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ABSTRACT
The critical functionality of many software applications re-
lies on code that performs mathematically complex compu-
tations. However, such code is often difficult to test owing
to the compound datatypes used and complicated math-
ematical operations performed. This paper proposes the
use of automated search as an efficient means of generat-
ing test data for this type of software. Taking Matlab as
an example of widely-used mathematical software, a tech-
nical framework is described that extends previous work on
search-based test data generation in order to handle matrix
datatypes and associated relational operators. An empirical
evaluation demonstrates the feasibility of this approach.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication; I.2.2 [Artificial Intelligence]: Automatic Pro-
gramming; G.4 [Mathematics of Computing]: Mathe-
matical Software; G.1.6 [Numerical Analysis]: Optimisa-
tion

General Terms
Algorithms, Experimentation, Verification

Keywords
Search-Based Software Engineering, Genetic Algorithms,
Matlab

1. INTRODUCTION
The generation of test data is arguably the most mature

application area within the field of search-based software en-
gineering [5]. A substantial body of work describes the appli-
cation of a wide range of metaheuristic search techniques—
ranging from local search methods to sophisticated nature-
inspired algorithms—to the problem of deriving test inputs.
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Search-based test data generation (SBTDG) has been ap-
plied to many different programming languages encompass-
ing a variety of coding paradigms; these include Pascal [6],
Ada 95 [15], C [7], C♯ [10], and Java [12, 4]. McMinn [9]
provides a comprehensive survey of the state-of-the-art in
SBTDG.

This paper extends the use of SBTDG techniques to soft-
ware and programming languages that perform mathemati-
cally complex computations. Many modern computing ap-
plications rely on software that performs such computations.
Examples include digital signal processing in MP3 music
players, digital television transmission, and medical imag-
ing; financial market and other economic models; and a wide
range of computer-based simulations that model real-world
physics, such as weather forecasting. Errors in the mathe-
matical computations at the heart of these systems can lead
to poor sound quality, video artefacts, unreliable diagnoses,
financial loss and inaccurate storm predication. There is
a strong motivation to test code that performs mathemati-
cal computations, but its very nature—compound datatypes
such as vectors, matrices and complex numbers; and manip-
ulations of input variables using complicated mathematical
operators—can make this a difficult task. However, the pre-
ponderance of numeric datatypes in mathematical software
suggests that the use for search-based test data generation,
which has demonstrated success with these datatypes, is ap-
propriate.

We use Matlab [1] as an exemplar of mathematical soft-
ware. Matlab is a mathematical computing platform ex-
tensively used by mathematicians, scientists and engineers
to analyse and visualise data, implement algorithms, and
build models. The core capability of Matlab is the abil-
ity to store data as matrices and efficiently manipulate the
data using linear algebra. An extensive range of ‘toolkits’
provide additional functionality in specific application areas,
such statistical analysis, optimisation, image processing, sig-
nal processing, symbolic mathematics and wavelet analysis.
Simulink [3]—a simulation and model-based design tool—
uses Matlab as its mathematics engine. A significant amount
of academic research and industrial engineering relies on re-
sults calculated using Matlab and Simulink, and so there
is an obvious benefit in efficiently generating test data that
can verify software written for the Matlab platform.

The novel capabilities and domain-specific usages of math-
ematical software in general, and of Matlab in particular,
present new challenges to search-based test data generation.
It is these challenges that this paper addresses by contribut-
ing the following solutions:
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• a technical framework for instrumenting Matlab code
and performing dynamic test data generation;

• a method for representing matrix data types in the
genotype of a genetic algorithm;

• an extended set of branch distance functions to support
relational operations on matrix data types;

• a rank-based selection mechanism that combines branch
distance and approach level cost component without
the need for scaling;

• the identification of linear algebra functions that present
particular difficulties when present in relational pred-
icates.

