84.62 100007 84.72 100018
caldat 75 20100 87.5 1550 87.5 1481
cyfun 75 40100 75 100009 75 100011
factln 87.5 10330 87.5 1543 87.5 1477
fit 100 3760 100 101 100 101
flmoon 98.33 2530 100 29 100 29
gasdev 75 10100 75 1541 75 1476
irbit2 50 10100 50 1511 50 1476
kendl1 100 100 100 61 100 61
laguer 100 3590 100 2149 100 2185
rani 66.67 20100 66.67 4730 | 66.67 3649
ratint 100 330 100 163 100 74
sncndn 93.75 10100 93.75 3089 93.75 3021
tred2 100 240 100 61 100 61
tridag 91.25 10790 100 157 100 157

Table 6.11: Results of the basic approach, MOA and SOA on real world programs.
In all the programs but one, MOA or SOA improve the outcomes of the basic approach.

In this exception (cyfyn), the basic generator obtained a 75% coverage and stopped at
40100 inputs. The Self-Adaptive algorithms were unable to attain a better coverage,

120

Test Data Generation Enhancement: the Role of Search Space and Objective Function

but they continued the search over larger regions until the maximum limit of inputs
was reached. Athough this behavior results undesirable in this case, it can also be very
suitable. For instance, in bnldev, the coverage of the basic approach is augmented and
the limit of 100000 is attained once again. The other programs where the coverage is
outperformed are caldat, flmoon and tridag. For the rest of the cases, the enhacement
corresponds to the number of inputs generated.

Thus, these outcomes present the Self-Adaptive approach as a viable alternative for
application in the real world. Furthermore, the results clearly support the conclusion
from the previous section: the Self-Adaptive algorithms perform better than the basic
approach, mainly with regard to the number of inputs generated.

6.6 Summary

In this chapter, two significant topics, when the generation of test inputs is posed as an
optimization problem, have been dealt: the objective function and search space.

The former topic has been briefly tackled by comparing a function following equation 3.1
with a function using equation 3.2, in the context of the basic approach. Experimental
results have shown that the second equation improves or equals the performance of the
first.

On the other hand, the issue of selecting an appropriate search space was faced by
describing two new approaches, namely, MOA and SOA. In order to enhance the test
case generation process, the optimization step of both alternatives departs from an initial
small region which is increasingly enlarged as branches remain uncovered. The starting
search space is defined upon heuristic information from the program. More precisely, two
options could be adopted: the application of a set of rules concerning the source code’s
static information, or using a heuristic procedure based on dynamic information, which
consisted of a grid search method.

The analysis of the experiments conducted revealed promising results for both approaches.
First of all, the search over different regions allows for the achievement of the highest
coverage values, which is a primary performance measurement. Apropos the two heuris-
tic strategies to obtain the initial region, it was concluded that the static option makes a
difference and can at least improve the efficiency of the approach in terms of the number
of inputs generated. On the other hand, the dynamic heuristic showed to be more un-
stable. The 7 parameter of the method did not provide a relevant influence on the best
values.

Comparing the performance of the MOA and SOA algorithms, in general terms, no sig-
nificant difference was found between them. Additionally, the algorithms were compared
to the basic approach. With the exception of the inferior results in one test program, the

121

Test Data Generation Enhancement: the Role of Search Space and Objective Function

formers outperformed the latter with statistical evidence. Moreover, this improvement
over the basic generator repeated for a number of “real-world” programs, presenting the
Self-Adaptive strategy as a solid alternative.

122

7 Conclusions

In this chapter, the main contributions exposed throughout the dissertation are summa-
rized. Conclusions arising from the work developed in previous chapters are included
and, additionally, directions for future lines of research are suggested.

7.1 Contributions

Among the issues related to software testing, the automatic generation of the input cases
to be applied to the program under test is especially relevant and difficult. A common
strategy for tackling this task consists of creating inputs that fulfill an adequacy criterion
based on the program structure. The present dissertation has addressed the test data
generation problem, focusing on branch testing, a mandatory criterion nowadays. This
task has been posed as a set of optimization problems to be solved. Then, the three
significant elements related to each optimization problem have been studied, that is, the
optimization method, the search space and the objective function. Among these, special
attention has been paid to the optimization technique. After overviewing EDAs and SS,
their application to this problem has been studied. Apropos the two other elements, since
research in the field is being active for the objective function, the search space topic has
been emphasized.

More specifically, the contributions of the present work may be summarized as follows:

e An overview of EDAs and SS, two modern metaheuristic techniques currently de-
serving the attention of the EAs community.

e In some optimization methods, there is a lack of works dealing with real-world
problems, which is an important aspect for uncovering their limitations or knowing
whether they represent a practical alternative. Here, EDAs and SS have been
applied to the generation of test inputs for branch coverage, a demanding real-
world problem.

e The application of EDAs has been studied in the context of an iterative two-step
process. In the first step, a branch is chosen as the objective and, in the second,
the corresponding optimization problem is tackled through an EDA. Three types

123

7 Conclusions

of EDAs have been evaluated empirically: those where the probabilistic model as-
sumes problem variables are conditionally independent (UMDA and PBIL), algo-
rithms with first order dependence probability distributions (MIMIC and TREE),
and EDAs where the model makes no restriction on the dependencies between
variables (EBNAko pen and EBNAgc).

e The SS methodology has been employed following the same test data generation
framework as for EDAs, enabling so their comparison. Additionally, light has
been shed on SS internals, which can scarcely be found in the literature to date.
More precisely, the role of the improvement method in the SS algorithm has been
dealt by studying three application options. Namely, these are: using improvement
in the classical way (Improve After), i.e. after diversification or combination, or
just improving the solutions to enter in the reference set (Improve Before), or not
employing improvement at all. Such alternatives have been analyzed empirically.
Moreover, for each alternative, the weight of each SS method has been captured
during the search.

e Both, EDAs and SS, have been combined to solve the test data generation. A
collaborative scheme has been developed where, firstly, the EDAs based approach is
applied and, once it has finished, the SS based generator is used over the remaining
uncovered branches.

e Regarding the objective function, an advanced formulation (equation 3.2) has been
discussed and compared with a basic function (equation 3.1) through experimen-
tation.

e The issue of selecting an appropriate search space has been explored by developing
a Self-Adaptive strategy that seeks for a promising feasible region. Two algorithms
conforming to this strategy have been described: MOA and SOA. The underlying
idea in MOA is to apply the EDAs based framework over widening regions. By
contrast, in SOA, the basic framework is used once, though the EDA executes over
increasingly augmented regions. In both approaches, the initial search space is
defined upon static or dynamic heuristic information from the source code of the
program. Additionally, parameters of the EDA are made self-adaptive. Population
size is set to twice the length of the individual and, for the stopping criterion,
a novel rule based on the Kullback-Leibler divergence from the estimated to the
empirical probability distribution is proposed.

7.2 Conclusions

The main general conclusion that can be drawn from the dissertation is that treatment
of the test data generation from an optimization point of view proves to be successful.

124

7 Conclusions

To sum up, the following ideas collect the major conclusions from the work developed:

e Considering the optimization method, EDAs as well as SS are solid options for
solving the test data generation. Furthermore, they are able to improve the results
achieved by other methods. To be precise, upcoming concepts may be inferred from
their application:

— In the EDAs based approach, the coverage attained was 100% in all the exper-
imental programs and, excepting a few cases, the number of inputs generated
was clearly lower than in other works based on GAs. Among the different
EDASs, algorithms using nontrivial probabilistic models seem to be a promis-
ing alternative. A ranking based on statistical tests was developed to identify
the best algorithms; TREE and EBNAkgpen showed the best overall perfor-
mance. The capability of these EDAs for expressing the dependencies between
problem variables could be a key point, as such dependencies usually exist
when trying to cover a particular branch.

