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ABSTRACT
In this paper, we rigorously analyse how the magnitude and fre-
quency of change may affect the performance of the algorithm
(1+1) EAdyn on a set of artificially designed pseudo-Boolean func-
tions, given a simple but well-defined dynamic framework. We
demonstrate some counter-intuitive scenarios that allow us to gain
a better understanding of how the dynamics of a function may affect
the runtime of an algorithm. In particular, we present the function
MAGNITUDE, where the time it takes for the (1+1) EAdyn to relo-
cate the global optimum is less than n2 log n (i.e., efficient) with
overwhelming probability if the magnitude of change is large. For
small changes of magnitude, on the other hand, the expected time
to relocate the global optimum is eΩ(n) (i.e., highly inefficient).
Similarly, the expected runtime of the (1+1) EAdyn on the function
BALANCE is O(n2) (efficient) for a high frequencies of change and
nΩ(

√
n) (highly inefficient) for low frequencies of change. These

results contribute towards a better understanding of dynamic opti-
misation problems in general and show how traditional analytical
methods may be applied in the dynamic case.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—Computations on discrete
structures; G.3 [Probability and Statistics]: Probabilistic Algo-
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1. INTRODUCTION
The field of dynamic evolutionary optimisation is concerned with

the application of evolutionary algorithms (EAs) to the class of
problems that change over time. The time-variant feature of dy-
namic optimisation problems (DOPs) poses many new challenges
to the design of new algorithms, which, in turn, tend to be more
complex than their counterparts used in the stationary domain. This
has direct implications on their theoretical treatment and only very
few results have been obtained so far on the expected runtimes of
such algorithms. However, the complexity of the algorithms is not
the only problem as there is also a distinct lack of generally ac-
cepted formal frameworks, making it difficult to unambiguously
describe certain attributes of DOPs. Finally, it is not entirely clear
how to analyse algorithms in the dynamic domain as concepts such
as expected first hitting time or success probability may not apply,
at least not without minor modifications. In this paper, we will dis-
cuss these issues and present a rigorous analysis of the (1+1) EA,
adapted to the dynamic domain, on a set of simple dynamic func-
tions. In particular, we look at the two most prominent features of
DOPs, namely the magnitude and frequency of change.

There are numerous different types of DOPs but here we only
consider the simplest case as it is by far the most commonly consid-
ered one in the literature. A DOP may be viewed as a time-variant
series of instances I(·) of the same problem Π,

I(π = 0) −→ I(π = 1) −→ . . . −→ I(π = m)

where the dynamics T determine how each instance differs from
the next such that I(π +1) = T (I(π), t). The time t = 0, 1, 2, . . .
is discrete and advances with every call to the objective function,
f : X ×N0 → R. The problem changes every τ generations1 (i.e.,
the frequency of change is 1/τ ). We denote τ as the update period,
each of which is indexed by π:

π ←
j

π + 1 if t mod τ = 0
π otherwise

The field of dynamic evolutionary computation has gained signif-
icant momentum in recent years and a wide range of novel EAs
have been proposed. The benchmarking of these algorithms is of-
ten carried out on readily available benchmark generators such as
MOVING PEAKS due to Branke [2], DF1 due to Morrison [10] and
XOR due to Yang ([17]; see section 2). However, the relative lack
of theoretical results makes it difficult to fully assess the strengths
and weaknesses of the individual algorithms. In other words, with-
out a firm theoretical foundation, it is difficult to assess what these
benchmarks actually test.

1In the more general case, τ is also a function of t (i.e., τ (t)) al-
though this is rarely considered in the literature.
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This problem is somewhat worsened by the fact that most efforts
are concerned exclusively with the development of new EAs and
often ignore the inherent attributes and dynamics of the underly-
ing problem. Subsequently, the majority of insights regarding the
properties of evolutionary dynamic optimisation originate from the
empirical observation of the behaviour of individual algorithms. In
this paper, we attempt to address this issue and concentrate on two
counter-intuitive cases that contradict commonly held beliefs. In
doing so, we not only show that care has to be taken in making
general claims about certain attributes of the dynamic domain, but
we also attempt to illustrate how existing analytical techniques may
be applied in the dynamic case.

The remainder of this paper is structured as follows: First, we
fully describe the dynamic framework used in this paper in section
2, followed by a review of previous theoretical work in section 3.
In section 4 we discuss the application of standard analytical tools
and quantitive performance measures in the dynamic case. The sec-
ond part of the paper presents two rigorous proofs for two counter-
intuive dynamic scenarios: Section 5 deals with large and small
magnitudes of change whereas section 6 is concerned with high
and low frequencies of change. Finally, the paper in concluded in
section 7 where some prospects for future work are discussed as
well.

2. A DYNAMIC FRAMEWORK
The XOR benchmark [17, 18] imposes dynamics on any station-

ary pseudo-Boolean function f : {0, 1}n → R by means of a
bit-wise exclusive-or operation that is applied to each search point
x ∈ {0, 1}n prior to each function evaluation. The dynamic equiv-
alent of any stationary function is simply f(x(t) ⊕ m(π)) where
⊕ is the xor operator. The vector m(π) ∈ {0, 1}n, which ini-
tially is equivalent to 0n, is a binary mask, generated as m(π) :=
m(π − 1) ⊕ p(π) where p(π) ∈ {0, 1}n is a randomly created
template that contains exactly �ρn� ones. In other words, for each
period π, the mask m is altered using a randomly created template
p that encapsulates the magnitude of change ρ ∈ (0, 1] (i.e., ρn is
the actual number of bits inverted). The period index π = 	t/τ
 is
determined by the duration τ > 0 between changes. The parame-
ters τ and ρ are usually kept constant throughout the execution of
the algorithm. Finally, it should be noted that the majority of dy-
namics modelled with XOR are random but it is also possible to
model both cyclical [19] and noisy cyclical [20] changes. In these
cases, the mask m is defined non-randomly at each period to ensure
the desired cycle is generated.