The paper is structured as follows. The next section sum-
marises related work on dynamic structural testing using
automated search. Section 3 describes the technical ar-
chitecture of an instrumenter for Matlab code. Section 4
details the framework used to implement search-based test
data generation in Matlab, and suggest novel cost metrics
to accommodate matrix datatypes. An implementation of a
genetic algorithm using this framework is described in sec-
tion 5. An empirical evaluation is performed to demonstrate
the practicality and efficacy of generating Matlab test data
using the genetic algorithm. The experimental design and
results of this evaluation are described in section 5.

2. RELATED WORK
The work described in this paper follows the search-based

approach to dynamic test data generation first described by
Korel [6] and later extended by Tracey et al. [13, 14, 15],
Wegener et al. [17], and others.

2.1 Branch Distance
In this approach, the cost (or, fitness) of a candidate

test input is determined dynamically by running an instru-
mented version of the software under test (SUT). Often the
objective is to identify test data that executes a particu-
lar branch, path or similar structural element in the SUT,
and so the instrumentation determines a branch distance: a
measure of how ‘close’ the code came to executing a target
branch when it is run with particular input values. The
branch distance depends on the values taken by the ex-
pressions on each side of relational predicates that form the
branch predicate in question, and on the nature of the rela-
tional operators. In this paper we use the branch distance
metrics suggested by Tracey which return a value of 0 if a
relational predicate evaluates as true, otherwise a positive
non-zero value using formulae listed in Table 1. When the
branch predicate is formed by a conjunction or disjunction
of relational predicates, the overall branch distance is calcu-
lated using the formulae in the final two rows of the table.

As an example, consider the Matlab function shown in
Fig. 1. Assume for the moment that the datatypes of the
input variables a and b are scalars, rather than matrices,
so that Tracey’s branch distance metrics may be applied
without extension. The testing objective is to exercise the
true branch of the if statement at line 02. For the candidate
inputs a = 10, b = 8, the single relational predicate in the
branch predicate a ≤ b evaluates to false, and so the branch
distance metric is calculated as a−b+K = 10−8+K = 2+K.

Table 1: Branch distance metrics defined by Tracey
et al.. K is a small positive non-zero constant.

Predicate Branch Distance when False

x < y x − y + K

x ≤ y x − y + K

x > y y − x + K

x ≥ y y − x + K

x = y abs(x − y) + K

x 6= y K

P ∧ Q branchDist(P ) + branchDist(Q)

P ∨ Q min {branchDist(P ), branchDist(Q)}

01 function c=comp(a,b)

02 if a<=b

03 if a==b

04 c=0;

05 else

06 c=-1;

07 end;

08 else

09 c=1;

10 end;

Figure 1: Matlab function using scalars.

In this paper, new branch distance metrics are proposed
for relational predicates involving matrix variables: see sec-
tion 4.4.

2.2 Approach Level
In addition to the branch distance, Tracey and Wegener

also consider a further component of the cost function: the
approximation or approach level. When the instrumented
SUT is run with candidate test inputs, the execution path
may fail to reach the branch under consideration. In this
case, the approach level counts the number of branching
statements between the target branch and the earlier branch
at which the actual execution path diverged from the desired
path.

Consider again the function in Fig. 1 with a new testing
objective of exercising the true branch of the if statement
at line 03. With the candidate inputs a = 10, b = 8, the
branching statement at line 02 is false, so line 03 is not
reached. The approximation distance in this case is therefore
1.

Both Tracey and Wegener calculate an overall cost as a
combination of approach level and branch distance, where
the branch distance is calculated for the branching state-
ment at which the desired and actual execution paths di-
verged. Tracey and Wegener differ in the formula used to
combine the approach level and branch distance. McMinn
[9] argues that Wegener’s formulation results in a cost land-
scape that is easier to navigate. However, this formulation
must ‘normalise’ the branch distance into the range [0, 1] to
avoid it overwhelming the approach level component.

This paper proposes that an overall cost function need
not be calculated, so avoiding the issue of normalisation.
Instead approach level and branch distance are considered as
separate components of cost that are used to rank candidate
input values. This mechanism is described in section 5.2.
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2.3 Search Method
A suitable search method is applied to minimise the over-

all cost. The objective is to locate input values for which the
overall cost is zero indicating that the target branching state-
ment is executed and that it evaluates to the desired value.
Both the branch distance and approach level are designed
to ‘guide’ the search method: a branch distance of 1 + K
indicates that the input values are in some sense ‘closer’ to
taking the desired path at a branching statement than input
values that return a branch distance of 2 + K.

