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1 Introdu
tionThe re
urring 
on
ept in optimization is to sele
t the best alternative among a numberof possible results or a�airs. Mathemati
ally, optimization is the minimization or max-imization of a fun
tion subje
t to 
onstraints on its variables. Therefore, three basi
elements may be re
ognized from this des
ription: the fun
tion, the set of variables andtheir 
onstraints, and a strategy for �nding the fun
tion extrema.A �rst step in the optimization pro
ess is the identi�
ation of the fun
tion, variablesand 
onstraints for a given pra
ti
al problem. This task is sometimes referred in theliterature to asmodeling [160℄. The set of variables and 
onstraints represents the featuresthat distinguish the results from one another, that is, they de�ne the possible problemsolutions. The whole set of su
h solutions is usually 
alled the sear
h spa
e. On the otherhand, the fun
tion provides with a quantitative 
riterion of merit, a

ording to whi
h onesolution 
an be 
lassi�ed as better or worse than others. This is known as the obje
tivefun
tion, as it depends on the goal to be attained. Constru
tion of an appropriate modelis a relevant, and sometimes the hardest, issue. If the model is too simplisti
, it may notgive useful insights into the problem, while if it is too 
omplex, it 
ould be
ome extremelydi�
ult to solve.The se
ond topi
 in optimization lies on the 
hoi
e or design of a suitable strategy forpro
eeding. There is no universal optimization te
hnique. Rather, there are numerousmethods, ea
h of whi
h is tailored to a parti
ular type of problem. Most 
lassi
al meth-ods are founded on theoreti
al 
on
epts regarding the ne
essary and su�
ient 
onditionsfor the existen
e of extrema. However, a long way exists usually from the stablishmentof su
h 
onditions to their determination. It often remains intrin
ate enough, if not im-possible, to �nd the optimum for many problems. Even exa
t methods, whi
h ensurerea
hing the optimum, have well-known 
omputational limitations whi
h turn them in anunfeasible option, e.g. for NP-hard problems [84℄. In ta
kling su
h problems, metaheuris-ti
 te
hniques be
ome one of the most su

essful alternatives sin
e, although optimalityis not guaranteed often, a high quality solution at a reasonable 
omputational 
ost isusually obtained.The large number of existing metaheuristi
s makes it di�
ult to 
lassify them a

urately.One of the strategies that has grown into a popular �eld are Evolutionary Algorithms(EAs) [7℄. EAs are a family of probability based methods that take a model for thenatural evolution of spe
ies, formulated by Darwin [50℄, as a sour
e of inspiration. More3



1 Introdu
tionpre
isely, the sear
h for the optimum pro
eeds by maintaining a population of solutionsthat evolves from one generation to the next. The evolution 
onsists of sele
ting aset of solutions from the population and applying to some subsets of it re
ombinationoperators that 
reate new solutions. A huge number of methods 
onforming to thisframework have been developed. Therefore, the 
hoi
e of the appropriate alternative fora parti
ular appli
ation results an important matter, as it may determine whether theproblem is solved e�
iently or, even, if the optimum is found at all.Two modern emerging EAs te
hniques are Estimation of Distribution Algorithms (EDAs)[131℄ and S
atter Sear
h (SS) [126℄. The term EDAs alludes to a group of algorithmswhi
h, instead of using the typi
al re
ombination operators from EAs, sample a prob-ability distribution previously built from the set of sele
ted solutions. Indeed, this dis-tribution is responsible for one of the main 
hara
teristi
s of these algorithms, that is,the expli
it des
ription of the relationships between the problem variables. On the otherside, SS is a methodology based on the support of a low 
ardinality set of solutions whi
his updated with new solutions obtained from the 
ombination of the members of the set.Probably the most genuine feature of SS is that it emphasizes the use of systemati
 rulesduring the pro
ess, though sto
hasti
ity may be left to some extent.A signi�
ant aspe
t in the study of optimization methods is their appli
ation to real-world problems. This is appealing not just to demonstrate their usefulness, but alsoto un
over limitations that only arise in realisti
 situations. Optimization and, morespe
i�
ally, EAs have been applied to problems from a wide range of areas su
h ase
onomi
s, manufa
turing, physi
al systems, biology or operations resear
h, just to namea few. A relatively unexplored dis
ipline is, however, software testing.Testing is the means used in pra
ti
e to verify the 
orre
tness of software produ
ed.Considering the 
ru
ial role of software nowadays, it is not di�
ult to imagine the signif-i
an
e of testing. In fa
t, it represents a major issue for quality assuran
e and it usuallya

ounts for 50% of proje
t resour
es [17℄. A huge amount of these resour
es is dedi
atedto the generation of the input 
ases to be applied to the program under test. This taskis not trivial, as input 
ases must 
onform to the test type and its requirements. Sin
emost organizations perform this step manually, the automati
 generation of test data isworthwhile and has turned into one of the most 
hallenging problems in the area. A
ommon strategy for fa
ing this task 
onsists of 
reating test inputs that ful�ll an ade-qua
y 
riterion based on the program stru
ture. That is, adequa
y 
riteria 
ome de�nedby the entities revealed by the program sour
e 
ode. For example, entities su
h as thebran
hes the �ow of 
ontrol 
an take from a 
onditional statement de�ne the bran
h
overage 
riterion, i.e. every program bran
h must be exer
ised.In the last few years, a number of approa
hes under the name of Sear
h Based SoftwareTest Data Generation (SBSTDG) have been proposed, o�ering interesting results [144℄.SBSTDG deals with the test data generation as a sear
h for the appropriate inputs by4



1 Introdu
tionformulating an optimization problem during the pro
ess. This problem may then besolved using metaheuristi
 sear
h te
hniques.This dissertation is devoted to the treatment of the test data generation problem froman optimization point of view. More pre
isely, the three major 
omponents of an opti-mization problem are studied in the 
ontext of bran
h 
overage, whi
h is a mandatory
riterion nowadays.Con
erning problem modeling, both the sear
h spa
e and the obje
tive fun
tion are in-vestigated. In the literature related to this problem, little attention has been paid tothe sear
h spa
e topi
. The present work aims at revealing its signi�
an
e for obtainingimproved results in terms of e�
ien
y and e�
a
y. For this, in order to sele
t a promis-ing region, a strategy that dynami
ally transforms the sear
h spa
e during the pro
ess isdeveloped. By 
ontrast, a mu
h more intensive e�ort has been deserved in the bibliogra-phy to the obje
tive fun
tion. It is worth to dis
uss then di�erent fun
tions previouslyproposed and to study them in the present s
ope with the purpose of un
overing theirin�uen
e.The 
urrent work emphasizes the optimization te
hnique topi
, fo
using on the appli-
ation of EDAs and SS. The main obje
tive regarding this subje
t is twofold: on theone hand, to show that leading edge metaheuristi
s are able to perform su

essfully inthis problem and 
ontribute new alternatives for its solution, on the other, to as
ertainwhether EDAs and SS be
ome pra
ti
al methods in a demanding real world problem.1.1 Outlook of the DissertationThis dissertation is 
omposed of seven 
hapters. Chapter 2 presents the optimizationmethods studied throughout this work, namely, EDAs and SS. The general optimizationproblem and the 
on
ept of metaheuristi
 are �rstly introdu
ed. EAs are then des
ribedby giving a general framework to whi
h every algorithm roughly 
onforms. Though theorigins of EDAs are not 
learly stated, Geneti
 Algorithms seem to be one of their sour
es;a little more attention is devoted to them. Finally, SS and, more extensively, EDAsare overviewed. For the latter, existings methods are 
lassi�ed in three groups: thosewhere the probabilisti
 model assumes problem variables are 
onditionally independent,algorithms with �rst order dependen
e probability distributions, and EDAs where themodel makes no restri
tion on the dependen
ies between variables. Apropos SS, apartfrom the general methodology, advan
ed designs as well as appli
ations are in
luded.The purpose of Chapter 3 is to explain the problem fa
ed in the dissertation. Theneed for software testing is motivated by des
ribing its relevan
e with regard to qualityassuran
e. Dis
ussion 
on
entrates then on the generation of test inputs. The basi
strategies for a

omplishing this task are explained, pointing their limitations. The most5



1 Introdu
tion
ommon strategy 
onsists of ful�lling a 
ode 
overage 
riterion. This 
on
ept, togetherwith its 
omplexity, are introdu
ed. In the last part of the 
hapter, SBSTDG is dealtwith. There, a general s
hema followed by many approa
hes is des
ribed. Additionally,two designs for the obje
tive fun
tion are presented and the optimization methods usedin the literature reviewed.The following three 
hapters study the topi
s involving the main novelty of the disserta-tion.In Chapter 4, the test data generation is formulated from an optimization perspe
tive.The appli
ation of EDAs to the general s
heme from SBSTDG is then des
ribed in detail.Several EDAs are 
hosen for their evaluation through extensive experimentation.Chapter 5 studies the appli
ation of SS. Again, the general s
heme is employed as thebasis for the approa
h. The role of the improvement method in the SS algorithm is ana-lyzed by exposing di�erent alternatives for its usage. Moreover, an EDA-SS 
ombinationis proposed in order to take advantage of the bene�ts of both approa
hes.Chapter 6 
on
erns with the two other elements of the optimization: the obje
tive fun
-tion and the sear
h spa
e. Two fun
tions previously des
ribed are dis
ussed and 
om-pared empiri
ally to 
he
k their adequa
y. The bulk of the 
hapter, however, ta
kles thesear
h spa
e issue. A strategy for the sele
tion of a promising sear
h region is widely de-s
ribed and experimentally evaluated. Then, diverse analysis of the results are in
ludedto validate its performan
e and obtain 
on
lusions.Finally, Chapter 7 lists the main 
ontributions and 
on
lusions of this work. Future linesof resear
h are suggested as well.

6



2 Modern Evolutionary OptimizationTe
hniquesIn the past years, a signi�
ant resear
h e�ort has been devoted to the study and devel-opment of optimization methods and, more spe
i�
ally, of metaheuristi
s. As a resultof this work, a number of methods are emerging whi
h 
ontribute new ideas in the �eldand improve the results of more 
lassi
al alternatives in 
ertain problems. Two repre-sentatives of su
h novel methods are Estimation of Distribution Algorithms (EDAs) andS
atter Sear
h (SS). The formers 
omply with a resear
h line where optimization is basedin probabilisti
 models, while the latter emphasizes a more systemati
 approa
h.The aim of this 
hapter is to serve as an introdu
tion to su
h methods. Firstly, theoptimization problem, in general, and metaheuristi
s, in parti
ular, are presented. EDAsand SS are typi
ally in
luded under the framework of Evolutionary Algorithms. The verybasi
s of this framework are des
ribed then. Next, both EDAs and SS are overviewed.The 
hapter ends by pointing some other optimization methods whi
h are deserving theinterest of the 
ommunity as well.2.1 Introdu
tion to Metaheuristi
sThe 
lassi
al obje
tive of optimization is to �nd variables values leading to an extremumof a fun
tion. More formally, the general problem may be stated as follows: given afun
tion f : Ω→ IR, �nd x∗ ∈ Ω su
h that
f(x∗) = min

x∈Ω
f(x).Fun
tion f is the obje
tive fun
tion and the set Ω ⊆ IRn is 
alled the feasible region,though the term sear
h spa
e is usually employed as well. Additionally, Ω may 
omede�ned by a number of restri
tions, formulated as fun
tions on the problem variables,that is, Ω = {x ∈ IRn | gi(x) ≥ 0, gi : IRn → IR, i ∈ {1, ...,m} }. If Ω = IRn, the problemis 
alled un
onstrained, otherwise it is 
onstrained.Noti
e that a

ording to the des
ription above minimization is sought. This by no means
auses a loss in generality, sin
e

max
x∈Ω

f(x) = −min
x∈Ω

(−f(x)).7



2 Modern Evolutionary Optimization Te
hniquesMoreover, f takes values in IR, even so it 
ould be widened to f : Ω → IRk; if k >
1, a multiobje
tive optimization problem is being posed [43℄. Many 
hallenging real-world problems involve, by nature, the attainment of multiple obje
tives, however, inthe present work, we will restri
t to a single obje
tive, i.e. k = 1. Di�erent levelsof knowledge about the mathemati
al properties of f are possible. In the 
ase of noknowledge at all, the problem is named bla
k-box optimization.Regarding at the topology of f , di�erent types of minima 
an be distinguished. Aminimum is 
alled lo
al if no smaller fun
tion value exists in the surroundings of the
orresponding point in Ω. The deepest of the lo
al minima is known as the global one.More pre
isely, given a point x∗ ∈ Ω, f(x∗) is a lo
al minimum if an ε > 0 exists su
hthat ∀x ∈ Ω ‖x−x∗‖ < ε⇒ f(x∗) ≤ f(x). In the 
ase of a global minimum, this holdsfor every ε, that is, ∀x ∈ Ω f(x∗) ≤ f(x). It 
an be noted that the 
on
ept of lo
alminimum depends, to a large extent, on the metri
. In the 
ase of 
ontinuous problemvariables, a 
ommon pra
ti
e is to adopt the Eu
lidean distan
e. If variables are dis
rete,however, a mapping N : Ω → 2Ω is de�ned on the basis of a metri
; su
h a mapping isreferred to as a neighborhood.An obje
tive fun
tion that only shows one lo
al minimum is named unimodal, otherwiseit is 
alled multimodal. Obviously, we are interested in �nding a global optimum of f ,therefore, in the previous des
ription of an optimization problem, the solution point x∗alludes to a global minimum. From now on, terms optimum and minimum will be relatedwith globality, unless otherwise spe
i�ed where 
onfusion might arise.Inherent to an optimization problem is the need for a suitable solution strategy. Nogeneral-purpose e�e
tive method has been found, so the �eld is 
overed by pro
eduresthat limit their appli
ation to spe
i�
 problem 
ases ea
h. A rough 
lassi�
ation of thesemethods 
an be drawn by 
onsidering the problem features. Thus, for instan
e, we maydis
ern between strategies for stati
 and dynami
 optimization (extrema are stationaryor of time-varying nature), parameter and fun
tional optimization (problem variablesare s
alars or fun
tions), or 
onstrained and un
onstrained optimization.One other possible distin
tion is between analyti
 and numeri
al optimization methods[224℄. Analyti
 (also known as indire
t) pro
edures are based on the investigation of theparti
ular properties of f at the extrema points. For this, 
lassi
al theoreti
al 
on
eptsregarding the ne
essary and su�
ient 
onditions for the existen
e of minima and maximaare employed, resulting in systems of equations that a solution must satisfy. However,di�
ulty, even possibility, of determination of this solution heavily depends on parti
ularproblem 
onditions; so, aspe
ts like 
ontinuity or di�erentiability of f , whether nonlinearequations are involved, or the existen
e of 
onstraints, strongly restri
t the appli
ationof su
h strategies. On the other hand, numeri
al (or dire
t) methods are more widelyspread than indire
t. Dire
t methods 
onsist of approa
hing the solution iteratively,attempting to improve the value of f at ea
h step. Not a
hieving this improvement8



2 Modern Evolutionary Optimization Te
hniques
auses a trial and error pro
ess whi
h, in the uttermost 
ase, leads to an exhaustiveexploration of the sear
h spa
e. Indeed, strategies that ensure the a
hievement of theoptimum, 
ommonly known as 
omplete or exa
t, are based on the examination of a largeproportion of the sear
h spa
e. Unfortunately, limitations arise when their 
omputationis addressed. Computational 
omplexity asso
iated to a pro
edure grows with the sizeof the sear
h spa
e; in 
ase of an exponential growth, the problem is deemed intra
table.Furthermore, a huge number of problems from diverse areas as e
onomi
s, biology oroperations resear
h belong to the NP-hard 
ategory [84℄, whi
h implies no algorithm thatattains the optimum in a polynomial time 
omplexity s
ale is known. In 
onsequen
e,these problems are 
onsidered to be intra
table.Hen
e, we arrive to a la
k of feasible solution strategies for a signi�
ant number ofproblems. The unavoidable question is: how 
an they be ta
kled? An alternative is toapproximate the optimum by means of heuristi
s [198℄. A heuristi
 is a rule of thumb thatgives guidan
e in the solution of a problem. Although optimality is not guaranteed, a highquality solution at a reasonable 
omputational 
ost is usually a
hieved. This e�
ien
y isvery appre
iated when fa
ing 
ompli
ated real-world problems and 
onstitutes the 
luefor the extended appli
ation of these te
hniques.Many heuristi
 methods 
onsist of a sear
h pro
ess over the feasible region [180℄. Su
hheuristi
 sear
h pro
edures 
an be further divided into deterministi
 and nondetermin-isti
 algorithms. In the formers, deterministi
 rules are used at ea
h step of the pro
ess,that is, given a problem, two exe
utions of the algorithm under identi
al 
onditions resultin the same solution. By 
ontrast, in nondeterministi
 approa
hes, several options arefeasible at some de
ision points during the sear
h. It is 
ommon to resort to sto
hasti
rules at these points and, a

ordingly, di�erent solutions might be attained in two runsof the same algorithm, given a problem and identi
al exe
ution 
onditions. Examples ofdeterministi
 and nondeterministi
 approa
hes are, respe
tively, 
oordinate hill 
limbing[224℄ and random dire
tions algorithms [263℄.Taking the type of the extrema into a

ount, sear
h heuristi
s may also be 
lassi�edas lo
al or global methods. Lo
al methods operate in the surroundings of a solutionpoint at ea
h step of the sear
h, until an optimum is found1. If f is multimodal then alo
al optimum, di�erent to the global, is often rea
hed [263℄. On the other hand, globalmethods aim at 
overing the sear
h spa
e to some extent, with the purpose of obtainingthe global optimum. Respe
tive instan
es of lo
al and global algorithms 
omprise thebest �rst pro
edure [180℄ and grid sear
h strategies [224℄. It is important to remark that,in many 
ases, these two types of methods are 
ombined in order to build other globalpro
edures, e.g. multistart algorithms [221℄ typi
ally 
onsist of multiple appli
ations ofa lo
al sear
h heuristi
 departing from di�erent initial points ea
h.1Other works from the literature [32℄ simply refer to lo
al methods as those employing a neighborhood.Noti
e that a stronger des
ription is used here [7; 224; 263℄.9



2 Modern Evolutionary Optimization Te
hniquesAn enormous e�ort has been devoted in the past years to the study and development ofheuristi
 methods. One of the main obje
tives of this work has been the improvementof the traditional heuristi
 algorithms, resulting in in
reasingly advan
ed designs. Thesehave been in
luded under the relatively re
ent term of metaheuristi
s [32; 87; 198℄.Glover used this term for the �rst time to des
ribe pro
edures 
onsisting of �... a masterstrategy that guides and modi�es other heuristi
s to produ
e solutions beyond those thatare normally generated in a quest for lo
al optimality.� [88℄. Nonetheles, in pra
ti
e,metaheuristi
s involve sophisti
ated as well as modern approa
hes [198℄. The similarterm of hiper-heuristi
s 
an also be found in the literature [203℄, though its meaning is
learly di�erent, as it alludes to methods whi
h seek through a sear
h spa
e of heuristi
algorithms. A few well known examples of sear
h metaheuristi
s are Simulated Annealing[121℄, Tabu Sear
h [88℄ and Evolutionary Algorithms [7℄.2.2 Evolutionary AlgorithmsEvolutionary Algorithms (EAs) [7; 8; 9; 67℄ is the term used to group a number of sto
has-ti
 (nondeterministi
) global sear
h metaheuristi
 te
hniques. All these te
hniques shareas a sour
e of inspiration the theory of natural evolution of spe
ies enun
iated by Dar-win [50℄. A

ording to Darwin's model, the evolution of a population of individuals inan environment with limited resour
es is based on two 
ornerstones: natural sele
tionand phenotypi
 variations. Natural sele
tion favors reprodu
tion of the best adaptedmembers in the population, allowing their geneti
 information to spread through theiro�spring. Phenotypi
 variations given by genes re
ombination during reprodu
tion and,o

asionally, by small mutations of a gene, produ
e new individuals in the population.EAs 
ome motivated by the interpretation of adaptation as a su

essive progress ofimprovement of stru
tures in order to attain a better performan
e in their environment.Natural evolution 
an be then observed as an optimization pro
ess whi
h is worthy ofimitation. This was the idea followed by three approa
hes developed separately during the60s. In the USA, Holland introdu
ed Geneti
 Algorithms [108℄, while Fogel, Owens andWalsh invented Evolutionary Programming [74℄. Meanwhile, in Germany, Re
henbergand S
hwefel implemented Evolution Strategies [197; 224℄. Su
h te
hniques have been
onsidered the mainstreams of the �eld sin
e their development. EAs, however, 
omprisemany more methods than these. Due to their extended use and their 
onne
tion withthe s
ope of this thesis, Geneti
 Algorithms will be brie�y introdu
ed later on. For adetailed explanation of these approa
hes and EAs in general, the reader is referred to[8; 9; 67; 74; 89; 224℄.
10



2 Modern Evolutionary Optimization Te
hniques2.2.1 The General FrameworkAs a 
onsequen
e of the evolutionary metaphor, mu
h of the biologi
al terminology hasbeen transferred to the �eld of EAs. For instan
e, a 
andidate solution point for theproblem at hand is represented by an individual, whi
h is in turn 
omposed by a set ofgenes or variables. The term population alludes to a set of individuals, that is, a set ofrepresentations of the 
andidate solutions. The obje
tive fun
tion is referred to as the�tness fun
tion and, a

ordingly, the fun
tion value of an individual is 
alled its �tness.An EA lies on the basis formed by three sto
hasti
 operators, namely, sele
tion, re
om-bination and mutation. Re
ombination and mutation are not simultaneously in
luded inall designs, though one of them is always present, e.g. basi
 Evolution Strategies onlyinvolve mutation. Many te
hniques, however, 
ontain both operators.The sear
h for the optimum point 
onsists basi
ally of an iterative pro
ess departingfrom a population of individuals. At ea
h round or generation, the sele
tion operator isapplied to 
hoose a set of parent individuals from the 
urrent population. For this, �tterindividuals are assigned a higher probability of being 
hosen. Re
ombination merges thegenes of several parents (
ommonly two) into o�spring individuals. The 
hoi
e of thegenes to be 
ombined as well as the manner of 
ombination are determined probabilis-ti
ally. Even the appli
ation of the operator depends on a probability value. Mutationperforms random transformations on the genes of one individual. Similarly to re
om-bination, ea
h of these transformations o

urs with a 
ertain probability. Finally, newindividuals 
ompete with the old ones for a pla
e in the next generation. Figure 2.1 showsthe pseudo
ode of a general framework to whi
h every EA 
onforms to some extent. Inthe pseudo
ode, Dl represents the population of the l-th generation; analogously, DSel
l ,

DRec
l and DNew

l denote the set of sele
ted individuals, the o�spring after re
ombinationand the new individuals after mutation, respe
tively.
D0 ← Obtain initial populationEvaluate ea
h individual from D0Repeat for l = 1, 2, ..., until stopping 
riterion is met

DSel
l−1 ← Sele
t individuals from Dl−1

DRec
l−1 ← Re
ombine individuals from DSel

l−1

DNew
l−1 ← Mutate individuals from DRec

l−1Evaluate ea
h individual from DNew
l−1

Dl ← Build next population with individuals from Dl−1 and DNew
l−1Figure 2.1: General framework for EAs.From an optimization point of view, EAs are based on two assumptions. On the onehand, ea
h solution point is a 
ontainer of knowledge about the features of the obje
tivefun
tion. On the other, when solutions are 
ombined, their knowledge is transmitted to11



2 Modern Evolutionary Optimization Te
hniquesthe resulting solutions. Sin
e �tter individuals have higher 
han
es of being sele
ted, itis expe
ted the parents to en
ode suitable features. As a result of their 
ombination,better individuals 
ould then be obtained, and the population might eventually evolvetowards promising areas of the sear
h spa
e.At this point, it is important to noti
e the signi�
an
e of the en
oding s
heme used byindividuals to represent 
andidate solutions. This s
heme 
an be des
ribed as a mapping
h : Ω→ ΩI , where ΩI is the set of individuals. The sear
h pro
eeds in ΩI , so the obje
tivefun
tion of the problem a
tually being ta
kled is fI : ΩI → IR, instead of f : Ω → IR.In some 
ases, an individual is a solution point (h is the identity fun
tion) and, hen
e,
fI = f , while, in others, more elaborated mappings are required. Therefore, both h and
fI must be 
arefully de�ned in order to preserve the properties of the originals sear
hspa
e and obje
tive fun
tion. A 
onvenient approa
h, though not always feasible, is tomake h bije
tive, so that fI = f ◦ h−1.The framework in Figure 2.1 reveals the remaining elements that 
hara
terize EAs. Whilesome of these 
omponents are often spe
i�ed following general rules, others tend tobe tailored to the parti
ular te
hnique at hand. Thus, the initial population 
an beobtained independently from the algorithm through several alternative pro
edures, e.g.at random. By 
ontrast, design of the evolutionary operators is usually in�uen
ed by themethod. Below, a few operators are des
ribed in detail for the 
ase of Geneti
 Algorithms.Apropos the 
onstru
tion of the next population, relatively simple rules, like 
hoosing theindividuals with highest �tness, are popular. It is worth noting a pra
ti
e 
alled elitism,whi
h 
onsists of preserving for the next population the best individual from the 
urrentone. The use of elitism is widely spread as it has shown good results in many problems aswell as ne
essary properties for theoreti
al 
onvergen
e to the global optimum [137; 206℄.For the termination 
ondition, spe
i�
 strategies exist for a few EAs [5℄, though the usualapproa
h is to resort to general 
riteria. For instan
e, if the optimal value is known, anobvious halting 
ondition is the attainment of su
h a �tness. Further basi
 
riteriaare, among others, rea
hing a maximum number of �tness evaluations or 
omputationalresour
es, no improvement of the mean �tness of the population in su

esive generations,or the 
onvergen
e of the population to the same individual. In order to fully de�nean EA, parameters that 
ome together with these elements should also be spe
i�ed.Parameter values that need to be set in most te
hniques are the population size, thenumber of individuals sele
ted, and probabilities of re
ombination and mutation. Of
ourse, additional parameters may arise from the parti
ular details of ea
h 
omponent.When 
ompared with 
lassi
al optimization methods, EAs own a number of advantageswhi
h turn them to be an interesting option. First, EAs may be applied to a widevariety of s
enarios. They are able to deal with fun
tions where no derivatives exist,multimodality, dis
ontinuities, 
onstraints, or with noisy fun
tions. Even problems not
ompletely de�ned or bla
k-box optimization 
an be ta
kled. Se
ond, EAs do not makeany assumption about the sear
h spa
e. Third, the e�ort to adapt an EA to a new12



2 Modern Evolutionary Optimization Te
hniquesproblem is relatively low. Finally, some EAs 
an run intera
tively, i.e. it is possible to
hange the parameter values during exe
ution.EAs have also drawba
ks. First, there is no guarantee of �nding the global optimumand, in most 
ases, no reliable stopping 
riteria are known. Se
ond, EAs are 
omplexsystems that make their theoreti
al analysis fairly intrin
ate, leading to a la
k of enoughtheoreti
al basis in the �eld. Moreover, 
omparison between di�erent EAs is di�
ultunless experimentally. Third, they are often 
omputationally expensive. Fourth, it isnot possible to know how far the solution obtained is from the global optimum. Finally,perhaps their worst 
hara
teristi
 is a strong dependen
y on the set of parameters, whi
husually has to be experimentally tuned for the problem at hand. In fa
t, in some al-gorithms, this tuning itself be
omes an optimization problem [94℄. Ex
eptionally, thetuning pro
ess 
an be avoided by Evolution Strategies and other self-adaptive EAs [66℄.To summarize, it is important to think that EAs are not a set of te
hniques ready to beapplied, but a set of me
hanisms to modify and tailor to the parti
ular problem.Nonetheless, the high quality results obtained in many problems have 
aused an expo-nential growth of the �eld. The literature is plenty of su

essful appli
ations to real-worldproblems [51℄ as well as their abstra
t forms, like, for example, the Traveling SalesmanProblem [7℄. These en
ouraging results led a number of works from the 80s to 
on
lusionson the superiority of EAs with regard to other te
hniques [89℄. Still, the No Free Lun
hTheorem [254℄ showed later on that, averaging over the spa
e of possible problems, allbla
k-box algorithms exhibit the same performan
e. The perspe
tive of resear
hers sin
ethen has 
ompletely 
hanged. Instead of seeking the best overall method, 
urrent e�ortsare addressed towards the identi�
ation of the suitable methods for a given problem, orthe study of the problems where a method performs well. Undoubtedly, mu
h of thiswork has been devoted to the, probably, most popular EA: the Geneti
 Algorithm.2.2.2 Geneti
 AlgorithmsOrigins of Geneti
 Algorithms (GAs) lie on the work by Holland [108℄, although theirpopularity is mainly due to Goldberg [89℄. The pseudo
ode in Figure 2.1 
an be straightlybrought to GAs, sin
e both re
ombination and mutation operators are 
ontained in thealgorithm. The Simple Geneti
 Algorithm (SGA) is the most elementary implementationof this method. Basi
 representation issues, together with the sele
tion, re
ombinationand mutation operators of the SGA, are des
ribed next. Additionally, a few advan
eddesigns are in
luded. Ex
elent in-depth dis
ussions of GAs 
an be found in the literature;for instan
e, the reader may 
onsult the book by Goldberg [89℄, or the more re
ent oneby Vose [245℄.
13



2 Modern Evolutionary Optimization Te
hniquesRepresentation of a solutionAn individual in the SGA en
odes a solution point from the original problem as a binarystring of n genes, i.e. an individual 
an be denoted as x = (x1, x2, ..., xn), with x ∈
{0, 1}n. This en
oding implies a mapping fun
tion must be de�ned to transform originalsolutions into 0-1 strings. For instan
e, an integer variable 
ould be mapped to a binarystring following a sign-magnitude representation [246℄.Another possibility is to en
ode ea
h solution in a natural, non binary, way, resultingin strings of integers or reals. A disadvantage of these en
odings is that most of theevolutionary operators are built with regard to the SGA, and they might not be usedwith non 0-1 strings. More pre
isely, many of the operators 
an be applied to integeren
odings, but not to reals. In these 
ases, spe
i�
 operators usually need to be designed[106℄.Sele
tionThe purpose of sele
tion is to push the sear
h towards high quality areas. In the SGA,the number of individuals to be sele
ted is a parameter of the algorithm and the operatoris known as proportional-based sele
tion. Assuming a population size N and an obje
tivefun
tion f to maximize, the probability of 
hoosing an individual xi with this operatoris

p(xi) =
f(xi)

∑N
j=1 f(xj)

(2.1)A well known drawba
k of proportional-based sele
tion is that it is not invariant undertranslation nor under a 
hange in s
ale of the obje
tive fun
tion. Therefore, more ad-van
ed strategies are used in pra
ti
e. For example, in linear rank-based sele
tion [10℄,previous drawba
ks vanish, sin
e a rank of the �tness values in the population is em-ployed to eli
ite the probability of sele
tion for an individual. Let η+ denote the expe
tednumber of times the best individual x1:N is sele
ted, i.e. η+ = N · p(x1:N), and η− theminimum expe
ted value assigned to xN:N , i.e. η− = N · p(xN:N), then the probabilityassigned to individual xi:N is eli
ited following a linear mapping, that is,
p(xi:N) =

1

N
·

(

η+ − (η+ − η−) ·
i− 1

N − 1

) (2.2)and the 
onstraints ∑N
i=1 p(xi:N) = 1 and p(xi:N) ≥ 0 ∀i ∈ {1, 2, ...,N} imply 1 ≤ η+ ≤

2 and η− = 2− η+. As it 
an be noti
ed, the implementation of this operator involves anew parameter η+.
14



2 Modern Evolutionary Optimization Te
hniquesRe
ombinationA

ording to the EAs hypothesis, re
ombination is the way to spread the information ofindividuals. In the SGA, this operator is applied with a 
ertain probability, whi
h is givenas a parameter. The probability value tends to be high (nearly 1) in order to fa
ilitatethe exploration of the sear
h spa
e. Two parents (x1
1, x

1
2, ..., x

1
n) and (x2

1, x
2
2, ..., x

2
n) aremixed and two 
hildren are obtained. The pro
edure 
onsists of 
hoosing an index kfrom a uniform distribution over {1, 2, ..., n − 1}. Then, the �rst 
hild is 
omposed ofgenes x1

1, ..., x
1
k−1 and x2

k, ..., x
2
n, while the se
ond is 
reated with genes x2

1, ..., x
2
k−1 and

x1
k, ..., x

1
n.The underlying idea behind this 
ut point based operator is that neighbor genes 
ontainthe useful knowledge to obtain improved individuals. However, even if this is true, thereis no apparent reason to assume that the neighborhood is given by adja
ent variables inthe string. Hen
e, several approa
hes have proposed to extend the number of 
ut pointsto two or more. The general situation is the uniform re
ombination operator [237℄, wherefor ea
h gene one of the parents is 
hosen randomly and independently of the rest of thevariables.Other re
ombination operators have investigated the possibility of merging more than twoparents. In the Bit-based Simulated Crossover [238℄, the value of ea
h gene is obtainedfrom the value of the same variable in an individual 
hosen from the whole population.The sele
tion of the individual 
onsists of sampling from a probability distribution thatdepends on the �tness value of the individuals.MutationThe role of mutation is to inje
t diversity in the population, enhan
ing the exploration
apabilities of the algorithm. In the SGA, the value of ea
h gene is �ipped with aprobability value whi
h is a parameter of the system. In 
ontrast to re
ombination, thisvalue is kept low (a rule of thumb is to use 1/n [150℄) to avoid the ex
essive disruptionof the e�e
t of the re
ombination operator.2.2.3 Advan
ed DesignsAn intensive resear
h has been 
ommitted to EAs in the past years. To a great extent,these e�orts have 
on
entrated on the alleviation of the drawba
ks previously introdu
edor the improvement of the te
hniques performan
e. It is worth to remark then a numberof approa
hes in the literature making use of advan
ed designs.The hybridization of EAs with other te
hniques [22℄ is an a
tive working line supportedby the impressive results obtained in pra
ti
e, e.g. in graph 
oloring problems [80℄. One15



2 Modern Evolutionary Optimization Te
hniquesother appealing area is based on the study of strategies for the self-adaptation of theparameters values of the EA [6; 66℄. The purpose of these developments is to makethe algorithm less dependant on the parameters by allowing the evolutionary pro
ess to
hange their values during the sear
h. A more spread approa
h is the generalization ofthis idea, that is, designing EAs where a number of basi
 
omponents are self-adaptive[66℄. In this 
ontext, the bulk of the works 
on
entrate on the employment of variablelength representations of a solution [123; 252℄. Finally, mu
h of the resear
h e�orts are
on
erned with the parallelization of EAs [34; 205℄. This �eld is not only interestingfrom an e�
ien
y point of view, but also from a methodologi
al one, sin
e some parallelmethods imply a di�erent behavior from the 
lassi
al EA and 
onstitute themselves anew domain, e.g. island models GAs [34℄.Of 
ourse, these approa
hes are just a few instan
es from the body of extensions andinnovative ideas 
on
erning EAs. In fa
t, su
h is the level of sophisti
ation a
hieved bymany re
ent developments that they do not �t exa
tly into the framework in Figure 2.1.The notion of EA is be
oming in
reasingly blur, favouring the in
lusion of several te
h-niques that follow some evolutionary 
on
epts under its umbrella. Next, we review twoleading edge te
hniques amongst these, namely, Estimation of Distribution Algorithms[131℄ and S
atter Sear
h [126℄.2.3 Estimation of Distribution AlgorithmsIn the last de
ade, GAs have been widely used to solve di�erent problems, improvingin many 
ases the results obtained by other algorithms. However, as it was pointed inprevious se
tion, this kind of algorithms has a large number of parameters that need tobe 
orre
tly tuned in order to obtain good results. Generally, only experien
ed users 
ando this 
orre
tly and, moreover, the task of sele
ting the best 
hoi
e of values for allthese parameters has been suggested to 
onstitute itself an optimization problem [94℄.In addition, GAs show a poor performan
e in some problems (de
eptive and separableproblems) in whi
h the existing operators of 
rossover and mutation do not guaranteethat better individuals will be obtained 
hanging or 
ombining existing ones.Some authors [108℄ have pointed out that making use of the relations between genes 
anbe useful to drive a more �intelligent� sear
h through the solution spa
e. This 
on
ept,together with the limitations of GAs, 
ontributed to spread a new type of algorithmsgrouped under the name of Estimation of Distribution Algorithms (EDAs).EDAs were introdu
ed in the �eld of EAs in [158℄, although similar approa
hes 
an bepreviously found in [263℄. In EDAs there are neither 
rossover nor mutation operators.Instead, the new population of individuals is sampled from a probability distribution,whi
h is estimated from a database that 
ontains the sele
ted individuals from the pre-vious generation. Thus, the interrelations between the di�erent variables that represent16



2 Modern Evolutionary Optimization Te
hniques
D0 ← Generate M individuals and evaluate ea
h of themRepeat for l = 0, 1, 2, ..., until stopping 
riterion is met

DSel

l
← Sele
t N individuals from the Dl population following a sele
tion methodIndu
e from DSe

l
an n (size of the individual) dimensional probability model

Dl+1 ← Generate a new population of M individuals based on the sampling of theprobability distribution pl(x) learnt in the previous stepEvaluate individuals in Dl+1Figure 2.2: Pseudo-
ode for EDAs.the individuals may be expli
itly expressed through the joint probability distribution as-so
iated with the individuals sele
ted at ea
h generation. Figure 2.2 presents a 
ommonoutline for all EDAs.A review of di�erent EDAs is presented in the following se
tions, 
lassi�ed on the basis ofthe di�erent probability models that 
an be used to represent the dependen
ies betweenthe variables that 
onstitute the individuals. Algorithms have been grouped a

ordingto the way dependen
ies between variables are 
onsidered: all variables are independent,pairwise dependen
ies, or multiple dependen
ies. For the sake of 
onvenien
e to thethesis obje
tives, we restri
t the review to EDAs for optimization in dis
rete domains;for an ex
elent review in
luding 
ontinuous variables the reader is referred to [131℄.Firstly, some notation that will be used throughout the di
ussion is introdu
ed. Givenan n-dimensional random variable X = (X1,X2, ...,Xn) and a possible instantiation x =
(x1, x2, ..., xn), the joint probability distribution of X will be denoted by p(x) = p(X =
x). In the 
ase of two unidimensional random variables Xi,Xj and their respe
tivepossible values xi, xj , the 
onditional probability of Xi given Xj = xj will be representedas p(xi|xj) = p(Xi = xi|Xj = xj). In the 
ontext of EAs, an individual with n genes
an be 
onsidered an instantiation x = (x1, x2, ..., xn) of X = (X1,X2, ...,Xn). Let thepopulation of the l-th generation be Dl. The individuals sele
ted, DSe

l , 
onstitute adataset of N 
ases of X = (X1,X2, ...,Xn). EDAs estimate p(x) from DSe
l , therefore,the joint probability distribution of the l-th generation will be represented by pl(x) =

p(x|DSe
l−1).2.3.1 Without Dependen
iesAll the models that belong to this 
ategory 
onsider all variables as independent. There-fore, the joint probability distribution is fa
torized as a produ
t of univariate and inde-pendent probability distributions. That is, pl(x) =

∏n
i=1 pl(xi).