XOR was analysed formally by Tinós and Yang [16]: If we as-
sume that the transformation of each encoding x(t) by m(π) yields
a vector z(t) = x(t)⊕m(π), then it is possible to rewrite this ex-
pression as zn(t) = A(π)xn(t) where x ∈ {0, 1}n is normalised
to xn(t) ∈ {−1, 1}n and where A(π) is a linear transformation:

A(π) =

2
6664

A1(π) 0 . . . 0
0 A2(π) . . . 0

. . .
0 0 . . . An(π)

3
7775

where

Ai(π) =

j
1 if mi(π) = 0
−1 if mi(π) = 1

for i = 1, 2, . . . , n. It follows that XOR does not actually alter the
underlying function but instead rotates each search point x prior
to each function evaluation. This approach clearly differs from
more realistic dynamic problems where the actual fitness landscape

Algorithm 1 (1+1) EAdyn for time-variant problems.

Set t := 0 and choose x(t) ∈ {0, 1}n uniformly at random.

while termination criterion not met do
x′(t) := x(t)
Flip each bit of x′(t) with probability 1/n.
if f(x′(t), t) ≥ f(x(t), t) then

x(t + 1) := x′(t).
else

x(t + 1) := x(t).
end if
t := t + 1.

end while

varies structurally over time. However, XOR circumvents some of
the numerous problems associated with defining precise dynamics
in the combinatorial domain (see [14]) and thus provides a frame-
work, which, albeit simple, defines the dynamics of the problem
unambiguously. This property makes it possible to obtain accurate
results and motivates the use of XOR in this paper.

We define two specifically designed functions in order to investi-
gate how the performance of the (1+1) EAdyn is affected by the two
most prominent characteristics of dynamic functions, namely the
magnitude and frequency and change. These functions are pseudo-
Boolean and are made dynamic using the XOR framework.

3. PREVIOUS THEORETICAL WORK
The (1+1) EA is the simplest EA that has the ability to perform

global search by means of a mutation operator that uniformly in-
verts bits of x with some probability pm. Here we assume that
pm = 1/n, where n is the length of x. The (1+1) EAdyn [3] is
a simple adaptation of the (1+1) EA to the dynamic domain (see
algorithm 1) that differs from the (1+1) EA only in the aspect that
the objective function is called twice during each iteration to pre-
vent the use of outdated fitness values. The (1+1) EAdyn has been
analysed on several dynamic variants of the ONEMAX function, ex-
tending the work carried out previously on the stationary ONEMAX

(e.g., [1, 12, 6]). The dynamic variants of the ONEMAX differ
in their transitions from one period to the next, a property which
may drastically affect the runtime of the algorithm. The publica-
tions that are discussed next did not make use of XOR although the
framework is essentially identical. However, it should be noted that
the runtime analysis is simplified if the dynamics are viewed as an
additional mutation operator that acts directly on x (depending on
the magnitude and frequency of change). This principle is used in
the following discussion.

The first analysis of the (1+1) EAdyn on the dynamic ONEMAX

is due to Stanhope and Daida [15] who considered dynamics where
every τ function evaluations, solutions are mutated by m bits (like
we do in section 5). Stanhope presented the transition probabili-
ties of the (1+1) EAdyn, successfully validated by a comparison to
Monte-Carlo generated fitness distributions. Amongst other things,
Stanhope showed that even small perturbations in the fitness func-
tion could have a significantly negative impact on the performance
of the (1+1) EAdyn. Droste [3, 4] considered two slightly differ-
ent variants of the dynamic ONEMAX. In the first case, the search
point is mutated by exactly one bit after each function evaluation
and with probability p′. In the second and more general case, each
bit of x may be inverted independently with probability p′′. Droste
showed that in the first case, the expected first hitting time of the
(1+1) EAdyn is polynomial if and only if p′ = O(log n/n). In
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the second case, Droste shows that the first hitting time changes
from polynomial to super-polynomial at the critical growth rate of
p′′ = Θ(log n/n2).

4. ANALYSIS OF DYNAMIC FUNCTIONS
The analysis of dynamic functions can be very challenging as

previous publications have demonstrated. Part of this challenge is,
of course, due to the dynamics of the function which have to be
considered in addition to the dynamics of the algorithm. However,
another important aspect is the quantity by which the quality of an
algorithm is to be judged. In the stationary case, the objective of an
optimisation algorithm is to find the global optimum in as few steps
(number of calls to the objective functions) as possible for any num-
ber of inputs n. In the dynamic case, on the other hand, the goal
is to not only locate the global optimum but also to track said opti-
mum as the search space changes over time [2]. In his work, Droste
considers the expected first hitting time of the (1+1) EAdyn in the
continuously changing ONEMAX problem [4]. The expected first
hitting time in this case is more accurately referred to as expected
temporal first hitting time as we are interested in the time the cur-
rent global optimum is first found (which, in turn, may be lost as
soon as a change occurs). Droste mentions additional measures that
may be taken into account such as the degree to which a found op-
timum is lost or the average distance to the nearest optimum over
time [4, p 56].