Korel employs an alternating variable technique: each in-
put variable is considered in turn and if it is found that
changing the variable affects the branch distance, a local
search is used to find the value of the variable that min-
imises the branch distance. The variable is then held at this
value while the other input variables are considered. Tracey
applies simulated annealing as the search technique in [13,
14] and evolutionary algorithms in [15]. Wegener [17] also
applies an evolutionary algorithm.

Based on the success reported by Tracey and Wegener, the
empirical work in this paper uses a genetic algorithm as the
search method. Novel aspects of the algorithm are the use
of a representation and genetic operators that accommodate
matrix variables (section 5.1), and a selection mechanism
that avoids the need to calculate a single overall cost value
for a candidate input value (section 5.2).

3. INSTRUMENTATION
This section describes the technical architecture of an au-

tomated instrumenter for software written in the Matlab
programming language.

The instrumenter is written in Java. This is a natural
choice since the Matlab engine itself executes in a Java Vir-
tual Machine (JVM), and Java classes may be invoked from
within Matlab code. This not only enables the instrumenter
to be run within the Matlab environment, but also allows
supporting data derived during instrumentation to be stored
within the Matlab variable workspace. This data is used
during automated search to interpret the dynamic execu-
tion of the instrumented Matlab code.

Functions and scripts written in the Matlab programming
language are stored as text files typically referred to as m-
files. The name of the m-file to be instrumented, and the
datatypes of its arguments, are passed to the instrumenter
which processes the file using three components:

1. A parser and lexer constructs an abstract syntax tree
for the Matlab code. This component uses Java classes
generated automatically using the ANTLR tool [11]
from a grammar describing the Matlab programming
language. Since no complete grammar for the language
has been published, a weaker, partially complete speci-
fication was used for parsing m-files. This specification
places a few constraints on the code permitted in the
m-files, but any code violating these constraints can
be adapted using minor syntax changes that preserve
functionality.

2. The second component walks the syntax tree and adds
new Matlab code that enables instrumentation. This
additional code takes the form of Java method calls to
classes provided by the instrumenter. These calls iden-
tify the branch predicate being executed, and if the

branching statement occurs within the body of a loop,
the iteration of the loop is also recorded. For each re-
lational predicate in the branch predicate, the method
calls record the value of the expressions on each side of
the relational operator and operator itself. An alterna-
tive approach would have been to calculate the branch
distance directly in the instrumenting code and store
only this value. However, recording the value of each
expression in the branch predicate, and then calculat-
ing the branch distance from these values within the
search algorithm, allows greater flexibility as to the
form of the branch distance metrics that are applied.

3. The third component of the instrumenter uses the syn-
tax tree to write a new m-file that combines the origi-
nal code with the new instrumenting code.

4. SEARCH METHOD FRAMEWORK
This section describes a flexible framework used to imple-

ment search methods for generating input data in Matlab.
Like the instrumenter, the framework is written in Java

and runs within the JVM used by the Matlab environment.
The framework provides functionality common to all search
methods. A search method, implemented as a Java class,
can be ‘plugged’ into the framework and take advantage of
the features provided by the framework. The features are
described in the subsections below.

4.1 Input Variable Datatypes
Since Matlab uses dynamic typing, the datatypes of the

input variables cannot be derived automatically from the
software under test and so must be defined explicitly to the
framework.

Currently, the following datatypes are supported: integer
and real scalars; integer and real matrices; and Booleans.
For all but the Boolean datatype, the permitted domain of
the variable is specified as a bounded interval. For matrix
datatypes, the matrix dimensions—the number of rows and
columns—are specified, and all the matrix elements are as-
sumed to have the same domain.