17



2 Modern Evolutionary Optimization Te
hniquesUMDAUnivariate Marginal Distribution Algorithm (UMDA). Introdu
ed in [151℄, this algorithmuses the simplest way to estimate the joint probability distribution:
pl(x) = p(x|DSe

l−1) =

n
∏

i=1

pl(xi) (2.3)where ea
h univariate marginal distribution is estimated from marginal frequen
ies:
pl(xi) =

∑N
j=1 δj(Xi = xi|D

Se
l−1)

N
(2.4)being

δj(Xi = xi|D
Se
l−1) =

{

1 if in the jth 
ase of DSe
l−1, Xi = xi

0 otherwise (2.5)UMDA has been su

essfully applied to di�erent problems: feature subset sele
tion [4℄,learning of Bayesian networks from data [23; 202℄, or to solve linear and 
ombinatorialproblems using Lapla
e 
orre
tion [178℄.Other works fo
us on the behavior of the algorithm, performing a mathemati
al analysisof UMDA [154; 155℄, studying its 
onvergen
e when UMDA is used to maximize a numberof pseudo-boolean fun
tions [91℄, or analyzing the geneti
 drift phenomenon [110; 111;227℄.Finally, several modi�
ations have also been introdu
ed in UMDA trying to improve itsperforman
e: modi�
ations on the simulation phase [215; 216℄, use of a repair methodfor solving 
onstraint satisfa
tion problems [96℄, adaptive population sizing [109℄, use ofmemory s
hemes for dynami
 optimization problems [258℄, or introdu
ing the bitwisemutation operator [97℄.BSCBit-Based Simulated Crossover (BSC) [238℄ originated as a re
ombination operator forGAs. This approa
h uses the �tness value of the sele
ted individuals to estimate ea
hmarginal distribution:
pl(xi) =

∑

{x|δj(Xi=xi|DSe
l−1

)=1} e
f(x)

∑

{xǫDSe
l−1
} e

f(x)
(2.6)where fun
tion δj maintains the meaning expressed in Equation 2.4.18



2 Modern Evolutionary Optimization Te
hniquesIn Equation 2.6, the numerator alludes to the sum of the evaluation fun
tion values ofthe individuals with value xi in the variable Xi, and the denominator is the sum ofevaluation values of the sele
ted individuals.This algorithm has been applied to problems su
h as feature subse
t sele
tion [114℄ andpartition 
lustering tasks [204℄.PBILPopulation Based In
remental Learning (PBIL) [11; 12℄ uses a probability ve
tor torepresent the 
hara
teristi
s of the population:
pl(x) = (pl(x1), . . . , pl(xi), . . . , pl(xn)) (2.7)where pl(xi) refers to the probability of obtaining a value of 1 in the ith variable of the

lth population.The ve
tor is initialized using the �rst population, and then it is used to sample a newset of M individuals. From this set, only the best N individuals are sele
ted. We denotethem by:
xl

1:M , . . . ,xl
i:M , . . . ,xl

N :M (2.8)Based on the following Hebbian inspired rule, the probability ve
tor is updated:
pl+1(x) = (1− α)pl(x) + α

1

N

N
∑

k=1

xl
k:M (2.9)where α ∈ (0, 1] is a parameter of the algorithm (the reader may note that when α = 1,this algorithm performs as UMDA).The following population will be sampled from this new (updated) probability ve
tor.In 
ontrast to the general EDA behavior, it must be remarked that this algorithm usesthe probability ve
tor of the previous generation in addition to the re
ently sampledindividuals to obtain the new probability ve
tor.PBIL has been applied to di�erent problems, su
h as: optimization of parameters ofa solution in the �eld of ta
ti
al driving [236℄, sear
h for optimal weights in a neuralnetwork stru
ture [47; 82℄, 
lassi�er sele
tion [207℄, optimization of parameters for thesimple supply 
hain model [92℄, or learning of Bayesian networks [23℄.Some theoreti
al studies of PBIL have been 
ompleted in [90; 107℄.Finally, there are works that use 
hara
teristi
s of PBIL or even modify parts of thealgorithm. In [136℄, the Statisti
al and Indu
tive Tree Based Evolution algorithm ispresented. This approa
h mixes ideas from PBIL (probability ve
tor) with indu
tive19



2 Modern Evolutionary Optimization Te
hniquesFor i = 1, . . . , nIf xl
i,1:2 6= xl

i,2:2If xl
i,1:2 = 1

pl(xi) = pl−1(xi) + 1
KIf xl

i,1:2 = 0

pl(xi) = pl−1(xi)−
1
KFigure 2.3: Pro
ess to update the probability ve
tor in 
GA. K is a 
onstant value �xedas a parameter.de
ision trees. In general terms, it works as follows: starting with a randomly 
reatedpopulation, individuals are split into three groups (best, medio
re, and bad) and Indu
-tion of De
ision Trees is used to indu
t a de
ision tree, extra
ting the set of equivalentrules. Then, PBIL is used together with the rules to sample new individuals. The pro
essis repeated until some termination 
riteria is ful�lled.Related to dynami
 problems, there are two di�erent proposals: using a dual probabilityve
tor and 
ompeting with the main probability ve
tor to generate samples [260℄, andusing a memory s
heme to store the best sample and the working probability ve
tor [259℄.
GAThe 
ompa
t Geneti
 Algorithm (
GA) [99℄ is quite similar to PBIL. It also uses aprobability ve
tor to guide the sear
h through the spa
e of possible solutions.This algorithm 
ompletes the following steps: �rst, the probability ve
tor is initialized(ea
h 
omponent follows a Bernoulli distribution with parameter 0.5). Then, two indi-viduals are randomly sampled from the probability ve
tor, and evaluated. Taking intoa

ount their �tness value, one of them will be the best (xl

1:2) and the other the worst(xl
2:2). The pro
ess to update the probability ve
tor is presented in Figure 2.3.It must be noted that the probability ve
tor is updated in an independent way for ea
hvariable. This pro
ess of adaptation of the ve
tor of probabilities towards the winningindividual 
ontinues until the ve
tor of probabilities has 
onverged.
GA has been applied to feature subset sele
tion [35℄ and to the pruning of neural net-works used in 
lassi�
ation problems [36℄.A runtime analysis of 
GA using di�erent linear fun
tions is presented in [63℄.Finally, several modi�
ations on 
GA have been presented in the literature. In [81℄, amodi�ed 
ompa
t GA is developed for the intrinsi
 evolution of 
ontinuous time re
urrentneural networks. In [1℄, two elitism-based 
GAs are presented: persistent elitist 
ompa
t20



2 Modern Evolutionary Optimization Te
hniquesgeneti
 algorithm (pe-
GA), and nonpersistent elitist 
ompa
t geneti
 algorithm (ne-
GA).RELEDAThe Reinfor
ement Learning Estimation of Distribution Algorithm (RELEDA) was in-trodu
ed in [179℄.In this algorithm, an agent explores an environment per
eiving its 
urrent state as wellas information about the environment. Based on that information, the agent takes somede
isions, making the environment 
hange and re
eiving the value of this transition as as
alar reinfor
ement sign.This algorithm is similar to UMDA, but the probability of ea
h variable is updatedapplying a reinfor
ement learning method. The sear
h for probability distributions isredu
ed to a number of parameters denoted by θ = {θ1, θ2, . . . , θn} where θi ∈ ℜis a parameter related to the probability of the variable Xi through a fun
tion. The
orrelation between p(xi) and θi is expressed through the sigmoid fun
tion:
p(xi) =

1

2
(1 + tanh(βθi)) (2.10)where β is the sigmoid gain.In ea
h generation, the value of the parameters θi is modi�ed by a ∆i value following:

∆θi = α(bi − p(xi))(1 − di) (2.11)
bt+1
i = γbt

i + (1− γ)xi (2.12)where bi is the reinfor
ement signal (baseline), di is the marginal distribution of thevariable Xi, xi is the value of the variable Xi in the best individual in that generation,
α is the learning rate, and γ is the baseline fa
tor.This algorithm has been 
ompared in [179℄ to other EDAs (UMDA and PBIL) using twowell-known problems: four peaks and bipolar fun
tion, showing that it requires fewer�tness evaluations to obtain an optimal solution.DEUMDistribution Estimation Using MRF with dire
t sampling (DEUM) [225℄. This algorithmuses the Markov Random Field (MRF) modelling approa
h to update the probabilityve
tor. It 
an be seen as an adaptation of the PBIL approa
h by repla
ing marginalfrequen
ies with an MRF model on a sele
ted set of solutions.21



2 Modern Evolutionary Optimization Te
hniquesFor i = 1, . . . , nIf αi < 0
pi = pi(1− λ) + λIf αi > 0
pi = pi(1− λ)Figure 2.4: Pro
ess to update the probability ve
tor in DEUM. λ is a learning rate (valuesbetween 0 and 1) �xed as a parameter.In [29℄, MRF theory was used to provide a formulation of the joint probability distribu-tion that relates solution �tness to an energy fun
tion 
al
ulated from the values of thesolution variables. Mathemati
ally:

p(x) =
f(x)

∑

y f(y)
=

e−U(x)

∑

y e−U(y)
(2.13)therefore

− ln(f(x)) = U(x) (2.14)where f(x) is the �tness fun
tion of an individual and U(x) an energy fun
tion thatspe
i�es the joint probability distribution. Generally, the energy fun
tion involves inter-a
tion between variables but, for this parti
ular approa
h, all the variables are 
onsideredindependent. Therefore, the previous equation 
an be rewritten as:
− ln(f(x)) = α1x1 + α2x2 + . . . + αnxn (2.15)Ea
h solution in any given population gives an equation satisfying the model. Therefore,sele
ting N promising solutions from a population allows us to estimate the distributionby solving Aα = F , where A is the N×n dimensional matrix of values in the sele
ted set,

α is the ve
tor of MRF parameters α = (α1, α2, . . . , αn), and F is the N dimensionalve
tor 
ontaining the value − ln(f(x)) of the sele
ted set of solutions.Finally, the probability ve
tor will be updated using the MRF parameters (see Fig-ure 2.4).This algorithm has been modi�ed in [226℄, proposing an approa
h 
alled DEUMd inwhi
h a MRF model is dire
tly sampled to generate the new population.2.3.2 Pairwise Dependen
iesAlgorithms in this se
ond group 
onsider only dependen
ies between pairs of variables.In this way, estimation of the joint probability 
an still be done qui
kly. However, it must22



2 Modern Evolutionary Optimization Te
hniquesbe noted that an additional step is required (not ne
essary in the previous algorithms):the 
onstru
tion of a stru
ture that best represents the probabilisti
 model.MIMICMutual Information Maximization for Input Clustering (MIMIC) [53℄. This approa
hsear
hes (in ea
h generation) for the best permutation between the variables. The goalis to �nd the probability distribution, pπ
l (x), that is 
losest to the empiri
al distributionof the set of sele
ted points, pl(x), when using the Kullba
k-Leibler divergen
e, where

pπ
l (x) = pl(xi1 | xi2) · pl(xi2 | xi3) · · · pl(xin−1

| xin) · pl(xin) (2.16)and π = (i1, i2, . . . , in) denotes a permutation of the set of indexes {1, 2, . . . , n}.The Kullba
k-Leibler divergen
e between two probability distributions, pl(x) and pπ
l (x),
an be expressed as:

Hπ
l (x) = hl(Xin) +

n−1
∑

j=1

hl(Xij | Xij+1
) (2.17)where

h(X) = −
∑

x

p(X = x) log p(X = x) (2.18)denotes the Shannon entropy of the X variable, and
h(X | Y ) =

∑

y

h(X | Y = y)p(Y = y) (2.19)where
h(X | Y = y) = −

∑

x

p(X = x | Y = y) log p(X = x|Y = y) (2.20)denotes the mean un
ertainty in X given Y .Therefore, the problem of sear
hing for the best pπ
l (x) 
an be solved by sear
hing for thepermutation π∗ that minimizes Hπ

l (x).As a sear
h over the n! possible permutations will be unfeasible for most of the problems,a greedy sear
h is proposed to �nd the π∗ permutation. The pro
ess starts with thevariable Xin with the smallest estimated entropy. In the following steps, the variablewith the smallest average 
onditional entropy with respe
t to the variable sele
ted in theprevious step is 
hosen (obviously from the set of variables not yet 
hosen).
23



2 Modern Evolutionary Optimization Te
hniquesMIMIC has been used to solve several problems: the traveling salesman problem [201℄,feature subset sele
tion [114℄, partial abdu
tive inferen
e problem in Bayesian networks[54℄, or learning of Bayesian networks [202℄.In addition, some modi�
ations of this algorithm have also been proposed, applying arepair method for solving 
onstraint satisfa
tion problems [96℄, or introdu
ing a mutationoperator [97℄.COMITCombining Optimizers with Mutual Information Trees (COMIT) [13℄. This algorithmshybridizes the EDA approa
h with lo
al optimizers. Estimation of the probability dis-tribution of the sele
ted individuals in ea
h generation is done using a tree stru
turedBayesian network, learnt using the algorithm Maximum Weight Spanning Tree (MWST)proposed in [41℄.In general terms, MWST looks for the probabilisti
 tree stru
ture (pt
l(x)) that bestmat
hes the probability distribution of the sele
ted individuals (pl(x)). To 
onsider thequality of ea
h possible tree, the Kullba
k-Leibler 
ross-entropy measure is used. Thedistan
e is minimized by proje
ting pt

l(x) on any MWST, where the weight of the bran
h
(Xi,Xj) is de�ned by the mutual information measure:

I(Xi,Xj) =
∑

xi,xj

p(Xi,Xj)(xi, xj) log
p(Xi,Xj)(xi, xj)

pXi
(xi)pXj

(xj)
(2.21)On
e an estimation of pl(x) has been obtained, COMIT samples a number of individualsfrom it and sele
ts the best as the initial solutions of a lo
al sear
h method. The resultingindividuals are then used to 
reate a new population.TREETREE [131℄ refers to an adaption of COMIT where the lo
al sear
h step is eliminated.Thus, new individuals to enter in the next population are 
reated dire
tly by samplingthe distribution that estimates pl(x).TREE has been applied to several problems. To name a few, the traveling salesmanproblem [201℄, feature subset sele
tion [113℄, partitional 
lustering [204℄, rule indu
tion[73; 229℄ and software test data generation [212℄.

24



2 Modern Evolutionary Optimization Te
hniquesBMDABivariate Marginal Distribution Algorithm (BMDA) [189℄. This algorithm uses a fa
tor-ization of the joint probability distribution that only needs se
ond-order statisti
s.It is based on an a
y
li
 (but not ne
essarily 
onne
ted) dependen
y graph. This graphis 
onstru
ted as follows: �rst, a variable is 
hosen arbitrarily and it is added as a nodeof the graph. This �rst variable is the one with the greatest dependen
y on the rest ofthe variables �measured by Pearson's χ2 statisti
.Se
ond, the variable with the greatest dependen
y between any of those previously addedand the set of those not yet added is in
orporated to the graph. This se
ond step isrepeated until there is no dependen
y surpassing a previously �xed threshold betweenalready added variables and the rest. If this is the 
ase, a variable is 
hosen at randomfrom the set of those not yet used to 
reate a new tree stru
ture. The whole pro
ess isrepeated until all variables are added into the dependen
y graph.In ea
h generation the fa
torization obtained with the BMDA is given by:
pl(x) =

∏

Xr∈Rl

pl(xr)
∏

Xi∈V \Rl

pl(xi | xj(i)) (2.22)where V denotes the set of n variables, Rl denotes the set 
ontaining the root variable�in generation l� for ea
h of the 
onne
ted 
omponents of the dependen
y graph, and
Xj(i) returns the variable 
onne
ted to the variable Xi and added before Xi.2.3.3 Multiple Dependen
iesDi�erent works [26; 185℄ have shown the limitations of using simple approa
hes to solvedi�
ult problems. It must be noted that in this kind of problems, di�erent dependen
yrelations 
an appear between variables and, hen
e, 
onsidering all of them independentor taking into a

ount only dependen
ies between pairs of variables may provide a modelthat does not represent the problem a

urately.Several algorithms have been proposed in the literature using statisti
s of order greaterthan two to fa
torize the probability distribution. In this way, dependen
ies betweenvariables 
an be expressed properly without any kind of initial restri
tion. However, itmust be also noti
ed that the probability model required for some problems 
ould beex
essively 
omplex and, sometimes, una�ordable in 
omputational terms.ECGAExtended Compa
t Geneti
 Algorithm (ECGA) [98℄. This algorithm divides the variablesinto a number of groups (
lusters) whi
h are 
onsidered independent. Therefore, in ea
h25



2 Modern Evolutionary Optimization Te
hniquesgeneration, the fa
torization of the joint probability distribution is expressed as a produ
tof marginal distributions of variable size. These distributions are related to the variablesthat are 
ontained in the same group and to the probability distributions asso
iated withthem. In this way, the fa
torization of the joint probability distribution on the n variablesis:
pl(x) =

∏

c∈Cl

pl(xc) (2.23)where Cl denotes the set of groups in the lth generation, and pl(xc) represents themarginal distribution of the variables Xc, that is, the variables that belong to the cthgroup in the lth generation.The grouping is 
arried out using a greedy forward algorithm that obtains a partitionbetween the n variables (as mention above, ea
h group of variables is assumed to beindependent of the rest).The pro
ess starts 
onsidering n 
lusters (one variable in ea
h 
luster) and then 
ontinuestrying to unify the pair of 
lusters that redu
e the most a measure value. This value
onjugates the sum of the entropies of the marginal distributions with a penalty for the
omplexity of the model based on the minimum des
ription length prin
iple (MDL) [200℄.ECGA has been applied to feature subset sele
tion [35℄ and to the pruning of neuralnetworks used in 
lassi�
ation problems [36℄.From a theoreti
al point of view, in [219℄ empiri
al relations for population sizes and
onvergen
e times are presented.Finally, some modi�
ations of this algorithm have been proposed. In [134℄, a hybridECGA that 
ombines 
rossover and mutation operators. The proposed algorithm 
om-bines the Building Blo
ks-wise 
rossover operator from ECGA with a re
ently proposedBuilding Blo
ks-wise mutation operator that is also based on the probabilisti
 model ofECGA [220℄. In [218℄, a sub-stru
tural ni
hing method is proposed and applied to ECGAaiming to maintain diversity at the sub-stru
tural level.FDAFa
torized Distribution Algorithm (FDA) [157℄. It must be noted that this algorithmdi�ers from the others in regard to the probabilisti
 model. Instead of 
reating a new oneat ea
h generation, the same model is used throughout the entire exe
ution. Therefore,this algorithm needs the fa
torization and de
omposition of the task to be given byan expert �whi
h is not a 
ommon situation. Generally, due to this 
hara
teristi
, it isintended to be applied to additively de
omposable fun
tions for whi
h, using the runninginterse
tion property [132℄, a fa
torization of the mass-probability based on residuals, xbi
,and separators, xci

, is obtained. 26
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hniques
BN0 ← (S0,θ

0) where S0 is an ar
-less DAG, and θ0 is uniform
p0(x) =

∏n
i=1 p(xi) =

∏n
i=1

1
ri

D0 ← Sample M individuals from p0(x)For l = 1, 2, . . . until the stopping 
riterion is met
DSe

l−1 ← Sele
t N individuals from Dl−1

S∗l ← Find the best stru
ture a

ording to a 
riterion:
• penalized maximum likelihood+sear
h (if EBNABIC)
• penalized Bayesian s
ore + sear
h (if EBNAK2+pen)
• 
onditional (in)dependen
e tests (if EBNAPC)

θl ← Cal
ulate θl
ijk using DSe

l−1 as the data set
BNl ← (S∗l ,θl)
Dl ← Sample M individuals from BNl using PLSFigure 2.5: Pseudo-
ode for the EBNABIC, EBNAK2+pen and EBNAPC algorithms.The joint probability distribution 
an be fa
torized as:

pl(x) =

k
∏

i=1

pl(xbi
|xci

) (2.24)As this fa
torization remains valid for all the iterations, the only 
hanges are those inthe estimation of probabilities.Theoreti
al results for FDA 
an be found in [152; 153; 154; 155; 157; 262℄. In addition,the spa
e 
omplexity of the algorithm is studied by [83℄ using random additive fun
tionsas the prototype.EBNAIn this se
tion, three di�erent algorithms (EBNAPC, EBNAK2+pen, and EBNABIC),grouped under the name of Estimation of Bayesian Networks Algorithms (EBNAs), arepresented. Introdu
ed in [69; 130℄, their main 
hara
teristi
 is that the fa
torizationof the joint probability distribution is en
oded by a Bayesian network, learnt from thedatabase 
ontaining the sele
ted individuals in ea
h generation. A 
ommon s
heme forthese approa
hes 
an be seen in Figure 2.5.Before explaining the di�erent variations of EBNAs, we pro
eed with a brief introdu
tionto Bayesian networks that will be helpful to better understand the algorithms.Bayesian networks Formally, a Bayesian network [40℄ over a domain X = (X1, . . . ,Xn)is a pair (S,θ) that represents a graphi
al fa
torization of a probability distribution. The27



2 Modern Evolutionary Optimization Te
hniquesstru
ture S is a Dire
ted A
y
li
 Graph (DAG) whi
h re�e
ts the set of 
onditional(in)dependen
ies between the variables. The fa
torization of the probability distributionis 
odi�ed by S:
p(x) =

n
∏

i=1

p(xi|pai) (2.25)where P ai is the set of parents of Xi (variables from whi
h there exists an ar
 to Xi inthe graph S). In Figure 2.6 for example, P a3={X1,X2} (X1 and X2 are the parents of
X3).The se
ond part of the pair, θ, is a set of parameters for the lo
al probability distributionsasso
iated with ea
h variable. If variable Xi 
an take ri possible values, x1

i , . . . , x
ri

i , thelo
al distribution, p(xi|pa
j
i ,θi) is an unrestri
ted dis
rete distribution:

p(xk
i |pa

j
i ,θi) ≡ θijk (2.26)where pa1

i ,. . . ,pa
qi

i denote the values of P ai and the term qi denotes the number ofpossible di�erent instan
es of the parent variables of Xi. In other words, parameter θijkrepresents the 
onditional probability of variable Xi being in its kth value, knowing thatthe set of its parent variables is in its jth value. Therefore, the lo
al parameters are givenby θi = (((θijk)
ri

k=1)
qi

j=1) i = 1, . . . , n. An example of a Bayesian network 
an be seen inFigure 2.6.In the 
ontext of EDAs, EBNAs 
omprise a group of algorithms that use Bayesian net-works to 
odify the dependen
ies between variables. At ea
h generation, given a set ofindividuals (population), a Bayesian network must be learnt trying to re�e
t properlythe relations between variables. After that, the Bayesian network is sampled in order toobtain the new population.Related to the learning pro
ess, there are mainly two di�erent methods: �s
ore + sear
h�and �dete
ting 
onditional (in)dependen
ies�.�s
ore + sear
h�: This method uses a s
ore (metri
) to measure the quality of theBayesian network. Among the di�erent s
ores used, we 
an point out the BayesianInformation Criterion (BIC) [223℄ or the Bayesian Diri
hlet equivalen
e (BDe) [103℄.On
e the Bayesian network has been assigned a s
ore, the goal is to 
omplete asear
h step, 
hanging the stru
ture of the Bayesian network with the aim of im-proving the 
urrent s
ore.Generally, the sear
h step begins with an empty Bayesian network (without ar
s)and, in the following steps, ar
s will be added based on the s
ore used to measurethe quality of the network. In order to have an e�e
tive algorithm, it is ne
essaryto �nd an adequate model as soon as possible (even if it is not optimal).28
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Factorization of the joint mass-probability

p(x1, x2, x3, x4) = p(x1)p(x2)p(x3|x1, x2)p(x4|x3)Figure 2.6: Stru
ture, lo
al probabilities and resulting fa
torization for a Bayesian net-work with four variables (X1, X3 and X4 with two possible values, and X2with three possible values).For example, Algorithm B [31℄ is a 
ommon method used to learn Bayesian net-works. This algorithm uses a hill 
limbing strategy. Starting with an ar
-lessstru
ture, it adds in ea
h step the ar
 that maximizes the s
ore. When no improve-ment 
an be a
hieved, the algorithm stops. An alternative to Algorithm B 
ouldbe the use of the model 
reated in the previous generation, instead of beginningea
h time with an empty stru
ture.Some of the algorithms that belong to this group are EBNABIC and EBNAK2+pen.Both use Algorithm B as a sear
h method, but EBNABIC uses the BIC s
oreto measure the quality of the Bayesian network, and EBNAK2+pen 
ombines theBayesian approa
h to 
al
ulate the marginal likelihood [44℄ with a penalizing term,introdu
ed to avoid an ex
essively 
omplex Bayesian network.�dete
ting 
onditional (in)dependen
ies�: The te
hniques that belong to this group
omplete several tests to dete
t the relations between variables. These algorithmsusually start with the 
omplete undire
ted graph, and then independen
e tests areperformed to remove edges. When no more edges 
an be removed, an orientationpro
ess is 
ompleted to 
reate the Bayesian network. For example, EBNAPC, oneof the algorithms that belongs to this family, uses the PC algorithm [234℄ to dete
tthe dependen
ies. Starting with the 
omplete graph, it is �thinned� by removing29
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hniquesedges with zero order 
onditional independen
e relations, �thinned� again using �rstorder 
onditional relations, then se
ond order 
onditional relations are taken intoa

ount, and so on. The set of variables 
onditioned on need only to be a subset ofthe set of variables adja
ent to one of the variables of the pair. The independen
etest is performed based on the χ2 distribution. When there are no more tests todo, the orientation pro
ess begins, giving a dire
tion to ea
h edge in the graph.Finally, on
e the Bayesian network has been learnt, new individuals are sampled to 
reatethe new population. Among the di�erent methods, EBNAs use the Probabilisti
 Logi
Sampling method [104℄. In this method, the instan
es are generated one variable at atime in a forward way. That is, a variable is sampled after all its parents have alreadybeen sampled. To do that an an
estral ordering of the variables is given (π(1), . . . , π(n))where parent variables are before 
hildren variables. On
e the values of P aπ(i) have beenassigned, we simulate a value for Xπ(i), using the distribution p(xπ(i)|paπ(i)).EBNA approa
hes have been applied to several problems; for instan
e, graph mat
hing[19℄, partial abdu
tive inferen
e in Bayesian networks [54℄, feature subset sele
tion [112;113℄, job s
heduling problem [139℄, rule indu
tion [229℄, traveling salesman problem [201℄,partitional 
lustering [204℄, knapsa
k problems [208℄ or software testing [212; 213℄.In [96℄ EBNA was modi�ed by applying a repair method for solving 
onstraint satisfa
tionproblems, and in [97℄ a mutation operator is introdu
ed.Parallel approa
hes for EBNABIC and EBNAPC have been presented in [140; 145℄; aparallel and multi-obje
tive version of EBNABIC to solve a 
hemi
al problem is shownin [146℄.In [83℄, the spa
e 
omplexity of the EBNA algorithm has been studied using randomadditive fun
tions.BOABayesian Optimization Algorithm (BOA) [181; 182; 185; 186; 187℄ uses a �s
ore + sear
h�method (B Algorithm) to 
onstru
t the model, using as metri
 the Bayesian Diri
hletequivalen
e (BDe) [103℄. In ea
h generation, the pro
ess starts with an empty stru
ture.In order to redu
e the 
ardinality of the sear
h spa
e, the number of parents that ea
hnode 
an have is limited to k.This algorithm has been extended and applied to several problems. In [183℄ BOA ismodi�ed in order to model hierar
hi
al problems using a type of hybrid model 
alleda Hu�man network. In [187℄ it is adapted to in
lude lo
al stru
tures by using de
isiongraphs to guide the network 
onstru
tion.
30



2 Modern Evolutionary Optimization Te
hniquesOther extension named Mixed BOA that uses de
ision trees with mixed de
ision nodesis presented in [166℄. In [163℄ MBOA is 
ombined with varian
e adaptation in order toimprove its behavior in the 
ontinuous domain.Some theoreti
al studies have been 
ompleted using Bayesian networks to estimate the�tness of the individuals [190℄ or to redu
e the number of parameters needed to exe
utethe BOA algorithm [188℄.The real-
oded Bayesian Optimization Algorithm (rBOA) algorithm is proposed in [2℄,as an extension of BOA to the area of real-value optimization. It performs a fa
tor-ization of a mixture of probability distributions, and �nds maximal 
onne
ted graphs(substru
tures) of the fa
torization graph (probability model). Then, it �ts ea
h sub-stru
ture independently by a mixture distribution estimated for 
lustering results in the
orresponding partial-string spa
e. Finally, o�spring is obtained by a sampling methodbased on independent subspa
es.Two parallel approa
hes have been presented for BOA using a pipelined parallel ar
hi-te
ture [164℄ and 
lusters of 
omputers [165℄. Re
ently, in [167℄ the parallelization of thelearning of de
ision trees using multi-threaded te
hniques has been proposed.The di�erent BOA approa
hes have been applied to feature subset sele
tion [35℄, to thepruning of neural networks used in 
lassi�
ation problems [36℄, ising spin-glass systemsand maximum satis�ability problems [184℄. In [118; 119℄ a 
omparative review of someEAs (in
luding MBOA) is presented, evaluating them on a di�erent number of testfun
tions in the 
ontinuous domain.LFDA, FDAL, FDA-BC, FDA-SCLearning Fa
torized Distribution Algorithm (LFDA), introdu
ed in [153℄, essentially fol-lows the same steps as EBNABIC. The main di�eren
e is that in the LFDA the 
omplexityof the model learnt is 
ontrolled by the BIC metri
 in 
onjun
tion with a restri
tion onthe maximum number of parents that ea
h variable 
an have in the Bayesian network.An initial algorithm FDAL is proposed in [170℄, to learn �by means of 
onditional(in)dependen
e tests� a jun
tion tree from a database. The underlying idea is to returnthe jun
tion tree that best satis�es the previous independen
es, on
e a list of dependen-
ies and independen
ies between the variables is obtained.Also, in [168℄, a stru
ture learning algorithm that takes into a

ount questions of reliabil-ity and 
omputational 
ost is presented. The algorithm, 
alled FDA-BC, studies the 
lassof Fa
torized Distribution Algorithm with Bayesian networks of Bounded Complexity.Similar ideas are introdu
ed in the FDA-SC [169℄. In this 
ase the fa
torization ofthe joint probability distribution is done using simple stru
tures, i.e. trees, forests orpolytrees. 31