— The SS based approach shows competitive with regard to the EDAs test data
generator: in three of the seven test programs, SS improved the results of
EDAs with statistical evidence, and no differences where found in another
program. Concerning the influence of the improvement method, it may be
concluded that, despite being optional, this element plays a main role in the
SS methodology. The weight of improvement is reflected in the number of
solutions generated and the number of optima found during the process. The
Improve Before option proposed obtained statistically significant better results
than the classical strategy in three of the seven test programs, thus presenting
as an interesting alternative. Clearly, the worst performance was obtained
if no improvement method is employed. Moreover, the behavior of other
SS methods depends on the way improvement is used. In fact, a common
observation to the three cases of study is the unability of the combination
method to reach an important number of high quality solutions by itself. So,
in this context and according to our experiments, in SS, the two prominent
methods for optima attainment are improvement and diversification.

— The empirical comparison of the EDA-SS collaborative approach with the two
other points at the former as a method lying in between the latters, from the
point of view of performance.

e The evaluation of the objective function confirmmed that the function defined
according to equation 3.2 outperforms or equals that from 3.1.

e Apropos the study of the search space selection, this issue shows highly relevant to
reach improved results. Although no significant difference was appreciated between

125

7 Conclusions

MOA and SOA approaches, the results of the basic EDAs test data generator were
clearly enhanced, with the exception of one test program. The outcomes of the
experiments reveal that the search over different regions allows for the achievement
of the highest coverage values. For the two heuristic strategies to obtain the initial
region, it was concluded that the static information based option makes a difference
and can at least improve the efficiency of the approach in terms of the number of
inputs generated. On the other hand, the dynamic heuristic showed to be more
unstable.

7.3 Future Work

Undoubtedly, much research is to be undertaken on the area of optimization and, more
exactly, on metaheuristics such as EDAs and SS. Just to name a few ideas, theoretical
works on their behavior, parallel designs, new algorithms for EDAs, advanced methods
for SS, or stopping criteria. Progress in these (and much other) topics are important for
better understanding such techniques and, ultimately, to yield wiser applications in the
real world. Though this must be bore in mind, we focus next on a number of hints for
future lines of work which might be interesting in our particular context.

e In the field of EDAs, a relevant topic is the selection of an appropriate algorithm
for a given problem. Several works have already been developed, suggesting that
simple EDAs (e.g. UMDA) are more limited in finding high quality solutions than
complex EDAs (like TREE or EBNA) [261], or that the probabilistic model should
capture the interactions between the objective function variables [26]. To some ex-
tent, results obtained in the dissertation conform to these studies, however, further
research is needed.

e Considering SS, very few publications have been devoted to the internals of its
operation. Yet we have rised a slight contribution on this matter, intensive efforts
should be addressed towards the effect of each SS method during the search process.
This would help in the design of the adequate SS algorithm for a given problem.

e Additional work can be conducted on the EDAs based test data generator. For
instance, an appealing option is employing different EDAs for each branch to be
covered, instead of a fixed one. Notice results on the selection of an appropriate
EDA would be useful here.

e Concerning the EDA-SS collaborative approach, the proper balance between the
parameter values of each generator should be studied with the purpose of obtaining
the maximum benefit. Moreover, other forms of the collaborative scheme could be
considered; for example, a SS-EDA combination.

126

7 Conclusions

e In the Self-Adaptive approach, several elements can be further studied. In the
dissapointing experimental results, almost all the initial regions where created with
the dynamic information heuristic. Since the static strategy behaves superiorly, a
way to enhance the response of the approach could be to expand the set of heuristic
rules. On the other hand, in order to make the approach more flexible, another
interesting line of future work is the elicitation of an « value for the stopping
criterion of the EDA, which takes into account the size of the search space.

e The general scheme (Figure 3.5) followed throughout this dissertation owns two
elements apart from the optimization phase, namely, the branch selection step and
the stopping criterion. So, attention may be deserved to them as well. For instance,
an interesting option is to deal with the selection step, which determines the order
for solving the optimization problems. Advantage may be taken from ideas that
have been developed for reducing the number of branches to be covered through
control flow graph analysis [141].

e Finally, we propose to extend the test data generation problem to the application
of other fields from Artificial Intelligence. More precisely, in [210], a new line of
work was opened with the application of Data Mining techniques in this context.
The underlying idea was to study the capability of software complexity metrics
to predict the performance of the EDAs based test data generator. This is a
worthwhile issue, as it is a first step towards the prediction of the most desirable
approach for a given program.

127

7 Conclusions

128

8 Bibliography

1]

2]

13]

4]

[5]

6]
7]

8]

19]

[10]

[11]

C. W. Ahn and R. S. Ramakrishna. Elitism-based compact Genetic Algorithms.
IEEE Transactions on Evolutionary Computation, 7(4):367 385, 2003.

C. W. Ahn, R. S. Ramakrishna, and D. E. Goldberg. Real-coded Bayesian opti-
mization algorithm. In Lozano et al. [138], pages 51-73.

E. Alba and J. F. Chicano. Software testing with evolutionary strategies. In
N. Guelfi and A. Savidis, editors, Proceedings of the Second International Workshop
on Software Engineering Techniques, pages 50-65. Springer-Verlag, 2005.

E. Alba-Cabrera, R. Santana, A. Ochoa-Rodriguez, and M. Lazo-Cortés. Finding
typical testors by using an evolutionary strategy. In F. Muge, M. Piedade, and
R. Caldas Pinto, editors, Proceedings of the 5th Ibero American Symposium on
Pattern Recognition, pages 267 278, Lisbon, Portugal, 2000.

H. Aytug and G. J. Koehler. New stopping criterion for genetic algorithms. FEuro-
pean Journal of Operational Research, 126(3):662-674, 2000.

T. Béck. Self-adaptation. In Béck et al. [9], pages 188-211.

T. Béck. Fvolutionary Algorithms in Theory and Practice. Oxford University Press,
New York, 1996.

T. Béack, D. B. Fogel, and T. Michalewicz. FEwvolutionary Computation 1. Basic
Algorithms and Operators. Institute of Physics Publishing, Bristol, UK, 2000.

T. Béck, D. B. Fogel, and T. Michalewicz, editors. FEvolutionary Computation 2.
Advanced Algorithms and Operators. Institute of Physics Publishing, Bristol, UK,
2000.

J. Baker. Reducing bias and inefficiency in the selection algorithm. In J. Grefen-
stette, editor, Proceedings of the Second International Conference on Genetic Algo-
rithms and Their Applications, pages 14-21. Lawrence Erlbaum Associates, 1987.

S. Baluja. Population-Based Incremental Learning: A method for integrating ge-
netic search based function optimization and competitive learning. Technical re-
port, Carnegie Mellon Report, CMU-CS-94-163, 1994.

129

8 Bibliography

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

S. Baluja and R. Caruana. Removing the genetics from the standard Genetic
Algorithms. Technical report, Carnegie Mellon Report, CMU-CS-95-141, 1995.

S. Baluja and S. Davies. Fast probabilistic modeling for combinatorial optimization.
In Proceedings of the 15th National Conference on Artificial Intelligence and Tenth
Innovative Applications of Artificial Intelligence Conference, AAAI 1998, TAAI
1998, Wisconsin, USA, July 26-30, 1998, pages 469 476. AAAI Press The MIT
Press, 1998.

W. Banzhaf, J. M. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. J. Jakiela,
and R. E. Smith, editors. Proceedings of the Genetic and Evolutionary Computa-
tion Conference, GECCO 1999, Orlando, Florida, USA, July 13-17, 1999. Morgan
Kaufmann, 1999.

A. Baresel and H. Sthamer. Evolutionary testing of flag conditions. In Cantu-Paz
et al. [37|, pages 2442-2454.

A. Baresel, H. Sthamer, and M. Schmidt. Fitness function design to improve
evolutionary structural testing. In Langdon et al. [128], pages 1329 1336.

B. Beizer. Software Testing Techniques. Van Nostrand Rheinhold, New York, 1990.

B. Beizer. Black-Boz Testing Techniques for Functional Testing of Software and
Systems. John Wiley & Sons, New York, 1995.

E. Bengoetxea, P. Larranaga, I. Bloch, and A. Perchant. Solving graph matching
with EDAs using a permutation—based representation. In Larranaga and Lozano
[131], pages 243 265.