There are numerous additional measures that could prove useful
such as the time spent at the global optimum during each period or
the highest frequency under which an algorithm can guarantee to
locate the global optimum in each period with some probability p.
Another interesting concept is the expected nth hitting time: The
first hitting time usually assumes a uniformly random distribution
from which the initial search points are selected. In the dynamic
case, however, once a change takes place, the algorithm has already
spent τ steps optimising the function and is thus at a non-random
point (e.g., the previous global optimum) when faced with a new
instance of the problem. It is therefore reasonable to expect that
the first hitting time may differ from subsequent ones and clearly,
this depends on the magnitude and frequency of change. It is possi-
ble that the hitting times converge over time and it could be useful
to obtain the expectation of the runtime over all periods for an al-
gorithm on a given problem.

In this paper, we consider two different functions and for each
proof we make use of two different quantitive measures. The first
case, concerned with the magnitude of change, assumes that the fre-
quency of change is sufficiently low to guarantee that the algorithm
reaches either the local or global optimum during each period (the
function is bi-modal) with high probability. We are subsequently
interested in the time required to relocate the global optimum once
it has been lost due to update of the function. We call this measure
the second hitting time. In the case of the second function, which
is concerned with the frequency of change, we analyse the first hit-
ting time of the algorithm. This is similar to the work by Droste [3,
4], but in our case, once the global optimum has been found, it is
no longer lost (i.e., the global optimum in this case is stationary).
Although not estimated explicitly in this paper, it is also natural to
consider the duration with which the algorithm resides at the op-
timum, a measure we call the séjour time. We now define these
measures formally (we assume, without loss of generality, that we
maximise the function).

Definition 1 (DYNAMIC RUNTIME). Given a search space X
and a dynamic fitness function f : X × N0 → R, let x(t), t ≥ 0,
be the current search point at iteration t of optimisation algorithm

τ τ τ τ τ τ
Q1 Z1 Q2 Z2

T1 S1 T2

Figure 1: First hitting time T1, séjour time S1, and second
hitting time T2, where gray lines correspond to time intervals
where the algorithm resides at the optimum.

A on dynamic fitness function f . Then the hitting times Tj and the
séjour times Si of algorithm A on function f are defined as

Ti := min
t

{t ≥ 0 | ∀y ∈ X, f(x(Qi + t), Qi + t) ≥ f(y, Qi + t)},
Si := min

t
{t ≥ 0 | ∃y ∈ X, f(x(Zi + t), Zi + t) < f(y, Zi + t)},

where i ≥ 1 and

Qk :=

(
0 if k = 1,Pk−1

l=1 (Tl + Sl) otherwise

Zk :=

(
T1 if k = 1,

T1 +
Pk−1

l=1 (Sl + Tl+1) otherwise

Figure 1 illustrates these definitions. As mentioned previously,
the objective of dynamic optimisation, at least in the cases consid-
ered here, is to locate and track the global optimum over time. To
be considered efficient in the dynamic domain, it is necessary that
the algorithm locates the optimum within reasonable (i.e., polyno-
mial) time. Furthermore, the second and subsequent hitting times
should not be larger than the first. Otherwise, a restart strategy
should be favored over continous tracking of the optimum. In our
case, the second hitting time is representative of the time to relocate
the optimum after a change has occured. However, in the general
case, it may be necessary to also consider subsequent hitting times
in order to properly evaluate the effectiveness of the algorithm.

5. MAGNITUDE OF CHANGE
In dynamic evolutionary computation, the magnitude of change

is generally regarded as the relatedness of two successive instances,
I(π) and I(π + 1). It is a common assumption that smaller mag-
nitudes of change are easier to adapt to, primarily by “transferring
knowledge from the past” [9, p 311] which may help to acceler-
ate the rate of convergence after a change has occurred. However,
there are two important aspects regarding these concepts that are
often ignored. First, is not entirely clear how the magnitude of
change may be measured. The most common approach is to use the
genotypic distance between successive global optima but numerous
other scenarios are possible. Fortunately, in XOR, this quantity is
defined unambiguously by the parameter ρ ∈ (0, 1] and simply
refers to the number of bits a search point is rotated by. In our
experiments, we denote the magnitude of change as θ which is an
integer 0 < θ ≤ n.

The second aspect is the concept of knowledge itself. Again, it is
not entirely clear what information constitutes towards knowledge
from the past; in most cases, such knowledge is restricted to the lo-
cation of local and possibly global optima visited by the algorithm
up to the present point in time. In the case of XOR, once the al-
gorithm has located a local or global optimum, the magnitude of
change determines exactly how far away a point will be rotated. It
therefore seems reasonable to assume that smaller magnitudes of
change are easier to recover from than larger ones and it is straight-
forward to show examples where this is indeed the case. However,
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0n

|a|0

|b|0

2q

|a|0 − |b|0 |a|0 + |b|0 + n

TRAP ZERO

1n

0q1n−q

PATH

Figure 2: A view of MAGNITUDE in terms of the number of
0-bits in the prefix a and suffix b of x = ab.

the ease with which it is possible to specify such functions should
not detract from other cases and here we show a function where
small magnitudes of change are, in fact, much more difficult to
adapt to than larger ones.