2 Modern Evolutionary Optimization Te
hniquesPADAPolytree Approximation of Distribution Algorithms (PADA) [231℄. The fa
torization isdone using a Bayesian network with polytree stru
ture (no more than one undire
tedpath 
onne
ting every pair of variables). The proposed algorithm 
an be 
onsidered ahybrid between a method for �dete
ting 
onditional (in)dependen
ies� and a pro
edurebased on �s
ore + sear
h�.MN-EDAMarkov Network Estimation of Distribution Algorithm (MN-EDA) [214℄. The authorsintrodu
e a method that approximates probability distributions using what they 
all�messy fa
torizations�. In order to learn the fa
torizations, the algorithm 
ombines a re-formulation of a probability approximation pro
edure used in statisti
al physi
s (Kiku
hiapproximations), with a novel approa
h for sele
ting the initial inputs required by thepro
edure.In addition, a new method for sampling solutions from the approximation is also used(Gibbs Sampling). The learning and sampling methods are the primary 
omponents ofthis MN-EDA.2.3.4 Other Algorithms
• An EDA in the permutation representation domain that uses Edge Histogram BasedSampling Algorithms (EHBSAs) is presented in [243℄. The algorithm starts gen-erating random permutation strings for ea
h individual in the population. Then,individuals are evaluated and the most promising solutions are used to 
onstru
ta symmetri
al Edge Histogram Matrix (EHM) where an edge is a link betweentwo variables in an individual. Finally, new individuals will be sampled from thatEHM, repla
ing the old population. The behavior of the algorithm is tested on thetraveling salesman problem.
• Estimation of Distribution Programming (EDP) is presented in [256℄. This programis 
odi�ed using a probabilisti
 graphi
al model given by a Bayesian network. Thesear
h method follows the 
ommon s
heme of EDAs to solve Geneti
 Programmingappli
able problems. This work is extended in [257℄, where the proposed EDP ismixed with a GP algorithm.
• Dependen
y Dete
tion for Distribution Derived from df (DDDDD or D5) [242℄.This approa
h 
ombines EDAs with linkage identi�
ations in order to dete
t de-penden
ies. It has three parts: (1) 
al
ulation of �tness di�eren
es �ea
h variable32



2 Modern Evolutionary Optimization Te
hniquesis perturbed and then �tness di�eren
e for the perturbation is 
al
ulated�, (2) 
las-si�
ation of individuals a

ording to the �tness di�eren
e, and (3) estimation ofthe 
lassi�ed individuals based on entropy measures.
• The algorithm presented in [255℄ uses marginal frequen
ies to 
onstrain the esti-mated probability distribution. A s
hema is a subset of the sear
h spa
e where thevalues of some variables are de�ned (�xed) and the values of the others are variable(represented by *). The order of the s
hema is de�ned by the number of *. Givena frequen
y distribution over the sear
h spa
e and a s
hema, the 
orrespondings
hema frequen
y is just the sum of the relative frequen
ies of the elements of thats
hema.The entropy of this distribution is subsequently maximized and the distribution issampled to produ
e a new population. In this work, only 
ontiguous order-2 s
hemafamilies are used, proposing as a future work the use of higher order s
hemas.
• In [196℄ a Learning Automata based Estimation of Distribution Algorithm (LAEDA)is presented. This algorithm follows the general EDA s
heme, and uses a variablestru
ture learning automata as the probability model.
• Finally, Unsupervised Estimation of Bayesian Network Algorithm (UEBNA) is in-trodu
ed in [191℄. This approa
h uses a Bayesian network for data 
lustering inorder to fa
torize the joint probability distribution of the individuals sele
ted atea
h iteration. The goal of this approa
h is to optimize multimodal problems.2.4 S
atter Sear
hThe S
atter Sear
h (SS) te
hnique [86; 124; 126℄ is presented in the literature as a novelinstan
e of EAs. Though this method shares with EAs some of their features, it alsosets a number of fundamental di�eren
es. In fa
t, prin
iples of SS were established by
on
epts developed independently from the evolutionary paradigm.A

ording to Glover [86℄, the notion of 
ombining solutions or rules to 
reate new solu-tions originated in the 1960s. Resear
hers in the �eld of s
heduling proposed the mergingof rules to obtain improved lo
al de
isions. Su
h an approa
h was motivated by the 
on-je
ture that information about the relative desirability of a 
hoi
e is 
aptured in di�erentways by alternative rules. This notion was extended soon to the �eld of mathemati-
al relaxation for optimization, where the 
reation of surrogate 
onstraints was devisedthrough a heuristi
 [85℄ whi
h was, in turn, the stem of SS.In the same manner as EAs maintain a population of individuals, SS operates on a setof solution points, the referen
e set, by 
ombining them to 
reate new solutions. Hen
e,both methodologies assume that solutions en
ode useful information about the problem,33



2 Modern Evolutionary Optimization Te
hniquesand that this information is transferred to new solutions when merged. On the otherhand, the main 
on
eptual dissimilarity lies on the management of the diversi�
ation andintensi�
ation notions. While in EAs, sele
tion, re
ombination and mutation of individ-uals are probabilisti
, in SS, sele
tion and 
ombination of solutions follow systemati
strategies. Moreover, intensi�
ation may be for
ed through the appli
ation of a heuristi
improvement pro
edure to ea
h new solution, and the diversity in the referen
e set 
anbe expli
itly 
ontroled during the sear
h.The following dis
ussion attempts to introdu
e basi
 
on
epts of SS. Detailed des
rip-tions, together with more sophisti
ated extensions, 
an be found in the book by Lagunaand Martí [126℄ or in any of the ex
ellent reviews available in the bibliography, e.g. [86℄.2.4.1 Basi
 SS S
hemeThe SS algorithm departs from the 
onstru
tion of a set P of solutions to guarantee a
riti
al level of diversity. In other words, this phase promotes the generation of solutionsin
reasing the diversity in P . Optionally, a heuristi
 method is applied to ea
h solutionbefore entering the set; if so, a lo
al sear
h is generally employed. Next phase of thealgorithm 
onsists of an iterative pro
ess. In the �rst round, the referen
e set, RefSet, isbuilt by extra
ting the best solutions from P . The meaning of �best� in this 
ontext is notlimited to a measure given ex
lusively by the obje
tive fun
tion. In parti
ular, a solutionmay be added to RefSet if the diversity of the set is enhan
ed, though the obje
tive valueof su
h solution is worse than other 
ompetitors. In the next step, a number of subsetsof solutions is systemati
ally generated. The members of these subsets are 
ombined togenerate new solutions that might repla
e others in RefSet. As in the initial phase,new solutions are, optionally, improved with a lo
al sear
h method before 
onsideringtheir in
lusion in RefSet. The �best� solutions (broad brush meaning, on
e again) areadded to RefSet. If a new solution has been in
luded, new subsets are generated andthe pro
ess repeats. Otherwise, the algorithm �nishes.Stru
turally, a SS algorithm is 
omposed of the following �ve intera
ting methods. Thefun
tionality of ea
h method is 
learly spe
i�ed. However, its de�nition remains open tothe problem being solved, whi
h grants this te
hnique a suitable �exibility.Diversi�
ation Generation Method A method that generates a number of diverse solu-tions.Improvement Method On
e a solution is obtained, this method aims at improving it,usually through a lo
al sear
h method. Although this method is not stri
tly re-quired, the 
ommon trend is to in
lude it in the SS methodology.Referen
e Set Update Method This method manages RefSet by de�ning the strate-gies ne
essary to build and update it. Both, building and updating, may be based34
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P ← Ø
P ← Add |P | distin
t solutions obtained by diversi�
ation and improvement
RefSet ← Add the b1 solutions in P with best obje
tive fun
tion value and delete them from P
RefSet ← Add the b2 most diverse solutions in P in relation to the solutions in RefSetRepeat while new solutions are in RefSetGenerate all new subsets of solutions from RefSetObtain new solutions by 
ombination and improvement

RefSet ← Update RefSet with new solutionsFigure 2.7: Pseudo
ode of basi
 SS.on the obje
tive fun
tion value, the diversity between solutions or an alternative
riterion. If no new solution is added to RefSet, the algorithm stops. Nonetheless,in many 
ases, a maximum number of iterations is established in order to avoid toolong exe
utions.Subset Generation Method The subsets of solutions are systemati
ally generated from
RefSet. At least, all subsets formed by two solutions are 
reated. As the numberof subsets tends to be high, there is a need for keeping RefSet small; generally,
|RefSet| = |P |/10.Solution Combination Method This method 
reates new solutions by 
ombining thesolutions in a given subset.The intera
tion of the �ve methods 
an be observed in the basi
 SS algorithm proposedin Figure 2.7. A 
ommon size for P is 100 solutions and, therefore, |RefSet| = 10.Noti
e the improvement method has been in
luded in the algorithm, though it is anoptional 
omponent. A 
lassi
al strategy for 
onstru
ting the referen
e set is to sele
tfrom P the b1 = |RefSet|/2 solutions with the best obje
tive fun
tion value, and theremaining b2 most diverse solutions. As noti
eable, the subset generation method only
onsiders the new subsets asso
iated with the solutions introdu
ed in the previous step.If the maximum number of iterations is not rea
hed and no solution has been added to

RefSet, then the pro
ess halts.Figure 2.8 presents a s
hemati
 illustrating the roles of the SS methods, assuming im-provement is applied. Cir
les represent new solutions, un
oloured before the appli
ationof the improvement method, and bla
k afterwards.2.4.2 Advan
ed SS DesignsThe advan
ed features of SS are related to the way the �ve methods des
ribed above areimplemeted. In other words, the sophisti
ation level is given by the implementation ofthe SS methods, instead of the de
ision to in
lude or ex
lude some elements from the35
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methodFigure 2.8: S
hemati
 of a basi
 SS design [126℄.approa
h. Next, a few interesting advan
ed strategies are des
ribed in brief; details maybe 
onsulted in [126℄.Referen
e set rebuildingThe basi
 SS pro
ess �nishes when no new solution is added to RefSet. This impliesthe algorithm has 
onverged, sin
e no new solution would be generated from a further
ombination. A possibility for s
aping from su
h a situation 
ould lie on the inje
tionof diversity in RefSet. Thus, if no solution is added to the set, a 
ommon pra
ti
e isto perform a rebuilding step and run the algorithm on
e again. For instan
e, a simplerebuiding strategy 
onsists of 
reating a new set P and repla
ing the half of worst so-lutions in RefSet with the solutions in P whi
h most in
rease the diversity in RefSet.As a result of su
h strategy, the SS algorithm is extended as shown in Figure 2.9.Referen
e set dynami
 updateIn the basi
 design from Figure 2.7, new solutions that are to be
ome members of RefSetare not 
ombined until the next iteration of the algorithm. This strategy is known asstati
 update. On the other hand, the dynami
 update strategy applies the 
ombinationmethod to new solutions in a manner that is faster than in the basi
 design. That is,if a new solution is to be admitted in RefSet, the goal is to allow this new solution tobe subje
ted to 
ombination as qui
kly as possible. For this, the solution is inmediatelyin
luded in the RefSet, instead of waiting for the rest of parent solutions to be 
ombined.36
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P ← Ø
P ← Add |P | distin
t solutions obtained by diversi�
ation and improvement
RefSet ← Add the b1 solutions in P with best obje
tive fun
tion value and delete them from PRepeat for l = 1, 2, ..., MaximumIteration

RefSet ← Add the b2 most diverse solutions in P in relation to the solutions in RefSet
NewSolutions ← TRUERepeat while NewSolutions = TRUE

NewSolutions ← FALSEGenerate all new subsets of solutions from RefSetObtain new solutions by 
ombination and improvement
RefSet ← Update RefSet with new solutionsIf RefSet 
hanged

NewSolutions ← TRUEElse
RefSet ← Delete the b2 solutions with worst obje
tive fun
tion value from RefSet
P ← Ø
P ← Add |P | distin
t solutions obtained by diversi�
ation and improvementFigure 2.9: Pseudo
ode of extended SS.Multiple solutions 
ombinationThe 
ombination me
hanism in SS is not limited in its general form in 
ombiningjust two solutions. However, the me
hanism 
annot handle all subsets of size i, i ∈

{1, 2, ..., |RefSet|} (there are 2N −N − 1 subsets, with N = |RefSet|). A pro
edure to
ontrol the total number of subsets 
onsists of a strategy to expand pairs into subsetsof larger size. The following approa
h sele
ts representative subsets of di�erent sizes by
reating subset types:
• Subset Type 1: all 2-element subsets.
• Subset Type 2: 3-element subsets derived from the 2-element subsets by augment-ing ea
h subset of type 1 to in
lude the best solution not in this subset.
• Subset Type 3: 4-element subsets derived from the 3-element subsets by augment-ing ea
h subset of type 2 to in
lude the best solution not in this subset.
• Subset Type 4: the subsets 
onsisting of the best i solutions, i ∈ {5, 6, ..., |RefSet|}.2.4.3 Performan
e ResultsAlthough being based on mathemati
al foundations and 
lassi
al methods, SS su�ers,likewise other metaheuristi
s, from a la
k of theoreti
al works. Nonetheless, this te
h-nique is nowadays one of the 
entres of attention of the optimization 
ommunity. Its37



2 Modern Evolutionary Optimization Te
hniquessuitability is mainly due to the in
reasingly number of su

essful apli
ations in a widevariety of problems. Improved ben
hmarks for solving su
h problems have resulted fromthese appli
ations, along with new advan
es for solving a signi�
ant range of real-lifesituations.Just to name a few examples, in [127℄ ǫ-optimal solutions were obtained for 30 from upto 40 multimodal fun
tion optimization problems. Moreover, the SS design showed to�nd solutions in fewer evaluations than a GA. In [142℄, several implementations of SS are
ompared with GAs to solve four bla
k-box permutation problems, resulting in a slightsuperiority of the formers. The linear ordering problem was dealt in [33℄. A numberof diversi�
ation pro
edures are studied and show to be 
ompetitive when 
ompared toother 
lassi
al methods. SS has also been applied to pra
ti
al optimization problems likeneural network training, ar
 
rossing minimization in graphs, maximum 
lique problem,graph 
oloring, vehi
le routing or job-shop s
heduling; see [126℄ for dis
ussions on theseworks. More re
ently, the knapsa
k problem [48℄ and software test data generation [213℄have been fa
ed using SS.The pro
edures employed in the previous works, as well as in others, have yielded anumber of SS designs di�ering from the basi
 template. Taking the results obtained bythese designs into a

ount, lessons for future developments are presented in [125℄.Regarding the diversi�
ation generation method, it is suggested in this work that theuse of a memory stru
ture to 
reate solutions provides with a proper balan
e betweendiversity and quality. By 
ontrast, while a pure random method generates highly diversesolutions, their quality tends to be low.A 
on
lusion related to the improvement method 
on
erns its in�uen
e on the 
omputa-tional 
omplexity of the SS algorithm. This method may imply su
h an overload that theinvestigation of its sele
tive use is proposed. Additionally, the appli
ation of improve-ment to every solution a

elerates the 
onvergen
e of RefSet, suggesting this methodshould be studied from a methodologi
al perspe
tive as well.A hint whi
h may be useful for further approa
hes is that solution quality is more impor-tant than diversity when updating RefSet. Albeit the possible strategies for this step,a

ording to the experimental results, it seems that best performan
e is not a
hieved ifdiversity is used as a main updating 
riterion.Apropos te subset generation method, it has been observed that most of the sear
hingpower 
an be atributed to the 
ombination of 2-solution subsets. In [33℄, di�erent sub-set types were empiri
ally employed one after the other. The out
omes showed that atleast 80% of the solutions to enter RefSet 
ame from 
ombinations of 2-element sub-sets. Nonetheless, this result should be 
arefully taken, as a distin
t sequen
e of subsets
ombination 
ould modify this per
entage.Finally, a lesson stated in [125℄, about the 
ombination method, is that the use of multiplestrategies 
an be e�e
tive. This is inspired by GAs implementations where good results38



2 Modern Evolutionary Optimization Te
hniqueshave been attained by generating new individuals from re
ombination and mutationoperators.2.5 Other Re
ent Metaheuristi
sThe �eld of optimization has been experien
ing in the last years a resurgen
e of pro
e-dures, mainly from the area of metaheuristi
s. Though these are out of the s
ope of thepresent thesis, we �nd interesting to draw some 
omments on the subje
t, sin
e they aremodern optimization te
hniques that are deserving the attention of resear
hes in some
ontexts.The Greedy Randomized Adaptive Sear
h Pro
edure (GRASP) [71℄ 
ombines in an it-erative pro
ess a solution 
onstru
tion with a lo
al sear
h. At the 
onstru
tion step, afeasible solution is iteratively built in a semi-greedy way. A set of possible element 
andi-dates to be part of the solution is re
al
ulated at ea
h generation. These 
andidates area �pie
e� of the indu
ed solution. One element is sele
ted and added to the solution. Theelement 
andidate list is evaluated with respe
t to a greedy s
oring fun
tion in order tosele
t the next element to be added to the 
onstru
tion. The evaluation of the elements isused to 
reate a list, whi
h 
onsists of the best. The element to be added into the partialsolution is randomly 
hosen from the list. On
e an element is in
luded in the partialsolution, the list is updated. The solution indu
ed is then applied a lo
al sear
h method.A parti
ularly appealing 
hara
teristi
 of GRASP is that it is easy to implement and,usually, a small number of parameters is needed [126℄.Ant Colony Optimization (ACO) [62℄ is a sear
h method that mimi
s the foraging be-havior of ants. Ants deposit an amount of pheromone on the ground, thus in�uen
ingthe 
hoi
es of other members. The larger the load of pheromone in a path, the higherthe probability that an ant sele
ts this path. In ACO, pheromone is seen as a heuristi
value that is assigned to partial solutions based on the frequen
y of its presen
e in goodsolutions. As the 
onstru
tion of the new solutions is 
arried out by using an auxiliaryprobabilisti
 value based on the pheromone value, there is a bias in the algorithm to formsolutions whi
h 
ontain building blo
ks that have shown to be good in previous steps.Roughly speaking, the idea behind the Variable Neigborhood Sear
h (VNS) [149℄ is alo
al sear
h where the neighborhood is sistemati
ally 
hanged. VNS explores in
reasinglydistant neighborhoods of the 
urrent solution at ea
h step of the pro
ess. More pre
isely,a solution is drawn at random from the 
urrent neighborhood of the 
urrent solution anda lo
al sear
h is applied departing from this neighbor. If the resulting solution improvesthe 
urrent, then the 
urrent best is updated and the pro
ess restarts; otherwise, a widerneighborhood is tried.
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3 Fundamental Con
epts on SoftwareTestingTesting is a 
ru
ial part of the software development pro
ess. It plays a main role inthe sear
h for the quality required as it 
onstitutes the primary way used in pra
ti
e toverify the 
orre
t behavior of the software produ
ed. One of the most important issues insoftware testing is the generation of the input 
ases to be applied to the program undertest. Due to the expensive 
ost of this task, its automatization has be
ome a key aspe
t.A number of options for this has been proposed under the name Sear
h Based SoftwareTest Data Generation. The aim of su
h approa
hes is the 
reation of test data by meansof heuristi
 sear
h optimization methods. More pre
isely, most developments over thelast years have 
on
entrated on metaheuristi
 methods, o�ering promising results.This 
hapter is devoted to the introdu
tion of su
h approa
hes. Firstly, the motivationfor software testing is presented. Di�erent aspe
ts of the test pro
ess, together withthe 
lassi
al alternatives for test data generation, are brie�y overviewed next. Finally,the �eld of input generation methods based on heuristi
 sear
h is dealt. Owing to theextensive s
ope of the �eld, the dis
ussion is intended to provide insights on the basi
elements to a
hieve the automati
 obtention of test data.3.1 Software QualityConsidering the 
ru
ial role software plays nowadays, quality assuran
e be
omes a mainissue in the �eld. Software is so deeply present in daily life that the e�e
ts of an un-desirable behavior 
an be dramati
 [233℄, even for human beings [133℄. In 
ontrast toother produ
ts, su
h as manufa
turing goods, where a balan
e between produ
tivity andquality is sought, in software development, these two 
on
epts are almost indistinguish-able [17℄. Moreover, 
omplexity of software systems is 
ontinuously growing in order toexploit the huge advan
es in 
omputer hardware, resulting in an in
reasing development
ost. As some authors state [115; 116℄, no other produ
t in the industrialized world is solabor-intensive and error-prone as software. In fa
t, software quality has been suggestedto be the most 
riti
al and di�
ult te
hnologi
al 
hallenge of modern times [20; 59; 60℄.The elusive 
on
ept of software quality may be de�ned either from a te
hni
al or 
ustomeroriented perspe
tive. From the te
hni
al side, quality is the ful�llment of the spe
i�ed41



3 Fundamental Con
epts on Software Testingrequirements [192; 233℄. From the 
ustomer point of view, quality is the 
onforman
eof software to the user needs or expe
tations [68; 233℄1. Regardless of the perspe
tive,de�nition remains extremely vague, as the meaning of terms �requirement�, �expe
tation�or �need� 
onnotes a subje
tive evaluation. We require more spe
i�
 means of assessingwhether software quality has been a
hieved or not. Thus, requirements or expe
tationsare represented by a number of desirable software 
hara
teristi
s, and quality attainment
onsists then of their satisfa
tion. Usually, des
ription of a 
hara
teristi
 is still notpre
ise enough so that it 
an be quanti�ed. There are however related attributes whi
h
an be measured to express the degree of ex
ellen
e in this 
hara
teristi
, allowing toeli
ite the a
hieved quality level [93℄.In order to settle a standard basis, resear
hers and organizations, su
h as ISO and IEEE,have developed models that des
ribe quality 
hara
teristi
s and their interrelations [64;173; 75℄. Despite the la
k of 
onsisten
y and unity in some of the terms [192℄, as well asin the 
hara
teristi
s involved and their treatment, a few elements are 
ommon to most ofthe approa
hes. Hen
e, 
hara
teristi
s su
h as usability (extent to whi
h the software isprati
able to use), maintainability (
apability of updating) or reliability are usual amongquality models [64℄. Reliability is de�ned as the probability that software fun
tionswithout failure for a given period of time under spe
i�ed 
onditions [193℄. Des
ription ofa software failure is an area for open debate; we resort to IEEE [172℄. An error refers toa mental mistake made by the programmer or designer. The manisfestation of that errorin the 
ode is 
alled a fault. The o

urren
e of an in
orre
t output resulting from aninput value that is re
eived with respe
t to the spe
i�
ation is named a failure. Qualityis mainly in�uen
ed by failures [192℄, so reliability is 
onsidered to be the most importantsoftware 
hara
teristi
 [60; 64; 68℄. Indeed, it is a prerequisite of other properties, e.g.usability, and it is often mistakenly used as a synonym of quality [68℄.Owing to the fa
t that a population of identi
al software systems, operating under similarenvironmental 
onditions, fail at di�erent points in time, failure phenomena are typi
allyexplained in probabilisti
 terms. Furthermore, as, in general, the whole set of faults in aprogram is unknown, true reliability 
annot be eli
ited, so it is estimated, mainly throughprobabilisti
 models. Certain models try to assess the number of faults in a program,while others study the failure rate (failures per unit time in a time interval) or the numberof observed failures by time t. Some approa
hes measure and predi
t the improvement ofreliability during the software development pro
ess or even take environmental fa
tors,as the programmer skill, into a

ount. Anyhow, most of the models in the literaturerequire a 
onsiderable amount of failure data to estimate their parameters [25℄. For aninteresting formal des
ription of reliability models the reader is referred to [193℄.Basi
ally, attempts to improve software reliability 
onsist of preventing or redu
ing faultsintrodu
ed during the development pro
ess. A 
ommon way of fault prevention is to fo-1It is worth to emphasize both de�nitions sin
e one does not ne
essarily imply the other.42



3 Fundamental Con
epts on Software Testing
us on the most 
omplex modules in a system and to assign them larger resour
es. Onthe other hand, fault redu
tion involves software veri�
ation, dete
tion and 
orre
tion offaults. So, improvement e�orts 
an be applied at the di�erent stages of the so-
alled soft-ware life
y
le [24℄, that is, analysis (requirements and fun
tional spe
i�
ations), design,
oding, testing and operating. Among these, testing is the most signi�
ant with regardto reliability [17; 60; 68; 193℄.3.2 Software TestingTesting may be des
ribed as the pro
ess of exe
uting a software program to exposefailures [17; 68℄. In other words, testing 
onsists of operating the program with an inputand 
he
king whether the obtained behavior is 
orre
t or not. An input refers to anassignment of values to the program parameters, whi
h are, in turn, the set of variableswhose values need to be �xed to enable an exe
ution.The high relevan
e of testing with respe
t to reliability 
omes as a 
onsequen
e that both
on
ern with failures. As the primary way of failure dete
tion [68℄, testing be
omes 
ru
ialfor redu
ing faults in the software. In addition, it represents a powerful fault preventionmethod, sin
e the knowledge on the system and the reasonings 
arried out to 
reate atest may avoid errors [17℄. Indeed, testing is not only signi�
ant for improving reliability,but also for its evaluation. The measurement of software reliability 
annot be performedwithout previously dis
overed failure data [193℄. Moreover, testing intrinsi
ally involvesa validation pro
ess, so it serves as a means of gaining 
on�den
e that the software isreliable enough.Nonetheless, the rest of phases from the software life
y
le are still needed to improve reli-ability, i.e. testing by itself is not su�
ient [60℄. Finding an input revealing a failure maybe extremely di�
ult. The software 
onditions that trigger a fault 
an be remarkably
omplex, a fault might remain latent for a period of time only to arise in a parti
ularenvironment, or even it 
ould be masked by other faults [79℄. Thus, due to the intrin-
ate dynami
 behavior of faults, not all the failures in a program are usually dete
ted.Anyhow, in order to ensure that all failures have been found, the whole set of programinputs, i.e. the input domain, should be 
he
ked. Although �nite in essen
e, su
h inputdomain is often so huge that a 
omplete exploration results unfeasible. In fa
t, this in-ability for an exhaustive validation 
onstitutes the most basi
 limitation of testing: it 
anshow the presen
e, but not the abs
en
e of faults [61℄. This implies testing is not able toprovide a proof that the software is 
orre
t. The alternative approa
h for demonstratingthe 
orre
tness of software is formal veri�
ation, that is, mathemati
al proofs that thesystem meets all the 
onditions required of it. However, this method also su�ers fromsome well-known disadvantages whi
h fairly restri
t its appli
ation [17℄. Just to name
43



3 Fundamental Con
epts on Software Testingtwo, it shows a la
k of s
alability to the 
omplexity of modern programs, and ea
h of themathemati
al proofs is in turn subje
t to failures.Therefore, in spite of its drawba
ks, testing remains the foremost me
hanism in pra
ti
efor dete
ting failures and verifying the 
orre
t behavior of software. In 
onsequen
e, itis a major way of improving and assesing reliability and, hen
e, attaining quality [60℄.Quantitative arguments from the real world also support this relevan
e. Testing usuallya

ounts for 50% of the proje
t resour
es [17; 24℄, growing up to 80% in some safety-
riti
al systems [28℄. Even so, a re
ent study [239℄ estimated U.S.A. users su�er annuale
onomi
 losses derived from software faults totaling more than $59.5 billion. Moreimportant from the standpoint of software developers, however, is the �nding that morethan a third of those losses 
ould have been saved via better testing.3.3 Test Pro
essThe test pro
ess involves a large number of a
tivities, strategies and elements whi
hmake of testing a vast �eld. Next, we point out a few ideas that are useful to introdu
ethe following dis
ussions. An immense literature on software testing topi
s exists; forinstan
e, the reader might 
onsult the 
lassi
al book by Beizer [17℄ or the more re
entone by Kaner et al. [117℄.Given a software program, testing is generally applied at di�erent levels, ea
h built onthe last:Unit testing A unit refers to the minimal software module that 
an be tested, e.g. inobje
t-oriented programming, a 
lass method. Thus, at this level, a unit is testedin isolation from the rest of the system.Component testing A 
omponent is a module formed of a number of units, e.g. inobje
t-oriented programming, a 
lass. Obviously, a unit is a 
omponent, and so isthe whole system.Integration testing At this level, the purpose of a test is to expose failures in the inter-fa
es and dependen
ies between software 
omponents.System testing These tests are oriented towards the veri�
ation that the 
omplete soft-ware system meets its requirements.A

eptan
e testing It alludes to the user validation. This involves testing the softwaresystem under simulated real-world operating 
onditions as well as delivering theso-
alled beta program versions to a limited audien
e.
44



3 Fundamental Con
epts on Software TestingTypi
ally, testing pro
eeds from unit to a

eptan
e level, sin
e the 
ost of 
orre
ting afault grows superlinear in this dire
tion [68℄. A further reason is that up to 65% of thefailures may be dete
ted with unit testing [17℄.Being one of the stages from the software life
y
le, testing is an arranged pro
ess in
ludingmany a
tivities. For example, system requirements need to be studied, tests must bedesigned and exe
uted, results observed, and 
on
lusions reported. Ea
h a
tivity is inturn subje
t to faults, so, if a failure is found, both the software and the test pro
essshould be explored for the 
ause. Moreover, during the 
orre
tion of a fault, new ones
ould be inje
ted in the software or others whi
h were previously masked 
ould arise.This implies on
e the fault is �xed, tests need to be pro
essed again, yielding an iterativepro
edure; su
h situation is known as regression testing.Among the previous a
tivities, the generation of a set of test 
ases is of great importan
e.A test 
ase 
an be des
ribed as a pie
e of information 
on
erning one software exe
ution.This information in
ludes an input with whi
h the program will be exe
uted, the expe
tedprogram behavior for that input, and any additional useful data for pro
essing the test,e.g. an identi�
ation number. Then, it may be inferred that a mandatory task withinthis a
tivity is the generation of a set of inputs to be applied to the program under test.3.4 Generation of Test InputsAs remarked above, exhaustive testing is generally prohibitive due to the huge size ofthe input domain. Furthermore, real-world demands and modern development toolsare dramati
ally in
reasing programmers produ
tivity, so 
laiming a growing amount oftesting in less and less time. Thus, tests are designed with the purpose of addressingparti
ular aspe
ts of the software system. This makes the generation of a set of testinputs a non-trivial task, as it must be adequate to the test type and its requirements.Input generation methods mainly 
onform to two testing strategies [76℄: random andsubdomain based. In this 
ontext, random testing alludes to the employment of inputssampled from the input domain a

ording to a probability distribution. For instan
e,due to its simpli
ity, a well-known approa
h is to generate test data simulating a uniformdistribution on the input domain [65℄. A more sophisti
ated alternative, instead, is toemploy the operational pro�le of the program, that is, the expe
ted run time probabilitydistribution of the inputs [159℄. The purpose of this approa
h, then, is to test the programin a way 
lose to its real usage. However, input generation is not straightforward, asknowledge on the system is needed to estimate the probability distribution, whi
h 
anbe a 
ostly task [95℄. On the other hand, the underlying idea in subdomain based testingis spe
ifying subsets from the input domain, 
alled subdomains, and requiring the set ofinputs to in
lude an element from ea
h of the subsets. A 
ommon assumption for thesubdomains is that their union must lead to the input domain, so in the parti
ular 
ase45
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tional −→ states based testing, time performan
e testingstru
tural −→ statement testing, bran
h testing, path testingFigure 3.1: S
heme of usual testing strategies.where they are disjoint, the strategy is known as partition testing [251℄. In any 
ase, it isimportant to note that, rather than expli
itly, subdomain spe
i�
ation is often impli
itlydriven by the purpose of the parti
ular testing approa
h.Considering the 
riteria used for splitting the input domain, subdomain based testingmay be further 
lassi�ed as fun
tional or stru
tural [18; 76℄. In fun
tional (also knownas bla
k box ) testing, ea
h subdomain 
onsists of the inputs satisfying a 
ondition or
ombination of 
onditions asserted in the program spe
i�
ation. Therefore, the aim ofthis strategy is to test aspe
ts regarding the fun
tionality of software. For example,a general approa
h is assigning a subdomain to ea
h of the fun
tional states of theprogram [175℄; test data generation 
onsists then of �nding a set of inputs that visitsea
h state. A more spe
i�
 fun
tional 
riterion is time performan
e testing [18℄, whi
htests whether the response time 
onstraints of the program are ful�lled or not, i.e. thereis a subdomain for ea
h time 
onstraint. By 
onstrast, stru
tural (or white box ) testingrelies on the intuition that faults are exposed if 
ertain parts of the sour
e 
ode exe
ute.More pre
isely, in stru
tural approa
hes, subdomains 
ome spe
i�ed by the so-
alled
ode 
overage 
riteria. For example, in statement testing [17℄, the inputs implying theexe
ution of a 
ode statement (instru
tion) des
ribe a subdomain. Consequently, a set ofinputs must be generated so that ea
h statement is 
overed. Other 
overage 
riteria willbe dis
ussed in detail below. Figure 3.1 shows a basi
 s
heme of the testing strategiesjust des
ribed, together with some of their instan
es as examples.3.4.1 Code Coverage CriteriaStru
tural testing is probably the most widely used 
lass of strategies to test programs[17; 161℄. Based on the assumption that a fault is exposed when 
ertain portions of 
ode46