V. Berzins and Luqi. Software Engineering with Abstractions. Addison-Wesley,
Reading, MA, 1991.

H. G. Beyer, U. M. O’Reilly, D. V. Arnold, W. Banzhaf, C. Blum, E. W. Bonabeau,
E. Cantu-Paz, D. Dasgupta, K. Deb, J. A. Foster, E. D. de Jong, H. Lipson,
X. Llora, S. Mancoridis, M. Pelikan, G. R. Raidl, T. Soule, A. M. Tyrrell, J. P. Wat-
son, and E. Zitzler, editors. Proceedings of the Genetic and Evolutionary Compu-
tation Conference, GECCO 2005, Washington DC, USA, June 25-29, 2005. ACM,
2005.

S. Blackmore. The Meme Machine. Oxford University Press, Oxford, UK, 1999.

R. Blanco, I. Inza, and P. Larranaga. Learning Bayesian networks in the space
of structures by Estimation of Distribution Algorithms. International Journal of
Intelligent Systems, 18(2):2205-220, 2003.

130

8 Bibliography

[24]

[25]

[26]

[27]

28]

[29]

[30]

31]

[32]

[33]

[34]

[35]

[36]

B. W. Boehm. Software Engineering Economics. Prentice Hall, Englewood Cliffs,
NJ, 1981.

P. J. Boland, S. F. Sekirkin, and H. Singh. Theoretical and practical challenges
in software reliability and testing. In B. H. Lindqvist and K. A. Doksum, editors,
Mathematical and Statistical Methods in Reliability. World Scientific Publishers,
New Jersey, 2003.

P. A. N. Bosman and D. Thierens. Linkage information processing in distribution
estimation algorithms. In Banzhaf et al. [14], pages 60 67.

L. Bottaci. Predicate expression cost functions to guide evolutionary search for
test data. In Cantu-Paz et al. [37|, pages 2455-2464.

F. P. Brooks. The Mythical Man-Month: Essays on Software Engineering. Addison-
Wesley, Reading, MA, 1995.

D. F. Brown, A. B. Garmendia-Doval, and J. A. W. McCall. Markov random field
modelling of royal road Genetic Algorithms. In P. Collet, C. Fonlupt, J. K. Hao,
E. Lutton, and M. Schoenauer, editors, Artificial Evolution, volume 2310 of Lecture
Notes in Computer Science, pages 65 76. Springer, 2001.

P. M. S. Bueno and M. Jino. Automatic test data generation for program paths us-
ing genetic algorithms. International Journal of Software Engineering and Knowl-
edge Engineering, 12(6):691-709, 2002.

W. Buntine. Theory refinement in Bayesian networks. In B. D’Ambrosio and
P. Smets, editors, UAI pages 52 60. Morgan Kaufmann, 1991.

E. K. Burke and G. Kendall, editors. Search Methodologies. Introductory Tutorials
i Optimization and Decision Support Techniques. Springer, New York, 2005.

V. Campos, F. Glover, M. Laguna, and R. Marti. An experimental evaluation of
a scatter search for the linear ordering problem. Journal of Global Optimization,
21(4):397 414, 2001.

E. Cantu-Paz. Efficient and accurate parallel Genetic Algorithms. Kluwer Academic
Publishers, 2000.

E. Canti-Paz. Feature subset selection by Estimation of Distribution Algorithms.
In Langdon et al. [129], pages 303-310.

E. Cantu-Paz. Pruning Neural Networks with Distribution Estimation Algorithms.
In Cantu-Paz et al. [38], pages 790-800.

131

8 Bibliography

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

E. Cantu-Paz, J. A. Foster, K. Deb, L. Davis, R. Roy, U. O’Reilly, H. Beyer,
R. K. Standish, G. Kendall, S. W. Wilson, M. Harman, J. Wegener, D. Dasgupta,
M. A. Potter, A. C. Schultz, K. A. Dowsland, N. Jonoska, and J. F. Miller, editors.
Proceedings of the Genetic and Fvolutionary Computation Conference, Berlin, 2003.
Springer-Verlag.

E. Cantu-Paz, J. A. Foster, K. Deb, L. Davis, R. Roy, U. M. O’Reilly, H. G. Beyer,
R. K. Standish, G. Kendall, S. W. Wilson, M. Harman, J. Wegener, D. Dasgupta,
M. A. Potter, A. C. Schultz, K. A. Dowsland, N. Jonoska, and .J. F. Miller, editors.
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
2003, Part I, Chicago, IL, USA, July 12-16, 2003, volume 2723 of Lecture Notes
i Computer Science. Springer, 2003.

E. Cantu-Paz, J. A. Foster, K. Deb, L. Davis, R. Roy, U. M O’Reilly, H. G. Beyer,
R. K. Standish, G. Kendall, S. W. Wilson, M. Harman, J. Wegener, D. Dasgupta,
M. A. Potter, A. C. Schultz, K. A. Dowsland, N. Jonoska, and J. F. Miller, editors.
Proceedings of the Genetic and Ewvolutionary Computation Conference, GECCO
2008, Part II, Chicago, IL, USA, July 12-16, 2003, volume 2724 of Lecture Notes
i Computer Science. Springer, 2003.

E. Castillo, J. M. Gutiérrez, and A. S. Hadi. FEzpert Systems and Probabilistic
Network Models. Springer-Verlag, New York, 1997.

C. Chow and C. Liu. Approximating discrete probability distributions with depen-
dence trees. IEEE Transactions on Information Theory, 14(3):462-467, 1968.

L. Clarke. A system to generate test data and symbolically execute programs.
IEEFE Transactions on Software Engineering, 2(3):215 222, 1976.

Y. Collette and P. Siarry. Multiobjective Optimization. Principles and Case Studies.
Springer-Verlag, Berlin, 2003.

G. F. Cooper and E. A. Herskovits. A Bayesian method for the induction of
probabilistic networks from data. Machine Learning, 9:309-347, 1992.

D. Corne, Z. Michalewicz, B. McKay, G. Eiben, D. Fogel, C. Fonseca, G. Green-
wood, G. Raidl, K. C. Tan, and A. Zalzala, editors. Proceedings of the 2005
Congress on Evolutionary Computation, CEC-2005, Edinburgh, U.K., September
2-5, 2005. ITEEE Press, 2005.

F. Corno, P. Prinetto, M. Rebaudengo, and M. Sonza-Reorda. Exploiting compet-
ing subpopulations for automatic generation of test sequences for digital circuits.
In Voigt et al. [244], pages 792-800.

132

8 Bibliography

[47]

[48]

[49]

[50]
[51]

[52]

[53]

[54]

[55]

[56]

C. Cotta, E. Alba, R. Sagarna, and P. Larranaga. Adjusting weights in artificial
neural networks using evolutionary algorithms. In Larranaga and Lozano [131],
pages 357 373.

C. Gomes da Silva, J. Climaco, and J. Figueira. A scatter search method for
bi-criteria {0,1}-knapsack problems. FEuropean Journal of Operational Research,
169(2):373 391, 2006.

A. L. Dake and R. M. Keller. Data flow program paths. IEEE Computer, 15(2):26—
41, 1982.

C. Darwin. The Origin of Species. John Murray, 1859.

D. Dasgupta and Z. Michalewicz. FEwolutionary Algorithms in Engineering Appli-
cations. Springer-Verlag, Berlin, 1997.

M. Davis and E. J. Weyuker. A formal notion of program-based test data adequacy.
Information and Control, 56(1-2):52—71, 1983.

J. S. De Bonet, C. L. Isbell, and P. Viola. MIMIC: Finding optima by estimating
probability densities. In M. Jordan M. Mozer and Th. Petsche, editors, Advances
in Neural Information Processing Systems, volume 9, 1997.

L. M. De Campos, J. A. Gadmez, P. Larranaga, S. Moral, and T. Romero. Partial
abductive inference in Bayesian networks: an empirical comparison between GAs
and EDAs. In P. Larranaga and J. A. Lozano, editors, Estimation of Distribution
Algorithms. A New Tool for Ewvolutionary Computation, pages 323-341. Kluwer
Academic Publishers, 2002.