Definition 2 (MAGNITUDE). Let q := εn for any constant
0 < ε ≤ 1/3. For any bitstring x = ab of length n, define the
function MAGNITUDE (x) := f(x1 · · ·xq, xq+1 · · ·xn), where

f(a, b) :=

8><
>:

2n + i if x = 1i0n−i ∈ PATH

|a|0 + |b|0 + n if x ∈ ZERO

|a|0 − |b|0 if x ∈ TRAP

where the search space X is divided into three disjoint sets such
that X = PATH ∪ ZERO ∪ TRAP: The set PATH := {x ∈
{0, 1}n | x = 1i0n−i, 0 < i ≤ n} contains n − 1 points which
lead directly to 1n. The set ZERO := {ab ∈ {0, 1}n | �(a) =
q, 2q ≤ |b|0 ≤ �(b), x /∈ PATH} contains all points with at least
2q 0-bits in the suffix that are not on the path. Finally, the set TRAP

:= {ab ∈ {0, 1}n | �(a) = q, 0 ≤ |b|0 < 2q, x /∈ PATH} is the
set of all points with less than 2q 0-bits in the suffix that are not on
the path.

This stationary function is subsequently made dynamic using the
XOR framework to yield a dynamic MAGNITUDE function. For
the sake of clarity, we will continue to call this function simply
MAGNITUDE and take it to refer to the dynamic version of the
function. In this function, the local optimum, LOCAL := 0q1n−q ,
attracts almost all points with less than 2q 0-bits in the suffix (trap
region). Almost all other points in X lead to the point 0n where
a path of n − 1 points leads directly to GLOBAL := 1n. Figure 2
illustrates these concepts.

The proof idea for the runtime of the (1+1) EAdyn follows di-
rectly from the function definition and is based on two concepts:
The behaviour of the algorithm during each update period (i.e., in
time of stagnation) and the impact of the dynamics on the algo-
rithm, given the algorithm is either at LOCAL or GLOBAL. We
assume that the time between changes is sufficiently long for the
algorithm to reach one of the two optima with high probability.
Then, depending on the magnitude of change, different behaviours
emerge. The initial search point may be in TRAP or ZERO. The
probability to be on PATH is exceedingly small. If the algorithm
starts in TRAP, it will be led away from the other regions of the
search space towards the point LOCAL. Subsequently, if a small
change occurs, the rotated search point will still be in the region
TRAP and is hence attracted again to the local optimum. If, on the
other hand, the initial search point is not in TRAP, the algorithm is
led to the beginning of the path which leads directly to GLOBAL.
The situation at GLOBAL is similar to the one at LOCAL. If the
magnitude of change is small, the search point will be rotated into
the TRAP region. If the magnitude of change is large, on the other

hand, the search point will jump across the trap into ZERO or PATH.
Similarly, if the algorithm is at LOCAL and a large change takes
place, the search point is rotated beyond the boundary of the TRAP

region.
In the following, we consider a magnitude of change to be small

when 1 ≤ θ ≤ q − cn for any constant c, 0 < c < ε, and a
magnitude of change to be large when 3q ≤ θ ≤ n.

Proposition 1. Assume a small magnitude of change, 1 ≤ θ ≤
q − cn, and an update period of τ = n2 log n and that at some
point during period π, the search point x is at LOCAL. Then the
probability that (1+1) EAdyn escapes TRAP before the end of period
π + 1 is exponentially small.

PROOF. Let x be any search point during period π+1. We make
use of the Hamming distance between two points in the search
space, denoted by d(x, y). If the search point x has not yet escaped
TRAP, then d(x, LOCAL) ≤ θ ≤ q − cn, as the initial distance to
LOCAL in period π+1 is θ, and the distance to LOCAL in TRAP de-
creases monotonically with the fitness. For any point z in PATH, the
Hamming distance to LOCAL is lower bounded by d(LOCAL, z) ≥
q. The triangle inequality implies that d(z, x) + d(x, LOCAL) ≥
d(z, LOCAL), which implies d(z, x) ≥ q − (q − cn) = nc. Anal-
ogously, by noting that the Hamming distance from any point z in
ZERO to LOCAL is lower bounded by d(LOCAL, z) ≥ 2q, one ob-
tains d(z, x) ≥ q + nc. Consequently, in order to escape TRAP in
any given iteration, it is necessary to flip at least nc bits simultane-
ously. The probability that this happens in at most 2τ steps is by
union bound less than 2τ · ` n

nc

´ · n−cn = e−Ω(n).

Proposition 2. For any constant c > 0, if (1+1) EAdyn remains
in TRAP for a period of at least τ ≥ cn2 log n iterations, then
the algorithm will find LOCAL before the end of that period with
probability 1− e−Ω(n).

PROOF. Following the well know arguments for ONEMAX [5],
LOCAL is found starting from any point in TRAP within expected
time c′n log n iterations, for some constant c′. Hence, by Markov’s
inequality, the probability that LOCAL is not found within any phase
of 2c′n log n iterations is less than 1/2. Hence, the probability that
LOCAL is not found within τ/2c′n log n = Ω(n) such phases is
e−Ω(n).

Proposition 3. If (1+1) EAdyn visits GLOBAL some time dur-
ing period π, where the update period is τ = n2 log n, and the
magnitude of change is 1 ≤ θ ≤ q − cn, then there is a constant
probability that the algorithm reaches LOCAL in period π + 1.