3 Fundamental Con
epts on Software Testingare exe
uted, 
ode 
overage 
riteria are de�ned in order to dete
t as many failures aspossible.The sour
e 
ode of the program reveals di�erent 
ontrol or data �ow entities, su
h asstatements, bran
hes, paths, defs, p-uses or 
-uses. The �rst three examples are 
ontrol�ow entities, while the others are data �ow ones. A bran
h refers to one of the possibilitiesfor the �ow of 
ontrol from a 
onditional statement in the 
ode. A path, instead, is asequen
e of statements that the 
ontrol �ow may traverse. A def alludes to a de�nition,that is, the assignment of a value to a program variable. A variable is used if its value isfet
hed; an use in a 
onditional statement is 
alled a p-use, and if it is elsewhere in the
ode, it is named a 
-use.Stru
tural entities of a program 
an be represented by means of a graph. Although manyalternatives exist in the literature [102℄, we will restri
t our attention to the 
ontrol �owgraph [70℄. A 
ontrol �ow graph G = (X,U) is de�ned by a set X of verti
es and aset U ⊆ X × X of ar
s. Ea
h vertex in X denotes a 
ode basi
 blo
k, ex
epting twoverti
es labeled s and e, whi
h refer to the program entry and exit. A 
ode basi
 blo
kis a maximal sequen
e of 
ode statements su
h that if one is exe
uted, then all of themare. An ar
 (x, y) ∈ U , with x and y distin
t from s and e, is su
h that the 
ontrolof the program 
an be transferred from blo
k x to y without 
rossing any other blo
k.Analogously, for every ar
 (s, x) ∈ U or (y, e) ∈ U , it will be possible to transfer the �owof 
ontrol from the entry to blo
k x and from blo
k y to the exit, respe
tively. We 
all averti
es sequen
e x1, x2, ..., xn, with (xi−1, xi) ∈ U, ∀i ∈ {2, ..., n}, n ∈ IN, a path from
x1 to xn.In this kind of graph, a statement is then represented by a vertex, a bran
h by an ar

(x, y) where outdegree(x) > 1, and a program path by a path from s to e in the graph.Instead, to re�e
t defs, 
-uses or p-uses asso
iated to a program variable, the graphneeds to be enlarged with appropriate labels on the verti
es. Su
h a modi�ed 
ontrol�ow graph is sometimes referred to as a data �ow graph [49℄. For a vertex x labeled
u, if outdegree(x) > 1, then a p-use is represented, otherwise a 
-use asso
iates. So,given a program variable, a de�nition or an use in a 
ode basi
 blo
k might be re�e
tedby respe
tive d or u labels in the 
orresponding vertex. Figure 3.2 illustrates a sour
e
ode together with derived 
ontrol and data �ow graphs. The sour
e 
ode 
orrespondsto a fun
tion, written in the C programming language [120℄, whi
h, given three integersrepresenting the 
oe�
ients of a quadrati
 equation, eli
ites an integer-valued solution,if it exists. The 
ontrol �ow graph of the fun
tion is shown in the middle of the �gure,and the data �ow graph regarding variable x in the 
ode, on the right side.A 
ode 
overage 
riterion spe
i�es a group of stru
tural entities whi
h have to be exer
isedwith a set of program inputs. Several 
overage 
riteria have been developed in theliterature so far, whi
h leads to di�erent stru
tural testing approa
hes. A few well-knowninstan
es are des
ribed next; a more exhaustive list 
an be 
onsulted in [17; 77; 78; 117℄.47



3 Fundamental Con
epts on Software Testing

7         printf("integer solution: %d",x);

         int quad (int a, int b, int c)
1      {
          double d=0, x=0;
          if (a!=0)
2         if ((b*b)−(4*a*c)<0)
3          x=0;
4         else {
            d=(b*b)−(4*a*c);

5        else
           x=(−c)/b;
6        if ((a*x*x+b*x+c)==0)

8        else
           printf("no integer solution");
9       }

            x=(−b+(int)sqrt(d))/(2*a); }

1

4

6

7 8

5

2

3

9

s

e

1

4

6

7 8

5

2

3
d

u

d d

u

9 e

s
d

Figure 3.2: Example sour
e 
ode, its asso
iated 
ontrol �ow graph (middle) and enlarged
ontrol �ow graph (right).
• In statement 
overage, every 
ode statement is 
hosen to be exer
ised by a set ofprogram inputs, i.e. the whole set of verti
es in the 
orresponding 
ontrol �owgraph must be 
overed.
• Bran
h 
overage is a 
lassi
al 
riterion stating that every bran
h in the sour
e 
odemust be exer
ised at least on
e. Thus, in the asso
iated 
ontrol �ow graph, thisimplies the 
overage of every ar
 (x, y) with outdegree(x) > 1.
• All 
-uses 
overage involves the defs and 
-uses of all the program variables. A
-
ording to this 
riterion, the set of inputs must exer
ise, for every variable, ade�nition-
lear path from ea
h def to ea
h 
-use. Given a def and an use (ei-ther 
-use or p-use) of a variable v, a de�nition-
lear path is a sequen
e of state-ments between def and the use su
h that no other de�nition of v is 
ontained init. From the graphi
al point of view, this 
riterion settles that, in the data �owgraph G = (X,U) of ea
h program variable, ∀{x1, x2} ∈ X with x1 labeled d and

x2 labeled u and outdegree(x2) ≤ 1, a path x1, y1, ..., yn, x2 where yi is not labeled
d, ∀i ∈ {1, ..., n}, n ∈ IN, must be found.

• Similarly to the previous 
riterion, all p-uses 
overage requires the set of programinputs to exer
ise, for every variable in the 
ode, a de�nition-
lear path from ea
hdef to ea
h p-use. The analogy in the data �ow graph G = (X,U) of ea
h variable,is that ∀{x1, x2} ∈ X with x1 labeled d and x2 labeled u and outdegree(x2) > 1,a path x1, y1, ..., yn, x2 where yi is not labeled d, ∀i ∈ {1, ..., n}, n ∈ IN, must befound. 48
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• Path 
overage is the most demanding 
overage 
riterion, as all the paths in theprogram stru
ture are 
onsidered for exe
ution. That is, in the asso
iated 
ontrol�ow graph G = (X,U), every path from s to e needs to be 
overed.Complexity of 
ode 
overage 
riteriaDepending on the 
overage 
riterion and the program at hand, generating a set of inputsthat satis�es a testing approa
h may result in an extremely hard task.Several relations have been proposed in the literature to 
ompare 
overage 
riteria; toname a few, power, narrows, probbetter or properly 
overs [77; 249; 250℄. Regarding therelative di�
ulty of satisfying 
riteria, the subsumption relation is one of the most popular[52; 249℄. Informally, given a program and two 
riteria C1 and C2, C1 subsumes C2 ifany set of inputs whi
h ful�lls C1 also ful�lls C2. Subsumption is re�exive, antisymetri
and transitive, so it is a partial ordering. A

ording to this, statement 
overage is theeasiest amongst the previous 
riteria while path 
overage is the most di�
ult. Figure 3.3shows this relation for some 
lassi
al 
ode 
overage 
riteria. An ar
 from 
riterion C1 to
riterion C2 denotes that C1 subsumes C2.path 
overageall DU 
overageall uses 
overageall 
-uses and somep-uses 
overage all p-uses and some
-uses 
overageall defs 
overage all p-uses 
overageall bran
hes 
overageall statements 
overageFigure 3.3: Subsumption relation between 
ode 
overage 
riteria.Path 
overage is exhaustive in the sense that the whole stru
ture of the program is tested.However, it usually be
omes unfeasible due to the prohibitive number of paths; this 
anbe noted just by 
onsidering the loops in the graph. Instead, statement testing is the49
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if (x==0 && y>0)

.      .      .      .      .

/* previous code segment */
.      .      .      .      .

          /* basic block where variable y is not defined */
          .      .      .      .      .
          if (y<0)
                    /* basic block */
                    .      .      .      .      .
/* next code segment */Figure 3.4: Example of an infeasible bran
h.less demanding 
riterion, though its restri
tion to the 
overage of the 
ode basi
 blo
ksis deemed insu�
ient. Nowadays, bran
h testing is referred as the minimum mandatory
overage 
riterion [17℄.On the other hand, program 
omputations and semanti
s determine the inputs exer
isinga given entity, making the test data generation arbitrarily 
omplex. In fa
t, not all theentities are exer
ised often. Moreover, the e�e
t of program semanti
s may result in anentity whose 
overage is impossible. Su
h a 
ase may o

ur when the program �nishesunexpe
tedly due to a failure, or when the entity is infeasible. An entity is 
alled infeasibleif there is no input 
apable of exer
ising it. For example, the bran
h represented by these
ond if statement in the 
ode segment of Figure 3.4 is infeasible, sin
e y > 0 and

y < 0 must o

ur in order for it to be 
overed. Unfortunately, the problem of dis
overingwhether an entity is infeasible results unde
idable [77; 251℄, so exe
utable entities 
annotbe known a priori in every 
ase.Hen
e, there is a need to determine the level of 
ompletion attained by a set of inputs.This is what the 
overage measurement indi
ates, i.e. the per
entage of entities exer
isedfor the parti
ular 
ode 
overage 
riterion.Automati
 test data generation for 
ode 
overage 
riteriaAs noted above, the 
reation of program inputs ful�lling a given 
ode 
overage 
riterionis not trivial. This, together with the fa
t that in most organizations input generationis performed manually [68; 144℄, results in a high amount of resour
es dedi
ated to su
htask. The automati
 generation of test data is hen
e worthwhile, and some authorssuggest it is even vital for the software testing area [176℄.Though many are the possibilities, automated stru
tural testing is typi
ally rea
hed bymeans of random, stati
 or dynami
 input generation methods [72℄.A random method relies upon a probability distribution for sampling all the inputs. Inspite of its simpli
ity, the performan
e obtained tends to be poor for 
omplex programs50



3 Fundamental Con
epts on Software Testing[72℄, sin
e the distribution is often 
hosen without regard to any information on theprogram at hand. Therefore, the most popular random method so far 
onsists of theuniform distribution, whi
h is used to serve as a basi
 ben
hmark for 
omparison withmore sophisti
ated te
hniques.On the other hand, stati
 and dynami
 methods are based on knowledge derived fromthe program stru
ture. The main feature of stati
 methods is that program exe
utionis not required to 
reate test inputs, sin
e they are obtained through a stati
 analysisof the sour
e 
ode. Most of the approa
hes are inspired on the te
hnique named sym-boli
 exe
ution [42℄. This te
hnique 
onsists of 
hoosing an entity from the programstru
ture, and assigning a system of inequalities in terms of the input parameters. Thesystem is built by substituting variables a�e
ting the entity with symboli
 values whilerespe
ting the 
onstraints asso
iated with the 
onditions in the 
ode. A solution to thesystem is then an input exer
ising the sele
ted entity. In [57℄, a more re
ent work usingthis te
hnique 
an be 
onsulted. Symboli
 exe
ution su�ers, however, from well-knownproblems whi
h limit its performan
e. The method requires a lot of 
omputational re-sour
es, as expressions in the sour
e 
ode have to be resolved and transformed. In 
asea program variable depends on a fun
tion 
all, no related inequality 
an be 
onstru
tedif the sour
e 
ode of the fun
tion is unavailable. Furthermore, the resulting system ofinequalities 
ould be hardly solved, e.g. if it is nonlinear. Other di�
ulties arise witharray stru
tures, pointers and loops [122; 143℄.In 
ontrast to stati
, dynami
 methods exe
ute the program in order to generate thetest inputs [122; 148℄. While su
h methods must in
ur the overhead asso
iated witha
tually exe
uting the program under test, many of the drawba
ks of stati
 methods areover
omed. Moreover, the information available at run-time is exploited to guide thegeneration of inputs. More pre
isely, the underlying idea is addressing the automati
generation of test data as an optimization problem [148℄. An instrumented version of theprogram is 
onstru
ted, i.e. the program is expanded with instru
tions that will extra
tinformation 
on
erning the exe
ution of an input. The 
olle
ted information is used toassess the 
loseness of the exe
uted inputs to 
over the desired stru
tural entities andguide the sear
h towards new inputs to be exe
uted. In [122℄, the obtained informationdetermined a fun
tion value assigned to ea
h input after exe
ution. The obje
tive wasto �nd an input minimizing its fun
tion value, whi
h only o

ured when rea
hing thetarget entity.Finally, attempts have been developed to 
ombine both the stati
 and dynami
 methods.For instan
e, in [174℄, a te
hnique 
alled Dynami
 Domain Redu
tion is presented whi
htraverses the 
ontrol �ow graph by symboli
ally exe
uting the 
ode asso
iated to ea
hvertex.
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epts on Software Testing3.5 Sear
h Based Software Test Data GenerationThe automati
 generation of test inputs has turned into one of the most 
hallengingproblems in the software testing area. An alternative whi
h is deserving the interest ofresear
hers in re
ent years is Sear
h Based Software Test Data Generation (SBSTDG)[144℄. This �eld alludes to the sele
tion of program inputs making use of heuristi
 sear
hte
hniques during the pro
ess. The manner in whi
h the heuristi
 te
hnique takes partremains open, so the optimization point of view in dynami
 test data generation is gen-eralized to any other testing approa
h. In fa
t, the idea of employing su
h optimizationmethods has also been applied in the testing of other manufa
turing produ
ts, e.g. hard-ware integrated 
ir
uits [46℄.Most of the works to date have 
on
entrated on fun
tional and stru
tural testing. Ap-pealing approa
hes have been proposed for the fun
tional strategy, e.g. safety 
riti
alsoftware testing [240℄ or temporal behavior testing [194℄. However, these are out of thes
ope of the present work, so, in the following, only the stru
tural perspe
tive is dis-
ussed, emphasizing bran
h testing where remarked. A well 
rafted and extensive reviewof SBSTDG 
an be 
onsulted in [144℄.3.5.1 The General S
hemeMany of the works developed for stru
tural testing are based on a dynami
 test datageneration strategy. So, these works 
onsist of 
hoosing the entities to be exer
ised and,then, sear
hing for the inputs 
overing them via a heuristi
 sear
h method. Thus, itis 
ommon to more or less follow the general s
heme in Figure 3.5. This s
heme is aniterative two-step pro
ess where, �rstly, a previously identi�ed stru
tural entity is sele
ted(a bran
h, for instan
e) and marked as an obje
tive. In the se
ond step, the obje
tiveentity is assigned a fun
tion dependent on the program input, and its optimization issought. This obje
tive fun
tion is formulated in su
h a way that, if an exe
uted inputexer
ises the obje
tive, the value is optimum. Otherwise, the value is proportional tohow 
lose the input is to the obje
tive 
overage. Consequently, in order to obtain thefun
tion value of an input it must be previously exe
uted on an instrumented version ofthe program whi
h will provide the information ne
essary.Repeat until stopping 
riterion is met
E ← Sele
t obje
tive entity to exer
iseObtain input optimizing fun
tion for EFigure 3.5: General s
heme for test input generation.This way, the test data generation is ta
kled as the resolution of a number of optimizationproblems, one for ea
h obje
tive entity. Early approa
hes relied on the use of 
lassi
al52



3 Fundamental Con
epts on Software Testingnumeri
al optimization [148℄ and simple lo
al sear
h methods [122℄. By 
onstrast, morere
ent works resort to global metaheuristi
s motivated by the fa
t that the sear
h spa
ede�ned by the inputs is generally large and 
omplex. Previous 
lassi
al methods performpoorly in su
h spa
es, as they easily fall into lo
al optima or be
ome unfeasible 
om-putationally. Therefore, more sophisti
ated optimization te
hniques be
ome a suitablealternative.For the sele
tion step in Figure 3.5, rather than applying a general rule to determine theobje
tive entity, ea
h approa
h usually implements a parti
ular alternative [30; 143; 177;248℄. In any 
ase, a 
ommon pra
ti
e is to determine the obje
tive entity somehow withthe help of the 
ontrol �ow graph of the program at hand.The next step of the s
heme in Figure 3.5 ta
kles an optimization problem. That is,given the sear
h spa
e Ω formed by the program inputs and a fun
tion f : Ω→ IR, �nd
x∗ ∈ Ω su
h that f(x∗) ≤ f(x) ∀x ∈ Ω. From now on, we restri
t our attention tothe 
ase where entities are bran
hes. On
e again, the reader is referred to the survey byM
Minn [144℄ for a dis
ussion about other entities; in [247℄, a re
ent study on obje
tivefun
tions for path 
overage 
an be found.Thus, for bran
h testing, a 
lassi
al strategy to 
reate the obje
tive fun
tion is the follow-ing. Given an obje
tive bran
h b and an expression AOPB of the 
onditional statement
COND asso
iated with b in the 
ode, with OP denoting a 
omparison operator, thevalue for an input x is determined by:

f(x) =







M if COND not rea
hed
d(Ax,Bx) + K if COND rea
hed and b not attained
0 otherwise (3.1)where M is the largest 
omputable value, Ax and Bx are appropriate representations ofthe values taken by A and B in the exe
ution, d is a distan
e measurement, and K > 0is a previously de�ned 
onstant. Typi
ally, if A and B are numeri
al, then Ax and Bxare their values and d(Ax,Bx) = |Ax − Bx|. In the 
ase of more 
omplex data types,a binary representation of the values for A and B 
an be obtained and, for instan
e, let

d(Ax,Bx) be the Hamming distan
e [235℄.In 
ase COND involves a 
ompound expression, the overall obje
tive fun
tion is 
on-stru
ted from the partial fun
tions for ea
h subexpression. Given two subexpressions C1and C2 with their respe
tive fun
tions f1 and f2, and an input x, the value for the logi
alexpression C1 ∨ C2 is min{f1(x), f2(x)}, the logi
al expression C1 ∧ C2 is 
al
ulated as
f1(x) + f2(x), and for ¬C1 the value is known by propagating the negation inside C1.By applying the asso
iative and 
ommutative properties to di�erent logi
al expressions,the overall value for f is obtained.
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3 Fundamental Con
epts on Software Testing3.5.2 Improving the Obje
tive Fun
tionThe previous type of obje
tive fun
tion su�ers from well-known drawba
ks, some of whi
hhave no 
lear solution yet. For example, if the 
omparison operator in the 
onditionalexpression is 6=, the fun
tion only takes three values and be
omes plateau shaped. Inorder to solve this �aw, several possibilities based on 
ode transformations are des
ribedin [101℄ and [15℄. In [27℄, other weaknesses are identi�ed and a number of alternativesare proposed to over
ome them.To a 
ertain extent, these limitations may be alleviated with the obje
tive fun
tionpresented in [248℄. In addition to the distan
e in the 
onditional statement COND ofthe obje
tive bran
h, a 
ondition distan
e is used for the inputs not rea
hing COND.This distan
e 
onsiders the path from s to e in the 
ontrol �ow graph, taken by aninput during program exe
ution. Denoting by vc the vertex in the 
ontrol �ow graphrepresenting COND, and by vn the nearest previous vertex to COND in the pathfollowed by the input, the distan
e value is 
al
ulated in terms of the number of bran
hingverti
es straying from the path between vc and vn. Therefore, the fun
tion in equation3.1 is extended, maintaining the notation, as follows:
f(x) =











dc(vc, vn) if COND not rea
hed
d(Ax,Bx)+K

L+(d(Ax ,Bx)+K) if COND rea
hed and b not attained
0 otherwise (3.2)where dc is the 
ondition distan
e and L > 0 is a previously de�ned 
onstant. Noti
e that

L is employed to ensure that the fun
tion value when COND is not rea
hed surpassesthe value when COND is rea
hed but b is not attained.In this manner, if an input was unable to rea
h the 
ondition, instead of assigning it theworst value (M), the proximity to the 
ondition is taken into a

ount and the obje
tivefun
tion is smoothed with regard to equation 3.1.3.5.3 Applied Metaheuristi
s and ExtensionsApropos the metaheuristi
 employed to solve the optimization problem, the most preva-lent 
hoi
e has been the GA. This te
hnique was applied for bran
h 
overage by Sthamer[235℄ and Wegener et al. [248℄. The former 
ompared binary and gray 
oded represen-tations of the program inputs. However, no 
lear 
on
lusion 
ould be drawn as to whi
hof them was superior. In the latter work, ex
ellent 
overage results where obtained witha parallel GA using a fun
tion of the form of equation 3.2 to 
al
ulate the �tness of theindividuals. In 
ontrast, in the work by Pargas et al. [177℄, �tness is only the 
onditiondistan
e des
ribed above. GAs have also been 
hosen for other testing 
riteria like, forinstan
e, path 
overage [135℄ and 
ondition/de
ision 
overage [143℄. This last 
overage54
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riterion has been re
ently fa
ed through Evolution Strategies [3℄. Metaheuristi
s pro-posed in other works in
lude Simulated Annealing [241℄, Tabu Sear
h [58℄ and EDAs[212℄; all ta
kling bran
h 
overage with the 
lassi
al obje
tive fun
tion. In [213℄, S
atterSear
h was sele
ted for the optimization step. Besides, a 
ollaborative s
heme betweenthis method and EDAs was developed.Although the metaheuristi
 te
hnique deals with one optimization problem at a time, thereal goal of the test 
ase generation is to solve a set of problems. Several approa
hes inthe literature have taken this into 
onsideration to improve the pro
ess. The alternativesuggested by some works is to pro�t from the good solutions found by not only evaluatingan input for the 
urrent obje
tive entity, but also with regard to all the others. Ea
hentity is assigned a set 
ontaining the best inputs so far whi
h are used to seed the initialphase of the metaheuristi
 [248; 212℄. Similarly, in [143℄, the set of an entity is 
omposedof the inputs just rea
hing the 
ondition asso
iated with the entity. Moreover, this typeof strategy is employed for di�erent testing 
riteria. For instan
e, the work by Buenoand Jino [30℄ deals with path 
overage, and a set of inputs exer
ising a sele
ted pathis sought at ea
h step; thus, the initial population of a GA is seeded with the 
losestsets of inputs to 
overing the path from those stored in a base pool. In 
ontrast, inthe approa
h for path 
overage des
ribed in [105℄, a multiobje
tive optimization view isadopted. This system uses a GA where an individual represents an input and the �tnessvalue is obtained from a weighted sum of the proximities to the 
overage of ea
h path.An appealing alternative is developed in [209; 211℄, where strategies are proposed forsear
hing in the most promising regions of the input spa
e with the aim of enhan
ing thetest data generation pro
ess.Indeed, it should be marked that there are other strategies for stru
tural test data gener-ation, aside from the one outlined in Figure 3.5. For example, in [230℄, a GA is used on
eagain. However, in this 
ase, an individual 
orresponds to a set of test inputs, and the�tness is the 
overage rea
hed by the set after exe
ution. This way, the problem of gener-ating a set of test 
ases to ful�ll an adequa
y 
riterion is fa
ed from a pure EvolutionaryAlgorithm view, where an individual represents a solution to the whole problem.3.5.4 An Example of the General S
hemeTo sum up, the prepro
essing required to automate the generation of test data for bran
h
overage following the general s
heme in Figure 3.5 should be noti
ed. Figure 3.6 illus-trates this by showing an example program, written in the C programming language,and the elements to be indu
ed from it: the 
ontrol �ow graph and the instrumentedprogram version. The redu
ed box on the right represents the information supplied by ahypotheti
al exe
ution of the instrumented program.The graph is used to sele
t the next obje
tive bran
h whose 
overage will be pursued,for example, bran
h (2, 3). A GA 
ould be used in the optimization phase. Thus, an55
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7         printf("integer solution: %d",x);

         int quad (int a, int b, int c)
1      {
          double d=0, x=0;
          if (a!=0)
2         if ((b*b)−(4*a*c)<0)
3          x=0;
4         else {
            d=(b*b)−(4*a*c);

5        else
           x=(−c)/b;
6        if ((a*x*x+b*x+c)==0)

8        else
           printf("no integer solution");
9       }

            x=(−b+(int)sqrt(d))/(2*a); }

1

4

6

7 8

5

2

3

9

        printf("integer solution: %d",x); }

        probe_dist(0,((b*b)−(4*a*c)),0);

       probe_dist(0,(a*x*x+b*x+c),0);

        printf("no integer solution"); }

      int quad_instr (int a, int b, int c)
1     {
       probe_init();
       probe_out(1);
       probe_dist(0,a,0);
       double d=0, x=0;
       if (a!=0) {
2       probe_out(2);

        if ((b*b)−(4*a*c)<0) {
3        probe_out(3);
         x=0; }
4       else {
         probe_out(4);
         d=(b*b)−(4*a*c);
         x=(−b+(int)sqrt(d))/(2*a); }
5      else {
        probe_out(5);
        x=(−c)/b; }
6      probe_out(6);

       if ((a*x*x+b*x+c)==0) {
7       probe_out(7);

8      else {
        probe_out(8);

9      probe_out(9);
      }

1
2 1
4 276
5
7

10
9 5

Figure 3.6: Example of sour
e 
ode, 
ontrol �ow graph, instrumented version, and outputinformation.
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epts on Software Testingindividual is a representation of the program input, i.e. three integers. If the inputs setstrategy des
ribed above is applied, the initial population of the GA 
ould be seededwith the set asso
iated to bran
h (2, 3).Ea
h input generated during the sear
h is exe
uted on the instrumented program versionin order to eli
it its �tness fun
tion value. The instrumentation results shown in theredu
ed box of Figure 3.6 
orrespond to input (1, 20, 31). The �rst number in ea
h lineof the box 
ontains the traversed basi
 blo
k and, if the previous blo
k had a 
onditionwith an expression AOPB, one more number is in
luded whi
h is the value of |A−B| inthe exe
ution. Using this information, the value of the 
ondition distan
e (dc) shown inequation 3.2 
an be obtained. However, this is not ne
essary, as input (1, 20, 31) rea
hesthe 
ondition of bran
h (2, 3). Hen
e, a

ording to equation 3.2 and taking K = 1 and
L = 1000, f(1, 20, 31) = 276+1

1000+276+1 = 0.2169. Although the input is already evaluatedfor the GA, the instrumentation results are used to 
al
ulate f(1, 20, 31) with regard tothe rest of the bran
hes. This way, if (1, 20, 31) is a high quality input for a di�erentbran
h, it is stored in the set of the 
orresponding bran
h.On
e the sear
h �nishes, a new round of the s
heme in Figure 3.5 is performed until, forinstan
e, every bran
h has been sele
ted as an obje
tive.
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4 Software Test Data Generation bymeans of EDAsOne of the most important issues in software testing is the generation of the programinputs used during the test. Parti
ularly, bran
h 
overage is 
onsidered nowadays abasi
 
riterion to be ful�lled. On the other hand, EDAs are deserving the attention ofthe Evolutionary Algorithms 
ommunity, partially supported by the outstanding resultsobtained in some problems. This 
hapter is devoted then to the appli
ation of EDAs tothe problem of �nding test inputs for satisfying bran
h 
overage.Firstly, the system developed for 
oping with test data generation is explained. Then,the performan
e of a handful of EDAs, involving several types of probabilisti
 models, isevaluated through extensive experimentation. In addition, results of EDAs are 
omparedwith those of previous works using GAs, yielding interesting 
on
lusions on the adequa
yof the formers for ta
kling this problem.4.1 MotivationAs remarked in the previous 
hapter, a major issue in software testing is the automati
generation of the inputs to be applied to the program under test. Approa
hes basedon SBSTDG have been o�ering promising results and, hen
e, they 
onstitute nowadaysa serious alternative to a

omplish this task [144℄. Until now, works in the SBSTDGliterature have 
on
entrated on the use of GAs and, o

asionally, on other methods, e.g.Simulated Annealing [121℄ or Tabu Sear
h [88℄. Many other metaheuristi
s 
an be ex-ploited however; for instan
e, most modern te
hniques 
ould be an appealing alternative.Thus, 
onsidering the high relevan
e of the test data generation, we deem worth to studythe appli
ation of EDAs. The wide range of possible probabilisti
 models o�ered byEDAs turn them into a �exible tool for ta
kling arbitrarily 
omplex problems. In fa
t,these metaheuristi
s have already been applied to several problems with ex
ellent results.Just to name a few works, in [112℄, Feature Subset Sele
tion was dealt with by meansof an EDA whi
h required fewer generations to obtain the same quality results of otherEvolutionary Algorithms. In [156℄, EDAs were 
ompared with other approa
hes for theresolution of the Graph Bipartitioning problem; EDAs rea
hed the best solution valuesin all the problem instan
es. 59



4 Software Test Data Generation by means of EDAsIndeed, ta
kling the test data generation is also interesting from the EDAs point of view asit allows to evaluate their performan
e when applied to a demanding and signi�
ant real-world problem. By employing alternative probabilisti
 models, able to re�e
t di�erentorders of dependen
ies between variables, it 
an be 
he
ked whether sophisti
ated EDAsbe
ome more adequate than simple ones in this 
ontext.Amongst the di�erent levels at whi
h the test pro
eeds, unit testing usually a

ounts forthe bulk of the failures dete
ted [17℄. On the other hand, a 
ommon strategy for testdata generation 
onsists of obtaining a set of inputs ful�lling a 
ode 
overage 
riterion.Bran
h 
overage is spe
ially relevant, sin
e it is 
onsidered the minimum mandatory
riterion [17℄. So, in the alternative des
ribed here, we deal with bran
h 
overage forunit testing of programs writen in the C or C++ language.4.2 The Optimization Approa
hThe approa
h follows a dynami
 strategy, that is, the 
overage of a bran
h 
onsistsof �nding the minimum of a fun
tion previously assigned to it. Hen
e, the test datageneration 
an be posed, in general terms, as a set of optimization problems to be solved.Ea
h of these problems may be stated as follows: given the input domain Ω and a fun
tion
f : Ω → IR, �nd x∗ ∈ Ω su
h that f(x∗) ≤ f(x) ∀x ∈ Ω. The problem is 
onstrained,as Ω is bounded by the �nite representation 
apability of 
omputers and, o

asionally,by the program spe
i�
ation. However, due to the arbitrary nature of programs, therest of 
hara
teristi
s to lo
ate the problem remains open, e.g. input parameters 
anbe s
alars or fun
tions, or f 
an be multimodal or not. Nonetheless, in order to enablethe automatization of the pro
ess, we will assume a bla
k-box optimization problem,that is, no knowledge is inferred from the obje
tive fun
tion. To depart from a simpleapproximation, f is formulated a

ording to equation 3.1.4.3 System FrameworkThe system 
onforms the general s
heme in Figure 3.5. The sele
tion phase follows theoption proposed in [248℄, where a set with the best inputs found so far was asso
iated witha bran
h during the pro
ess, and the bran
h with the highest quality set was sele
ted asthe obje
tive. The optimization step of the s
heme allows for the appli
ation of severalEDAs. Ea
h 
ode bran
h is asso
iated with one of the three following states: 
overed,treated but un
overed, and untreated. The stopping 
riterion is full 
overage a
hievement(all bran
hes in the 
overed state) or unsu

esful treatment of every unexer
ised obje
tivebran
h (bran
h in the treated but un
overed state).
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4 Software Test Data Generation by means of EDAsThe system manages infeasible bran
hes like any other one and, therefore, it seeks their
overage. On
e the inputs generation pro
ess �nishes, these bran
hes will be labelled astreated but un
overed, and it might be determined whether their 
overage is impossibleor whether the system was merely unable to �nd an input exer
ising them.Next, both the optimization and sele
tion steps are des
ribed in detail.4.3.1 Optimization PhaseGiven the obje
tive bran
h, this phase tries to solve the optimization problem raised inSe
tion 4.2 by means of an EDA.An individual is 
omposed of a 0-1 string representing an input, so that ea
h input pa-rameter is asso
iated a 0-1 substring. In the 
urrent implementation of the approa
h,three parameter types are 
onsidered: integers, reals and 
hara
ters. In the 
ase of aninteger, the 0-1 substring represents the parameter following a 2's 
omplement represen-tation. For real numbers, the IEEE �oating point 
odi�
ation is used instead, and for a
hara
ter type, a sign-magnitude 
odi�
ation is employed. In this last 
ase, the numberobtained results in a 
hara
ter, a

ording to the ASCII 
ode table. The reason for 
hoos-ing su
h representation systems [246℄ relies in the fa
t that they are usually employedby 
omputers for making the same transformations to internal variables. Sin
e programinputs are to be run in 
omputers, these representations make sense then. Anyhow,for more 
omplex parameter types, an appropriate transformation should be de�ned toobtain the input parameter value.The �tness value of an individual is given by fun
tion f , de�ned as in equation 3.1.Information needed to 
al
ulate the �tness value is obtained from the performed instru-mentation on the program. This instrumentation returns the values of expressions for
onditional statements during the exe
ution of the input represented by the individual.Ea
h bran
h is bound with a set of individuals whi
h is used as the seed population forthe EDA when the bran
h is the obje
tive. Thus, although the obje
tive bran
h is �xed,ea
h individual is evaluated a

ording to every other un
overed bran
h. If the bran
h isexer
ised, its state is marked as 
overed and the input is stored. Otherwise, if the �tnessof the 
urrent individual is better than the worst individual in the set asso
iated withthe bran
h, then the latter is repla
ed by the new better individual and, if the bran
hhad previously been treated, its state is marked as untreated. This notion of seeding hasalso been exploited in other works [143; 248℄. Figure 4.1 shows the evaluation algorithmfor an individual xi. The value of fun
tion f asso
iated with bran
h b for a given input
x is represented by fb(x).The EDA �nishes when either the minimum is found, i.e. an input 
overing the obje
tivebran
h is found, or a maximum number of generations is rea
hed. In the �rst 
ase, theobje
tive bran
h state is marked as 
overed and in the se
ond as treated but un
overed.61