K. Deb, R. Poli, W. Banzhaf, H. G. Beyer, E. K. Burke, P. J. Darwen, D. Dasgupta,
D. Floreano, J. A. Foster, M. Harman, O. Holland, P. L. Lanzi, L. Spector, A. Tet-
tamanzi, D. Thierens, and A. M. Tyrrell, editors. Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO 2004, Part II, Seattle, WA, USA,
June 26-30, 2004, volume 3103 of Lecture Notes in Computer Science. Springer,
2004.

K. Deb, R. Poli, W. Banzhaf, H. G. Beyer, E. K. Burke, P. J. Darwen, D. Das-
gupta, D. Floreano, J. A. Foster, M. Harman, O. Holland, P. Luca Lanzi, L. Spec-
tor, A. Tettamanzi, D. Thierens, and A. M. Tyrrell, editors. Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO 2004, Part I, Seattle,
WA, USA, June 26-30, 2004, volume 3102 of Lecture Notes in Computer Science.
Springer, 2004.

133

8 Bibliography

[57]

[58]

[59]

[60]

[61]
[62]

[63]

[64]

[65]

[66]

[67]

|68]

[69]

[70]

R. Demillo and A. Offut. Experimental results from an automatic test case gener-
ator. ACM Transactions on Software Engineering and Methodology, 2(2):109-127,
1993.

E. Diaz, J. Tuya, and R. Blanco. Automated software testing using a metaheuristic
technique based on tabu search. In Proceedings of the 18th IEEE International
Conference on Automated Software Engineering, pages 310 313. IEEE CS Press,
2003.

S. Dick and A. Kandel. Data mining with resampling in software metrics databases.
In M. Last, A. Kandel, and H. Bunke, editors, Artificial Intelligence Methods in
Software Testing, pages 175 208. World Scientific Publishing, Singapore, 2004.

S. H. Dick. Computational Intelligence in Software Quality Assurance. PhD thesis,
University of South Florida, Tampa, Florida, USA, 2002.

E. Dijkstra. A discipline of programming. Prentice-Hall, New Jersey, 1976.

M. Dorigo. Positive feedback as a search strategy. Technical Report 91-016, Po-
litecnico di Milano, Italy, 1991.

S. Droste. Not all linear functions are equally difficult for the compact Genetic
Algorithm. In Beyer et al. [21], pages 679 686.

R. H. Dunn. Software Quality. Concepts and Plans. Prentice-Hall, New Jersey,
1990.

J. W. Duran and S. C. Ntafos. An evaluation of random testing. IEEE Transactions
on Software Engineering, 10(4):438 444, 1984.

A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary
algorithms. ITEEE Transactions on FEvolutionary Computation, 3:124 139, 1999.

A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Springer-
Verlag, Berlin, 2003.

A. Endres and D. Rombach. A Handbook of Software and Systems Engineering.
Pearson Education Limited, London, 2003.

R. Etxeberria and P. Larranaga. Global optimization with Bayesian networks. In
Ochoa et al. [171], pages 332 339.

N. E. Fenton. The structural complexity of flowgraphs. In Y. Alavy, G. Chartrand,
L. Lesniak, D. R. Lick, and C. E. Wall, editors, Graph Theory with Applications to
Algorithms and Computer Science, pages 273 282. John Wiley & Sons, New York,
1985.

134

8 Bibliography

[71]

[72]

73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

82]

[83]

[84]

T. Feo and M. Resende. Greedy randomized adaptive search procedures. Journal
of Global Optimization, 6:109-133, 1995.

R. Ferguson and B. Korel. The chaining approach for software test data generation.
IEEE Transactions on Software Engineering, 5(1):63-86, 1996.

M. J. Flores, J. A. Gamez, and J. M. Puerta. Learning linguistic fuzzy rules by using
estimation of distribution algorithms as the search engine in the cor methodology.
In Lozano et al. [138], pages 259-280.

L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial intelligence through a simula-
tion of evolution. In A. Callahan, M. Maxfield, and L. J. Fogel, editors, Biophysics
and Cybernetic Systems, pages 131-156. Spartan, Washington DC, 1965.

International Organization for Standardization. Software Engineering - Product
Quality - Partl: Quality Model. ISO/TEC 9126-1:2001(E). ISO, Geneva, Switzer-
land, 2001.

P. Frankl, D. Hamlet, B. LittleWood, and L. Strigini. Choosing a testing method
to deliver reliability. IEEE Transactions on Software Engineering, 24(8):586-601,
1998.

P. Frankl and E. J. Weyuker. A formal analysis of the fault-detecting ability of
testing methods. IEEE Transactions on Software Engineering, 19(3):202-213, 1993.

P. Frankl and E. J. Weyuker. Provable improvements on branch testing. IEFE
Transactions on Software Engineering, 19(10):962 975, 1993.

M. A. Friedman and J. M. Voas. Software Assessment: Reliability, Safety, Testa-
bility. John Wiley & Sons, New York, 1995.

P. Galinier and J. Hao. Hybrid evolutionary algorithms for graph coloring. Journal
of Combinatorial Optimization, 3:379-397, 1999.

J. C. Gallagher and S. Vigraham. A Modified Compact Genetic Algorithm For
The Intrinsic Evolution of continuous time recurrent neural networks. In Langdon
et al. [129], pages 163-170.

M. R. Gallagher. Multi-layer Perceptron Error Surfaces: Visualization, Structure
and Modelling. PhD thesis, University of Queensland, 2000.

Y. Gao and J. Culberson. Space Complexity of Estimation of Distribution Algo-
rithms. Ewvolutionary Computation, 13(1):125-143, 2005.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Company, New York, 1979.

135

8 Bibliography

[85]

[36]

[87]

[38]

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

F. Glover. A multiphase-dual algorithm for the zero-one integer programming
problem. Operations Research, 13:879-919, 1965.

F. Glover. Scatter search and path relinking. In D. Corne, M. Dorigo, and F. Glover,
editors, New Ideas in Optimization, pages 297-316. McGraw-Hill, Cambridge, 1999.

F. Glover and G. Kochenberger. Handbook of Metaheuristics. Kluwer Academic
Publishers, Boston, 2003.

F. Glover and M. Laguna. Tabu search. Kluwer Academic Publishers, Boston,
1997.

D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Reading, MA, 19809.

C. Gonzélez, J. A. Lozano, and P. Larraniaga. Analyzing the population based
incremental learning algorithm by means of discrete dynamical systems. Complex
Systems, 12(4):465-479, 2000.

C. Gonzalez, J. D. Rodriguez, J. A. Lozano, and P. Larranaga. Analysis of the
Univariate Marginal Distribution Algorithm modeled by Markov chains. In J. Mira
and J. R. Alvarez, editors, IWANN 2003, volume 2686 of Lecture Notes in Computer
Science, pages 510 517. Springer, 2003.

T. Gosling. The simple supply chain model and evolutionary computation. In
Sarker et al. [217], pages 2322-2329.

E. L. Grant and R. S. Leavenworth. Statistical Quality Control. McGraw-Hill, New
York, 1996.

J. J. Grefenstette. Optimization of control parameters for genetic algorithms. IEEFE
Transactions on Systems, Man, and Cybernetics, 16(1):122 128, 1986.

W. Gutjahr. Importance sampling of test cases in markovian software usage models.
Probability in the Engineering and Informational Sciences, 11:19-36, 1997.

H. Handa. Hybridization of Estimation of Distribution Algorithms with a repair
method for solving constraint satisfaction problems. In Canti-Paz et al. [38], pages
991-1002.

H. Handa. Estimation of Distribution Algorithms with mutation. In G. R. Raidl
and J. Gottlieb, editors, FvoCOP, volume 3448 of Lecture Notes in Computer
Science, pages 112-121. Springer, 2005.