PROOF. We first prove that there is an exponentially small prob-
ability that the search point enters ZERO during period π + 1. All
points on PATH have higher fitness than any point in ZERO, so if
the search point enters PATH, then the search point remains outside
ZERO for the rest of the period. The first search point of period
π + 1 has less than q − nc 0-bits in the suffix, so the first search
point is outside ZERO. If the search point is outside both ZERO

and PATH, then it must be in TRAP. Inside TRAP, the fitness of
any consecutive search point x = ab is |a|0 − |b|0 ≥ q − nc,
so the number of 0-bits in the suffix is bounded from above by
|b|0 ≤ |a|0 + q − nc ≤ 2q − nc. To reach ZERO, it is therefore
necessary to flip at least nc 1-bits in the suffix simultaneously . The
probability of not reaching ZERO within τ iterations is therefore at
least 1− τ · ` n

nc

´ · n−nc > 1− τ/(nc)! = 1− e−Ω(n).
We then show that there is a constant probability that the search

point remains in TRAP during period π + 1. With probability at
least q/n, the first search point during period π +1 has at least one

1716



0-bit in the prefix, and the search point is outside PATH. In the fol-
lowing, we assume that this bit is not flipped back to a 1-bit during
k · (n − 1) iterations, where k is a constant that will be specified
later. The probability of this event is at least (1 − 1/n)k·(n−1) ≥
1/ek . As long as the fitness is less than q/4 in TRAP, the proba-
bility of increasing the fitness in any iteration is at least 3q/4en.
The fitness in the initial iteration is at least −|b|0 > −q, hence
the expected time until the fitness is at least q/4 is no more than
(5q/4) · (4en/3q) = 5en/3. By Markov’s inequality, the proba-
bility that the algorithm has not reached a fitness of at least q/4 in
k · (n − 1) iterations, where k := 5e is less than 1/2 for n ≥ 3.
Hence, the unconditional probability that the current search point
in iteration k · (n−1) is in TRAP with fitness at least q/4 is at least
(1− e−Ω(n))/2ek = Ω(1). If the search point is in TRAP with fit-
ness at least |a|0−|b|0 ≥ q/4, then the number of 0-bits in the pre-
fix is at least |a|0 ≥ q/4. In order to reach PATH in this situation,
it is necessary to flip at least q/4 0-bits in the prefix, an event that
happens with probability

`
n

q/4

´ ·n−q/4 < e−Ω(n) in any given step.
The probability that the algorithm escapes TRAP before the end of
the period is then by union bound less than τ · e−Ω(n) = e−Ω(n).

Conditional on the event that the current search point remains in
TRAP during period π+1, Proposition 2 implies that the algorithm
will find LOCAL with probability 1− e−Ω(n) before the end of the
period. The probability that all of these events occur, and hence
that LOCAL is found before the end of period π + 1 is bounded
below by a constant.

Proposition 4. If period π starts with the current search point
outside TRAP and the update period is τ ≥ n2 log n, then the
expected time until (1+1) EAdyn reaches GLOBAL is O(n2). Fur-
thermore, the probability that the algorithm does not find GLOBAL

within n2 log n steps is exponentially small.

PROOF. This proof can make use of well established results as
the regions ZERO and PATH correspond together precisely to the
function SPI [8]. First, it is easy to show that the algorithm can
not enter TRAP as the lowest fitness of any point outside TRAP is
n+2q and the highest fitness of any point in TRAP is, by definition,
q. The period is divided into two phases, each of length τ/2 iter-
ations. Phase 1 is considered successful if PATH is reached before
the end of the phase. Phase 2 is considered successful if GLOBAL

is reached before the end of the phase.
In Phase 1, if the current search point is in ZERO, then the prob-

ability to get closer to 0n, given a distance of i, is at least ((n −
i)/n)(1 − 1/n)n−1. Substituting 1/e < (1 − 1/n)n−1, the ex-
pected time to reach 0n or PATH, starting from any position in
ZERO, is

E[T ] ≤
n−1X
i=0

en

n− i
= en

nX
i=1

1

i
< en(ln(n) + 1).

By Markov’s inequality, the probability that 0n or PATH is not
found within 2en(ln(n) + 1) iterations is less than 1/2. Divid-
ing the first phase of τ/2 iterations into sub-phases, each of length
2en(ln(n)+1), the probability that 0n or PATH is not found within
τ/4en(ln(n) + 1) = Ω(n) sub-phases, i.e. that Phase 1 is unsuc-
cessful, is e−Ω(n).

In Phase 2, we assume that the current search point has reached
PATH. The probability of progressing one further step along the
path is bounded from below by (1/n)(1 − 1/n)n−1 ≥ 1/(en),
similarly to that of LEADINGONES [5], that is optimised in ex-
pected time E[T ] ≤ Pn−1

i=0 en = en2. It follows that the hitting
time is O(n2). Following arguments in [5], it can be shown that
there exists a constant c′ such that the probability that the optimum

|b|1 + n · LO(a) n3

0

0

n
16

7n
16

n2 · LO(a)

n2 · LO(a)

|b|1

LO(a)

Figure 3: Fitness of a search point ab on fitness function
BALANCE for different values of leading 1-bits in the prefix a
and 1-bits in the suffix b.

is not found within c′n2 iterations is exponentially small. Hence
for sufficiently large n, the probability that GLOBAL is not found
within τ/2 ≥ (n2 log n)/2 iterations, i.e. that Phase 2 is unsuc-
cessful, is exponentially small.

Theorem 1. The second hitting time of (1+1) EAdyn on function
MAGNITUDE with update period τ ≥ n2 log n and magnitude of
change 1 ≤ θ ≤ q − cn, is E [T2] = eΩ(n). If the update period is
τ ≥ n2 log n and the magnitude of change is 3q ≤ θ ≤ n, then the
second hitting time is T2 < n2 log n with probability 1− e−Ω(n).