4 Software Test Data Generation by means of EDAs
x←Translate individual xi to inputExe
ute instrumented program with xRepeat for ea
h un
overed bran
h b

f i
b ← fb(x)

fw
b ← Find the �tness of the worst individual xw in the set asso
iated with bIf f i

b < fw
bSubstitute xw by xi in the set asso
iated with bIf f i

b = 0Mark b as 
overedelseMark b as untreatedIf b is the obje
tive
fitness ← f i

bReturn fitness Figure 4.1: Evaluation algorithm pseudo
ode.Any EDA approa
h 
an be applied. However, assumming the use of the relations betweenvariables bene�ts the sear
h, multivariate EDAs seem to be more adequate for this prob-lem than simpler alternatives, as the existen
e of variable interdependen
ies appears tobe evident. Often, input parameters a
t over program variables whi
h, in turn, intera
ta�e
ting other variables and so on, leading to non-linear 
ombinations that determinethe bran
hes followed by the 
ontrol �ow.As 
an be noted, at ea
h generation, a probability distribution is learnt and used togenerate new individuals. In other words, the input domain is sampled a

ording to aprobability distribution. Therefore, the EDA follows a random test data 
reation strategyinside ea
h generation. On the other hand, the probability distribution is obtained fromthe sele
ted individuals, and these are 
hosen with respe
t to their �tness, i.e. a dynami
test data generation ta
ti
 is adopted. Consequently, this approa
h 
an be des
ribedas a hybrid between random and dynami
 test data generation. This allows for theoutlining of the behavior of the referred method, from the testing perspe
tive, as arandom generation of inputs whi
h, at ea
h generation, updates its distribution on thebasis of the ones already generated.4.3.2 Sele
tion PhaseA 
ontrol �ow graph is used to identify the bran
hes at the initialization stage and tohelp de
iding whi
h bran
h to sele
t next during the pro
ess. Re
all that, in a 
ontrol�ow graph, bran
hes 
ome de�ned by every ar
 (x, y) with outdegree(x) > 1.62



4 Software Test Data Generation by means of EDAs
f best ← ∞
objective ← ∅
tie← falseRepeat for ea
h untreated bran
h b

f b ←Average �tness of the individuals asso
iated with bIf f b < f best

f best ← f b

objective ← b
tie← falseIf f b = f best

tie← trueIf tie = true

objective←Breadth �rst sear
h between bran
hes with f best valueReturn objectiveFigure 4.2: Sele
tion algorithm pseudo
ode.Candidate obje
tive bran
hes are those in the untreated state. The bran
h obje
tivewill be the one for whi
h the mean �tness of its asso
iated individuals is the best. In
ase there is a tie, then a breadth �rst sear
h is 
arried out, i.e. from the tied bran
hes,the one with the lowest level in the 
ontrol �ow graph is sele
ted. A pseudo
ode of thesele
tion algorithm 
an be observed in Figure 4.2.The underlying idea is fa
ing the optimization problem with the most promising popu-lation seed available at that moment. As one 
an see, it is possible for a bran
h alreadytreated to be a 
andidate obje
tive on
e again if, during optimization, a new individualis introdu
ed in its set. The reason for this is that the mean �tness in the set is betterthan in the previous optimization pro
ess and 
ould result in a promising populationseed.4.4 An Exe
ution ExampleAs an illustration of the developed approa
h, some of the steps of a hypotheti
al systemexe
ution will be explained. The example fun
tion used in the previous 
hapter will beemployed on
e again. Re
all that the input of this fun
tion 
onsists of three integer-valued parameters. For the sake of 
larity, Figure 4.3 presents again the fun
tion andthe elements to be indu
ed from it.First of all, the 
ontrol �ow graph is obtained and an instrumented version of the program
onstru
ted; both are shown in Figure 4.3.63



4 Software Test Data Generation by means of EDAs

7         printf("integer solution: %d",x);

         int quad (int a, int b, int c)
1      {
          double d=0, x=0;
          if (a!=0)
2         if ((b*b)−(4*a*c)<0)
3          x=0;
4         else {
            d=(b*b)−(4*a*c);

5        else
           x=(−c)/b;
6        if ((a*x*x+b*x+c)==0)

8        else
           printf("no integer solution");
9       }

            x=(−b+(int)sqrt(d))/(2*a); }

1

4

6

7 8

5

2

3

9

        printf("integer solution: %d",x); }

        probe_dist(0,((b*b)−(4*a*c)),0);

       probe_dist(0,(a*x*x+b*x+c),0);

        printf("no integer solution"); }

      int quad_instr (int a, int b, int c)
1     {
       probe_init();
       probe_out(1);
       probe_dist(0,a,0);
       double d=0, x=0;
       if (a!=0) {
2       probe_out(2);

        if ((b*b)−(4*a*c)<0) {
3        probe_out(3);
         x=0; }
4       else {
         probe_out(4);
         d=(b*b)−(4*a*c);
         x=(−b+(int)sqrt(d))/(2*a); }
5      else {
        probe_out(5);
        x=(−c)/b; }
6      probe_out(6);

       if ((a*x*x+b*x+c)==0) {
7       probe_out(7);

8      else {
        probe_out(8);

9      probe_out(9);
      }

1
2 1
4 276
5
7

10
9 5

Figure 4.3: Example of sour
e 
ode, 
ontrol �ow graph, instrumented version, and outputinformation.
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4 Software Test Data Generation by means of EDAsAfter an exe
ution of the instrumented 
ode, an output �le 
ontains, at ea
h line, thetraversed basi
 blo
k and, if the previous blo
k had a 
onditional statement, the valuesof the (sub)expression(s) in it 
al
ulated a

ording to equation 3.1. As seen in the �gure,the instrumentation uses three arti�
ially 
reated probe fun
tions. At the beginning,the 
all to probe_init initialises the output �le and a required memory ve
tor. Theprobe_dist fun
tion 
al
ulates an appropriate distan
e measurement between the se
ondand third parameters and stores the result in the position of the memory ve
tor given bythe �rst parameter. In this example, the distan
e will always be the absolute value of thedi�eren
e between the parameters, as they are numeri
al. The probe_out fun
tion writes,in the output �le, a new line 
ontaining the basi
 blo
k number given as a parameterand, if any, every (sub)expression value in the memory ve
tor. An example of an output�le is also presented in Figure 4.3.In the system startup, program bran
hes are dete
ted from the 
ontrol �ow graph andbound with a population of individuals 
reated by sampling a uniform distribution.On
e this is done, the test 
ase generation iterative pro
ess begins. Assuming that thebran
h de�ned by ar
 (2, 3) is sele
ted as the obje
tive in a round, an EDA will pursueits 
overage. Following equation 3.1, with K = 1, the obje
tive fun
tion is
f(x) =







M if blo
k 2 not rea
hed
|(b2 − 4 · a · c)− 0|+ 1 if blo
k 2 rea
hed and blo
k 3 not rea
hed
0 otherwisewhere x = (a, b, c) and M is the highest 
omputable value.Representing ea
h integer-valued parameter with 16 bits, an individual will be a 0-1 stringof length 48. For its evaluation, this string is translated into a program input whi
h willbe given to the instrumented program for exe
ution. Supposing that the input obtainedis (1, 20, 31), then the instrumentation results are those of Figure 4.3. The �tness of theindividual will be the value of f for the input. As the exer
ised bran
h was (2, 4), in theline of blo
k 4 the result of |(b2 − 4 · a · c)− 0| is given, so f(1, 20, 31) = 276 + 1 = 277.Although the individual is already evaluated, the performed exe
ution is not dis
ardedand the output �le is used to 
al
ulate the fun
tion value for every bran
h di�erentfrom the obje
tive. If the value improves the �tness of the worst individual in the setasso
iated with a bran
h, then this worst individual is repla
ed by the a
tual one andthe bran
h is marked as untreated.The EDA will run for bran
h (2, 3) until a maximum number of generations is rea
hedor the minimum of f is found. In the �rst 
ase, the bran
h is marked as treated butun
overed and in the latter as 
overed. On
e the EDA �nishes, another iteration of theoverall pro
ess begins.
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4 Software Test Data Generation by means of EDAs4.5 Experimental EvaluationIn order to observe how this approa
h performs in pra
ti
e, several experiments were
arried out. A handful of EDAs overviewed in Se
tion 2.3 are 
onsidered to generatetest inputs for a number of programs extra
ted from the literature [143; 235; 248℄. Thepurpose of the evaluation is twofold: analyzing the performan
e of the approa
h withdi�erent EDAs and 
omparing their results with those attained by other alternatives.4.5.1 Experimental SettingThe experiments involved seven 
lassi
al programs whi
h are 
ommonly used for vali-dation in the �eld. Although most of these programs implement relatively simple al-gorithms, their sour
e 
odes in
lude a number of 
hallenging bran
hes for a test datagenerator. Anyhow, di�
ultness of bran
h 
overage depends on the sour
e 
ode, sothe implementations used here were those employed for experimentation in other works.Programs are outlined next.ClassifyTriangleThis is a popular program in software testing experimentation. An input is 
omposedof three numeri
al parameters, ea
h representing the length of a segment. The aim isto dete
t the triangle type, if any, asso
iated with the input. Four di�erent versionswere used. The Triangle1 program [248℄ has three integers as input parameters, whi
hin the experiments took values in the interval [−16384, 16383]. Triangle2 [248℄ is thesame as Triangle1 with �oating point parameters instead; the interval for ea
h was
[−98304, 98304]. On the other hand, Triangle3 [143℄ is a new implementation where theparameters are integers for whi
h the interval [−512, 511] was 
hosen. Finally, Triangle4[235℄ 
onstitutes a distin
t implementation on
e again; the sele
ted interval for its integer-valued parameters was [−512, 511].AtofGiven a string of 
hara
ters as input, Atof [248℄ transforms it into a �oating point numberif possible. For the experiments, the input string length was 10 
hara
ters 
odi�ed with7 bits ea
h (the ASCII 
hara
ter set).
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4 Software Test Data Generation by means of EDAsRemainderThis fun
tion [235℄ 
al
ulates the remainder of the division of two integers. There-fore, an input is 
omposed of two interger-valued parameters for whi
h the interval
[−32768, 32767] was 
hosen during experimentation.Complexbran
hIn this 
ase, there is no spe
i�
 fun
tionality as it is a fun
tion arti�
ially 
reated fortesting purposes [248℄. Its main 
hara
teristi
 is the existen
e of several hard to 
overbran
hes in the 
ode. Six integer-valued parameters form an input taking values in theinterval [−512, 511].In order to have an idea about the programs 
hara
teristi
s, Table 4.1 re�e
ts the valuesfor several stru
tural 
omplexity measurements [228℄. The bran
h number 
olumn showsthe number of bran
hes, i.e. the number of optimization problems to be solved. Bran
hnesting depth points out the maximum nesting level for the bran
hes in the 
ode, that is,the maximum number of 
onditional statements that must be adequately ful�lled to 
overa bran
h. In Myers interval, the lower bound is the number of 
onditional statementsplus 1 and the upper bound is the number of expressions of 
onditional statements plus1, thus referring to the 
ompound expressions.These measurements give a 
lue about the intri
a
y level of the stru
ture of the sour
e
ode. However, 
are must be taken of misinterpreting them as they do not ne
essarilyrepresent the 
omplexity of the program with regard to bran
h 
overage. A

ording tothe approa
h here exposed, the 
omplexity of an obje
tive bran
h attainment will bede�ned by two sour
es:
• the di�
ulty in rea
hing the asso
iated 
onditional statement; if it is hard, thenmany individuals will take the value M as �tness and the lands
ape will be plateaushaped,
• the fun
tion determined by the distan
e when the 
onditional statement is a
hieved.The experiments involved several EDAs des
ribed in Se
tion 2.3, namely: UMDA, PBIL,MIMIC, TREE, EBNAK2+pen and EBNABIC. That is, two EDAs from ea
h of the threetypes des
ribed in Se
tion 2.3 were 
hosen. For the PBIL algorithm, the value of the αparameter was set at 0.5. For ea
h EDA and ea
h program, four di�erent population sizesas well as four values for the maximum number of generations were 
onsidered. Noti
ethat the evaluation of an individual implies the exe
ution of a program, whi
h may turn
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4 Software Test Data Generation by means of EDAsProgram name Bran
h number Bran
h nesting depth Myers intervalTriangle1 26 7 (14 : 21)Triangle2 26 7 (14 : 21)Triangle3 20 6 (11 : 18)Triangle4 26 12 (14 : 14)Atof 30 13 (16 : 41)Remainder 18 5 (10 : 10)Complexbran
h 22 5 (11 : 23)Table 4.1: Chara
teristi
s of experimental programs.max. generationspop.size 50 100UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 3965 3205 3625 2945 3700 3960 5145 5480 4460 5035 7545 666596.92 98.08 97.69 98.46 96.92 96.15∗ 97.69 97.31 98.08 97.31 96.54 96.92100 6900 6530 5210 4360 6330 5540 6380 7920 7060 7100 13110 1008097.31 98.08 98.46 99.23 97.69 98.08 99.23 98.85 98.85 98.46 96.15∗ 97.31200 10900 13120 10300 8660 10160 6120 10300 13000 10720 8860 7120 962098.46 98.08 99.62 99.62 98.08 99.62 99.62 100 99.62 100 100 99.23400 21640 25320 18120 16600 13480 12000 21160 30560 19400 14520 13360 1484099.62 99.23 99.23 99.62 100 99.62 100 99.62 100 100 100 99.62200 300UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 6535 8250 7055 7755 11690 10765 8005 14135 5675 10475 19090 2211598.46 97.69 99.23 98.08 96.92 96.92 98.46 96.92 99.62 97.69 96.15∗ 96.15∗100 16050 10580 6150 8120 15430 16560 8000 13790 11130 15530 21340 2072097.69 99.23 100 99.23 98.08 97.31 99.62 98.85 99.23 98.46 97.69 98.08200 16640 12840 16640 8900 14200 17200 14680 20380 8820 14260 13160 656099.23 100 99.23 100 99.23 98.85 99.62 99.62 100 99.62 99.62 100400 21080 30440 20840 16320 21720 17960 31960 27960 21400 17680 25320 22920100 100 100 100 99.62 99.62 99.62 100 100 100 99.62 99.62Table 4.2: Results for Triangle1.the test data generation in a 
omputationally expensive pro
ess. Thus, we restri
ted toten exe
utions of the generator for ea
h 
ombination of the parameters.Within an EDA, at ea
h generation, half of the population was sele
ted a

ording to arank-based strategy. New individuals were simulated from the learnt probability distri-bution by means of Probabilisti
 Logi
 Sampling [104℄, and the population was 
reatedin an elitist way.In Tables 4.2 to 4.8, the results from the experiments are shown. In ea
h 
ell, the averageresults from the ten exe
utions are provided. The �rst row provides the average numberof generated test inputs during the pro
ess and the following is the average 
overagemeasurement. If the highest 
overage a
hieved in the ten exe
utions is not 100%, thenthis value is labelled with an asterisk.
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4 Software Test Data Generation by means of EDAs
max. generationspop.size 50 100UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 3315 4215 3225 4920 5145 4305 7365 7620 5565 7385 6215 888596.92 96.54 98.08 97.69 95.77 96.15 96.92 97.31 98.46 96.15 97.69 98.85100 7330 6330 5730 4420 9860 9020 9120 9980 10430 6980 13150 1812097.69 98.46 97.69 98.46 96.54 95.39 98.46 98.08 98.08 98.85 97.31 96.54200 8840 9780 7360 8220 9660 8320 10940 6200 16300 19920 19980 840098.85 98.85 99.23 99.23 97.69 98.85 99.23 100 98.85 97.69 97.69 99.23400 12440 15720 16520 11680 11760 10920 211160 15160 13680 18160 16680 9360100 100 99.62 99.62 99.23 100 100 100 99.62 99.23 99.23 100200 300UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 4085 7960 8555 10225 13825 17230 149755 25495 12795 10715 11385 1677099.23 99.23 98.85 98.85 98.85 97.69 97.69 96.92 98.08 98.85 99.23 99.62100 11080 14220 11510 16790 20360 21520 15470 21210 20600 17820 33980 2315098.46 98.46 98.85 98.46 98.46 98.08 99.23 98.08 98.85 99.23 98.85 98.46200 14920 23280 17960 17500 20820 12960 29060 13820 35100 32800 49000 23940100 99.23 99.23 99.62 99.23 99.23 98.85 99.62 98.46 98.85 97.69 99.23400 10640 14000 33400 12920 33960 26080 16280 12880 10800 21840 55320 22560100 100 99.85 100 99.23 99.62 100 100 100 99.62 98.85 99.62Table 4.3: Results for Triangle2.
max. generationspop. size 50 100UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 3150 2950 2960 3700 4485 4450 3090 3570 3780 4435 4990 767598 98 99 96 94 94.5 99.5 98.5 98 97.5 97.5 95.5100 5440 5780 5990 3820 6930 5640 4790 5780 6740 3880 7240 473098.5 97.5 98 99.5 95 97.5 100 100 99 100 98 99200 10500 9600 7820 8160 8300 8520 9300 11080 10340 8920 12940 1056099 97.5 100 99.5 98 99 100 100 99.5 100 98 100400 17600 21960 18840 18520 15480 16240 19400 27200 22320 15960 15320 1532098.5 95.5 99.5 99.5 100 99.5 100 100 99.5 100 100 100200 300UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 4540 4700 5965 4965 9585 11500 3875 6750 4805 6580 15920 1640599 99 99 99 98 98.5 100 98.5 99.5 99.5 98.5 98100 5990 6220 7460 5330 7930 8010 6320 9240 8990 4080 12650 6660100 100 99.5 100 99.5 99.5 100 99.5 99.5 100 99 100200 10160 13960 10600 8600 13920 21380 10640 10420 8460 8640 13500 7080100 100 100 100 99 98.5 100 100 100 100 100 100400 18680 25000 21280 15440 21000 16440 20800 29600 21080 15200 21080 15800100 100 100 100 100 100 100 100 100 100 100 100Table 4.4: Results for Triangle3.
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4 Software Test Data Generation by means of EDAs
max. generationspop. size 50 100UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 21975 20500 26205 10535 12630 12530 30700 26355 28955 18460 24300 2414588.85∗ 89.62∗ 88.85∗ 89.23∗ 88.85∗ 85.39∗ 89.23∗ 88.08∗ 90.39∗ 89.62∗ 86.15∗ 88.08∗100 47600 48870 45870 24520 21140 16970 55660 48190 51010 30980 36930 4063090.77∗ 93.08∗ 93.46∗ 93.46 90.39∗ 90.77∗ 91.54 96.15 93.85 94.23 90∗ 90∗200 69820 96400 94980 37280 23500 17700 106960 99340 81320 31020 50560 2806097.31 98.08 94.23 97.69 95.39 96.92 96.54 96.54 96.92 99.23 93.46 97.69400 128120 119120 105400 43160 27960 22720 154000 158520 157480 45720 22760 4824096.54 96.92 97.31 99.62 99.23 100 98.08 98.08 98.46 100 100 98.46200 300UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 50030 49755 43105 35835 49445 42035 53630 57515 47260 47815 67930 7261089.62∗ 87.69∗ 91.15∗ 91.15∗ 86.92∗ 86.92∗ 93.46 91.15∗ 93.08∗ 90.77∗ 87.69∗ 86.92∗100 84000 77980 80290 51270 64230 68200 114520 113360 79920 55230 98600 11855093.08 95 91.92 93.08∗ 90.39∗ 90.39∗ 92.69 92.31∗ 93.46 94.23∗ 90.77∗ 89.23∗200 92220 107560 130800 43780 73680 67100 180200 151800 133480 52620 138280 13252097.69 98.46 95.39 98.46 93.85 95.77 96.15 97.31 96.92 98.46 93.85 93.85∗400 147000 122040 168960 60840 50200 34560 225800 174880 141920 60800 86080 2408099.23 99.62 98.08 99.23 98.85 100 100 98.85 99.23 100 98.46 100Table 4.5: Results for Triangle4.
max. generationspop. size 50 100UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 13330 12675 13525 14350 6600 6555 9640 34050 12795 32230 7685 885087.33 87 89.33 87.33 97 98.33 98.33 81.33∗ 97 83.67 100 98100 28850 17740 28310 30080 20380 13840 36670 37050 18090 40360 21970 2077087 94.67 86.67 87 95 97.67 94.67 91.67 100 92 97 98200 73780 46180 63140 62760 59020 72000 139280 43400 92780 119920 50460 5482083 92.67 84.67 87 88.33 84.33 83 98.67 91.33 88.33 96.33 96400 165400 164920 148760 157640 150720 131320 193720 125040 146160 150480 158040 19656080.67∗ 88 88 87.33 80.67∗ 91.33 94 97 92.67 95 93.67 94.33200 300UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 9905 41790 9125 15665 11850 11015 17125 60995 13350 34315 14190 9505100 88.67 99.67 99.33 99 99.67 99.33 88 100 96.67 99 100100 31990 32340 22660 54370 28310 27800 32780 67940 30250 59550 27560 3138098.67 97.67 100 94 98.67 99 99.67 94∗ 100 99.33 99.33 99.33200 79920 89280 51400 104020 74760 68140 66100 119500 74020 115880 86260 6588098.33 95 100 96.67 97 97.67 99.33 94.67 99 98 98.67 98.67400 150520 105560 214480 259400 160160 147320 179920 180280 203200 203480 187520 22168098.67 99 96 95.33 98.33 98.67 98 98 100 98.67 98.67 97.33Table 4.6: Results for Atof.
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4 Software Test Data Generation by means of EDAs
max. generationspop. size 50 100UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 2525 3275 2560 2360 3235 2370 6870 5985 4570 4745 6010 551095.56 94.44 95.56 96.11 93.89 96.67 92.78∗ 93.89 95.56 95.56 93.89 94.44100 5310 6700 6310 4810 5130 5790 8410 14620 11690 7010 6260 786095 93.89 93.89 95.56 95.56 94.44 96.11 92.22 93.89 96.67 97.22 96.11200 14140 13360 11340 4240 4920 6000 20600 20180 25500 12140 15920 236092.78 93.89 94.44 98.89 98.33 97.78 95 95 93.33 97.22 96.11 100400 22520 28280 20640 10160 8200 5840 46640 43000 39000 15680 4200 1108095 93.89 95 98.33 98.89 99.44 93.89 94.44 95 98.33 100 98.89200 300UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 12460 9830 13350 10295 6700 10475 12715 18555 18410 12490 17025 1699593.33 95 92.78 95 96.67 94.44 95.56 93.89 93.33 95.56 94.44 93.89100 15410 17370 20890 20730 24760 16870 48440 31430 22270 13110 30850 2485096.11 95.56 94.44 94.44 93.33 96.67 91.11∗ 94.44 96.11 97.78 95 95.56200 26820 41920 26000 14360 18040 29540 73320 50860 49820 31820 25520 1974096.67 94.44 96.67 98.33 97.78 96.11 93.33 95.56 95.56 97.22 97.78 98.33400 83760 62440 74600 19160 4000 3800 99640 136120 99240 15920 3920 432094.44 96.11 95 98.89 100 100 95.56 93.89 95.56 99.44 100 100Table 4.7: Results for Remainder.
max. generationspop. size 50 100UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 8030 7145 7765 6885 6855 6710 10570 12085 9845 9515 8555 1014093.18 94.09 93.18∗ 94.55 92.73 92.27 95.46 95.46 96.82 95.46 96.36 95.46100 12150 13570 13690 11490 10440 10320 14090 16070 15010 16510 11060 1312096.36 95 95.46 95 95 95.91 97.27 99.09 97.27 95.91 99.09 99.09200 20600 19920 21500 18100 13640 14060 24780 20340 18000 21800 18800 1838097.73 96.82 95.91 97.73 97.27 97.73 96.82 98.64 99.09 97.73 98.18 98.64400 24560 18680 24600 22200 23840 23360 27560 25240 27960 22960 22080 2424098.18 99.55 98.18 99.55 97.27 97.27 99.09 99.09 100 100 100 99.55200 300UMDA PBIL MIMIC TREE BIC K2 UMDA PBIL MIMIC TREE BIC K250 19875 17815 15480 17425 9320 10390 12275 22855 18760 18540 15510 1291596.82 95.91 98.18 96.82 99.09 97.27 98.64 95 98.18 97.27 98.64 99.09100 29050 20540 20070 16360 10860 11930 20920 22350 17130 21360 19400 1727098.18 97.73 98.64 98.18 99.55 100 99.55 98.64 100 100 99.09 100200 26200 21340 30300 22740 20780 21720 22440 30300 20580 25820 26200 3034099.55 100 99.09 100 99.55 99.09 100 100 100 100 100 100400 24040 25560 34360 39120 33880 31520 31320 42640 23960 27800 30400 33920100 100 100 100 100 100 100 99.55 100 100 100 100Table 4.8: Results for Complexbran
h.
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4 Software Test Data Generation by means of EDAs4.5.2 EDAs Performan
eResults presented by Tables 4.2 to 4.8 reveal that in 94% of the 
ases the average 
overagesurpasses 90%, and if the population is big enough, 100% is rea
hed for every program.Although the tables do not show this, when the highest a
hieved 
overage is not 100%(asterisk values) then the best exe
ution obtained a value higher than 90% in all 
asesex
ept three from the Triangle4 program, whi
h rea
hed more than 88%.The most di�
ult programs for the test 
ase generator seem to be Triangle4 and Atof.Table 4.1 reveals that Triangle4 has no 
ompound expression in its 
onditional state-ments although the nesting depth is one of the largest. In fa
t, several of the expressionsare of the form A = B, whi
h are usually the most di�
ult ones to ful�ll. With regardto the Atof program, the nesting depth is the highest one and three-quarters of theexpressions are 
ompound. The 
omparison operator in many of the subexpressions arealso equalities.In order to observe the behavior of the obje
tive sele
tion phase in the generator, for ea
hprogram, the number of times the sear
h for an obje
tive is repeated was re
orded duringthe exe
utions. The average is zero or almost zero for all the programs ex
ept Triangle4and Atof. In these two, Triangle4 rea
hes higher values, with 7 as the maximum, andin Atof, the highest value is 1.8. In both 
ases, this value de
reases as the maximumnumber of generations in
reases. In fa
t, in Triangle4 it is near zero in most of the
ases for 300 generations, and in Atof the value is zero or near zero for 100, 200 and300 generations. Thus, a

ording to these results and 
onsidering the set of individualsasso
iated with a given obje
tive, it seems that the number of times that an individualthat improves the �tness of the set is found, in
reases with the program 
omplexity forbran
h 
overage. Therefore, the number of optimization problems being solved duringthe pro
ess and, 
onsequently, the number of generated inputs, be
omes higher.Regarding the optimization phase in the test 
ase generator, Tables 4.2 to 4.8 also provideinteresting information 
on
erning the di�eren
es between EDAs. The 
overage value isa main gauge of the performan
e of a test data generator. However, the number ofinputs obtained re�e
ts the e�ort made during the pro
ess. Therefore, it is importantfor a generator to obtain a 
overage value with the lowest 
ost, that is, produ
ing as fewinputs as possible. This implies that, given two generators a
hieving the same 
overage,the one yielding the fewest inputs is preferred. So, 
onsidering full 
overage a mandatoryrequirement, multivariate EDAs o�er the best results as they 
reate the lowest or se
ondlowest number of inputs in all the programs ex
ept in Triangle3. Taking the ratiobetween generated inputs and a
hieved 
overage into a

ount, the best values are sharedby bivariate and multivariate EDAs. Pre
isely, EBNAK2+pen has the best ratio in threeof the programs, and TREE and MIMIC in two of the programs ea
h. These best ratiosbelong to the 
ases of 50 individuals and 50 generations, with the ex
eption of Remainder,whi
h obtained the best ratio with 200 individuals and 100 generations.72



4 Software Test Data Generation by means of EDAsProgram name UMDA PBIL MIMIC TREE BIC K2Triangle1 32 39 27 21 30 25Triangle2 17 18 19 20 20 17Triangle3 19 27 20 16 24 19Triangle4 32 31 31 19 20 20Atof 20 24 18 26 16 16Remainder 25 27 25 18 17 16Complexbran
h 19 20 19 17 16 16Total 164 186 159 137 143 129Table 4.9: Rank of EDAs with regard to the number of generated inputs.In general, EBNAs obtain the worst results when the population is small, in whi
h 
aseunivariate EDAs be
ome 
ompetitive. However, as population size grows, multivari-ate EDAs improve their average 
overage and, when 100% is rea
hed, the number ofgenerated inputs is usually lower than in the rest of EDAs. This indi
ates that, whenadequate parameter values are met, EBNAs obtain the optimum in fewer generationsthan the other alternatives. These results reinfor
e the suggestion made in Se
tion 4.3.1about the adequa
y of multivariate EDAs when dealing with this problem.In order to statisti
ally validate these 
on
epts, two rankings based on hypothesis testswere 
arried out, one over the number of generated inputs and the other over the 
overagemeasurement. For ea
h program and for ea
h value of population size and maximumnumber of generations, EDAs were ranked as follows. First, EDAs are ordered a

ordingto their average value in the result being 
onsidered, i.e. number of generated inputs(in
reasing order) or 
overage (de
reasing order). If a tie o

urs, the involved EDAs areordered by their varian
e. Then, following the order obtained, several Mann-Whitneytests are performed, ea
h of whi
h designates a rank value to an EDA. The �rst samplein the test is formed by the data from the i-th EDA in the order, and the se
ond sampleis the data from the (i + 1)-th EDA. If the test �nds signi�
ative di�eren
es at a 0.05
on�den
e level, then the rank value of the i-th EDA plus 1 is given to the (i + 1)-thEDA. Otherwise, this EDA is designated with the same rank value as the i-th EDA andthe �rst sample of the next test is extended with the data from the (i+1)-th EDA. On
ea rank is obtained for all the di�erent 
ombinations of population size and maximumnumber of generations, the sum of the rank values of ea
h EDA is 
al
ulated.Tables 4.9 and 4.10 show the ranks for the number of generated inputs and 
overagemeasurement respe
tively. The last row of ea
h table provides, for ea
h EDA, the sum ofthe ranks in all the programs. The best values are marked in bold. As 
an be observed,with regard to the number of inputs, multivariate EDAs take a larger number of thebest values than do other types of EDAs. Considering the last row, the best EDA is73



4 Software Test Data Generation by means of EDAsProgram name UMDA PBIL MIMIC TREE BIC K2Triangle1 16 17 16 16 18 18Triangle2 16 16 16 17 17 16Triangle3 16 17 16 16 20 16Triangle4 20 19 20 16 26 26Atof 22 24 18 22 19 17Remainder 24 23 22 17 17 16Complexbran
h 17 18 16 18 16 16Total 131 134 124 122 133 125Table 4.10: Rank of EDAs with regard to the 
overage measurement.EBNAK2+pen, followed by TREE and EBNABIC. The PBIL algorithm is the worst EDA,although it must be noted that its results heavily depend on the α parameter, as wasshown in [90℄. Taking the 
overage measurement into a

ount, the di�eren
es are notso 
lear. The total rank in the last row reveals that the values of the �rst three EDAsare quite similar and that there is a 12-unit di�eren
e between the �rst and the lastEDA. In this 
ase, TREE o�ers the lowest value, MIMIC is the se
ond best EDA andEBNAK2+pen, the third. Thus, it 
an be 
on
luded that the best overall EDAs in theexperiments, with regard to the 
overage and generated inputs results, are TREE andEBNAK2+pen.4.5.3 Comparison with Other WorksThe programs here 
onsidered for experimentation were extra
ted from previous works inthe literature: Triangle1, Triangle2 Atof and Complexbran
h from [248℄, Triangle3from [143℄, and Triangle4 and Remainder from [235℄. All these works use a GA as theoptimization te
hnique. Next, the results obtained by su
h GAs based approa
hes arefa
ed to those of the EDAs based test data generator.When 
omparing the results from Tables 4.2 to 4.8 with those of their respe
tive works, itmust be noted that the plain form of EDAs was applied in the experiments, while in thereferred works, sophisti
ated forms of GAs are used. In [248℄, a 
oarse grained parallelGA is 
hosen, in [235℄, di�erent geneti
 operators and parameters are 
onsidered, and in[143℄, a simple GA and a di�erential GA are employed.Besides the Evolutionary Algorithm, two other aspe
ts must be kept in mind during the
omparison. On the one hand, the �tness fun
tion in the EDA based approa
h di�ersfrom the one in two of the works. In [248℄, �tness is 
al
ulated from a fun
tion of thetype des
ribed in equation 3.2. In the 
ase of Sthamer [235℄, a fun
tion of the type in74



4 Software Test Data Generation by means of EDAsApproa
h Triangle1 Triangle2 Triangle3 Triangle4 Atof Remainder Complexrbran
hOther work 16915 42086 - 27876 35263 644 28978EDA based 6150 6200 3875 22720 7685 2360 11930Proportion 36% 15% - 82% 22% 366% 41%Table 4.11: Number of inputs generated by the EDA based approa
h and other ap-proa
hes.equation 3.1 is presented taking two distan
es for ea
h program into a

ount: one is theabsolute value of the di�eren
e between the numeri
al representations of the operands(like in here), and the other is the Hamming distan
e between the binary representations.On the other hand, the interval of values taken by the input parameters also has to be
onsidered. Neither in [248℄ nor in [143℄ are the intervals used in the experiments 
lear.In [235℄, for ea
h program, the results with several intervals are presented.Fixing the 
overage at 100% and taking the best results rea
hing this value, Table 4.11shows the number of inputs generated by the EDA based approa
h and the other works.The last row provides the per
entage of inputs of the EDA based approa
h with regardto the other work.In the 
ase of Triangle3 no value is in
luded, sin
e the number of generated inputs isnot revealed in the results presented in [143℄, and the average 
overage attained in the�ve performed exe
utions is 93%. However, it must be taken into a

ount that this workdeals with 
ondition/de
ision 
overage, whi
h is a 
riterion subsuming bran
h 
overage.Apropos of [248℄, 
onsidering the input parameter intervals used in the experiments, theEDA based approa
h generated less than half the inputs in this other work for all theprograms.The best results in [235℄ for the Triangle4 were obtained with the [−100, 100] parameterinterval for the inputs and the distan
e based on the absolute value of di�eren
es. Re-garding Remainder, however, the outstanding results 
orresponded to the [−20000, 20000]parameter interval and the Hamming distan
e, Therefore, the values in Table 4.11 
orre-spond to these 
on�gurations. For Triangle4, aside from the improvement shown in thetable, the number of inputs generated by the EDA based approa
h is 88% of the inputsin [235℄ for the Hamming distan
e. However, in the Remainder program, the results arenot outperformed, neither for the Hamming distan
e (as the table shows), nor for thedistan
e based on the absolute value of di�eren
es. In this last distan
e, the number ofinputs generated by the EDA based approa
h was 250% of the inputs in the work bySthamer.The results of these experiments 
onform, in general terms, to those in the appli
ation ofEDAs to other problems [112℄. Although in EDAs the quality of the solution is similarto the one a
hieved by GAs, the number of generations required and, hen
e, individualsgenerated is remarkably lower. 75