4.2 Testing Objective
The framework permits the user to specify the testing

objective. The objective specifies not only the branching
statement that the test inputs should exercise and the de-
sired outcome of the branch predicate, but also the branches
to be taken to reach the target branch. Where branches oc-
cur within loops, the user is able to define which branch is
to be taken on each iteration of the loop. The testing objec-
tive is therefore defined as partial path from the entry to the
function to the target branch. This is a stronger coverage
criterion than the branch coverage discussed in the section 2.

4.3 Instrumented Code Execution
The framework provides a mechanism to execute the in-

strumented software with specified input variables, and to
record the branches executed and the values taken by ex-
pressions in the corresponding branch predicates (the latter
as described in section 3). The instrumentation results are
stored in the Matlab variable workspace.

Note that although the framework is initiated from the
Matlab command line, it executes as Java code running in
the Matlab JVM. Therefore the framework must make a call
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Table 2: Branch distance metrics for relational pred-
icates applied to matrices.

Predicate Branch Distance when False

A < B
P

i

P

j
max{(aij − bij), 0} + K

A ≤ B
P

i

P

j
max{(aij − bij), 0} + K

A > B
P

i

P

j
max{(bij − aij), 0} + K

A ≥ B
P

i

P

j
max{(bij − aij), 0} + K

A = B
P

i

P

j
abs(aij − bij) + K

A 6= B K

‘back’ to Matlab engine in order to run the instrumented
Matlab code. This is achieved using a Java library, the Java
Matlab Interface, supplied as part of the Matlab platform.

4.4 Matrix Branch Distance Metrics
Using the data obtained by executing the instrumented

Matlab code, the framework calculates the branch distance
for each of the branch predicates on the target path. As
will be described in section 5.2, there is no need to explicitly
calculate the approach level.

For scalar and Boolean datatypes, the branch distance
metrics are those defined by Tracey and listed in Table 1.
However, the branch distance metrics must be extended to
accommodate relational operators applied to matrices. In
Matlab, such relational predicates are only valid if the ex-
pressions on either of the operator resolve to matrices hav-
ing the same dimensions, i.e. the same number of rows and
columns. The predicate is then true if and only if the rela-
tion is true when applied to all the corresponding elements
of the two matrices.

If matrices A and B have the same dimensions, and the
matrix elements are denoted as {aij} and {bij} (where i
indicates the row, and j the column), then the relational
operators for matrices can be expressed more formally as:

A op B ⇔ aij op bij ∀i, j (1)

using op to denote the relational operator.
Thus the predicate,

»

1 5
2 3

–

<

»

4 2
6 8

–

(2)

is false since when considering the elements at row 1, column
2, the predicate 5 < 2 is false.

If a matrix relational predicate is false, the cost associ-
ated with the predicate is given by the new metrics listed in
Table 2. Given the definition of matrix relational operators
in (1), these new metrics are a natural extension to those
defined by Tracey for scalars. The summations are applied
across all rows (index i) and columns (index j) of the ma-
trices. As for scalars, if the predicate is true, the cost is
zero.

5. GENETIC ALGORITHM
The framework described above is capable of supporting

a wide range of search methods. To enable an empirical
evaluation (see section 6), two search methods were imple-
mented: a generational genetic algorithm with elitism, and
random search. The objective of the experimental work is a
practical demonstration of the instrumentation and search

method framework, and to illustrate the feasibility of us-
ing automated search to generate test data for mathemat-
ical software, such as Matlab code. We do not claim that
this choice of algorithm, its operators and parameters, is
most efficient search method for this problem; rather, we
employ—for the purpose of demonstration—a straightfor-
ward implementation of a search method that is often used
in search-based test data generation.

Nevertheless, the genetic algorithm has two novel features:
the representation and associated operators accommodate
matrix datatypes, and the selection method avoids the com-
plication of normalising and combining the approach level
and branch distance costs. It is these features that are de-
scribed in this section.

5.1 Representation and Operators
The GA represents candidate test inputs—values for each

of the input variable for the software under test—with a
genome constructed as a vector of real numbers. This repre-
sentation supports all of the datatypes listed in section 4.1.
Valid values for the each of vector’s elements are determined
by the datatype: integers for integer datatypes, {0,1} for
Booleans; and by the domain of each variable specified by
the user.