PROOF. Assume first that 1 ≤ θ ≤ q − cn (small magni-
tude of change). By Proposition 1, the probability of escaping
TRAP during a given period that starts with the current search point
at LOCAL is e−Ω(n). Furthermore, by Proposition 2, the proba-
bility of re-locating LOCAL before the end of the period is 1 −
e−Ω(n). Hence, the expected number of iterations needed to es-
cape TRAP is lower bounded by E [T | LOCAL] ≥ τeΩ(n). As-
sume that the current search point is at GLOBAL. By Proposition
3, the probability of reaching LOCAL starting from GLOBAL is at
least Pr [LOCAL] = Ω(1). Hence, the unconditional expected
time to re-locate GLOBAL, is at least E [T2] ≥ Pr [LOCAL] ·
E [T | LOCAL] = eΩ(n).

Now we assume that 3q ≤ θ ≤ n (large magnitude of change)
and that the current search point is at GLOBAL. A large change will
invert at least 3q 1-bits in x, which ensures the search point can not
be located within TRAP and will either enter ZERO or PATH. The
time it takes to reach GLOBAL is O(n2) as shown in Proposition 4.
Finally, it follows from Proposition 4 that the probability to find
GLOBAL within τ steps is exponentially large.

6. FREQUENCY OF CHANGE
In this section, we will study how the frequency of change may

affect the difficulty of a DOP. The frequency of change determines
how often the problem changes and it seems intuitive to assume
that a high frequency of change makes a problem more difficult
for an algorithm to solve as less time is available at each period to
reach the new global optimum. However, even if the global opti-
mum is stationary (but the remainder of the search space is subject
to consistent variations), as it is the case for the function considered
in this section, a high frequency of change introduces considerably
more uncertainty than a low frequency of change and could there-
fore still be expected to be more challenging. Here we will show
that this assumption is not entirely correct. In particular, we will
describe a dynamic optimisation problem called BALANCE which
is hard at low frequencies, and easy at high frequencies.
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Definition 3 (BALANCE). For any bitstring x of length n, de-
fine BALANCE (x) := f(x1 · · ·xn/2, xn/2+1 · · ·xn), where

f(a, b) :=

8>>><
>>>:

n3 if LO(a) = n/2, else

|b|1 + n · LO(a) if n
16

< |b|1 < 7n
16

, else

n2 · LO(a) if |a|0 >
√

n, else

0 otherwise,

where LO(x) :=
Pn

i=1

Qi
j=1 xj .

As shown in Figure 3, for each search point x = ab, we associate
the prefix a of length n/2 with the horizontal axis, and the the suf-
fix b of length n/2 with the vertical axis. The position of a search
point x along the horizontal axis is given by the number of leading
1-bits in the prefix, and the position along the vertical axis is given
by the number of 1-bits in the suffix. For the majority of search
points, the dominating term in the fitness function is the number
of leading 1-bits in the prefix. A globally optimal search point is
obtained when the number of leading 1-bits in the prefix reaches
the maximal value of n/2, i.e. the rightmost region in Figure 3.
However, before reaching a globally optimal search point, the al-
gorithm may reach one of the two trap regions that correspond to
all non-optimal search points that have more than 7n/16, or less
than n/16 1-bits in the suffix, i.e. the upper and lower regions in
Figure 3. Only globally optimal search points have higher fitness
than the search points in the trap region, which are separated from
the globally optimal search points by two regions of fitness 0. The
shortest distance from within the trap regions to a global optimum
is
√

n.
We will consider cyclical dynamics that differ from the dynam-

ics in the previous section. Following the framework outlined in
Section 2, the mask m is defined as a function of the period index
π as

m(π) :=

(
0n/2 · 0n/2 if π mod 2 = 0, and
0n/2 · 1n/2 otherwise.

Hence, only the suffix of the point x is affected, and the magnitude
of change is equivalent to n/2. The dynamical component of the
fitness function corresponds to the vertical position. The fitness
increases along the vertical dimension when the period index π is
even, and the fitness decreases along the vertical dimension when
the period index π is odd.

The proof idea is to show that the algorithm will balance along
the centre of the vertical axis when the frequency of change is high,
while the algorithm is likely to fall into one of the trap regions when
the frequency of change is sufficiently low. This can be proved by
analysing the horizontal and vertical drift. Informally, the drift of
a search point is the distance the search point moves per iteration.
The horizontal drift corresponds to the change in number of leading
1-bits in the prefix, and the vertical drift corresponds to the change
in number of 1-bits in the suffix. As long as the trap region has not
been reached, the position along the vertical axis can be changed
by flipping any of at least n/16 bits, and no other bits. In contrast,
in order to reduce the distance to the optimum along the horizontal
axis, it is necessary to flip the single left-most 0-bit, an event that
happens with much lower probability. Therefore, the vertical drift
is much larger than the horizontal drift. If the frequency of change
is sufficiently low, then the current search point will have enough
time to reach one of the trap regions before the optimum is found.
On the other hand, if the frequency of change is sufficiently high,
then the search point will not have time to reach the trap region
during one period. In the following period, the vertical drift will
be in the opposite direction, and the vertical displacement of the

search point is off-set. These informal ideas can be turned into a
rigorous analysis using the simplified drift theorem.