4 Software Test Data Generation by means of EDAs4.6 SummaryIn this 
hapter, we have des
ribed an approa
h for the appli
ation of EDAs to the testdata generation problem in the 
ontext of bran
h 
overage. Several EDAs 
omprisingdi�erent orders of dependen
ies in the probability distribution to be learnt were evaluatedempiri
ally.Analyzing the results obtained from the experiments, a general 
on
lusion 
an be drawn:EDAs prove to be a powerful option for ta
kling this problem. The 
overage attainedwas 100% in all the experimental programs and the number of inputs generated was sig-ni�
antly lower than in other works, ex
epting a few 
ases. Among the di�erent EDAs,algorithms using nontrivial probabilisti
 models seem to be a promising alternative. Morepre
isely, TREE and EBNAK2+pen have shown the best overall performan
e. The 
apa-bility of these EDAs for expressing the dependen
ies between problem variables 
ould bea key point, as su
h dependen
ies usually exist when trying to 
over a parti
ular bran
h.
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5 Software Test Data Generation bymeans of SSThe use of EDAs for test data generation in the previous 
hapter supports the appli
ationof other modern metaheuristi
s for solving this problem. While EDAs rely on a typi
allysto
hasti
 strategy, SS is 
on
eived as a more systemati
 optimization method. In this
hapter, the suitability of SS to generate tests inputs for bran
h 
overage is studied.Additionally, EDAs and SS are 
ombined in a 
ollaborative s
heme that aims at pro�ttingfrom the bene�ts of both methods.The 
hapter is arranged as follows. On
e motivated, the SS approa
h is des
ribed, to-gether with di�erent alternatives for using the improvement method in the SS algorithm.Then, the results of the 
ondu
ted experiments are analyzed. Appealing 
on
lusions onthe performan
e of the SS approa
h and the role of the improvement method in this 
on-text are obtained. In the se
ond half of the 
hapter, the 
ombination of EDAs and SS isexplained and evaluated through experiments. Finally, EDAs, SS and their 
ombinationare 
ompared to identify the best method.5.1 MotivationAs pointed out in Chapter 3, when dealing with the generation of a test input 
overing abran
h, the asso
iated sear
h spa
e is usually large and 
omplex. A well-known 
onje
turein Operations Resear
h is that an appropriate management of the diversi�
ation andintensi�
ation 
on
epts during the sear
h in su
h spa
es yields good solutions. Theseare the prin
iples on whi
h SS is based. This, together with the �exibility of the SSmethodology, make it worth of 
onsideration for solving the test data generation problem.In fa
t, SS has already been applied to several di�
ult optimization problems [33℄. Ithas been 
ompared with GAs in permutation problems [142℄, produ
ing high qualitysolutions in fewer evaluations than GAs. Moreover, in [127℄, Laguna and Martí presentedseveral SS designs to solve a set of nonlinear fun
tion minimization problems, obtainingen
ouraging results. Sin
e the test data generation 
an be ta
kled as the resolution of anumber of optimization problems, SS seems to be a promising te
hnique to be studied.
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5 Software Test Data Generation by means of SSIn the work by Laguna and Martí [127℄, however, no improvement method was employedin the algorithms proposed. Thus, in order to shed some light on the SS methodologyinternals, we investigate the in�uen
e of this optional 
omponent in our 
ontext.On the other hand, EDAs have been applied in the previous 
hapter with en
ouragingresults, so they 
onstitute an adequate ben
hmark for 
omparison. This represents anopportunity for fa
ing a sto
hasti
 optimization te
hnique, like EDAs are, with a moredeterministi
ally oriented method, namely SS, in the 
ontext of a real-world problem.Furthermore, EDAs be
ome a promising option from whi
h SS may bene�t in order toimprove its performan
e.So, the approa
h here exposed deals with inputs generation for bran
h 
overage makinguse of the previous optimization methods in two di�erent ways. Firstly, pure SS alter-natives are presented in order to evaluate their performan
e and 
ompare them with theEDAs based approa
h. Se
ondly, EDAs and SS are 
ombined in a 
ollaborative strategy.5.2 The SS Approa
hSimilarly to the EDAs test data generator, the SS alternative proposed here is based onthe general s
heme in Figure 3.5. In fa
t, the only algorithmi
al di�eren
e between bothapproa
hes 
on
erns the optimization step. Here, the optimization problem asso
iatedto the obje
tive bran
h is ta
kled by means of an SS algorithm, instead of by an EDA.An input is represented as in the EDA approa
h, that is, as a 0-1 string, and the obje
tivefun
tion value is obtained a

ording to equation 3.1 as well.The set of solutions asso
iated to an obje
tive bran
h, whi
h has the same size as the setof diverse solutions P , is overturned in P at the beginning of ea
h SS exe
ution. Thus, inpra
ti
e, the set of solutions 
an be viewed as a parti
ular initial P set for ea
h bran
h.At the test data generation pro
ess start-up, the set of solutions of ea
h bran
h b is
reated by introdu
ing distin
t solutions obtained via diversi�
ation and, if su
h is the
ase, via improvement. The evaluation of a solution is not only performed in relationto b, but for any other bran
h b′ with no 
ompletely 
onstru
ted set. If the evaluatedsolution outperforms the worst in the set of b′ and the solution is not in the set yet, thenit is introdu
ed. It is important to note that, in 
ase an improvement method is used,only the best solution found for b′ is 
onsidered for in
lusion in its set, thus avoidingthe introdu
tion of solutions 
oming from the same seed. When starting the 
reation ofthe set of solutions for b, a number of them may already be in the set. However, theyare not improved with regard to b be
ause they were found during the improvement ofanother bran
h, so the improvement method is applied to these solutions. Nonetheless,no matter how many solutions are already in the set, the in
lusion of half of them via
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5 Software Test Data Generation by means of SSdiversi�
ation (and improvement) is for
ed in order to guarantee a degree of diversity inthe set.As may be noti
ed, on
e the pro
ess start-up �nishes, every solution in the set of abran
h is improved with regard to it. In order to maintain this property during test datageneration, when a solution is evaluated and is to be in
luded in the set of solutions ofthe bran
h, the improvement method is applied before entering the set. This way, atevery moment the solutions in the set of a bran
h are improved with regard to it.The SS stopping 
riterion 
onsists of �nding the minimum (
overing the obje
tive bran
h)or rea
hing a maximum number of iterations. If the 
urrent iteration is not the last andno new solution was added to RefSet, a rebuilding step is 
arried out. To be pre
ise, anew set P is 
reated and the half worst solutions in RefSet is repla
ed by the solutionsin P that in
rease the most the diversity in RefSet. We measure the diversity of asolution x ∈ {0, 1}n as min{d(x,x′) | x′ is a solution in the 
urrent referen
e set}, where
d(x,x′) =

∑n
i=1 |xi − x′i|.In [127℄, none of the SS designs used by Laguna and Martí applied an improvementmethod, and this might be an important element during the sear
h. Thus, in the presentapproa
h, with the purpose of shedding some light on how the use of the improvementa�e
ts the optimization pro
ess, the following options are given:Improve After The 
lassi
al way of improving the solutions, that is, after diversi�
ationor 
ombination (Figure 2.8).Improve Before An alternative 
onsisting of using the improvement method just beforeentering RefSet. On
e a solution has been 
reated via diversi�
ation, it is in
ludedin P , and improvement is applied only if the solution is one of the b1 = |RefSet|/2high quality solutions used to 
onstru
t RefSet. The remaining b2 solutions of

RefSet are not improved sin
e they are assumed to be diverse solutions. Noti
ethat in the rebuilding step it is not ne
essary to improve the solutions from P . Onthe other hand, if a solution 
omes from the 
ombination method, improvement isperformed only if it is to enter RefSet.No Improvement In this 
ase no improvement is in
luded in the SS algorithm.Ex
epting those rea
hing the optimum, during an SS exe
ution a number of solutionsare obtained, improved and reje
ted if they do not gain entran
e to RefSet. Therefore,the idea behind the Improve Before alternative is to redu
e the number of generatedsolutions by restri
ting improvement to those entering RefSet. Taking su
h idea furtheryields then the No Improvement option.In order to 
omplete the SS design des
ription, the �ve methods needed to implementthe algorithm are explained next. 79



5 Software Test Data Generation by means of SS
1 0 1 | 0 1 1 | 1 1 0

1 1 1 | 0 1 1 | 0 1 0

1 0 1 | 0 0 1 | 0 1 0

1 0 1 | 0 1 1 | 0 0 0

1st
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4th

1 0 1 | 0 1 1 | 0 1 01 0 1 | 0 1 1 | 0 1 01 0 1 | 0 1 1 | 0 1 0

Figure 5.1: Example of lo
al sea
h improvement method.Diversi�
ation Generation MethodA simple implementation is adopted. Ea
h solution is randomly generated a

ording toa uniform distribution.Improvement MethodThe improvement method is a best �rst lo
al sear
h where the neighbors of a solution areto a Hamming distan
e of one. More pre
isely, the bit substrings 
odifying ea
h inputparameter are taken into a

ount to de�ne the order of evaluation of the neighbors. Fora solution di�ering from the previous in the i-th bit of the substring 
odifying the j-thinput parameter, the next neighbor to evaluate is obtained by 
hanging the value ofthe most signi�
ant bit, previously un
hanged, in the substring asso
iated with the nextparameter. To be exa
t, in the 
ase of a parameter 
odi�
ation where the most signi�
antbits are ordered from left to right, if the j-th parameter is not the last, the i-th bit of thesubstring belonging to the (j +1)-th parameter will be �ipped. Otherwise, the (i+1)-thbit of the substring of the �rst parameter is 
hanged.Figure 5.1 presents an example of the lo
al sear
h method. The solution to the leftis the initial solution 
odifying an input with three parameters; a verti
al line dividesthe substrings representing ea
h parameter. It is supposed that this initial solution wasobtained by 
hanging the signed bit. The neighbors 
onsidered in a hypotheti
al sear
hstep are shown to the right. The horizontal arrow indi
ates the assumed new best solution
hosen for the next step.Referen
e Set Update MethodThe referen
e set updating follows a stati
 update strategy. New solutions obtained via
ombination are pla
ed in a pool. On
e the pool is full, RefSet is formed by the highestquality solutions already in it and the pool.80



5 Software Test Data Generation by means of SSImprovement Triangle1 Triangle2 Triangle3 Triangle4 Atof Remainder Complexbran
hAfter 10356 28761 31534 32646 1520023 145 30835100 100 100 100 82.33 100 100Before 1575 2661 8325 10267 27087 240 9105100 98.46 99 100 67.33 100 93.18No Lo
al 2374 7561 3196 2549 27686 1235 502496.54 97.31 95 98.08 64.67 97.78 94.55Table 5.1: Experimental results of the SS approa
h.Subset Generation MethodAll two-solutions subsets are 
reated. Obviously, only the solution pairs not previouslygenerated are taken into a

ount.Solution Combination MethodFor ea
h pair of solutions, their input representations x ∈ Ω and x′ ∈ Ω are obtained,and four new solutions are 
reated from the following linear 
ombinations:
x1 = x + d (5.1)
x2 = x− d (5.2)
x3 = x′ + d (5.3)
x4 = x′ − d (5.4)where d = |x− x′|/2.5.3 Performan
e Evaluation of S
atter Sear
h DesignsIn order to observe how the SS approa
h performs in pra
ti
e, several experiments were
arried out. Test data was generated for all the programs used to evaluate the EDAsbased approa
h, taking the same intervals of values for ea
h input parameter (see Se
tion4.5.1).After preliminary experimentation, the maximum number of generations for the SS wasset at 10, the size of set P was 100 and the referen
e set size was 10. The resultsof the experiments for the three improvement strategies are shown in Table 5.1. Forea
h improvement strategy and ea
h program, the average values in ten exe
utions areprovided. The �rst row is the average number of generated test inputs during the pro
ess,and the following is the average 
overage measurement.It 
an be seen in Table 5.1 that when the 
lassi
al improvement strategy (Improve Af-ter) is adopted, the attained 
overage is equal or larger than in the two other 
ases.81



5 Software Test Data Generation by means of SSNonetheless, Improve Before o�ers good results, as it generates a 
onsiderably lowernumber of inputs (solutions) than Improve After while keeping the same or almost thesame 
overage, ex
epting Atof and Complexbran
h programs. On the other hand, in theNo Improvement option, 
overage is generally lower than in the two other strategies; infa
t, full 
overage is rea
hed for no program. Considering the number of inputs, as it
ould be expe
ted, No Improvement obtains in general a lower value than Improve After.However, this is not held with regard to Improve Before, whi
h generates less inputs thanNo Improvement in four programs.Statisti
al tests were 
ondu
ted to 
he
k whether signi�
ant di�eren
es exist amongthese results. Comparing Improve After and Improve Before, the Mann-Whitney testrevealed di�eren
es at a 0.05 
on�den
e interval for the 
overage in Triangle2, Atofand Complexbran
h, and for the number of inputs in all the programs. Fa
ing ImproveAfter with No Improvement, dissimilarities were stasti
ally signi�
ant for the 
overageand the number of inputs in every program. Finally, in Improve Before versus No Im-provement, di�eren
es were observed for the 
overage in all the programs but Triangle2and Complexbran
h, and for the number inputs in every 
ase but Triangle3 and Atof.Thus, these results indi
ate that, although the improvement method is an optional ele-ment of the SS methodology, its relevan
e is high. The la
k of improvement hinders theSS design from attaining the best performan
e. Indeed, the number of solutions an SSalgorithm generates during the optimization pro
ess depends to a great extent on theway improvement is applied. More pre
isely, in our 
ontext, the Improve After strategyattains the highest quality solutions, however, the less intensive Improve Before optionmay rea
h the optimum in some 
ases, generating less solutions. So, a

ording to theout
omes from the statisti
al tests, taking 
overage as a primary fa
tor and the numberof inputs as a se
ondary one, we may 
on
lude that Improve After obtains the best per-forman
e for Triangle2, Atof, Remainder and Complexbran
h, while Improve Before isthe best for Triangle1, Triangle3 and Triangle4.An interesting aspe
t whi
h may be useful when 
onsidering an SS algorithm is thein�uen
e of ea
h method during the sear
h. This 
an be seen in Figures 5.2 and 5.3 inthe 
ontext of test data generation.Figure 5.2 shows the 
overage attained by the SS methods for the Improve After, Im-prove Before and No Improvement strategies. Spe
i�
ally, the results of the diversi�-
ation (divers), improvement (improv) - if su
h is the 
ase - and 
ombination (
omb)methods are presented, together with the 
overage obtained when evaluating a solutionwith regard to other obje
tives (eval). In the Improve After alternative, almost all the
overage is rea
hed through improvement and evaluation of other obje
tives. However,in the Improve Before option, where improvement is not so intense, the 
overage of thelo
al sear
h de
reases and the weight of diversi�
ation in
reases. This also holds for NoImprovement, but 
ompletely eliminating the role of the lo
al sear
h.82
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5 Software Test Data Generation by means of SSApproa
h Triangle1 Triangle2 Triangle3 Triangle4 Atof Remainder Complexbran
h
SSbest 1575 28761 8325 10267 1520023 145 30835100 100 99 100 82.33 100 100
EDAbest 6150 6200 3875 22720 7685 2360 11930100 100 100 100 100 100 100Table 5.2: Results of the best SS and EDA approa
hes.On the other side, Figure 5.3 reveals the proportion of inputs generated by ea
h SSmethod. Noti
e that, in general and where applied, improvement generates most of thesolutions during the sear
h; this is espe
ially 
lear in the Improve After option. Aninteresting point is the e�
ien
y shown by diversi�
ation in the 
ase of Improve Beforeand No Improvement, sin
e it generates a relatively low amount of inputs while o�eringmost of the 
overage. Indeed, the opposite happens for the 
ombination method in NoImprovement, whi
h generates almost every input and 
ontributes a low 
overage.A 
lear 
on
lusion derives from these results. When used in a 
lassi
al way, the im-provement method plays a main role during the sear
h, as it signi�
antly a�e
ts thenumber and quality of generated solutions. In 
ontrast, if improvement is applied dif-ferently, the behavior of other SS methods 
hanges, espe
ially in 
onne
tion with thea
hievement of high quality solutions. More exa
tly, in this 
ase the diversity methodbe
omes apparently the main sour
e of optima a
hievement. Additionally, if no improve-ment is employed, signi�
an
e of the 
ombination method in
reases with regard to theattainment of high quality solutions. However, the number of solutions generated by thismethod is huge in 
omparison to diversi�
ation, suggesting so a poor e�
ien
y.5.3.1 S
atter Sear
h versus Estimation of Distribution AlgorithmsIn the previous 
hapter, EDAs were applied to the test data generation problem o�eringpromising results. Hen
e, the EDA approa
h may be regarded as an appropriate ben
h-mark for 
omparison with the SS test data generator. For the 
omparison, the best EDAand SS approa
hes in ea
h 
ase are taken into a

ount. These approa
hes are identi�edby giving preferen
e to 
overage, that is, the best approa
h is the one that a
hieves thehighest 
overage and, if there is a tie, the approa
h with the lowest number of generatedinputs.Table 5.2 presents the results. SSbest and EDAbest denote the best SS and EDA ap-proa
hes respe
tively; the format is the same as in Table 5.1.The Mann-Whitney test was 
ondu
ted to validate the results. Di�eren
es were foundat a 0.05 
on�den
e interval for 
overage in Atof, and for the number of inputs in all theprograms but Triangle3. So, we may 
on
lude that in three of the seven programs, SSsigni�
antly outperforms EDA. More pre
isely, two of these SS approa
hes 
orrespond tothe Improve Before strategy, whi
h makes it an interesting option for test data generation.85



5 Software Test Data Generation by means of SSIn 
ontrast, although the Improve After strategy equal the 
overage of the EDAs (ex
eptAtof), the number of inputs generated is higher in all 
ases (ex
ept Remainder). Thisis spe
ially 
lear for the Atof program, where SSbest o�ers a poor behavior 
ompared to
EDAbest.5.4 S
atter Sear
h and Estimation of DistributionAlgorithms CollaborationThe results obtained in some of the experimental programs suggest that SS approa
hes
an generate good solutions with a low number of evaluations. Indeed, these results
onform to those obtained in [127℄ and [142℄, where SS rea
hed high quality solutionsin fewer evaluations than GAs. Nonetheless, here, as well as in those works, it hasbeen shown that there are fun
tions for whi
h the SS approa
h does not o�er a goodperforman
e.On the other side, EDAs were su

essfully applied to the automati
 generation of testdata in the previous 
hapter. However, in EDAs, it is di�
ult to set an expli
it 
ontrol ofthe diversi�
ation and intensi�
ation balan
e. By 
ontrast, in SS this 
an be performedin a dire
t way due to its �exibility.These observations motivated the idea of 
ombining both optimization te
hniques. BothSS and EDA based approa
hes aim at generating test data for a given program bythemselves. However, they 
ould be entirely used in order to deal with the same problem,thus leading to a 
ollaborative approa
h whi
h may pro�t from the bene�ts of SS andEDAs.The proposed 
ollaboration 
onsists of an EDA-SS approa
h where ea
h sear
h methoda
ts separately. In other words, the EDA based generator is used �rst and, on
e it has�nished, the SS based generator is employed over the remaining un
overed bran
hes.This way, the general s
heme in Figure 3.5 is �rst applied with an EDA and, if it wasnot able to solve the 
omplete problem, the s
heme is repeated with SS.An important feature of the implementation developed is that, after the exe
ution of theEDA generator, the SS approa
h initializes the set of inputs of ea
h un
overed bran
hwith the set resulting from the EDA. Thus, the SS generator starts the sear
h using thebest solutions found by the EDA. Although this seeding 
ould involve a la
k of diversity,the SS 
an re
over from it through the diversi�
ation method in the rebuilding step.5.5 Performan
e Evaluation of the Collaborative Approa
hThe 
ollaborative approa
h was applied to the previous experimental programs in orderto observe its performan
e. 86



5 Software Test Data Generation by means of SSEDA Triangle1 Triangle2 Triangle3 Triangle4 Atof Remainder Complexbran
hUMDA 4015 4250 6281 ‡ 41912 ‡ 570306 6202 ‡ 24154100 100 100 100 91.33 100 100TREE 3272 10210 3870 24495 795693 6532 ‡ 34900100 100 100 100 86.67 100 100EBNAK2+pen 5185 7452 7369 45902 ‡ 1081907 4377 ‡ 31653100 100 100 99.62 82.33 † 100 100UMDA 3311 4700 3927 41440 ‡ 28278 3012 11298100 98.85 99.5 99.23 79.67 † 100 96.36 †TREE 3776 4857 3439 19560 30529 2614 9428100 98.85 100 98.46 † 78.67 † 100 96.82 †EBNAK2+pen 3317 4860 3548 12554 33620 2197 9189100 98.08 † 99 98.46 † 71.67 † 100 95 †Table 5.3: Results of EDA-SS approa
h with Improve After (above) and Improve Before(below).Re
all that in Chapter 2 EDAs were 
lassi�ed in three types, a

ording to the orderof dependen
ies among the variables in the probabilisti
 model. Following the ranking
arried out in the previous 
hapter, the best EDAs from ea
h type were used in theexperiments, i.e. UMDA, TREE and EBNAK2+pen. Within an EDA, half of the popula-tion was sele
ted at ea
h generation a

ording to a rank-based strategy. New individualswere simulated from the learnt probability distribution by means of Probabilisti
 Logi
Sampling, and the population was 
reated in an elitist way. Population size was the sameas the one for set P . Sin
e the SS generator may be used after the EDA, the maximumnumber of generations was relaxed to 10. In fa
t, a few preliminary experiments were
ondu
ted and the best results 
orresponded to this value. In the EDA literature, otherworks that have obtained good results with low parameter values in the experiments 
anbe found [112℄.The Improve After option of the SS approa
h attained, in four of the programs, a higher
overage value than the Improve Before alternative. However, the latter 
learly generatedfewer inputs than the former. Therefore, the SS generator was evaluated taking bothoptions into a

ount. The No Improvement strategy was not in
luded in the experimentsas it o�ered, with statisti
al eviden
e, an inferior behavior in every program. The SSparameter values were the same as in Se
tion 5.3: |P | = 100, |RefSet| = 10, and 10iterations at most.Table 5.3 shows the results of the experiments; on
e again, the format is the same asin previous tables. The best approa
h (with preferen
e to 
overage) for ea
h program ismarked in gray.As 
an be seen, these results 
onform to the ones obtained in Table 5.1, sin
e the ImproveAfter strategy rea
hes, in general, a higher 
overage than Improve Before. Instead, the87
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Figure 5.4: Proportion in the 
overage of EDA-SS approa
h for Improve After (left) andImprove Before (right).latter generates a lower number of inputs than the former.Statisti
al tests were used to validate the best performan
e values. Sin
e 
overage is aprimary measurement, for ea
h program and ea
h approa
h, the Mann-Whitney test was
ondu
ted with regard to the best 
overage value (in gray). Then, for the 
ases where nodi�eren
e was found, the test was again used over the best number of inputs generated.Table 5.3 presents the out
omes of the tests; symbol `†' denotes the 
ases where 
overagedissimilarities (0.05 
on�den
e interval) were found, while `‡' refers to the number ofinputs.In �ve programs, Improve After attains the best results. However, di�eren
es are sta-tisti
ally signi�
ant with regard to Improve Before in three of them: Triangle4, Atofand Complexbran
h (and Triangle2 just for EBNAK2+pen). Improve Before, by 
on-strast, o�ers a statisti
ally sound improvement with regard to the other alternative onlyin Remainder (and in Triangle3 for UMDA). Thus, Improve After shows a rough supe-riority to Improve Before.In order to have an idea of the behavior of ea
h generator in the 
ollaborative s
heme,Figures 5.4 and 5.5 present the proportion of 
overage and generated inputs in the EDAand SS methods respe
tively. 88
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5 Software Test Data Generation by means of SSApproa
h Triangle1 Triangle2 Triangle3 Triangle4 Atof Remainder Complexbran
h
EDA− SSbest 3272 ‡ 4250 3439 24495 ‡ 570306 2197 ‡ 24154 ‡100 100 100 100 91.33 † 100 100
SSbest 1575 28761 ‡ 8325 10267 1520023 145 30835 ‡100 100 99 100 82.33 † 100 100
EDAbest 6150 ‡ 6200 ‡ 3875 22720 ‡ 7685 2360 ‡ 11930100 100 100 100 100 100 100Table 5.4: Results of best EDA-SS, SS and EDA approa
hes.Figure 5.4 reveals that the EDA based generator 
overs most of the obje
tives, sin
e itoperates �rst and 
an attain, among others, the easiest obje
tives. However, the EDAmethod is not able to rea
h a 100% 
overage by itself, whilst this 
an be obtained byusing the SS generator. In fa
t, the SS method always in
reases the 
overage attainedby the EDA based. On the other hand, Figure 5.5 shows how the use of improvementa�e
ts the results of the 
ollaborative s
heme, as the proportion of inputs generated bythe SS with the Improve After alternative is higher than with Improve Before.5.5.1 Collaborative Approa
h versus OthersThe 
omparison of the EDA-SS approa
h with regard to the SS and EDA based test datagenerators 
an be observed in Table 5.4. In order to 
onform with the 
omparison inTable 5.2, the best EDA-SS 
ollaboration (EDA−SSbest) is 
ompared with the best SS(SSbest) and EDA (EDAbest) approa
hes. On
e again, the best approa
h (with preferen
eto 
overage) for ea
h program is marked in gray.In order to validate the best values, the previous analysis with the Mann-Whitney testwas applied here. So, analogously, Table 5.4 shows the out
omes from the tests; symbol`†' denotes the 
ases where 
overage di�eren
es (0.05 
on�den
e interval) were observed,while `‡' alludes to the number of inputs.

SSbest obtains the best values with statisti
al eviden
e in three programs, EDAbest intwo, and EDA−SSbest in one (no dissimilarity was found in Triangle3). It may noti
ed,however, that ex
luding the programs where EDA−SSbest is best, this approa
h generallylies between the two other approa
hes. Further statisti
al tests 
on�rmed this at a 0.05
on�den
e level.Similarly to Se
tion 5.3, a poor performan
e is a
hieved in Atof. An explanation forthis is that, even though preliminary experiments o�ered better results with the sele
tedparameter values, in the 
ase of Atof these values may not be appropriate. Nevertheless,Table 5.4 shows an in
rease in the 
overage and a de
rease in the inputs generated for
EDA− SSbest when 
ompared to SSbest.In any 
ase, a

ording to these results, the 
ollaborative s
heme may be 
onsidered a
ompetitive alternative for test inputs generation.90



5 Software Test Data Generation by means of SS5.6 SummaryThis 
hapter has been devoted to the appli
ation of SS for solving the test data gen-eration. The EDAs based approa
h is followed to ful�ll the bran
h 
overage 
riterion,though a SS algorithm is used instead of an EDA.Three alternatives regarding the improvement method have been studied in this 
ontext.After experimental evaluation, it may be 
on
luded that, despite being optional, theimprovement method plays a main role in the SS methodology for this problem. Theweight of improvement is re�e
ted in the number of solutions generated (inputs) and thenumber of optima found during the sear
h. Moreover, the way in whi
h improvementis used in the algorithm a�e
ts the behavior of other SS methods. Following this idea,the Improve Before option proposed attained better results than Improve After in someprograms, thus being an interesting alternative to the 
lassi
al strategy. Clearly, the worstperforman
e in the experiments is obtained if no improvement method is employed. Insu
h a 
ase, the 
ombination method generates most of the solutions while rea
hing arelatively low number of optima by itself, so that the diversi�
ation method plays a mainrole in the sear
h.On the other hand, an EDA-SS 
ollaborative s
heme has been des
ribed to take advantageof the bene�ts of both methods. The experiments 
ondu
ted on this alternative o�ereden
ouraging results. The 
ollaborative approa
h o�ered the best or se
ond best resultsin most of the test programs. However, in order to 
on
lude this approa
h over
omes theisolated generators, future experiments have to 
on�rm these results. Anyhow, the useof SS as a se
ondary optimization method improved the 
overage of the previous EDAbased method. Hen
e the 
ollaborative strategy proves to be useful.
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6 Enhan
ing the Test Data GenerationPro
ess: the Role of the Sear
h Spa
eand the Obje
tive Fun
tionWhen fa
ing the test data generation as an optimization problem two signi�
ant topi
sare the obje
tive fun
tion and the sear
h spa
e. Although an a
tive work is undergoing forthe former, little attention has been paid to the sele
tion of an appropriate sear
h spa
e.Hen
e, while making some hints on the in�uen
e of the obje
tive fun
tion, this 
hapter
on
entrates on des
ribing an alternative to the sear
h spa
e issue. More pre
isely, twoapproa
hes whi
h employ an EDA as the metaheuristi
 te
hnique are explained. In both
ases, di�erent regions are 
onsidered in the sear
h for the test inputs. Moreover, in orderto depart from a region 
lose to the one 
ontaining the optimum, the de�nition of theinitial sear
h spa
e in
orporates stati
 information extra
ted from the sour
e 
ode of thesoftware under test. If this information is not enough to 
omplete the de�nition, thena grid sear
h method is used. A

ording to the results of the experiments 
ondu
ted, itis 
on
luded that this is a promising option that 
an be used to enhan
e the test datageneration pro
ess.Remaining se
tions are organized as follows. After providing motivation, the bene�ts ofan advan
ed form of obje
tive fun
tion are empiri
ally studied. Next, the alternativedeveloped for sele
ting the sear
h spa
e is explained. Then, the experiments and theanalysis of their results are shown.6.1 MotivationAs we have seen throughout this dissertation, ta
kling the test data generation as theresolution of a set of optimization problems is o�ering promising results, and it 
onstitutesnowadays a serious alternative to a

omplish this task [144℄. Nonetheless, depending onthe program at hand, 
omplexity in solving su
h optimization problems may be huge.In fa
t, in the 
ontext of bran
h testing, the sear
h spa
e de�ned by the inputs is oftenlarge and the obje
tive fun
tion intri
ate, making the 
overage of a bran
h a di�
ulttask.
93



Test Data Generation Enhan
ement: the Role of Sear
h Spa
e and Obje
tive Fun
tionMost of the e�orts to enhan
e the test data generation to date have 
on
entrated on theoptimization te
hnique and the obje
tive fun
tion. We have proposed in previous 
hap-ters modern metaheuristi
s that have shown en
ouraging results and present theirselvesas a promising alternative to more 
lassi
al methods. On the other hand, attempts onthe obje
tive fun
tion relate to the 
on
epts in Se
tion 3.5.2 for improving the fun
tionin equation 3.1.Surprisingly, so far little attention has been paid to the sele
tion of an appropriate sear
hspa
e. This is an interesting matter, as fo
using the sear
h on a promising region 
ouldsimplify the problem, while making an inadequate 
hoi
e an optimal solution (an input
overing the bran
h) may not even exist.An alternative fa
ing this question is suggested in [100℄. There, a dependen
e analysis isapplied to the variables in the sour
e 
ode to identify the input parameters that 
annota�e
t the 
overage of a given bran
h. This way, a number of problem variables 
an beeliminated and the sear
h spa
e redu
ed.In the 
ontext of EAs, the sear
h spa
e matter 
an be ta
kled by Self-Adaptive Represen-tation methods. These pro
edures may be 
lassi�ed as a form of parameter 
ontrol [66℄that, a

ording to the behavior of the exe
ution, dynami
ally transforms an individual'srepresentation and, thus, the sear
h spa
e. Although it depends on the method, gener-ally, the purpose of the transformation is to dire
t the sear
h towards the most promisingregion found so far and avoid getting stu
k in lo
al optima [252℄.This 
hapter is devoted to the enhan
ement of the test data generation by studying thein�uen
e of the obje
tive fun
tion and, with more emphasis, by dealing with the sear
hspa
e. In both 
ases, we depart from the EDAs based approa
h presented in Chapter 4,so, from now on, in order to make the dis
ussion more agile this will be referred to asthe basi
 approa
h.Regarding the obje
tive fun
tion, we will 
he
k whether an advan
ed design for theobje
tive fun
tion, previously developed in [248℄, 
onstitutes an improvement for thebasi
 approa
h.On the other side, the bulk of 
hapter 
on
entrates on a novel alternative to the sear
hspa
e sele
tion issue. The two major 
on
epts whi
h support this alternative are the useof a-priori knowledge on the problem instan
e to 
hoose a sear
h region, and modifyingthis region through the solution's representation. These 
on
epts are applied to the basi
approa
h. Initially, the EDA seeks for in a region 
hosen from the whole feasible sear
hspa
e. In order to sele
t a promising region, its de�nition is based on stati
 informationextra
ted from the program's sour
e 
ode. In 
ase this information is not useful to thede�nition, then a grid sear
h method is applied. Additionally, during the pro
ess, the sizeof the region is in
reasingly widened. This way, if the obje
tive entity is not exer
ised, anew sear
h is performed on a larger region. This enlargement is applied to the approa
hfrom two points of view, giving rise to two algorithms.94
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h Spa
e and Obje
tive Fun
tion6.2 The In�uen
e of the Obje
tive Fun
tionGiven the obje
tive bran
h, �nding the minimum of the 
orresponding obje
tive fun
tionmay be extremely hard owing to program semanti
s. As pointed in Se
tion 3.5.2, fun
-tion de�ned in equation 3.1 owns some limitations that make the problem even harder.More pre
isely, a main drawba
k is the fa
t that every input not rea
hing the 
onditionalstatement asso
iated to the bran
h re
eives the same fun
tion value, yielding a �at land-s
ape. Fun
tion de�ned in equation 3.2 aims at alleviating this by returning a distan
eto the 
ondition for su
h inputs.To be exa
t, given a bran
h b and an input x, let vc denote the vertex representingthe 
onditional statement asso
iated to b in the 
ontrol �ow graph, and let p be thepath from s to e (see Se
tion 3.4.1) representing the �ow of the program's 
ontrol whenexe
uted with x. We 
all a vertex v 
ontrol dependent of a vertex w i� w represents a
ondition (i.e. outdegree(w) > 1) and there are both a path from w to v and a pathfrom w to e not 
ontaining v. The 
ondition distan
e dc from a vertex v ∈ p to vc,
dc(v, vc), is de�ned then as the number of verti
es in the path from v to vc, on whi
h vcis 
ontrol dependent. For the sake of 
onvenien
e, in the parti
ular 
ase where no pathexists from v to vc, an in�nite number of 
ontrol dependent verti
es is assumed, that is,
dc(v, vc) =∞. Equation 3.2 returns minv∈pdc(v, vc) for the inputs not rea
hing vc.One noti
eable problem of this 
ondition distan
e is the fa
t that several paths mayexist from v ∈ p to vc. Thus, it 
ould be the 
ase of two paths 
ontributing distin
tvalues for dc(v, vc). Su
h a situation is illustrated in Figure 6.1, where a sour
e 
odesegment and the 
orresponding portion of 
ontrol �ow graph are shown. In the �gure,the two paths from v to vc, i.e. v, 2, 3, vc and v, 2, 5, 7, vc, own respe
tively 2 and 3verti
es on whi
h vc is 
ontrol dependent. In [16℄, this problem was ta
kled throughoptimisti
 and pessimisti
 approa
hes, depending on whether dc(v, vc) is taken as theminimum or maximum number of 
ontrol dependent verti
es respe
tively. Experimentsunder di�erent s
enarious were 
ondu
ted for 
omparing both alternatives, however, no
on
lusion 
ould be drawn about the superiority of any.Sin
e equation 3.2 augments granularity with regard to equation 3.1, it appears to bemore adequate. Yet, to the best of the author's knowledge, no evaluation that 
he
ksthis has been published. In order to 
ompare both obje
tive fun
tions, we run thetest data generator des
ribed in the basi
 approa
h using equation 3.2 and the bestoverall EDA from Chapter 4, i.e. TREE. All the experimental programs used there were
hosen. For ea
h program, the parameter values o�ering the best results (with priorityto the 
overage) for TREE were sele
ted for exe
ution. None of the programs shows theproblemati
 situation in Figure 6.1, so there is no need to handle it.Table 6.1 presents the results obtained with the 
lassi
 (equation 3.1) and advan
ed(equation 3.2) fun
tions. For ea
h program, the table 
olle
ts the average values in ten95
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         .   .   .   .   .
1      if (a > b) {
2           if (c >d) {
3                if (e > f)
4                     return 0; }
5           else if (g > j)
6                return 0;
7                else if (i > j)
8                     return 0;
9           if (k > l)
         .   .   .   .   . vc