For example, if the input variables are a real scalar, an
integer 2 × 2 matrix, and a Boolean, then the genome is a
vector of reals with 6 components: (g1, g2, g3, g4, g5, g6). In
order to run the software under test, the genome vector of an
individual is mapped to variables with required datatypes,
creating the input variables:

A = g1, B =

»

g2 g3

g4 g5

–

, C =

(

true if g6 = 1

false if g6 = 0
(3)

This representation influences the choice of initialisation,
crossover and mutation operators used by the GA.

5.1.1 Initialisation
Each element of individual’s genome vector is initialised

by randomly sampling a value from a uniform probability
distribution across the corresponding variable’s domain.

5.1.2 Crossover
The GA uses n-point crossover. The value of n is a pa-

rameter to the algorithm. Crossover points are permitted
between vector elements that map to the same matrix (e.g.
between g2 and g3 in the example above). Since the di-
mensions of input matrix variables are fixed, the size of the
genome and its mapping to input variables are also fixed,
and so such crossover points do not lead to invalid individ-
uals.

5.1.3 Mutation
Individuals are mutated at a rate determined by a param-

eter to the algorithm. A value is sampled from a uniform
distribution over the range [−m, m], and the value is added
to a randomly selected element in the individual’s genome.
The value of m is a parameter to the algorithm. If a mu-
tation causes an element in the genome to take an invalid
value (such as one outside the corresponding input variable’s
domain), it is adjusted to the nearest valid value.
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Table 3: Individuals ranked by branch distances.
Rank Branch 1 Branch 2 Branch 3

6 0 0 3
5 0 0 8
4 0 4 –
3 0 18 –
2 1 – –
1 24 – –

5.2 Selection
In related work on search-based test data generation, se-

lection is based on a single numerical value obtained by com-
bining the two cost components: the approach level and
branch distance (see section 2). The branch distance must
be ‘normalised’—to the range [0, 1], for example—in order
to avoid large branch distances overwhelming the approach
level.

An alternative approach is taken by the work described
here that avoids the need to combine the two cost compo-
nents. Selection uses a ranking of individuals according to
the branch distance calculated at each branch predicates on
the target execution path.

Individuals are ranked in ascending order of the branch
distance at the first branch in the code. Individuals that
evaluated the first branch correctly have a branch distance
of zero and so occur at the top of the list. Where individuals
have the same branch distance for the first branch, they
are ranked in ascending order of the branch distance at the
second branch. Any individuals with the identical branch
distances for the first two branches are ranked according to
the branch distance at the third branch, and so on until the
end of the target path.

Note that there is no need to calculate the approach level
since the ranking method implicitly rewards individuals that
have come closest to executing the branch at the end of the
target path.

An example of ranked individuals is given in Table 3. In
this example, there are three branches in that target path.

Selection based on the rank of individuals occurs at two
places in the algorithm. Firstly, a fixed number, k, of elite
individuals—those at the top of the list—are carried for-
ward unchanged to the next generation. Secondly, parent
individuals are sampled for reproduction by crossover us-
ing ‘roulette wheel’ selection based on an individual’s rank:
those with a higher rank (towards the top of the list) are
more likely to be selected.

6. EMPIRICAL EVALUATION
The sections above describe a method of instrumenting

Matlab code; a framework for implementing search methods
that dynamically execute the instrumented code; extensions
to branch distance metrics, genome representation, and ge-
netic operators to accommodate matrix datatypes; and a se-
lection method that avoids complications arising from com-
bining approach level and branch distance costs.

The objectives of the experimental work described in this
section of the paper are to demonstrate:

• a practical implementation of the instrumenter and
search method framework;

• the feasibility of using automated search to generate
test data for Matlab code;

• the effectiveness of the proposed branch distance met-
rics, representation, operators, and selection method.