G. Harik. Linkage learning in via probabilistic modeling in the EcGA. Technical
Report 99010, IIiGAL, 1999.

136

8 Bibliography

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

G. R. Harik, F. G. Lobo, and D. E. Goldberg. The compact Genetic Algorithm.
IEEE Transactions on Evolutionary Computation, 3(4):287-297, 1999.

M. Harman, C. Fox, R. Hierons, I.. Hu, S. Danicic, and J. Wegener. Vada: A
transformation-based system for variable dependence analysis. In Proceedings of
the 2nd IEEE International Workshop on Source Code Analysis and Manipulation,
pages 55 64, Los Alamitos, CA, 2002. IEEE CS Press.

M. Harman, .. Hu, R. Hierons, A. Baresel, and H. Sthamer. Improving evolutionary
testing by flag removal. In Langdon et al. [128], pages 1351 1358.

M. S. Hecht. Flow Analysis of Computer Programs. Elsevier Science, New York,
1977.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks:
The combination of knowledge and statistical data. Machine Learning, 20:197—
243, 1995.

M. Henrion. Propagating uncertainty in bayesian networks by probabilistic logic
sampling. In J. F. Lemmer and L. N. Kanal, editors, Proceedings of the Second
Conference on Uncertainty in Artificial Intelligence, pages 149 163, Amsterdam,
1988. North-Holland.

I. Hermadi and M. A. Ahmed. Genetic algorithm based test data generator.
In R. Sarker, R. Reynolds, H. Abbass, K. C. Tan, B. McKay, D. Essam, and
T. Gedeon, editors, Proceedings of the 2003 Congress on Evolutionary Computa-
tion, pages 85-91, NJ, 2003. IEEE CS Press.

F. Herrera, M. Lozano, and J. L. Verdegay. Tackling real-coded genetic algo-
rithms: Operators and tools for the behaviour analysis. Artificial Intelligence Re-
view, 12:265 319, 1998.

M. Hohfeld and G. Rudolph. Towards a Theory of Population-Based Incremental
Learning. International Conference on Evolutionary Computation, Indianapolis,
USA, April 13-16, 1997.

J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor, MI, 1975.

Y. Hong, Q. Ren, and J. Zeng. Adaptive population size for Univariate Marginal
Distribution Algorithm. In Corne et al. [45], pages 1396-1402.

Y. Hong, Q. Ren, and J. Zeng. Genetic drift in Univariate Marginal Distribution
Algorithm. In Beyer et al. |21], pages 745-746.

137

8 Bibliography

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

Y. Hong, Q. Ren, and J. Zeng. Optimization of noisy fitness functions with Uni-
variate Marginal Distribution Algorithm. In Corne et al. [45], pages 1410-1417.

I. Inza, P. Larranaga, R. Etxeberria, and B. Sierra. Feature subset selection by
bayesian networks based optimization. Artificial Intelligence, 123(1-2):157 184,
2000.

I. Inza, P. Larrafiaga, and B. Sierra. Feature Subset Selection by Estimation of
Distribution Algorithms. In Larranaga and Lozano [131], pages 269-294.

I. Inza, P. Larranaga, and B. Sierra. FEstimation of Distribution Algorithms for
feature Subset Selection in large dimensionality domains. In H. Abbass, R. Sarker,
and C. Newton, editors, Data Mining: A Heuristic Approach, pages 97-116. IDEA
Group Publishing, 2002.

C. Jones. Software Quality: Analysis and Guidelines for Success. International
Thompson Computer Press, New York, 1997.

C. Jones. Software Assessments, Benchmarks and Best Practices. Addison-Wesley,
New York, 2000.

C. Kaner, J. Bach, and B. Pettichord. Lessons Learned in Software Testing. John
Wiley & Sons, New York, 2001.

S. Kern, S. D. Miiller, N. Hansen, D. Biiche, J. Ocenasek, and P. Koumoutsakos.
Learning probability distributions in continuous evolutionary algorithms - a com-
parative review. Natural Computing, 3(1):77-112, 2004.

S. Kern, S. D. Miiller, N. Hansen, D. Biiche, J. Ocenasek, and P. Koumoutsakos.
Learning probability distributions in continuous evolutionary algorithms - a com-
parative review. Natural Computing, 3(3):355 356, 2004.

B. W. Kernighan, D. Ritchie, and D. M. Ritchie. The C Prgramming Language.
Prentice Hall, Englewood Cliffs, N.J, 1988.

S. Kirkpatrick, C. D. Gellat, and M. P. Vecchi. Optimization by simulated anneal-
ing. Science, 220(4598):671-680, 1983.

B. Korel. Automated software test data generation. IEEE Transactions on Software
Engineering, 16(8):870 879, 1990.

J. R. Koza. Genetic Programming. MIT Press, Cambridge, MA, 1992.

M. Laguna. Scatter search. In P. M. Pardalos and M. G. C. Resende, editors,
Handbook of Applied Optimization, pages 183 193. Oxford University Press, 2002.

138

8 Bibliography

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]
[133]

[134]

[135]

[136]

137]

M. Laguna and V. A. Armentano. Lessons from applying and experimenting with
scatter search. In Rego and Alidaee [199], pages 229-246.

M. Laguna and R. Marti. Scatter Search. Methodology and Implementations in C.
Kluwer Academic Publishers, Norwell, MA, 2003.

M. Laguna and R. Marti. Experimental testing of advanced scatter search designs
for global optimization of multimodal functions. Journal of Global Optimization,
33:235 255, 2005.

W. B. Langdon, E. Canti-Paz, K. Mathias, R. Roy, D.Davis, R. Poli, K. Balakr-
ishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz,
J. F. Miller, E. Burke, and N. Jonoska, editors. Proceedings of the Genetic and
Evolutionary Computation Conference, San Mateo, CA, 2002. Morgan Kaufmann.

W. B. Langdon, E. Canti-Paz, K. E. Mathias, R. Roy, D. Davis, R. Poli, K. Balakr-
ishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz,
J. F. Miller, E. K. Burke, and N. Jonoska, editors. Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO 2002, New York, USA, July 9-13,
2002. Morgan Kaufmann, 2002.

P. Larranaga, R. Etxeberria, J. A. Lozano, and J. M. Pena. Combinatorial op-
timization by learning and simulation of Bayesian networks. In C. Boutilier and
M. Goldszmidt, editors, UAI pages 343 352. Morgan Kaufmann, 2000.

P. Larranaga and J. A. Lozano, editors. FEstimation of Distribution Algorithms.
A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Boston,
2002.

S. L. Lauritzen. Graphical Models. Oxford University Press, 1996.

N. Leverson. Safeware: System Safety and Computers. Addison-Wesley, Boston,
1995.

C. F. Lima, K. Sastry, D. E. Goldberg, and F. G. Lobo. Combining competent
crossover and mutation operators: a probabilistic model building approach. In
Beyer et al. [21], pages 735 742.

J. Lin and P. Yeh. Automatic test data generation for path testing using gas.
Information Sciences, 131:47-64, 2001.

X. Llora and D. E. Goldberg. Wise breeding GA via machine learning techniques
for function optimization. In Cantu-Paz et al. [38], pages 1172-1183.

J. A. Lozano, P. Larranaga, M. Grana, and F. X. Albizuri. Genetic algorithms:
bridging the convergence gap. Theoretical Computer Science, 229:11-22, 1999.

139

8 Bibliography

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

J. A. Lozano, P. Larranaga, I. Inza, and E. Bengoetxea, editors. Towards a new
Evolutionary Computation: Advances in Estimation of Distribution Algorithms.
Springer-Verlag, The Netherlands, 2006.

J. A. Lozano and A. Mendiburu. Solving job schedulling with Estimation of Dis-
tribution Algorithms. In P. Larrafiaga and J. A. Lozano, editors, Fstimation of
Distribution Algorithms. A New Tool for Evolutionary Computation, pages 231
242. Kluwer Academic Publishers, 2002.

J. A. Lozano, R. Sagarna, and P. Larranaga. Parallel estimation of distribution
algorithms. In Larranaga and Lozano [131], pages 125-142.