2

3

4

5

6

9

7

8
to exit

v
1

to exit
to exit

to exit

.   .   .   ..   .   .   .Figure 6.1: Example of two paths yielding di�erent values for dc(v, vc).fun
tion Triangle1 Triangle2 Triangle3 Triangle4 Atof Remainder Complexbran
h% # % # % # % # % # % # % #
lassi
 100 8860 100 12920 100 3880 100 45720 99.33 15665 99.44 15920 100 21360advan
ed 99.62 9940 100 5880 100 4180 99.62 51560 100 3475 100 1240 98.64 21420Table 6.1: Results obtained with the 
lassi
 and advan
ed obje
tive fun
tions.exe
utions for the 
overage (%) and the number of inputs generated (#).It 
an be noted that di�eren
es between both fun
tions are slight for the 
overage mea-surement and more prominent for the number of inputs in some 
ases. The Mann-Whitney statisti
al test was 
ondu
ted over both measurements to validate the results.No signi�
ant dissimilarity was observed at a 0.05 
on�den
e interval for the 
overage.By 
ontrast, di�eren
es were found for the number of inputs in Triangle2, Atof andRemainder, where the advan
ed fun
tion beats the 
lassi
.Therefore, using the basi
 approa
h and a

ording to these results, it may be 
on
ludedthat the obje
tive fun
tion from equation 3.2 improves or equals the performan
e offun
tion from equation 3.1.6.3 The Self-Adaptive Approa
hIf a test data generation system deals with this task as the pro
ess of solving a set ofoptimization problems, the sear
h spa
e be
omes an important element. The rest of the
hapter is devoted to the study of an alternative whi
h takes this into 
onsideration,inspired by the 
on
epts on Self-Adaptive Representations from EAs.So, the underlying idea in the Self-Adaptive alternative proposed here is to sele
t aninitial sear
h spa
e and modifying its size for ea
h un
overed bran
h. More pre
isely, theregion where the metaheuristi
 seeks for is initially de�ned with heuristi
 informationobtained from the program's sour
e 
ode. During the pro
ess, the size of the region is96
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ement: the Role of Sear
h Spa
e and Obje
tive Fun
tionin
reasingly widened so that, if the optimum was not found in the 
urrent spa
e, a newsear
h is performed in a larger one. Next a detailed des
ription of this approa
h is given.The spa
e of an obje
tive bran
h is de�ned by the interval of values that ea
h inputparameter of a program 
an take. To be exa
t, for ea
h bran
h and ea
h parameter,a value is 
hosen to be the 
enter of the interval, and a maximum in
rement over the
enter de�nes the amplitude. The pro
ess departs from a small range of values forea
h parameter and, as bran
hes remain un
overed, the range is in
reasingly augmented.Centers of the intervals are �xed for the whole pro
ess, thus, in order to start seeking ona promising region, stati
 heuristi
 information from the program is used to lo
ate thesepoints. In 
ase this information is not useful to identify a 
enter, a grid sear
h methodis applied.Two approa
hes following this line have been developed. One of them adapts the size ofthe sear
h spa
e for all the un
overed bran
hes at a time. In the other approa
h, ea
hregion enlargement involves a single obje
tive bran
h.(1) Assign initial sear
h region to ea
h bran
h(2) Repeat until stopping 
riterion is met(3) Repeat until stopping 
riterion is met(4) O ← Sele
t obje
tive bran
h(5) Apply EDA to 
over O(6) Enlarge region (1) Assign initial sear
h region to ea
h bran
h(2) Repeat until stopping 
riterion is met(3) O ← Sele
t obje
tive bran
h(4) Repeat until stopping 
riterion is met(5) Apply EDA to 
over O(6) Enlarge regionFigure 6.2: Algorithms for the MOA (left) and SOA (right) approa
hes.
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h Spa
e and Obje
tive Fun
tionMultiple Obje
tive Adaptation (MOA)The idea behind this method 
an be 
learly stated: to use the general s
heme in Figure3.5 over widening regions. This leads to the left side algorithm in Figure 6.2. Therefore,the basi
 approa
h is applied initially with a redu
ed interval of values for an inputparameter and, on
e it is �nished, if un
overed bran
hes exist, it is applied again with alarger interval. The left side of Figure 6.3 depi
ts an illustration of this idea.Single Obje
tive Adaptation (SOA)This alternative is similar to the basi
 approa
h ex
ept for the optimization step. Startingfrom a small sear
h spa
e, the EDA exe
utes several times over in
reasingly augmentedregions while the 
overage of the obje
tive bran
h is not attained. The right side ofFigures 6.2 and 6.3 represent the algorithm asso
iated with this method and a s
hemaof the pro
ess, respe
tively.In the next pages, these two approa
hes are dis
ussed in detail by �rst explaining thesteps of their algorithms, and later, how the set of inputs is managed.6.3.1 Algorithm Steps Des
riptionThe des
ription applies to both MOA and SOA, sin
e the same steps for ea
h algorithmimplement the same 
on
epts.Region Initialization - step 1 (MOA, SOA)Ea
h bran
h is assigned an initial sear
h region whi
h will have the smallest size. Aredu
ed region allows for a fast sear
h, although the 
han
es of 
ontaining the globaloptimum may be few. Hen
e, in order to rea
h a high degree of e�
ien
y, it is importantto obtain an initial region that is near the optimal input. Obviously, this is a di�
ulttask, sin
e the topology of the spa
e should be known in advan
e (and no sear
h wouldbe required then).Instead, it is possible to approximate the problem by using stati
 heuristi
 informationfrom the program's sour
e 
ode. Although di�erent sour
e 
ode aspe
ts 
ould be re-garded, in the present work, this information is obtained from the expression in the
onditional statement 
orresponding to a bran
h. Assuming, with no loss of generality,that an input is 
omposed of three parameters (a, b, c), then, the 
enter of the initialregion may be eli
ited through the following two heuristi
 rules:
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• If an expression follows the form F (a, b, c) OP K, where F is a known fun
tion ofthe input parameters, K is a 
onstant and OP is a 
omparison operator, then theregion is 
entered at point (Ca, Cb, Cc) su
h that F (Ca, Cb, Cc) = K.
• If an expression follows the form F (a, b, c) OP F ′(a, b, c), where F and F ′ are knownfun
tions of the input parameters, and OP is a 
omparison operator, then theregion is 
entered at point (Ca, Cb, Cc) su
h that F (Ca, Cb, Cc) = F ′(Ca, Cb, Cc).Noti
e that the above rules refer to spe
i�
 types of expressions. Many possibilities existfor the form of fun
tions F and F ′ in an expression. For instan
e, it 
ould depend on anumber of sour
e 
ode variables or it might in
lude 
alls to other programs. These rules
onstitute a �rst approximation to the problem by restri
ting F and F ′ to depend onlyon the input parameters, e.g. F (a, b, c) = 7a+25c. Furthermore, ea
h point (Ca, Cb, Cc)was 
al
ulated manually for the experimental programs employed to evaluate the presentwork. In order to rea
h 
omplete automation of this step, a 
al
ulus tool 
ould beemployed, for example, Mathemati
a1.In 
ase none of the above rules 
an be applied, the 
enter of the initial region for a bran
his obtained through a heuristi
 strategy based on the program's dynami
 information;to be exa
t, a grid sear
h method is employed. For ea
h input parameter, the 
ompleterange of values is partitioned into τ intervals. The 
enter of ea
h of these intervals is takenas a referen
e value. Then, the inputs resulting from the 
ombination of the referen
evalues of all the parameters are evaluated with regard to the bran
h. The best input issele
ted as the 
enter of the initial region. Noti
e that the granularity of the strategymay be tuned with the number of intervals τ , sin
e the number of inputs generated is τpfor a program with p parameters.The idea behind a grid sear
h is to explore a number of equally distant points from thewhole sear
h spa
e. As τ grows, the number of points being 
onsidered approa
hes the
omplete number of points and, hen
e, the quality of the solution found might in
rease.On the other hand, rea
hing a 
ertain value of τ may result in an unavoidable numberof points. As a 
onsequen
e, τ is regarded as a parameter of the approa
h. Figure 6.4illustrates the strategy for the 
ase of two parameters and τ = 6; among the 62 points,the one inside the 
ir
le represents the input hypotheti
ally 
hosen as the 
enter.On
e the 
enter is obtained using whi
hever of the strategies above, the spe
i�
ation ofthe initial sear
h region of the bran
h is 
ompleted by de�ning an amplitude. This isa
hieved by setting, for ea
h input parameter, an in
rement over the 
enter. These initialin
rements are given as parameters to the test data generation system.Thus, in essen
e, attending to the strategy used to eli
ite the initial region, we may
lassify bran
hes in two types. On one hand, those with the region 
entered at a point1Mathemati
a is a software pa
kage that solves equations symboli
ally. Web site:http://www.wolfram.
om/mathemati
a/ 99
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P1

P2

Figure 6.4: S
hema of the grid sear
h method.obtained through stati
 heuristi
 information and, on the other hand, the bran
hes withthe region 
enter 
hosen by means of a grid sear
h, i.e. using dynami
 information.Stopping Criteria - steps 2 and 3 (MOA), steps 2 and 4 (SOA)The stopping 
riterion at step 3, for MOA, and step 2, for SOA, refers to the generals
heme (Figure 3.5). It is de�ned in the same way as in the basi
 approa
h, that is, full
overage a
hievement or unsu

essful treatment of every un
overed bran
h.In 
ontrast, the 
riterion in step 2, for MOA, and step 4, for SOA, alludes to the Self-Adaptive approa
h. Therefore, it states the point where the sear
h spa
e stops beingenlarged. To obtain this point, a limit to the size of the region is given as a parameterto the system. A

ordingly, in the 
ase of MOA, the stopping 
riterion is to obtain fullbran
h 
overage or rea
h the size limit, while in SOA, the sear
h stops when the obje
tivebran
h is 
overed or the spa
e attains its size limit.Bran
h Sele
tion - step 4 (MOA), step 3 (SOA)The obje
tive bran
h is sele
ted following the strategy of the basi
 approa
h. Hen
e, thebran
h with the highest quality set of inputs at the moment is 
hosen, that is, the bran
hwith the highest average obje
tive fun
tion value over the inputs in the set.
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e and Obje
tive Fun
tionEDA - step 5 (MOA, SOA)The EDA seeks the optimal input in a sear
h region 
entered at a �xed point. Therefore,an individual is a bit string representing an in
rement on the 
enter of the 
urrent region.To be pre
ise, the individual 
onsists of a bit substring for ea
h input parameter. Ea
hsubstring represents an in
rement on the 
enter of the interval of the 
orrespondingparameter.In the evaluation, the in
rement represented by the individual is added to the 
enter of theregion, resulting in the input for the obje
tive fun
tion. In the 
urrent implementation ofthe approa
h, three parameter types are 
onsidered: integers, reals and 
hara
ters. In the
ase of an integer, the bit substring represents the in
rement following a sign-magnitude
odi�
ation. For real numbers, the IEEE �oating point 
odi�
ation is used instead. Inboth 
ases, the input parameter value is obtained by summing the in
rement to the
enter. Finally, for a 
hara
ter type, a sign-magnitude 
odi�
ation is employed againin the substring. Then, the in
rement is summed to the 
enter of the parameter, andthe value obtained results in a 
hara
ter, a

ording to the ASCII 
ode table. Similarly,for more 
omplex parameter types, an appropriate transformation 
ould be de�ned toobtain the input parameter value.As in the basi
 approa
h, the input is evaluated with regard to all the other un
overedbran
hes and the sets of best inputs are updated a

ordingly.The length of the individuals may vary between di�erent EDA exe
utions and, in 
on-sequen
e, it is not advisable to keep the same parameter values for the whole pro
ess.This is over
omed by making some of the parameters adaptive [66℄.A 
ommon pra
ti
e in EAs is to �x the population size proportionally to the number ofvariables. For instan
e, in [155℄, several rules of thumb are suggested for a number ofEDAs under spe
i�
 
onditions. In the present work, the population size is set at twi
ethe length of the individual.On the other hand, it would be desirable to halt the sear
h when no improvement 
anbe obtained. This is a relatively unexplored matter in the �eld of EDAs, although afew re
ent works are emerging [162℄. Here, a novel strategy has been developed. Theproblem is approximated by identifying the generation where the estimated probabilitydistribution pl(x) is similar to the empiri
al distribution of the sele
ted individuals. Thus,the 
riterion adopted is to stop the EDA when the Kullba
k-Leibler 
ross-entropy from
pl(x) to p(x) falls below a value α given as a parameter to the system.Region Enlargement - step 6 (MOA, SOA)The size of a sear
h region is determined by the amplitude of the interval asso
iatedto ea
h input parameter. In other words, this size is de�ned by a maximum in
rement101
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e and Obje
tive Fun
tionon the 
enter of the interval of ea
h parameter. In the EDA, an in
rement for ea
hparameter is represented as a substring of bits. Therefore, the number of bits in ea
hsubstring spe
i�es the size of the region.The sear
h region is enlarged by augmenting the amplitude of the interval asso
iatedwith a 
hosen input parameter. A bit is added to the substring representing the nextparameter in the order given by the input, from left to right.6.3.2 Management of the Set of InputsThe 
ontrol of the set of inputs of ea
h bran
h introdu
es disparities between the ap-proa
hes whi
h require a separate explanation.Operation in MOAIn the MOA alternative, during the EDA exe
ution, it is possible that an input beingevaluated for a bran
h distin
t from the obje
tive falls outside the 
urrent sear
h spa
e.Therefore, when the bran
h is sele
ted as the new obje
tive and the EDA is to be ini-tialized with the inputs in the set of the bran
h, some of these inputs might be out ofthe region.Hen
e, instead of using only one set of inputs, two sets are asso
iated with ea
h bran
h.One of them keeps the best inputs inside the 
urrent sear
h region - inside set - and theother one, those falling outside - outside set. This implies that, during the evaluationin the EDA, the input is stored in the required set and, this way, the initialization isdire
tly performed from the inside set. More pre
isely, for ea
h input in the set, the
orresponding in
rement on the 
enter is obtained (in its binary form) and added to thepopulation.In order to maintain the sets, before starting a new run of the general s
heme (step 3),the inside set is updated with the inputs in the outside set whi
h belong to the newregion.Operation in SOARegarding the SOA approa
h, ea
h time the EDA exe
utes the sear
h region is di�erentfrom the previous. In this situation no advantage is obtained with two sets, so just one
ontaining all the inputs is used.To initialize the EDA, �rstly, the in
rements asso
iated with the inputs in the set are
al
ulated. Then, the in
rements inside the 
urrent region are in
luded in the population.Those falling outside are trun
ated to �t into the region and, then, are added to the102
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h Spa
e and Obje
tive Fun
tionpopulation. A possible disadvantage of this strategy is that, as the population 
onvergesto similar individuals, if these are high quality solutions, they will be in
luded in the set.Thus, initialization for the next region might 
ause a low diversity between individualsand result in a poor sear
h. With the intention of alleviating this phenomenon, half ofthe EDA's initial population is randomly generated.Another problem in SOA 
on
erns the retrieval of the initial sear
h region for the EDA.If the obje
tive bran
h is sele
ted for the �rst time, the initial region is given by its
enter and the initial in
rement. However, it 
an so happen that, in the EDA evaluation,the input enters the set of a bran
h already treated and, therefore, makes this bran
h a
andidate obje
tive on
e again. Supposing that the bran
h is sele
ted for a se
ond time,the initial sear
h region should not be taken as before, sin
e the new inputs in the set
ould be in a larger spa
e and, hen
e, would not be used to seed the population. Thesolution adopted here has been to obtain the initial region size of the smallest new inputin the set.6.4 An Exe
ution ExampleAs an illustration of the approa
h, some steps of an hypotheti
al exe
ution of MOA andSOA are explained next. The example of Figure 3.6 will be used on
e again. Hen
e, test
ases are to be generated for a program where an input is 
omposed of three integers a,
b and c.First of all, both algorithms require the assignment of an initial sear
h region to ea
hbran
h (step 1). Thus, for ea
h bran
h and input parameter, an initial interval of valuesmust be de�ned. This is attained by �xing the 
enter of the interval and an in
rementon the 
enter.Two strategies are proposed for the 
enter eli
itation: stati
 information and dynami
information based. The bran
h represented by ar
 (2, 3) in the graph is asso
iated to
ondition if((b*b)-(4*a*
)<0), so the stati
 atrategy is used. A point satisfying b2 −
4ac = 0 is 
hosen as the 
enter, for instan
e, (0, 0, 0). In 
ontrast, the 
ondition ofbran
h (7, 8) is if((a*x*x+b*x+
)==0), so the grid sear
h method must be employed.If an integer is 
odi�ed with 15 bits in two's 
omplement representation, the 
ompleteinterval of values of ea
h parameter is [−32768, 32767]. With τ = 8, the number of pointsgenerated and evaluated is 83 = 512. The best is (4095, 4095,−20480), whi
h is taken asthe 
enter of the region.On
e the 
enter of ea
h bran
h is �xed for a, b and c, the initial region is obtained withan in
rement on ea
h 
enter. To keep the example simple, 5 bits are given to representan in
rement for ea
h input parameter, resulting in a maximum in
rement of ±31. Thus,the initial region for bran
h (2, 3) is [−31, 31]× [−31, 31]× [−31, 31] and for bran
h (7, 8)it is [4064, 4126] × [4064, 4126] × [−20511,−20449].103
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ement: the Role of Sear
h Spa
e and Obje
tive Fun
tionMOA ExampleMOA applies the basi
 approa
h (steps 3 to 5) over in
reasing sear
h regions until amaximum size is a
hieved (step 2). Using a maximum of 10 bits to represent an in
re-ment for ea
h input parameter, the maximum region for bran
h (2, 3) is [−1023, 1023] ×
[−1023, 1023] × [−1023, 1023] and for bran
h (7, 8) it is [3072, 5118] × [3072, 5118] ×
[−21503,−19457].Now, assume that the size of the region in the 
urrent round is de�ned with 7 bits for aand b, and 6 bits for c. This implies that, in the previous region, 6 bits were used for b.Remember that two sets of inputs are asso
iated to ea
h bran
h: the inside set andthe outside set. The sele
tion strategy (step 4) 
hooses the bran
h with the highestquality inside set. If bran
h (2, 3) was sele
ted, the initial population of the EDA (step5) is seeded with the inside set of this bran
h. In this parti
ular 
ase, an individualrepresenting the in
rement (98,−34, 15) would result in input (98,−34, 15), as the region
enter is (0, 0, 0). Aside from 
al
ulating the obje
tive fun
tion value of this input,it is also evaluated for the rest of the bran
hes. For instan
e, evaluating the inputfor bran
h (7, 8) implies that its asso
iated in
rement must be indu
ed. Thus, input
(98,−34, 15) results in in
rement (−3997,−4129, 20495) for bran
h (7, 8). To representsu
h an in
rement, 12 bits would be ne
essary for parameters a and b, and 15 bits for
c, so it falls outside the 
urrent region. In 
onsequen
e, the outside set is updated if itsquality is improved with this input.On
e the basi
 approa
h �nishes without 
overing all the bran
hes, the 
urrent region isenlarged. In the previous region the interval of b was in
reased, so now c is augmented to7 bits, resulting in a sear
h region where a, b and c represent an in
rement with 7 bits.SOA ExampleIn SOA, the optimization phase is applied over in
reasing regions (steps 4 to 6). Therest of steps are those in the basi
 approa
h, so they are not illustrated here. Nowon, thefollowing is assumed. Bran
h (2, 3) is sele
ted as the obje
tive and the 
urrent region ofthe optimization phase is de�ned with 7 bits for a and b, and 6 bits for c.In this algorithm, only one set of inputs is maintained for ea
h bran
h during the pro
ess.Half of the EDA's initial population is randomly 
reated and the other half is seededfrom the inputs in the set. For instan
e, in order to seed the population with input
(509,−11, 35), the in
rement asso
iated to bran
h (2, 3) must be indu
ed �rst. The resultis in
rement (509,−11, 35) (remember that the 
enter was (0, 0, 0)). This in
rement fallsoutside the 
urrent region be
ause 9 bits are needed to 
odify the 509. Therefore, thebit substring representing the 509 is trun
ated to 7 bits to �t in a's interval. In 
ontrast,an input (45, 117,−21) would result in the in
rement (45, 117,−21), whi
h is inside the
urrent region and is to enter dire
tly in the initial population.104
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ement: the Role of Sear
h Spa
e and Obje
tive Fun
tionAs in the basi
 approa
h, on
e the value of an input is obtained for bran
h (2, 3), it isevaluated for the remaining bran
hes. If the quality of the set of the bran
h is improved,then the input enters the set.After the EDA �nishes, the 
urrent region is enlarged in the way des
ribed above forMOA.6.5 Performan
e EvaluationIn order to observe the performan
e of the presented approa
hes, test 
ases were gener-ated for all the programs taken for experimentation in the basi
 approa
h. The goal ofthe evaluation was threefold: analyzing the behavior of the approa
hes, 
omparing theirresults with those attained by other alternatives, and 
he
king whether they 
onstitutea solid alternative in the real world. Regarding the former goal, performan
e of ea
h al-gorithm, MOA and SOA, was studied in isolation. In the se
ond goal, three topi
s were
onsidered. Firstly, MOA was 
ompared to SOA. Then, the stati
 information basedheuristi
 employed to de�ne the initial sear
h region was 
ompared to the dynami
 one.Finally, MOA and SOA results were fa
ed to those by the basi
 test data generator. Forthe later goal, MOA and SOA were evaluated over a number of �real-world� programs.6.5.1 Experimental SettingRe
all that, among the EDAs evaluated in Chapter 4, TREE was 
on
luded to showthe best performan
e overall. In 
onsequen
e, TREE was the EDA 
hosen here forthe optimization step in both MOA and SOA approa
hes. At ea
h generation, half ofthe population was sele
ted a

ording to a rank-based strategy. New individuals weresimulated by means of Probabilisti
 Logi
 Sampling, and the population was 
reatedin an elitist way. The obje
tive fun
tion employed in the experiments was formulateda

ording to equation 3.2. Noti
e that the stopping 
riterion adopted for the EDA seemsto be spe
ially suitable for TREE. This algorithm obtains the tree dependent fa
torizationminimizing the Kullba
k-Leibler divergen
e to the empiri
al distribution. Sin
e the EDAstops when this divergen
e value is lower than α, the value of the optimal model is dire
tlybeing 
onsidered. For the experiments, α was determined after a number of preliminaryexe
utions.Other system parameters that need to be �xed are the size of the initial and the largestpossible region. Given a program, this is a
hieved by setting, for ea
h input parame-ter, the minimum and maximum possible amplitude of its asso
iated interval of values.Obviously, a di�erent amplitude may be linked to ea
h input parameter and, thus, theshape of sear
h regions 
ould be 
ontroled. However, for the experiments, no a priori105
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h Spa
e and Obje
tive Fun
tionknowledge is assumed and, therefore, amplitude values were kept 
onstant for all theinput parameters of a program.Table 6.2 presents, for ea
h program, the values sele
ted for the system parameters, i.e.number of bits for the in
rement on the initial region (minimum), number of bits for thein
rement on the largest allowed region (maximum), and α value.Also shown in Table 6.2 is the number of bran
hes, and for how many of them the 
entersof ea
h input parameter were obtained through the stati
 information based (stati
) andthe dynami
 information based heuristi
 (dynami
). As it 
an be seen, in all the programsbut three, almost every bran
h is stati
. Remainder is relatively balan
ed in this sense,while in Atof, outstanding bran
hes are dynami
.program 
hara
teristi
s parametersbran
hes stati
 dynami
 minimum maximum αTriangle1 26 24 2 5 15 2Triangle2 26 24 2 5 7 2Triangle3 20 16 4 5 10 2Triangle4 26 20 6 5 10 2Atof 30 2 28 5 7 25Remainder 18 10 8 5 16 5Complexbran
h 22 18 4 5 10 15Table 6.2: Experimental programs 
hara
teristi
s and parameters in the experiments.Remember that the dynami
 information based strategy 
onsisted of a grid sear
h. Inthis method, the value of parameter τ de�nes the number of inputs being 
onsidered
andidate 
enters. More pre
isely, for a program with p parameters, τp inputs are 
reatedfor evaluation. On the other hand, the larger the τ , the �ner the granularity of thestrategy and, hen
e, the 
han
es of �nding a high quality initial sear
h region in
rease.In the experiments, τ was set from 1 up to 5 for all the programs ex
epting Atof, whi
hused τ up to 3.Additionally, in order to avoid too long exe
utions, a limit of 150000 inputs generated wasestablished. As soon as this limit was dete
ted, the experiment was for
ed to terminate.6.5.2 MOA Performan
eTable 6.3 presents the results of the experiments 
ondu
ted. For ea
h value of τ andea
h program, the table 
olle
ts the average values in ten exe
utions for the per
entageof 
overed bran
hes (%) and the number of inputs generated during the pro
ess (#).The best values of τ for ea
h of these two measures and ea
h program are highlighted ingray. 106
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τ Triangle1 Triangle2 Triangle3 Triangle4 Atof Remainder Complexbran
h% # % # % # % # % # % # % #1 100 212 99.62 579 100 302 100 2223 98.33 68936 99.44 629 95† 1499522 100 282 99.62 995 100 338 100 1967 43.33† 150062 98.89 1628 100 18563 100 190 99.23 1143 100 311 100 2436 96.33 134849‡ 100 186 95.45† 1027114 100 440‡ 99.23 880 100 285 100 1922 - - 100 84 100 16096‡5 100 381‡ 100 990 100 330 100 1738 - - 100 57 95.91† 117213Table 6.3: Results of the MOA approa
h.As 
an be noti
ed, in all programs ex
ept Atof, full 
overage is rea
hed. Atof seems tobe the hardest, sin
e the lowest 
overage and the largest number of inputs are attainedin this program.Overall Performan
e AnalysisRegarding at Table 6.3, no apparent relation exists between τ and the best results, sin
ethese are obtained with alternative values of τ , ranging from the lowest to the largestvalue.In order to validate the best performan
e values in MOA, an analysis based on statisti
altests was 
ondu
ted. Sin
e 
overage is a primary measurement, for ea
h program andea
h value of τ , the Mann-Whitney test with regard to the best τ value (in gray) wasapplied to the 
overage results. Then, for the 
ases where no di�eren
e was found, thetest was again used over the number of inputs generated. Table 6.3 presents the out
omesof these tests; symbol `†' denotes the 
ases where 
overage dissimilarities (p < 0.01) werefound, while `‡' refers to the number of inputs.In less than half the 
ases (8 from up to 26 possibilities), the best values of τ 
onstitutean improvement with statisti
al eviden
e. It 
an be seen that statisti
ally signi�
antdi�eren
es were obtained for the 
overage rea
hed in Atof and Complexbran
h for a fewvalues of τ . In the number of inputs generated, a few dissimilarities were observed inTriangle1, Atof, and Complexbran
h. Hen
e, 
onsidering to these results, we 
annot
on
lude whether the best τ makes a di�eren
e.Initial Region Heuristi
s Performan
eA

ording to the previous analysis, no 
lear 
on
lusion 
an be stated on the most suitable
τ value for a program. In order to better understand the relevan
e of τ in the results,it 
ould be interesting to examine the in�uen
e of the initial heuristi
s used to eli
it theinitial regions.Table 6.4 shows, for ea
h program, the number of bran
hes 
overed (#o) and number ofinputs generated (#i) by the stati
 and dynami
 heuristi
s from the region initialization107
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τ Triangle1 Triangle2 Triangle3 Triangle4 Atof Remainder Complexbran
h