Theorem 2 (SIMPLIFIED DRIFT THEOREM [13]). Let Xt, t ≥
0, be the random variables describing a Markov process over the
state space S := {0, 1, ..., N}, and denote Δt(i) := (Xt+1−Xt |
Xt = i) for i ∈ S and t ≥ 0. Suppose there exists an interval [a, b]
of the state space and three constants β, δ, r > 0 such that for all
t ≥ 0

1. E [Δt(i)] ≥ β for a < i < b, and

2. Pr [Δt(i) = −j] ≤ 1/(1 + δ)j−r for i > a and j ≥ 1,

then there is a constant c∗ > 0 such that for

T ∗ := min{t ≥ 0 : Xt ≤ a | X0 ≥ b}
it holds

Pr
h
T ∗ ≤ 2c∗(b−a)

i
= 2−Ω(b−a).

Proposition 5. Given a period of τ = 2, the probability that
within 2cn iterations, the current search point of (1+1) EAdyn on
BALANCE has a suffix b with |b|1 < n/16 or |b|1 > 7n/16 is
exponentially small e−Ω(n), where c is a constant.

PROOF. Theorem 2 will be used to bound the probability that
within 2cn iterations, the suffix has less than n/16 number of 1-
bits. The probability that the number of 1-bits in the suffix ex-
ceeds 7n/16 can be proved analogously. We consider the inter-
val [n/16, n/8] over the state space S := {0, 1, ..., n/2}, and for
each t ≥ 0 define Xt to be the number of 1-bits in the suffix of
the current search point in iteration 2t of the algorithm. Hence
Xt+1 = Xt + Δ2t + Δ2t+1, where Δ2t and Δ2t+1 is the drift in
iteration 2t and 2t + 1 of the algorithm. By Chernoff bounds [11],
the probability that the number of 1-bits in the suffix of the ini-
tial search point is less than n/8 is e−Ω(n). Hence, the conditional
event X0 ≥ n/8 in the definition of random variable T ∗ holds with
overwhelming probability.

In even time-steps 2t of the algorithm, we optimistically assume
that the number of 1-bits does not increase. The expected drift in
iteration 2t is therefore at least

E [Δ2t] ≥ −
n/8X
j=0

j ·
 

n/8

j

!
· n−j

≥ −
∞X

j=0

j · (n/8)j

j!nj
≥ −e1/8

8
.

In odd time-steps 2t+1 of the algorithm, we distinguish between
the case when LO(a) < LO(a′), and the case when LO(a) =
LO(a′), where a and a′ correspond to the prefixes of the current
and mutated search point. Denote the event LO(a) < LO(a′) by
L. When event L occurs, the mutated search point is always ac-
cepted. Hence, if the number of 1-bits in the suffix of the current
search point is i < n/8, the expected drift is

E [Δ2t+1 | L] ≥ n/2− i

n
− i

n
=

n/2− 2i

n
≥ 1/4.

In the second case, the mutated search point will not be accepted if
the number of 1-bits decreases. To increase the number of 1-bits,
it suffices to flip one of the at least 7n/8 0-bits in the suffix, and
no other bits. Hence, the expected drift in this case is bounded by
E
ˆ
Δ2t+1 | L

˜ ≥ 7/(e8) > 1/4.
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The expected drift during both iterations is then bounded from
below by E [Δ] ≥ 1/4 − e1/8/8 ≥ 1/10, so the first condition of
Theorem 2 holds with β := 1/10.

Finally, to estimate the probability of reducing the number of 1-
bits by j, one can optimistically assume that during two iterations,
the EA will never flip the same bit position twice. Hence, the prob-
ability of flipping j 1-bits during two steps is not higher than the
probability of flipping j bits out of 2n bits. Hence,

Pr [Δ = −j] ≤
 

2n

j

!
· 1

nj
≤ 2j

j!
· n

j

nj

≤ 2j

(2 · 2)j−3 · 3! ≤
1

2j−6
,

and the second condition of Theorem 2 holds with δ := 1 and
r := 6, which concludes the proof.

Proposition 6. Given a period of τ > 40n, with n > 100,
the probability that within 40n iterations, the current search point
of (1+1) EAdyn on BALANCE has a suffix b with |b|1 < n/16 or
|b|1 > 7n/16 is at least 1/4.

PROOF. We obtain the bound on the probability by applying
Markov’s inequality to the time T it takes to obtain a search point
with less than n/16 1-bits during an odd time cycle, as the recip-
rocal can be proved analogously. The expectation of T is bounded
using the polynomial drift theorem [7], where the current state of
the Markov chain is defined as max{0, i − n/16}, where i is the
number of 1-bits in the suffix of the current search point.

The expected drift conditional on the event L that the number of
leading 1-bits in the prefix increases can be bounded analogously as
in the proof of Proposition 5. Given i > n/16 number of 1-bits, the
negative drift is bounded by E [Δ | L] > −((n/2− i)/n− i/n) >
−3/8.

The expected drift conditional on the complementary event L
that the number of leading 1-bits in the prefix is constant, is at least
E
ˆ
Δ | L˜ > (n/16)/(en) > 1/48, because the number of 1-bits

can be decreased by mutating one 1-bit and no other bits, and the
number of 1-bits cannot increase.

The unconditional expected drift can be bounded by noting that
the probability of event L is no more than 1/n, giving E [Δ] >
(1− 1/n)/48 − 3/8n, which for n larger than 100 is greater than
1/80. By the polynomial drift theorem, the expected time to re-
move B < 7n/16 − n/16 = 3n/8 1-bits, is E [T ] = B/E [Δ] <
(3n/8)/(1/80) = 30n iterations. Hence, by Markov’s inequality,
the probability that it takes longer than 40n iterations to acquire a
search point with less than n/16 1-bits, is less than 3/4.