M. Marré and A. Bertolino. Using spanning sets for coverage testing. IEEE Trans-
actions on Software Engineering, 29(11):974 984, 2003.

R. Marti, M. Laguna, and V. Campos. Scatter search vs. genetic algorithms. an
experimental evaluation with permutation problems. In Rego and Alidaee [199],
pages 263-282.

G. McGraw, C. Michael, and M. Schatz. Generating software test data by evolution.
IEEE Transactions on Software Engineering, 27(12):1085 1110, 2001.

P. McMinn. Search-based software test data generation: a survey. Software Testing
Verification and Reliability, 14(2):105 156, 2004.

A. Mendiburu, J. A. Lozano, and J. Miguel-Alonso. Parallel implementation of
EDASs based on probabilistic graphical models. IEEE Transactions on Evolutionary
Computation, 9(4):406 423, 2005.

A. Mendiburu, J. Miguel-Alonso, J. A. Lozano, M. Ostra, and C. Ubide. Parallel
and multi-objective EDAS to create multivariate calibration models for quantitative
chemical applications. In T. Skie and C. S. Yang, editors, ICPP Workshops, pages
596 603. IEEE Computer Society, 2005.

J. J. Merelo-Guervos, P. Adamidis, H. G. Beyer, J. L. Ferndndez-Villacanas Martin,
and H. P. Schwefel, editors. Proceedings of the 7th International Conference on
Parallel Problem Solving from Nature, PPSN VII, Granada, Spain, September 7-
11, 2002, volume 2439 of Lecture Notes in Computer Science. Springer, 2002.

W. Miller and D. Spooner. Automatic generating of floating-point test data. IEEE
Transactions on Software Engineering, 2(3):223-226, 1976.

N. Mladenovié. Variable neighborhood search. Computers and Operations Research,
24:1097-1100, 1997.

140

8 Bibliography

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

H. Miihlenbein. Evolution in time and space - the parallel genetic algorithm. In
G. Rawlins, editor, Foundations of Genetic Algorithms, pages 316-337. Morgan-
Kaufman, San Mateo, 1991.

H. Miihlenbein. The equation for response to selection and its use for prediction.
Evolutionary Computation, 5(3):303-346, 1998.

H. Miihlenbein and T. Mahnig. Convergence theory and applications of the fac-
torized distribution algorithm. Journal of Computing and Information Technology,
7:19 32, 1999.

H. Miihlenbein and T. Mahnig. The factorized distribution algorithm for additively
decomposed functions. In Ochoa et al. [171], pages 301-313.

H. Miihlenbein and T. Mahnig. Evolutionary algorithms: From recombination to
search distributions. In L. Kallel, B. Naudts, and A. Rogers, editors, Theoretical
Aspects of Evolutionary Computing, pages 135 173. Springer, Berlin, 2001.

H. Miihlenbein and T. Mahnig. Mathematical analysis of evolutionary algorithms
for optimization. In Proceedings of the Third International Symposium on Adaptive
Systems, pages 166 185, La Havana, Cuba, 2001.

H. Miihlenbein and T. Mahnig. Evolutionary optimization and the estimation
of search distributions with applications to graph bipartitioning. International
Journal of Approximate Reasoning, 31(3):157-192, 2002.

H. Miihlenbein, T. Mahnig, and A. Ochoa. Schemata, distributions and graphical
models in evolutionary optimization. Journal of Heuristics, 5:215 247, 1999.

H. Miihlenbein and G. Paak. From recombination of genes to the estimation of
distributions i. binary parameters. In Voigt et al. [244], pages 178 187.

J. D. Musa. Operational profiles in software reliability engineering. IEEFE Software,
10(2):14-32, 1993.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, New York,
1999.

S. C. Ntafos. A comparison of some structural testing strategy. IEEE Transactions
on Software Engineering, 14(6):868 874, 1988.

J. Ocenasek. Entropy-based convergence measurement in discrete estimation of
distribution algorithms. In Lozano et al. [138], pages 39 50.

141

8 Bibliography

[163]

[164]

[165)]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

173]

[174]

J. Ocenasek, S. Kern, N. Hansen, and P. Koumoutsakos. A mixed Bayesian opti-
mization algorithm with variance adaptation. In X. Yao, E. K. Burke, J. A. Lozano,
J. Smith, J. J. Merelo-Guervés, J. A. Bullinaria, J. E. Rowe, P. Tino, A. Kabén,
and H. P. Schwefel, editors, PPSN, volume 3242 of Lecture Notes in Computer
Science, pages 352 361. Springer, 2004.

J. Ocenasek and J. Schwarz. The parallel Bayesian optimization algorithm. In

Proceedings of the Furopean Symposium on Computational Intelligence, pages 61—
67, 2000.

J. Ocenasek and J. Schwarz. The distributed Bayesian optimization algorithm for
combinatorial optimization. In FUROGEN - Ewolutionary Methods for Design,
Optimisation and Control, CIMNE, pages 115-120, 2001.

J. Ocenasek and J. Schwarz. Estimation of distribution algorithm for mixed
continuous-discrete optimization problems. In 2nd Furo-International Symposium
on Computational Intelligence, pages 227 232. 10S Press, Kosice, Slowakia, 2002.

J. Ocenasek, J. Schwarz, and M. Pelikan. Design of multithreaded Estimation of
Distribution Algorithms. In Cantia-Paz et al. [39], pages 1247-1258.

A. Ochoa, H. Miihlenbein, and M. Soto. Factorized Distribution Algorithm using
Bayesian networks. In A. S. Wu, editor, Proceedings of the 2000 Genetic and
Evolutionary Computation Conference Workshop Program, pages 212 215, 2000.

A. Ochoa, H. Miihlenbein, and M. Soto. A Factorized Distribution Algorithm using
single connected Bayesian networks. In Schoenauer et al. [222], pages 787-796.

A. Ochoa, M. Soto, R. Santana, J. Madera, and N. Jorge. The factorized distribu-
tion algorithm and the junction tree: A learning perspective. In Ochoa et al. [171],
pages 368 377.

A. Ochoa, M. R. Soto, and R. Santana, editors. Proceedings of the Second Sympo-
sium on Artificial Intelligence (CIMAF-99), Habana, Cuba, 1999.

Institute of Electrical and Electronics Engineers. IEEE Standard Glossary of Soft-
ware Engineering Terminology. TEEE Standard 610.12-1990. IEEE, New York,
1990.

Institute of Electrical and Electronics Engineers. IEEE Standard for a Software
Quality Metrics Methodology. TEEE Standard 1061-1992. IEEE, New York, 1992.

J. Offutt, Z. Jin, and J. Pan. The dynamic domain reduction procedure for test
data generation. Software - Practice and Experience, 29(2):167-193, 1999.

142

8 Bibliography

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

188

J. Offutt, S. Liu, A. Abduzarik, and P. Ammann. Generating test data from state-
based specifications. Software Testing, Verification and Reliability, 13:25-53, 2003.

M. Ould. Testing- a challenge to method and tool developers. Software Engineering
Journal, 6(2):59 64, 1991.

R. Pargas, M. Harrold, and R. Peck. Test-data generation using genetic algorithms.
Journal of Software Testing, Verification and Reliability, 9(4):263 282, 1999.

T. K. Paul and H. Iba. Linear and combinatorial optimizations by Estimation of
Distribution Algorithms. In Proceedings of the 9th MPS Symposium on FEvolution-
ary Computation, pages 99 106, 2003.

T. K. Paul and H. Iba. Reinforcement Learning Estimation of Distribution Algo-
rithm. In Cantu-Paz et al. [39], pages 1259 1270.

J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley, New York, 1984.

M. Pelikan and D. E. Goldberg. Genetic Algorithms, clustering, and the breaking
of symmetry. In Schoenauer et al. [222], pages 385-394.

M. Pelikan and D. E. Goldberg. Hierarchical problem solving and the Bayesian
optimization algorithm. In D. Whitley, D. Goldberg, E. Canti-Paz, L. Spector,
I. Parmee, and H.G. Beyer, editors, Proceedings of the Genetic and Fvolutionary
Computation Conference, volume 1, pages 267 274, San Francisco, CA, 2000. Mor-
gan Kaufmann Publishers.