#o #i #o #i #o #i #o #i #o #i #o #i #o #istati
 2 12 2 12 1 8 1 10 1 1 1 5 10 9dynami
, τ = 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1dynami
, τ = 2 1 8 0 8 2 8 3 8 0 1024 7 4 2 64dynami
, τ = 3 0 27 0 27 2 27 3 27 0 59049 7 9 2 729dynami
, τ = 4 1 64 0 64 3 64 6 59 - - 8 14 2 4096dynami
, τ = 5 1 125 0 125 3 125 6 119 - - 8 22 2 15625Table 6.4: Results of the initial region obtainment heuristi
s.phase. The �rst row presents the values of the stati
 heuristi
, while the rest 
orrespondto the dynami
 heuristi
 (grid sear
h) with the di�erent values of τ . Noti
e that theoverall 
ontribution of these heuristi
s 
onsists of the sum of the stati
 and the dynami
results for a 
hosen τ . For instan
e, in Triangle1 with τ = 2, after applying the stati
and dynami
 strategies, 2+1=3 bran
hes were 
overed (whi
h implies a 11.54% 
overage)and 12+8=20 inputs were generated.It 
an be seen that, regarding the stati
 strategy, a number of bran
hes are 
overed inall the programs just by the appli
ation of the two heuristi
 rules. Moreover, in some
ases this is a signi�
ant number. In Complexbran
h, 10 out of the 18 stati
 bran
hes are
overed, and in Atof, one of the two stati
 bran
hes are attained. Anyhow, 
onsideringthat most of the bran
hes are stati
 in the main body of the programs and that 100%
overage was obtained in almost all of them, the heuristi
 rules appear to be e�e
tive.The dynami
 heuristi
 is a grid sear
h method. In su
h a method, given a problem,as τ in
reases, more points are generated and the quality of the best solution foundis expe
ted to grow. In the 
ontext of the test data generator, this implies that thenumber of bran
hes 
overed is expe
ted to in
rease with growing values of τ . However,a main drawba
k of a grid sear
h is that the value of τ needed to rea
h an outstandingsolution may be large, produ
ing a prohibitive number of solutions. This 
ould be the
ase even for small values of τ , if the number of problem variables is relatively big[7℄. A

ordingly, Table 6.4 shows alternating behaviors. In Triangle3, Triangle4 andRemainder, the 
overage in
reases as τ grows, while, for the rest of the programs, thisis not held. Moreover, 
omparing the values in Table 6.3 and Table 6.4 for Triangle1and Triangle3, it 
an be observed that, with τ = 5, a signi�
ant part of the inputs aregenerated by the grid method; the same o

urs in Atof with τ = 3. In 
onsequen
e,results do not ne
essarily improve by in
reasing the value of τ .This observation 
an also be extrapolated to the best overall results in Table 6.3, sin
ethese are obtained with di�erent values of τ . Furthermore, re
all that, in the previousstatisti
al analysis, no signi�
ant in�uen
e of τ on the best 
overage values was found,ex
epting a few 
ases. Thus, these results suggest that the e�e
t of the grid sear
h isneutralized by the rest of the phases in MOA.
108
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τ Triangle1(26) Triangle2(26) Triangle3(20) Triangle4(26) Atof(30) Remainder(18) Complexbran
h(22)1 2.2 2.3 2.7 5.1 15.2 0.7 2.52 2 3.4 1.9 5.3 17 0.8 1.93 1.7 3 2.1 4.9 15.5 0.5 1.54 2.4 2.5 2.4 4 - 0.6 2.15 1.9 2.8 2.1 4.7 - 0.4 1.6Table 6.5: Average number of bran
hes sought in the MOA approa
h.Region Enlargment Performan
eAnother fa
tor that 
ontributes to the performan
e of the generator is the number ofregion enlargements. New regions may in
lude un
overed obje
tives. Instead, as morein
rements are 
arried out, the number of inputs 
reated is expe
ted to grow, sin
e moresear
h steps are exe
uted.During the experiments, ea
h run was re
orded with the purpose of studying how thesystem operates. Using this information, given a sear
h region and an obje
tive bran
h,the number of inputs generated and whether the obje
tive was 
overed or not 
an beeli
ited. This is shown in Figure 6.5. The graphi
s above relate to the number of bran
hes
overed in ea
h region. More spe
i�
ally, they only 
onsider the bran
hes whi
h were
overed by the initial region heuristi
s or those sele
ted as obje
tives and 
overed by theEDA. Noti
e that not all the bran
hes need to be expli
itly sear
hed, be
ause duringthe �tness evaluation in the EDA, bran
hes distin
t from the obje
tive may eventuallybe 
overed. Thus, in ea
h graphi
 ahead of Figure 6.5, the x-axis takes values in therange of possible regions, while the y-axis 
on
erns the number of bran
hes 
overedby the initial heuristi
s or by the EDA. The points depi
ted 
orrespond to the results(averaged over the ten exe
utions) in ea
h region, for ea
h value of τ . To �nish withthe spe
i�
ation, Table 6.5 shows the average total number of bran
hes sear
hed by theEDA; aside from a program name, the number of bran
hes in the program is provided inbra
kets. Analogously, the bottom part of Figure 6.5 presents the a

umulated averagenumber of inputs generated (y-axis) for ea
h region (x-axis), given a value of τ and aprogram.As 
an be observed in the upper half, with the ex
eption of Atof, almost all the bran
heswere attained in the very �rst sear
h regions. To some extent, this is not surprising,sin
e the �rst region in
ludes the 
overage of the initial heuristi
s and the EDA, whilethe rest of regions only involve the EDA 
ontribution. In the bulk of the programs,the number of stati
 obje
tives is high (see Table 6.2), so the graphi
s suggest that thestati
 information based heuristi
 used to eli
it the initial region is an adequate strategy.Indeed, this 
ould be the 
ause of the poor behavior of Atof, sin
e it 
ontains a redu
ednumber of stati
 bran
hes. Moreover, owing to the quite large set of parameters of aninput in this program, τ only takes values up to 3, whi
h seems to be insu�
ient forthe grid sear
h to obtain a promising initial 
enter. Another program with a relevant109
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tionnumber of dynami
 bran
hes is Remainder. In this 
ase, both the dynami
 and thestati
 heuristi
s appear to behave su

essfully, as all the dynami
 bran
hes were 
overeddire
tly by the grid method (see also 
omments on Table 6.4) and most of the stati
 oneswere attained in the initial region.Anyhow, the e�e
t of the di�erent sear
h spa
es should not be underestimated. In 5 ofthe 7 programs, a few obje
tives are still 
overed in advan
ed regions and, therefore, the
overage measurement grows.As for the inputs generated, Figure 6.5 below shows that their number stays relativelylow at the initial stages, although it in
reases as bran
hes remain un
overed. If 
omplete
overage is attained, the 
urve stabilizes, in other 
ase, it keeps growing. More espe
if-i
ally, the 
urve grows smoothly in a number of 
ases (e.g. Triangle2), although forother instan
es it augments rapidly with 
ertain values of τ (Complexbran
h and τ = 1,for example). In these last 
ases, the latter regions o�er more promising solutions thanin the previous stages and the sear
h intensi�es. This means that the EDA operatesfor a larger number of generations and, thus, more solutions are generated. This 
anbe 
learly remarked in the Remainder and Complexbran
h programs. The low 
overagerea
hed by Atof for τ = 2 
an be understood by observing the number of inputs gener-ated. The �gure reveals that the limit of 150000 inputs was attained in the early regions,so the generator stopped prematurely and no more obje
tives 
ould be 
overed (see Atofabove).To summarize, it 
ould be dedu
ed that, on one side, the sear
h over di�erent regionsallows the MOA generator to obtain the highest 
overage (e�e
tiveness). On the otherside, the answer of the dynami
 heuristi
 seems to be more unstable than for the stati
information based strategy. In fa
t, the high quality values of the early spa
es suggestthat the stati
 heuristi
 is useful to a
hieve obje
tives soon and, therefore, generate aredu
ed number of inputs (in
rease e�
ien
y). In order to shed more light on this matter,this will be further studied in a following analysis in Se
tion 6.5.4.6.5.3 SOA Performan
eApropos the SOA algorithm, Table 6.6 shows the results of the experiments for theprograms. The 
ell format is the same as in Table 6.3. Similarly to the MOA approa
h,the most di�
ult program for the test 
ase generator is Atof. However, in this 
ase,100% 
overage neither 
ould be obtained for Triangle4.Overall Performan
e AnalysisStatisti
al tests were used to identify the best performan
e values. Thus, the null hy-pothesis of equal distribution densities between the best τ values and the others wasevaluated in the manner explained in the previous se
tion.111
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τ Triangle1 Triangle2 Triangle3 Triangle4 Atof Remainder Complexbran
h% # % # % # % # % # % # % #1 100 401 100 333 100 250 99.23 3630 96 65078 100 58‡ 95.91† 1228132 100 282 100 374 100 237 98.46 5476 49.33† 150049 100 33 100 184063 100 246 100 293 100 222 99.23 6003‡ 95 133649‡ 100 30 98.18 107144‡4 100 391 100 266 100 297 98.46 2663 - - 100 59‡ 98.18 684855 100 399‡ 100 765‡ 100 314‡ 99.23 2546 - - 100 91‡ 97.73 106698‡Table 6.6: Results of the SOA approa
h.Di�eren
es were statisti
ally signi�
ant (p < 0.01) with regard to the 
overage measure-ment in a pair of 
ases (Atof with τ = 2 and Complexbran
h with τ = 1). In 
ontrast,for the number of inputs generated, the 10 di�eren
es obtained (p < 0.01), from up to24 possibilities, spread over all the programs. The out
omes from this analysis reinfor
ethe 
on
lusions of the MOA approa
h. Taking the programs used here into a

ount andrespe
ting the best results, the τ value has no signi�
ant in�uen
e regarding the 
overagemeasure. On the other hand, for the number inputs, not enough dissimilarities to makea reliable 
on
lusion were found.Initial Region Heuristi
s Performan
eMOA and SOA share the same initial region eli
itation step. Therefore, results in Table6.4 also apply here, as well as the 
omments on the behavior of the stati
 and dynami
heuristi
s.Con
erning the la
k of in�uen
e of τ on the best 
overage results, the out
omes of SOAare almost equal to those in MOA. In 
onsequen
e, here, the 
orresponding reason issuggested, that is, the remaining steps of SOA 
an
el the e�e
t of the grid sear
h.Region Enlargment Performan
eA

ordingly to the MOA alternative, the experiment exe
utions were monitored and thevalues raised by a sear
h step were stored. Figure 6.6 reveals, for ea
h possible sear
hregion, the average number of obje
tives 
overed by the initial heuristi
s and the EDA(above), and the inputs generated (below) during the pro
ess. The �gure format is thesame as in the previous se
tion. Table 6.7 assists in the understanding of the �gure bypresenting the average total number of bran
hes sear
hed by the EDA and, in bra
kets,the number of bran
hes in a program.Drawing a rough 
omparison of Figure 6.6 and Figure 6.5, it 
an be noti
ed that, ingeneral, the behavior of both approa
hes is similar. Although di�eren
es appear withsome programs (Remainder in the number of inputs), the remarks on the MOA algorithm
an also be applied to SOA. 112
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τ Triangle1(26) Triangle2(26) Triangle3(20) Triangle4(26) Atof(30) Remainder(18) Complexbran
h(22)1 3.4 2.6 2.7 5.1 6.7 1 12 3.3 2.6 2.7 4.9 1.9 0.7 2.63 2.9 2 2 4 6.6 0 14 3.3 2.3 2.4 4.4 - 0.5 2.55 3.6 2.5 2.4 3.8 - 0.5 1Table 6.7: Average number of bran
hes sought in the SOA approa
h.6.5.4 MOA vs. SOA vs. Other Approa
hesNext, ea
h Self-Adaptive algorithm is 
ompared to other approa
hes to evaluate its per-forman
e and know if it represents a 
ompetitive alternative.MOA vs. SOAIn the MOA approa
h, ea
h region enlargement 
on
entrates on the test 
ase generatoras a whole. In 
ontrast, ea
h in
rement of the SOA alternative refers to an independentEDA sear
h phase. Therefore, a formal 
omparison of both algorithms in terms distin
tfrom the 
overage and inputs generated be
omes a di�
ult task. However, it mightbe suspe
ted from the 
ommon 
on
lusions raised in Se
tions 6.5.2 and 6.5.3, and fromthe mat
hing behavior shown in Figures 6.5 and 6.6, that important similarities existbetween them.In order to know whether MOA and SOA o�er a similar behavior in terms of 
overageand inputs 
reated, Table 6.3 and Table 6.6 were used to �nd statisti
ally signi�
antdi�eren
es between the results. To be pre
ise, the Mann-Whitney non-parametri
 testwas applied to ea
h approa
h and value of τ . Considering 
overage, the null hypothesis ofequal distributions was reje
ted (p < 0.01) only for Atof with τ = 2 and Complexbran
hwith τ = 3. For the number of inputs generated, di�eren
es (p < 0.01) were obtainedin six 
ases: Triangle1 with τ = 1, Triangle2 with τ = 3, Triangle3 with τ = 3,Triangle4 with τ = 2 and τ = 3, and Remainder with τ = 3. Sin
e half of the bestresult values in these 
ases 
orresponded to ea
h approa
h, it 
annot be stated whi
h onebehaves better.A

ording to the tests, it may be 
on
luded that, ex
epting a few 
ases, the perfor-man
e of MOA and SOA algorithms is similar in terms of 
overage and number of inputsgenerated.Stati
 vs. Dynami
 Information CentersAn element whi
h appears to be important in the Self-Adaptive approa
h is the initialsear
h spa
e. If this is lo
ated in an adequate region, the e�ort in �nding the optimal114
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τ Triangle1 Triangle2 Triangle3 Triangle4 Atof Remainder Complexbran
h% # % # % # % # % # % # % #1 96.15† 150032‡ 100 1688‡ 100 453 100 1497 99 89230 99.44 838 95.45 1452722 76.92† 150024‡ 11.54† 150024‡ 100 5324‡ 94.62† 64131‡ 43.33 150050 99.44 7825‡ 90.91† 150047‡3 11.54† 150020‡ 11.54† 150017‡ 99 7829‡ 88.85† 44311‡ 92.67 138653 100 49 95.45 1122694 100 61916‡ 11.54† 150018‡ 100 154‡ 93.85† 29048‡ - - 100 6726‡ 97.73 114918‡5 100 74577‡ 11.54† 150024‡ 100 185‡ 91.54† 37602‡ - - 100 42‡ 95.45 134630Table 6.8: Results of the MOA approa
h with no stati
 information based initial 
enters.
τ Triangle1 Triangle2 Triangle3 Triangle4 Atof Remainder Complexbran
h% # % # % # % # % # % # % #1 94.62† 150026‡ 100 2314‡ 100 376‡ 98.46 3778 95 91148 100 71 98.18 878912 76.92† 150023‡ 23.08† 150024‡ 100 3691‡ 89.62† 28819‡ 47.33 150064 100 9931‡ 93.64† 128868‡3 56.15† 150028‡ 34.62† 150020‡ 99 4442‡ 89.23† 28566‡ 95.67 125487 100 33 97.27 1118954 100 25031‡ 65† 145067‡ 100 125‡ 89.23† 24322‡ - - 100 8377‡ 96.36 1132305 100 30808‡ 23.08† 150014‡ 100 185‡ 90† 25134‡ - - 100 42‡ 98.18 116060Table 6.9: Results of the SOA approa
h with no stati
 information based initial 
enters.solution may be low. On the other hand, if the EDA departs from an unsuitable region,a huge number of interval in
rements 
ould be ne
essary to rea
h the optimum, or it
ould not even be attained. In the present work, the de�nition of the initial spa
e ofea
h bran
h is based on stati
 or dynami
 heuristi
 information. In order to 
omparethese two strategies, the previous experiments were repeated 
hanging stati
 informationbased 
enters to be dynami
 information based. Tables 6.8 and 6.9 show the results forthe MOA and SOA algorithms, respe
tively.The di�eren
es between the stati
 and dynami
 strategies for the 
overage and number ofinputs were studied through statisti
al tests. In other words, the Mann-Whitney test wasemployed to evaluate the equality between the distribution densities of the algorithmswith and without stati
 strategy. Similarly to previous tables, the symbols `†' and `‡'beside a 
ell in Table 6.8 denote a statisti
ally signi�
ant di�eren
e (p < 0.01) betweenthe experiments in the 
ell and the 
orresponding values in Table 6.3. Analogously, thesame applies to Table 6.9 and Table 6.6.As 
an be observed, in MOA, the di�eren
es asso
iated with the 
overage 
on
entrateon three programs: Triangle1, Triangle2 and Triangle4. However, 
on
erning thenumber of inputs generated, from up to 33 tests, dissimilarities were obtained in 23
ases. All in all, the programs with a large proportion of stati
 to dynami
 bran
hes(see Table 6.2) o�ered di�eren
es, ex
epting Complexbran
h for a few values of τ whi
hshown an inferior performan
e in Table 6.3. In 
ontrast, the programs with a moresigni�
ant number of dynami
 bran
hes, revealed, in general, fewer dissimilarities. Inthe SOA algorithm, di�eren
es were found in almost the same 
ases as in MOA.Regarding these signi�
antly di�erent instan
es in Tables 6.3 to 6.9, it 
an be noti
ed115
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ement: the Role of Sear
h Spa
e and Obje
tive Fun
tionthat in almost all of them, the best results 
orrespond to the approa
h using the stati
strategy. The only ex
eptions are Triangle3 with τ = 4 and τ = 5, and Remainder with
τ = 5 for both MOA and SOA, in the number of inputs generated.The remarks from these tests are 
aptured by Figures 6.7 and 6.8 for MOA and SOA,respe
tively. In ea
h graphi
, the di�erent obje
tives are represented in the x-axis, whilethe y-axis takes values in the range of possible region enlargements. Thus, given aprogram, the graphi
 in the upper half in a �gure shows the number of in
rementsperformed for ea
h stati
 (labeled with a 
ross) and dynami
 (labeled with a 
ir
le)obje
tive. To be exa
t, the average and the standard deviation over τ and the tenexe
utions are depi
ted for ea
h obje
tive. Analogously, in the bottom part of a �gure,the values asso
iated with the variant using only dynami
 obje
tives are presented.Both �gures show 
lear disparities between the stati
-dynami
 and the dynami
 ap-proa
hes in programs where the bulk of the statisti
al tests observed di�eren
es (thatis, Triangle1, Triangle2, Triangle4). In 
ontrast, in Atof, where no signi�
ant dis-similarity was found, behavior is almost the same. Remaining programs fall somewherein between; they respond di�erently for a few obje
tives, although, in most of them,response is alike.The signi�
ant di�eren
es obtained in the number of inputs generated are also re�e
tedby the �gures. In all the statisti
ally distin
t programs, the sum of the average numberof in
rements in the dynami
 approa
h is larger than in the stati
-dynami
 one. Indeed,it 
an be noti
ed that the main body of the obje
tives where 
hanges o

ur between bothapproa
hes 
orresponds to stati
 
ases whi
h had turned out to be dynami
.Thus, it may be 
on
luded that the suggestions raised in Se
tion 6.5.2 on the stati
information based strategy are 
on�rmed. This strategy 
an make a di�eren
e in the
overage rea
hed but, most of all, in the number of region enlargements and, 
onsequently,in the number of inputs 
reated. Moreover, the stati
 heuristi
 improves or equals thedynami
 one, with the ex
eption of a few 
ases.Self-Adaptive vs. Basi
 Approa
hIn order to have an idea of the quality of the results of the Self-Adaptive alternative,they were 
ompared with those obtained by the basi
 test data generator.The range of input parameter values for the basi
 approa
h was obtained 
entering theinterval in 0 and adding the maximum in
rement shown in Table 6.2. To make the
omparison as fair as possible, the EDA 
hosen was TREE and its parameters werethe same as in Se
tion 6.5.1, apart from two of them. The population size and themaximum number of generations were �xed with the values in Chapter 4 o�ering thebest performan
e for TREE. 116
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Figure 6.7: Average number of region enlargements per obje
tive in MOA (above) andMOA with no stati
 obje
tive (below).117
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τ Triangle1 Triangle2 Triangle3 Triangle4 Atof Remainder Complexbran
h% # % # % # % # % # % # % #Basi
 99.62 9940‡ 100 5880‡ 100 4180‡ 99.62 51560‡ 100 3475 100 1240‡ 98.64 21420‡MOA 100 190 100 990‡ 100 285 100 1738 98.33 68936‡ 100 57‡ 100 1856SOA 100 246 100 266 100 222 99.23 2546 96† 65078 100 30 100 18406Table 6.10: Best results of the basi
, MOA and SOA approa
hes.Table 6.10 shows the best values (with priority to 
overage) of the MOA, SOA and basi
approa
hes. The outstanding results are highlighted in gray.It 
an be observed that the Self-Adaptive alternative outperforms the basi
 approa
hin the 
overage rea
hed as well as the number of generated inputs in all the programsex
ept Atof. In fa
t, the poor behavior shown in the results of previous tables for thisprogram be
omes evident here, mostly with regard to the number of inputs. In Atof, anumber of obje
tives 
an only be 
overed when the largest sear
h region is rea
hed. Sin
ethe Self-Adaptive approa
h departs from a redu
ed region and the grid sear
h methodseems to provide an unsuitable initial 
enter, performan
e is worse than for the basi
alternative, whi
h operates over the largest region dire
tly.The purpose of the 
urrent 
omparison is to identify the approa
h o�ering the best per-forman
e. Hen
e, the statisti
al analysis explained in Se
tion 6.5.2 was used to validatethese results. Similarly to the previous table, Table 6.10 provides the out
omes of theanalysis.Signi�
ant di�eren
es (p < 0.01) in the 
overage values were noti
ed just for Atof,between the basi
 approa
h and SOA. In 
ontrast, MOA revealed a di�eren
e in thisprogram for the number of inputs generated. Thus, it 
an be dedu
ed that the basi
generator improves SOA and MOA with statisti
al eviden
e in Atof. In spite of this, forthe rest of the programs, the basi
 approa
h presents dissimilarities (p < 0.01) in thenumber of inputs 
reated with regard to the best result.Therefore, it 
an be inferred that in almost all the programs the Self-Adaptive approa
houtperforms the basi
 one.6.5.5 Evaluation with Real-World ProgramsThe experiments 
ondu
ted in the previous se
tions involve typi
al programs whi
h areknown to in
lude several 
hallenging bran
hes. Obviously, test data generation for �real-world� programs may be as di�
ult, although it 
ould result in a simple task as well.In order to verify whether the Self-Adaptive algorithms 
onstitute a solid option in the�real world�, they were 
ompared to the basi
 approa
h for a number of non-a
ademi
programs. In [210℄, test 
ases were generated with the basi
 approa
h for several programstaken from the book �Numeri
al Re
ipes in C. The Art of S
ienti�
 Computing.� [195℄.119



Test Data Generation Enhan
ement: the Role of Sear
h Spa
e and Obje
tive Fun
tionThus, up to 16 instan
es that showed di�erent levels of di�
ulty for the basi
 approa
hwere 
hosen from this study, and the Self-Adaptive alternative was applied to them.Apropos the parameters for the basi
 approa
h in [210℄, the EDA applied was TREE.The population 
onsisted of 100 individuals, and the stopping 
riterion was rea
hing amaximum of 100 generations. The rest of the parameters in the EDA were the same asin Se
tion 6.5.1. Additionaly, the test 
ase generation was halted as soon as a limit of100000 inputs was dete
ted.In the experiments with the Self-Adaptive approa
h, the EDA took the parameter valuespreviously des
ribed, with two ex
eptions. As explained in Se
tion 6.3.1, the EDA'spopulation size is �xed to be twi
e the length of the individual. Moreover, in order tomake a fair 
omparison, instead of using the Kullba
k-Leibler divergen
e based stopping
riterion, a maximum number of generations equal to the population size was set. Again,the whole pro
ess was for
ed to terminate as soon as the generation of 100000 inputs wasdete
ted. In all the programs, the parameters of an input were integers or real numbers.Tentative values were adopted for the number of bits used to represent the initial and the�nal sear
h regions, i.e. 5 and 10 bits for integers, and 5 and 7 bits for real parameters.The experiments were 
ondu
ted for MOA and SOA, with τ ranging from 1 to 5. Table6.11 presents the results of the best τ for ea
h algorithm, together with the values of thebasi
 approa
h. The outstanding values are highlighted in gray.program basi
 MOA SOA% # % # % #bessj 100 220 100 21 100 45bnldev 80.77 54100 84.62 100007 84.72 100018
aldat 75 20100 87.5 1550 87.5 1481
yfun 75 40100 75 100009 75 100011fa
tln 87.5 10330 87.5 1543 87.5 1477fit 100 3760 100 101 100 101flmoon 98.33 2530 100 29 100 29gasdev 75 10100 75 1541 75 1476irbit2 50 10100 50 1511 50 1476kendl1 100 100 100 61 100 61laguer 100 3590 100 2149 100 2185ran1 66.67 20100 66.67 4730 66.67 3649ratint 100 330 100 163 100 74sn
ndn 93.75 10100 93.75 3089 93.75 3021tred2 100 240 100 61 100 61tridag 91.25 10790 100 157 100 157Table 6.11: Results of the basi
 approa
h, MOA and SOA on real world programs.In all the programs but one, MOA or SOA improve the out
omes of the basi
 approa
h.In this ex
eption (
yfyn), the basi
 generator obtained a 75% 
overage and stopped at40100 inputs. The Self-Adaptive algorithms were unable to attain a better 
overage,120



Test Data Generation Enhan
ement: the Role of Sear
h Spa
e and Obje
tive Fun
tionbut they 
ontinued the sear
h over larger regions until the maximum limit of inputswas rea
hed. Athough this behavior results undesirable in this 
ase, it 
an also be verysuitable. For instan
e, in bnldev, the 
overage of the basi
 approa
h is augmented andthe limit of 100000 is attained on
e again. The other programs where the 
overage isoutperformed are 
aldat, flmoon and tridag. For the rest of the 
ases, the enha
ement
orresponds to the number of inputs generated.Thus, these out
omes present the Self-Adaptive approa
h as a viable alternative forappli
ation in the real world. Furthermore, the results 
learly support the 
on
lusionfrom the previous se
tion: the Self-Adaptive algorithms perform better than the basi
approa
h, mainly with regard to the number of inputs generated.6.6 SummaryIn this 
hapter, two signi�
ant topi
s, when the generation of test inputs is posed as anoptimization problem, have been dealt: the obje
tive fun
tion and sear
h spa
e.The former topi
 has been brie�y ta
kled by 
omparing a fun
tion following equation 3.1with a fun
tion using equation 3.2, in the 
ontext of the basi
 approa
h. Experimentalresults have shown that the se
ond equation improves or equals the performan
e of the�rst.On the other hand, the issue of sele
ting an appropriate sear
h spa
e was fa
ed bydes
ribing two new approa
hes, namely, MOA and SOA. In order to enhan
e the test
ase generation pro
ess, the optimization step of both alternatives departs from an initialsmall region whi
h is in
reasingly enlarged as bran
hes remain un
overed. The startingsear
h spa
e is de�ned upon heuristi
 information from the program. More pre
isely, twooptions 
ould be adopted: the appli
ation of a set of rules 
on
erning the sour
e 
ode'sstati
 information, or using a heuristi
 pro
edure based on dynami
 information, whi
h
onsisted of a grid sear
h method.The analysis of the experiments 
ondu
ted revealed promising results for both approa
hes.First of all, the sear
h over di�erent regions allows for the a
hievement of the highest
overage values, whi
h is a primary performan
e measurement. Apropos the two heuris-ti
 strategies to obtain the initial region, it was 
on
luded that the stati
 option makes adi�eren
e and 
an at least improve the e�
ien
y of the approa
h in terms of the numberof inputs generated. On the other hand, the dynami
 heuristi
 showed to be more un-stable. The τ parameter of the method did not provide a relevant in�uen
e on the bestvalues.Comparing the performan
e of the MOA and SOA algorithms, in general terms, no sig-ni�
ant di�eren
e was found between them. Additionally, the algorithms were 
omparedto the basi
 approa
h. With the ex
eption of the inferior results in one test program, the121



Test Data Generation Enhan
ement: the Role of Sear
h Spa
e and Obje
tive Fun
tionformers outperformed the latter with statisti
al eviden
e. Moreover, this improvementover the basi
 generator repeated for a number of �real-world� programs, presenting theSelf-Adaptive strategy as a solid alternative.
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7 Con
lusionsIn this 
hapter, the main 
ontributions exposed throughout the dissertation are summa-rized. Con
lusions arising from the work developed in previous 
hapters are in
ludedand, additionally, dire
tions for future lines of resear
h are suggested.7.1 ContributionsAmong the issues related to software testing, the automati
 generation of the input 
asesto be applied to the program under test is espe
ially relevant and di�
ult. A 
ommonstrategy for ta
kling this task 
onsists of 
reating inputs that ful�ll an adequa
y 
riterionbased on the program stru
ture. The present dissertation has addressed the test datageneration problem, fo
using on bran
h testing, a mandatory 
riterion nowadays. Thistask has been posed as a set of optimization problems to be solved. Then, the threesigni�
ant elements related to ea
h optimization problem have been studied, that is, theoptimization method, the sear
h spa
e and the obje
tive fun
tion. Among these, spe
ialattention has been paid to the optimization te
hnique. After overviewing EDAs and SS,their appli
ation to this problem has been studied. Apropos the two other elements, sin
eresear
h in the �eld is being a
tive for the obje
tive fun
tion, the sear
h spa
e topi
 hasbeen emphasized.More spe
i�
ally, the 
ontributions of the present work may be summarized as follows:
• An overview of EDAs and SS, two modern metaheuristi
 te
hniques 
urrently de-serving the attention of the EAs 
ommunity.
• In some optimization methods, there is a la
k of works dealing with real-worldproblems, whi
h is an important aspe
t for un
overing their limitations or knowingwhether they represent a pra
ti
al alternative. Here, EDAs and SS have beenapplied to the generation of test inputs for bran
h 
overage, a demanding real-world problem.
• The appli
ation of EDAs has been studied in the 
ontext of an iterative two-steppro
ess. In the �rst step, a bran
h is 
hosen as the obje
tive and, in the se
ond,the 
orresponding optimization problem is ta
kled through an EDA. Three types123



7 Con
lusionsof EDAs have been evaluated empiri
ally: those where the probabilisti
 model as-sumes problem variables are 
onditionally independent (UMDA and PBIL), algo-rithms with �rst order dependen
e probability distributions (MIMIC and TREE),and EDAs where the model makes no restri
tion on the dependen
ies betweenvariables (EBNAK2+pen and EBNABIC).
• The SS methodology has been employed following the same test data generationframework as for EDAs, enabling so their 
omparison. Additionally, light hasbeen shed on SS internals, whi
h 
an s
ar
ely be found in the literature to date.More pre
isely, the role of the improvement method in the SS algorithm has beendealt by studying three appli
ation options. Namely, these are: using improvementin the 
lassi
al way (Improve After), i.e. after diversi�
ation or 
ombination, orjust improving the solutions to enter in the referen
e set (Improve Before), or notemploying improvement at all. Su
h alternatives have been analyzed empiri
ally.Moreover, for ea
h alternative, the weight of ea
h SS method has been 
apturedduring the sear
h.
• Both, EDAs and SS, have been 
ombined to solve the test data generation. A
ollaborative s
heme has been developed where, �rstly, the EDAs based approa
h isapplied and, on
e it has �nished, the SS based generator is used over the remainingun
overed bran
hes.
• Regarding the obje
tive fun
tion, an advan
ed formulation (equation 3.2) has beendis
ussed and 
ompared with a basi
 fun
tion (equation 3.1) through experimen-tation.
• The issue of sele
ting an appropriate sear
h spa
e has been explored by developinga Self-Adaptive strategy that seeks for a promising feasible region. Two algorithms
onforming to this strategy have been des
ribed: MOA and SOA. The underlyingidea in MOA is to apply the EDAs based framework over widening regions. By
ontrast, in SOA, the basi
 framework is used on
e, though the EDA exe
utes overin
reasingly augmented regions. In both approa
hes, the initial sear
h spa
e isde�ned upon stati
 or dynami
 heuristi
 information from the sour
e 
ode of theprogram. Additionally, parameters of the EDA are made self-adaptive. Populationsize is set to twi
e the length of the individual and, for the stopping 
riterion,a novel rule based on the Kullba
k-Leibler divergen
e from the estimated to theempiri
al probability distribution is proposed.7.2 Con
lusionsThe main general 
on
lusion that 
an be drawn from the dissertation is that treatmentof the test data generation from an optimization point of view proves to be su

essful.124



7 Con
lusionsTo sum up, the following ideas 
olle
t the major 
on
lusions from the work developed:
• Considering the optimization method, EDAs as well as SS are solid options forsolving the test data generation. Furthermore, they are able to improve the resultsa
hieved by other methods. To be pre
ise, up
oming 
on
epts may be inferred fromtheir appli
ation:� In the EDAs based approa
h, the 
overage attained was 100% in all the exper-imental programs and, ex
epting a few 
ases, the number of inputs generatedwas 
learly lower than in other works based on GAs. Among the di�erentEDAs, algorithms using nontrivial probabilisti
 models seem to be a promis-ing alternative. A ranking based on statisti
al tests was developed to identifythe best algorithms; TREE and EBNAK2+pen showed the best overall perfor-man
e. The 
apability of these EDAs for expressing the dependen
ies betweenproblem variables 
ould be a key point, as su
h dependen
ies usually existwhen trying to 
over a parti
ular bran
h.� The SS based approa
h shows 
ompetitive with regard to the EDAs test datagenerator: in three of the seven test programs, SS improved the results ofEDAs with statisti
al eviden
e, and no di�eren
es where found in anotherprogram. Con
erning the in�uen
e of the improvement method, it may be
on
luded that, despite being optional, this element plays a main role in theSS methodology. The weight of improvement is re�e
ted in the number ofsolutions generated and the number of optima found during the pro
ess. TheImprove Before option proposed obtained statisti
ally signi�
ant better resultsthan the 
lassi
al strategy in three of the seven test programs, thus presentingas an interesting alternative. Clearly, the worst performan
e was obtainedif no improvement method is employed. Moreover, the behavior of otherSS methods depends on the way improvement is used. In fa
t, a 
ommonobservation to the three 
ases of study is the unability of the 
ombinationmethod to rea
h an important number of high quality solutions by itself. So,in this 
ontext and a

ording to our experiments, in SS, the two prominentmethods for optima attainment are improvement and diversi�
ation.� The empiri
al 
omparison of the EDA-SS 
ollaborative approa
h with the twoother points at the former as a method lying in between the latters, from thepoint of view of performan
e.
• The evaluation of the obje
tive fun
tion 
on�rmmed that the fun
tion de�neda

ording to equation 3.2 outperforms or equals that from 3.1.
• Apropos the study of the sear
h spa
e sele
tion, this issue shows highly relevant torea
h improved results. Although no signi�
ant di�eren
e was appre
iated between125



7 Con
lusionsMOA and SOA approa
hes, the results of the basi
 EDAs test data generator were
learly enhan
ed, with the ex
eption of one test program. The out
omes of theexperiments reveal that the sear
h over di�erent regions allows for the a
hievementof the highest 
overage values. For the two heuristi
 strategies to obtain the initialregion, it was 
on
luded that the stati
 information based option makes a di�eren
eand 
an at least improve the e�
ien
y of the approa
h in terms of the number ofinputs generated. On the other hand, the dynami
 heuristi
 showed to be moreunstable.7.3 Future WorkUndoubtedly, mu
h resear
h is to be undertaken on the area of optimization and, moreexa
tly, on metaheuristi
s su
h as EDAs and SS. Just to name a few ideas, theoreti
alworks on their behavior, parallel designs, new algorithms for EDAs, advan
ed methodsfor SS, or stopping 
riteria. Progress in these (and mu
h other) topi
s are important forbetter understanding su
h te
hniques and, ultimately, to yield wiser appli
ations in thereal world. Though this must be bore in mind, we fo
us next on a number of hints forfuture lines of work whi
h might be interesting in our parti
ular 
ontext.
• In the �eld of EDAs, a relevant topi
 is the sele
tion of an appropriate algorithmfor a given problem. Several works have already been developed, suggesting thatsimple EDAs (e.g. UMDA) are more limited in �nding high quality solutions than
omplex EDAs (like TREE or EBNA) [261℄, or that the probabilisti
 model should
apture the intera
tions between the obje
tive fun
tion variables [26℄. To some ex-tent, results obtained in the dissertation 
onform to these studies, however, furtherresear
h is needed.
• Considering SS, very few publi
ations have been devoted to the internals of itsoperation. Yet we have rised a slight 
ontribution on this matter, intensive e�ortsshould be addressed towards the e�e
t of ea
h SS method during the sear
h pro
ess.This would help in the design of the adequate SS algorithm for a given problem.
• Additional work 
an be 
ondu
ted on the EDAs based test data generator. Forinstan
e, an appealing option is employing di�erent EDAs for ea
h bran
h to be
overed, instead of a �xed one. Noti
e results on the sele
tion of an appropriateEDA would be useful here.
• Con
erning the EDA-SS 
ollaborative approa
h, the proper balan
e between theparameter values of ea
h generator should be studied with the purpose of obtainingthe maximum bene�t. Moreover, other forms of the 
ollaborative s
heme 
ould be
onsidered; for example, a SS-EDA 
ombination.126
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• In the Self-Adaptive approa
h, several elements 
an be further studied. In thedissapointing experimental results, almost all the initial regions where 
reated withthe dynami
 information heuristi
. Sin
e the stati
 strategy behaves superiorly, away to enhan
e the response of the approa
h 
ould be to expand the set of heuristi
rules. On the other hand, in order to make the approa
h more �exible, anotherinteresting line of future work is the eli
itation of an α value for the stopping
riterion of the EDA, whi
h takes into a

ount the size of the sear
h spa
e.
• The general s
heme (Figure 3.5) followed throughout this dissertation owns twoelements apart from the optimization phase, namely, the bran
h sele
tion step andthe stopping 
riterion. So, attention may be deserved to them as well. For instan
e,an interesting option is to deal with the sele
tion step, whi
h determines the orderfor solving the optimization problems. Advantage may be taken from ideas thathave been developed for redu
ing the number of bran
hes to be 
overed through
ontrol �ow graph analysis [141℄.
• Finally, we propose to extend the test data generation problem to the appli
ationof other �elds from Arti�
ial Intelligen
e. More pre
isely, in [210℄, a new line ofwork was opened with the appli
ation of Data Mining te
hniques in this 
ontext.The underlying idea was to study the 
apability of software 
omplexity metri
sto predi
t the performan
e of the EDAs based test data generator. This is aworthwhile issue, as it is a �rst step towards the predi
tion of the most desirableapproa
h for a given program.
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