Theorem 3. The expected first hitting time of (1+1) EAdyn on
BALANCE with update time τ is

E [T ] =

(
nΩ(

√
n) if τ > 40n, and

O(n2) if τ = 2.

PROOF. We first lower bound the expected runtime when τ >
40n. We only consider the runs where at least one of the search
points within the first 40n iterations has a suffix b where |b|1 <
n/16 or |b|1 > 7n/16. By Proposition 6, this event happens with
probability 1/4. Using ideas similar to those in the proof of The-
orem 17 in [5], with probability 1 − o(1), the number of 0-bits in
the prefix in the first 40n iterations is at least n/8 >

√
n. Since we

are proving a lower bound, we optimistically assume that if either
of these two events do not happen, then the optimum will be found
in 0 iterations. If both of these events happen, then by the defini-
tion of the fitness function, the prefix of the current search point

will remain on the form |a|0 >
√

n as long as the optimum has
not been found. Hence, in order to reach the optimum, it is neces-
sary to flip at least

√
n bits simultaneously. The expected time until

this event happens is at least n
√

n, hence the unconditional runtime
when τ > 40n is at least (1/4) · (1− o(1)) · n

√
n = nΩ(

√
n).

We now upper bound the expected runtime when τ = 2. Fol-
lowing the ideas in the proof of Theorem 17 in [5], there exists
a constant c such that the probability that (1+1) EAdyn has found
the optimum of BALANCE within cn2 iterations, conditional on
the event that the suffix of the current search point satisfies n

16
<

|y|1 < 7n
16

, is lower bounded by 1 − e−Ω(n). Hence, by Propo-
sition 5, the unconditional probability that the optimum has been
found within cn2 iterations is also 1 − e−Ω(n). If the optimum
has not been found within cn2 iterations, then (1+1) EAdyn will
find a search point with LO(x) =

√
n − 1 within O(n2) gener-

ations, again following Theorem 17 in [5]. From this point, the
optimum can be found by flipping

√
n bits simultaneously. The

expected time until this event happens is less than en
√

n. Hence,
the unconditional expected runtime of (1+1) EAdyn with τ = 2 is
(1− e−Ω(n)) · cn2 + e−Ω(n) · en

√
n = O(n2).

7. CONCLUSIONS AND FUTURE WORK
The number of contributions towards the field of evolutionary

dynamic optimisation has risen dramatically in recent years and a
wealth of novel evolutionary algorithms (EAs) have been suggested
that attempt to track the global optimum of some dynamic function
over time. However, theoretical results on the expected runtimes
of these algorithms are almost non-existent and almost all findings
are based exclusively on empirical data. This imbalance may lead
to incorrect assumptions about the dynamic domain and theoretical
results are required to confirm the empirical evidence. In this paper,
we attempt to take a step in that direction. The contributions of this
paper are threefold: First, we discuss quantitative measures that
may be used to measure the quality of an algorithm in the dynamic
domain. Second, we present two counter-intuitive scenarios that
contradict commonly held beliefs and third, we show how existing
analytical methods may be applied in the dynamic case.

We presented two rigorous proofs regarding the magnitude and
frequency of change. It has been shown how the expected sec-
ond hitting time of (1+1) EAdyn on the function MAGNITUDE is
E [T2] = eΩ(n) when the magnitude of change affects less than
q − cn bits (small magnitude of change), where q is linear in n
and c is some constant. On the other hand, if the magnitude of
change affects at least 3q bits (large magnitude of change), the sec-
ond hitting time is T2 < n2 log n with probability 1 − e−Ω(n). In
other words, the algorithm is efficient if the magnitude of change
is large and highly inefficient if the magnitude of change is small.
A similar counter-intuitive example is given with regard to the fre-
quency of change. Here it is shown how the expected runtime of the
(1+1) EAdyn on the function BALANCE is E [T1] = O(n2) given
a very short update periods of τ = 2. If the update period is τ >

40n, on the other hand, the expected runtime is E [T1] = nΩ(
√

n).
Similarly to before, the algorithm is efficient if the frequency of
change is very high and inefficient if the frequency of change is
sufficiently low.

The two functions considered in this paper represent interesting
cases, not only because they illustrate counter-intuitive scenarios,
but also because they highlight certain properties of the dynamic
domain that are often ignored. In the case of MAGNITUDE, we
have seen when it is beneficial to consider a dynamic approach: If
the magnitude of change is large, it is beneficial to re-use the search
point uncovered in the previous period. If the magnitude of change
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is small, on the other hand, a random-restart would be much more
efficient because the algorithm may start outside the trap that ex-
ists in this function. In the second case, the function BALANCE

demonstrates that dynamics, which do not affect the position of the
global optimum, may still have a significant impact on the expected
first hitting time of an algorithm. Such dynamics are frequently ig-
nored in the literature as almost all attention is paid to the dynamic
behaviour of the global optimum.

The functions and the dynamic framework considered in this pa-
per are very simple and may not be representative of the majority
of DOPs, especially those found in industrial settings. However,
the XOR framework has been used frequently in the literature for
benchmarking new algorithms, often using simple underlying func-
tions such as the ONEMAX (e.g., [17, 18]). In the near future, we
would like to consider the expected runtimes of population based
EAs, first on functions similar to those considered here and even-
tually on more complicated ones. Furthermore, additional work
is required to formulate more extensively the different quantitive
measures that may be used to judge the quality of an algorithm.
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