M. Pelikan and D. E. Goldberg. Escaping hierarchical traps with competent Genetic
Algorithms. In Spector et al. [232], pages 511-518.

M. Pelikan and D. E. Goldberg. Hierarchical BOA solves Ising spin glasses and
MAXSAT. In Cantu-Paz et al. [39], pages 1271 1282.

M. Pelikan, D. E. Goldberg, and E. Cantu-Paz. BOA: The Bayesian optimization
algorithm. In Banzhaf et al. [14], pages 525 532.

M. Pelikan, D. E. Goldberg, and E. Cantu-Paz. Linkage problem, distribution
estimation and Bayesian networks. Evolutionary Computation, 8(3):311-340, 2000.

M. Pelikan, D. E. Goldberg, and K. Sastry. Bayesian Optimization Algorithm,
Decision Graphs, and Occam’s Razor. In Spector et al. [232], pages 519-526.

M. Pelikan and T. K. Lin. Parameter-less hierarchical BOA. In Deb et al. [55],
pages 24 35.

143

8 Bibliography

[189]

[190]

[191]

[192]

193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]
[201]

M. Pelikan and H. Miihlenbein. The bivariate marginal distribution algorithm. In
R. Roy, T. Furuhashi, and P. K. Chandhory, editors, Advances in Soft Computing-
Engineering Design and Manufacturing, pages 521 535, London, 1999. Springer-
Verlag.

M. Pelikan and K. Sastry. Fitness inheritance in the Bayesian optimization algo-
rithm. In Deb et al. [55], pages 48-59.

J. M. Pena, J. A. Lozano, and P. Larranaga. Globally Multimodal Problem Op-
timization Via an Estimation of Distribution Algorithm Based on Unsupervised
Learning of Bayesian Networks. Ewvolutionary Computation, 13(1):43-66, 2005.

R. Petrasch. The definition of software quality: A practical approach. In Proceed-
ings of the Tenth International Symposium on Software Reliability Engineering,
pages 33 34, Boca Raton, Florida, 1999. IEEE CS Press.

H. Pham. Software Reliability. Springer-Verlag, Singapore, 2000.

H. Pohlheim and J. Wegener. Testing the temporal behavior of real-time software
modules using extended evolutionary algorithms. In W. Banzhaf, J. Daida, A. E.
Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, editors, Proceedings
of the Second Genetic and Evolutionary Computation Conference, pages 1795 1802,
San Francisco, CA, 1999. Morgan Kaufmann.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical
Recipes in C. The Art of Scientific Computing. Cambridge University Press, New
York, 1988.

R. Rastegar and M. R. Meybodi. A new estimation of distribution algorithm based
on learning automata. In Corne et al. [45], pages 1982-1987.

I. Rechenberg. Evolutionstrategie: Optimierung technischer Systeme nach Prinzip-
ien der biologischen Fwvolution. Fromman-Holzboog, Stuttgart, 1973.

C. R. Reeves. Modern heuristic techniques. In V. J. Rayward-Smith, I. H. Osman,
C. R. Reeves, and G. D. Smith, editors, Modern Heuristic Search Methods, pages
1 25. John Wiley & Sons, New York, 1996.

C. Rego and B. Alidaee, editors. Adaptive Memory and Evolution: Tabu Search
and Scatter Search. Kluwer Academic Publishers, Norwell MA, 2005.

J. Rissanen. Modeling by shortest data description. Automatica , 465 471, 1978.

V. Robles, P. de Miguel, and P. Larranaga. Solving the Traveling Salesman Problem
with Estimation of Distribution Algorithms. In Larranaga and Lozano [131], pages
211-229.

144

8 Bibliography

[202]

203]
[204]

[205]

[206]

207]

[208]

[209]

[210]

[211]

[212]

[213]

T. Romero, P. Larranaga, and B. Sierra. Learning Bayesian networks in the space
of orderings with Estimation of Distribution Algorithms. International Journal of
Pattern Recognition and Artificial Intelligence, 18(4):607 625, 2004.

P. Ross. Hyper-heuristics. In Burke and Kendall [32], pages 529-556.

J. Roure, P. Larranaga, and R. Sangiiesa. An empirical comparison between k-
means, GAs and EDAs in partitional clustering. In Larranaga and Lozano [131],
pages 343 360.

G. Rudolph. Global optimization by means of distributed evolution strategies.
In H. P. Schwefel and R. Ménner, editors, Proceedings of the First International
Conference on Parallel Problem Solving from Nature, pages 209 213, Berlin, 1990.
Springer-Verlag.

G. Rudolph. Convergence of evolutionary algorithms in general search spaces. In
Proceedings of the IEEE Conference on Fvolutionary Computation, pages 50-54,
Piscataway, NJ, 1996. IEEE CS Press.

D. Ruta and B. Gabrys. Application of the evolutionary algorithms for classi-
fier selection in multiple classifier systems with majority voting. In J. Kittler and
F. Roli, editors, Multiple Classifier Systems, volume 2096 of Lecture Notes in Com-
puter Science, pages 399-408. Springer, 2001.

R. Sagarna and P. Larranaga. Solving the knapsack problem with estimation of
distribution algorithms. In Larrafiaga and Lozano [131], pages 195-209.

R. Sagarna and J. A. Lozano. Dynamic search space transformations for software
test data generation. Submitted.

R. Sagarna and J. A. Lozano. Software metrics mining to predict the performance
of estimation of distribution algorithms in test data generation. In C. Cotta, editor,
Data-driven Knowledge. Springer-Verlag. In Press.

R. Sagarna and J. A. Lozano. Variable search space for software testing. In Pro-
ceedings of the IEEFE International Conference on Neural Networks and Signal Pro-
cessing, pages 575 578, Nanjing, China, 2003. IEEE CS Press.

R. Sagarna and J. A. Lozano. On the performance of estimation of distribution
algorithms applied to software testing. Applied Artificial Intelligence, 19(5):457—
489, 2005.

R. Sagarna and J. A. Lozano. Scatter search in software testing, comparison and
collaboration with estimation of distribution algorithms. Furopean Journal of Op-
erational Research, 169(2):392-412, 2006.

145

8 Bibliography

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

R. Santana. Estimation of distribution algorithms with Kikuchi approximations.
Evolutionary Computation, 13(1):67-97, 2005.

R. Santana and A. Ochoa. Dealing with constraints with Estimation of Distribution
Algorithms: The univariate case. In Ochoa et al. [171], pages 378 384.

R. Santana, F. B. Pereira, E. Costa, A. Ochoa-Rodriguez, P. Machado, A. Cardoso,
and M. R. Soto. Probabilistic evolution and the Busy Beaver problem. In Whitley
et al. [253], page 380.

R. Sarker, R. Reynolds, H. Abbass, K. C. Tan, B. McKay, D. Essam, and
T. Gedeon, editors. Proceedings of the 2003 Congress on FEvolutionary Compu-
tation, CEC2003, Canberra, Australia, 8-12 December, 2003. IEEE Press, 2003.

K. Sastry, H. A. Abbass, D. E. Goldberg, and D. D. Johnson. Sub-structural niching
in Estimation of Distribution Algorithms. In Beyer et al. [21], pages 671-678.

K. Sastry and D. E. Goldberg. On Extended Compact Genetic Algorithm. In
Whitley et al. [253], pages 352 359.

K. Sastry and D. E. Goldberg. Designing competent mutation operators via prob-
abilistic model building of neighborhoods. In Deb et al. [55], pages 114 125.

F. Schoen. Two phase methods for global optimization. In P. Pardalos and
E. Romeijn, editors, Handbook of Global Optimization 2: Heuristic Approaches,
pages 151 178. Kluwer Academic Publishers, The Netherlands, 2002.