6.1 Experimental Design
Our approach is to apply two search methods—the ge-

netic algorithm described in section 5, and random search—
to four Matlab functions. The random search method sim-
ply samples input values using a uniform distribution across
the domain of the input variables. We compare the num-
ber of evalutions, i.e. the number of times the instrumented
software is executed by each of the search methods, until
input data are found that execute the target path in code.
The random search method acts a baseline: we intend to
show that use of appropriate branch distance metrics, rep-
resentation, operators, and selection methods by the genetic
algorithm is effective at guiding the algorithm to a solution
using, on average, fewer evaluations than unguided, random
search.

Four Matlab functions are used to illustrate the capa-
bilities of the instrumenter and search method framework.
The salient features of each function are described here; the
source code of each is provided in the appendix.

binary search This is a real-world function taken from the
Matlab Central File Exchange [2]. The input vari-
ables are a list of real numbers—supplied as a 1 × 512
matrix—and a real scalar. The function returns the lo-
cation of the scalar in the list. The scalar and matrix
elements have a domain of [0, 20]. The function in-
cludes branching statements inside nested loops. The
search method framework permits the user to specify
different branches to be taken on each iteration of loop.
We specify two such target paths: one of 12 branches,
and one of 16 branches.

matrix ops This constructed function takes six input vari-
ables, all of which are 2 × 2 real-valued matrices with
elements in the range [0, 20]. We define a target path
that requires the input data to satisfy a series of branch
predicates that contain relational operators applied to
matrices.

is singular This simple function takes a single input vari-
able: a 3 × 3 integer matrix where each element has
the domain [−50, 50]. We define a target path that is
satisfied if and only if the matrix is singular, i.e. has a
determinant of zero.

is rank deficient This function also takes a single input
variable: a 3 × 3 integer matrix where each element
has the domain [−50, 50]. We define a target path
that is satisfied if and only if the rank of the matrix
(the number of linearly independent rows or columns)
is not equal to the number of rows (or columns). We
will compare the difficulty of generating test data for
this function with that of is singular.

The two search methods–genetic algorithm and random
search—are applied to the four Matlab functions. The GA
parameters used for each function are listed in Table 4. We
do not claim these parameters choices to be optimal: in-
stead, the parameters were chosen based on some limited
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‘trail-and-error’ investigation to give sufficient GA perfor-
mance to enable practical experimentation.

A limit on the number of evaluations is applied to both al-
gorithms in order to prevent long running algorithms trials:
this limit is also listed in Table 4. It is set so that (where
practical) the majority of runs of at least of one the algo-
rithms find a solutions before this maximum. The statistical
analysis applied to the experimental results (see section 6.2)
is able accommodate trials that are terminated at this max-
imum number of evaluations.

Since the performance of each search method is dependent
on the set of random numbers within the algorithm, 20 trials
are performed for each combination of algorithms and func-
tion under test. For each trial, a different seed is supplied to
pseudo-random number generator. The response data mea-
sured for each trial is the number of evaluations the search
method requires to find input data that executes the target
path.

6.2 Results and Analysis
A summary1 of the results are given in Table 5 which re-

ports the median number of evaluations that each algorithm
requires to locate test data that executes the target path.

In addition, we analyse two types of significance described
in the subsections below.

6.2.1 Statistical Significance
We analyse statistical significance in order to determine

whether the observed difference between the algorithms is
likely to have occurred by chance.

We apply the Mann-Whitney-Wilcoxon or rank-sum test
[18]. This is a non-parametric test: it makes no particular
assumptions as to the distribution of the response. An equiv-
alent parametric test, such as the t-test, makes specific as-
sumptions about the data—such as a normal distribution—
and without careful analysis that the assumptions are met,
the results of parametric tests can be unreliable [8]. An ad-
ditional advantage is that the nature of the test is such that
no special provision needs to be made to accommodate data
from algorithm trials that reach the maximum number of
evaluations.

The null hypothesis for the rank-sum test is that the re-
sponses for the two algorithms have identical distributions
with equal medians; the alternative hypothesis is that the
distributions are different. We use a 5% significance level:
if the test returns a p-value of < 5%, the null hypothesis
may be rejected, indicating that any observed difference in
the number of evaluations is unlikely to have occurred by
chance. The p-value is reported in Table 5, and highlighted
in bold where it indicates a statistically significant differ-
ence.