M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, .J. J. Merelo-Guervés, and
H. P. Schwefel, editors. Proceeding of the 6th International Conference on Parallel
Problem Solving from Nature, PPSN VI, Paris, France, September 18-20, 2000,
volume 1917 of Lecture Notes in Computer Science. Springer, 2000.

G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 7(2):461
464, 1978.

H. P. Schwefel. Ewolution and Optimum Seeking. John Wiley & Sons, New York,
1995.

S. Shakya, J. McCall, and D. Brown. Updating the probability vector using MRF
technique for a univariate EDA. In E. Onaindia and S. Staab, editors, STAIRS
2004, Proceedings of the Second Starting Al Researchers’ Symposium, volume 109

of Frontiers in Artificial Intelligence and Applications, Valencia, Spain, August
2004. TOS Press.

146

8 Bibliography

[226]

[227]

[228]

[229]

[230]

[231]

232]

[233]

[234]

[235]

[236]

[237]

238

S. Shakya, J. McCall, and D. F. Brown. Estimating the distribution in an EDA.
In B. Ribeiro, R. F. Albrecht, A. Dobnikar, D. W. Pearson, and N. C. Steele,
editors, Adaptive and Natural Computing Algorithms, Springer Computer Series,
pages 202-205, Coimbra, Portugal, 21-23 March 2005. Springer.

J. L. Shapiro. Drift and Scaling in Estimation of Distribution Algorithms. Ewvolu-
tionary Computation, 13(1):99 123, 2005.

M. Shepperd. Software Engineering Metrics I: Measures and Validations. McGraw-
Hill, New York, 1993.

B. Sierra, E. Jiménez, 1. Inza, P. Larranaga, and J. Muruzabal. Rule induction
using Estimation of Distribution Algorithms. In Larranaga and Lozano [131], pages
313 322.

J. Smith and T. C. Fogarty. Evolving software test data - ga’s learn self expression.
In T. C. Fogarty, editor, Proceedings of Evolutionary Computing. AISB Workshop,
pages 346-354, Berlin, 1996. Springer-Verlag.

M. Soto, A. Ochoa, S. Acid, and L. M. de Campos. Introducing the polytree
aproximation of distribution algorithm. In Ochoa et al. [171], pages 360 367.

L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H. M. Voigt, M. Gen, S. Sen,
M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, editors. Proceedings of the
Genetic and FEvolutionary Computation Conference, GECCO 2001, San Francisco,
California, USA, July 7-11, 2001. Morgan Kaufmann, 2001.

D. Spinellis. Code Quality. The Open Source Perspective. Addison-Wesley, Boston,
MA, 2006.

P. Spirtes, C. Glymour, and R. Scheines. An algorithm for fast recovery of sparse
causal graphs. Social Science Computing Reviews, 9:62-72, 1991.

H. Sthamer. The Automatic Generation of Software Test Data Using Genetic Al-
gorithms. PhD thesis, University of Glamorgan, Pontyprid, Wales, Great Britain,
1996.

R. Sukthankar, S. Baluja, and J. Hancock. Multiple adaptive agents for tactical
driving. Applied Intelligence, 9(1):7-23, 1998.

G. Syswerda. Schedule optimization using genetic algorithms. In L. Davis, editor,
Handbook of Genetic Algorithms, pages 332 349. Van Nostrand Reinhold, 1991.

G. Syswerda. Simulated crossover in genetic algorithms. In L. D. Whitley, editor,
Foundations of Genetic Algorithms 2, pages 239 255. Morgan Kaufmann, 1993.

147

8 Bibliography

[239]

[240]

[241]

[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]

[250]

[251]

G. Tassey. The economic impacts of inadequate infrastructure for software testing.
Technical Report 02-3, National Institute of Standards and Technology, Gaithers-
burg, MD, 2002.

N. Tracey. A Search-Based Automated Test-Data Generation Framework for Safety
Critical Software. PhD thesis, University of York, UK, 2000.

N. Tracey, J. Clark, K. Mander, and J. McDermid. An automated framework for
structural test-data generation. In D. Redmiles and B. Nuseibeh, editors, Pro-

ceedings of the 13th IEEE Conference on Automated Software Engineering, pages
285-288. TEEE CS Press, 1998.

M. Tsuji, M. Munetomo, and K. Akama. Modeling dependencies of loci with string
classification according to fitness differences. In Deb et al. [55], pages 246 257.

S. Tsutsui. Probabilistic Model-Building Genetic Algorithms in permutation rep-
resentation domain using edge histogram. In Merelo-Guervos et al. [147], pages
224-233.

H. M. Voigt, W. Ebeling, I. Rechenberger, and H. P. Schwefel, editors. Proceedings
of the Fourth International Conference on Parallel Problem Solving from Nature,
Berlin, 1996. Springer-Verlag.

M. D. Vose. The Simple Genetic Algorithm: Foundations and Theory. MIT Press,
Cambridge, MA, 1999.

S. Waser and M. J. Flynn. Introduction to Arithmetic for Digital Systems. Holt,
Rinehort & Winston, New York, 1982.

A. Watkins and E. M. Hufnagel. Evolutionary test data generation: a comparison
of fitness functions. Software - Practice and Experience, 36:95 116, 2006.

J. Wegener, A. Baresel, and H. Sthamer. Evolutionary test environment for au-
tomatic structural testing. Information and Software Technology, 43(14):841-854,
2001.

S. N. Weiss. What to compare when comparing data adequacy criteria. Software
Engineering Notes, 14(6):42 49, 1989.

E. J. Weyuker. Can we measure software testing effectiveness? In Proceedings
of the First International Software Metrics Symposium, pages 100-107. IEEE CS
Press, 1993.

E. J. Weyuker and B. Jeng. Analyzing partition testing strategies. IEEE Transac-
tions on Software Engineering, 17(7):703 711, 1991.

148

8 Bibliography

[252]

[253]

[254]

[255]

[256]

[257]

[258]

[259]

[260]

[261]

[262]

[263]

D. Whitley, K. Mathias, and P. Fitzforn. Delta coding: An iterative search strategy
for genetic algorithms. In R. K. Belew and L. B. Booker, editors, Proceedings of the
Fourth International Conference on Genetic Algorithms, pages 77 84, San Mateo,
CA, 1991. Morgan Kaufmann.

L. D. Whitley, D. E. Goldberg, E. Cantu-Paz, L. Spector, I. C. Parmee, and H. G.
Beyer, editors. Proceedings of the Genetic and Evolutionary Computation Confer-
ence, GECCO 2000, Las Vegas, Nevada, USA, July 8-12, 2000. Morgan Kaufmann,
2000.

D. H. Wolpert and W. G. MacReady. No free lunch theorems for optimisation.
IEEFE Transactions on Evolutionary Computation, 1(1):67 82, 1997.

A. H. Wright, R. Poli, C. R. Stephens, W. B. Langdon, and S. Pulavarty. An
estimation of distribution algorithm based on maximum entropy. In Deb et al.
[55], pages 343-354.

K. Yanai and H. Iba. Estimation of distribution programming based on Bayesian
network. In Sarker et al. [217], pages 1618 1625.

K. Yanai and H. Iba. Program evolution by integrating EDP and GP. In Deb et al.
[56], pages T74-785.

S. Yang. Memory-enhanced Univariate Marginal Distribution Algorithms for Dy-
namic Optimization Problems. In Corne et al. [45], pages 2560-2567.

S. Yang. Population-Based Incremental Learning with memory scheme for changing
environments. In Beyer et al. [21], pages 711 718.

S. Yang and X. Yao. Experimental study on polulation-based incremental learning
algorithms for dynamic optimization problems. Soft Computing, 9(11):815 834,
2005.

Q. Zhang. On stability of fixed points of limit models of univariate marginal dis-
tribution algorithm and factorized distribution algorithm. IEEE Transactions on
Evolutionary Computation, 8(1):80-93, 2004.

Q. Zhang and H. Miihlenbein. On global convergence of FDA with proportionate
selection. In Ochoa et al. [171], pages 340-343.

A. A. Zhigljavsky. Theory of Global Random Search. Kluwer Academic Publishers,
The Netherlands, 1991.

149