6.2.2 Scientific Significance
It is possible for the observed difference in algorithm per-

formance to be statistically significant even though the ac-
tual magnitude of the difference—the effect size—is very
small compared to the inherent variability in the results ow-
ing to the stochastic nature of the algorithms. To guard
against this situation (which can occur when the number of
experimental trials is excessive), we also test for scientific

1Full (unsummarised) experimental data is available at:
http://www.cs.york.ac.uk/˜smp/supplemental.

significance, i.e. that the effect size is sufficiently large to be
scientifically important.

We use the Vargha-Delaney A statistic [16], which is also
non-parametric, to assess effect size. This statistic is a
value in the range [0, 1]. A value of 0.5 indicates no ef-
fect size: there is no difference in algorithm performance.
Values closer to 0 or 1 indicate increasingly large effect size
in favour of one algorithm or the other. For the experiments
described here, an A statistic < 0.5 indicate that the ge-
netic algorithm locates input data in fewer evaluations than
random search; conversely, values > 0.5 indicate that ran-
dom search is more efficient. The A statistics are reported
in Table 5.

Whether a particular effect size is scientifically significant
can depends on the context, but here we apply the guide-
lines given by Vargha and Delaney in [16]. We consider an
A statistic < 0.36 or > 0.64 (which Vargha and Delaney
suggest indicate a ‘medium’ or ‘large’ effect size) as scientif-
ically significant, and these values are highlighted in bold in
the table.

6.3 Discussion

6.3.1 Efficacy of Genetic Algorithm
For three of the five test cases, the genetic algorithm out-

performs (in terms of the number of evaluations required to
find test data that executes the target path) random search
to a degree that is both statistically and scientifically signif-
icant. Given that no systematic attempt has been made to
‘tune’ the parameters of the GA, it is possible that even bet-
ter performance is possible if the optimal parameters were
assessed. The random search method, however, has no pa-
rameters that may be optimised.

In the remaining two test cases, there is no statistically
significant difference in the performance of the genetic algo-
rithm and random search.

This is convincing evidence that search-based software en-
gineering can be applied to Matlab code, and in particular
that the novel branch distance metrics proposed for matrices
in section 4.4 are effective in guiding the GA to a solution.

It is interesting to note that while the same algorithm
parameters were used to find input data that executes both
the 12 and 16 branch paths in the binary search function,
the GA performs better than random search only for the 16
branch path. It is possible that the algorithm parameters
used are far from optimal for the 12 branch, but we also
speculate that this more ‘simple’ problem does not provide
sufficient opportunity for the GA to demonstrate superior
efficacy over random search.

6.3.2 ‘Difficult’ Linear Algebra Functions
The GA showed significantly better performance over ran-

dom search when required to locate a singular matrix (the
function is singular), but no difference from random search
when required to locate a rank deficient matrix (the function
is rank deficient). However, for the square, 3 × 3, matri-
ces that were defined as input variable datatype for both
functions, a singular matrix is mathematically equivalent to
a rank deficient matrix. In other words, the test data found
for is singular also satisfies is rank deficient.

Again, it is possible that this difference is caused by the
particular choice of algorithm parameters, and that tuning
the parameters for is rank deficient may result in per-
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Table 4: Search Method Parameters
binary search binary search matrix ops is singular is rank deficient

Parameter (12 branch path) (16 branch path)
population size 10 10 100 100 100
crossover points (n) 2 2 2 2 2
mutation probability 5% 5% 5% 5% 5%
mutation range (m) 4 4 4 4 4
elite individuals (k) 2 2 2 2 2
max. evaluations 500 500 5,000 10,000 10,000

Table 5: Experimental Results
binary search binary search matrix ops is singular is rank deficient

Statistic (12 branch path) (16 branch path)
median evaluations: GA 40 70 1,950 4,800 10,000
median evaluations: random search 22.5 453 5,000 10,000 10,000
rank-sum p-value 9.57% 0.200% < 0.0001% 3.47% 100%
Vargha-Delaney A statistic 0.655 0.215 0.0525 0.306 0.501

formance equivalent to that demonstrated for is singular.
Nevertheless, we believe that there is a fundamental differ-
ence in the difficulty of finding test data to satisfy these
two linear algebra functions. The determinant function in
is singular can return a large range of values (infinitely
many if the matrix has real-valued elements). However, the
rank function in is rank deficient only returns a very lim-
ited range of integer values: from 0 to the number of rows in
the matrix. Hence, the predicate using the determinant is
able to provide much more guidance to the search algorithm
as to whether changes to the input matrix are moving to-
wards or away from values that would satisfy the relational
predicate.

If this is indeed the cause of the difference in algorithm
performance, it suggests an approach of transforming math-
ematical code—in this case, modifying linear algebra expres-
sions to ‘easier’ expressions which have equivalent solutions—
in order to facilitate search-based test data generation.

7. CONCLUSIONS
This paper proposed that, despite the challenges inherent

in the nature of mathematical software, automated search is
a feasible method for generating test data for such code.

A technical solution for instrumenting Matlab code was
described and—with reference to existing work on search-
based test data generation—novel cost functions, represen-
tations and algorithm operators were proposed that support
real and integer matrices and their associated relational op-
erators. The efficacy of this approach was evaluated em-
pirically using four Matlab functions, including a real-world
code example. The results show that a genetic algorithm to
more effective that random sampling of input data for many
functions, but that when some linear algebra functions mod-
ify the input variables, it may be particular difficult to guide
the algorithm to a solution.

The results suggest further research in a number of ar-
eas. The capabilities of the instrumenter and search method
framework could be enhanced to support other datatypes,
such as complex numbers, Matlab cell arrays, and variable-
sized matrices. For the purposes of the empirical work de-
scribed in the paper, a relatively simple genetic algorithm
was implemented. There is scope to research both more so-

phisticated operators—such a crossover and mutation opera-
tors that are specific to the datatypes of the input variables—
and other search methods, such as simulated annealing and
estimation of distribution algorithms. The difference in al-
gorithm performance on functions that are mathematically
equivalent suggests an opportunity to investigate the trans-
formation of mathematical expressions in order to facilitate
search-based test data generation.

Nevertheless, the work described in this paper is encour-
aging: a straightforward genetic algorithm using relatively
naive operators is shown to be an effective method of gen-
erating test data for mathematically complex software.
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APPENDIX
binary_search
% Based on original function written by Aroh Barjaty
function index = binarysearch(x,var)
x=sort(x);
x;
var;
xLen = length(x);
[xRow, xCol] = size(x);
if x(1) > x(xLen)

if xRow==1
x = fliplr(x);

else
x = flipud(x);

end
flipped = 1;

else
if x(1) < x(xLen)
flipped = 0;

else
return;

end
end
for i = 1:length(var)

low = 1;
high = xLen;
if var(i) <= x(low)

index(i) = low;
continue;

else
if var(i) >= x(high)
index(i) = high;

continue;
end

end
flag = 0;
while (low <= high)

mid = round((low + high)/2);
if (var(i) < x(mid))

high = mid;
else

if (var(i) > x(mid))
low = mid;

else
index(i) = mid;
flag = 1;
break;

end
end

if (low == (high - 1))
break;

end
end
if (flag == 1)

continue;
end
if (low == high)

index(i) = low;
else
if ((x(low) - var(i))^2 > (x(high) - var(i))^2)

index(i) = high;
else

index(i) = low;
end
end

end
if flipped

index = xLen - index + 1;
end

matrix_ops
function matrix_ops(A,B,C,D,E,F)

M=[12.1,9.4;14.5,8.9];
N=[4.0,18.2;5.2,3.7];
if(A>=M)
if(B~=N)

if(C>magic(2))
if(D<=14)

if(E<N)
if(F>=eye(2))

disp(’Success’);
end

end
end

end
end

end

is_singular
function r=is_singular(A)

if (det(A) == 0)
r = true;

else
r = false;

end

is_rank_deficient
function r=is_rank_deficient(A)

if (rank(A) < size(A,1))
r=true;

else
r=false;

end
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