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Abstract—Software module clustering is the problem of automatically organizing software units into modules to improve program

structure. There has been a great deal of recent interest in search-based formulations of this problem in which module boundaries are

identified by automated search, guided by a fitness function that captures the twin objectives of high cohesion and low coupling in a

single-objective fitness function. This paper introduces two novel multi-objective formulations of the software module clustering

problem, in which several different objectives (including cohesion and coupling) are represented separately. In order to evaluate the

effectiveness of the multi-objective approach, a set of experiments was performed on 17 real-world module clustering problems. The

results of this empirical study provide strong evidence to support the claim that the multi-objective approach produces significantly

better solutions than the existing single-objective approach.

Index Terms—SBSE, module clustering, multi-objective optimization, evolutionary computation.
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1 INTRODUCTION

SOFTWARE module clustering is an important and challen-
ging problem in software engineering. It is widely

believed that a well-modularized software system is easier
to develop and maintain [8], [27], [29]. Typically, a good
module structure is regarded as one that has a high degree of
cohesion and a low degree of coupling [8], [27], [29]. Sadly,
as software evolves, its modular structure tends to degrade
[17], necessitating a process of restructuring to regain the
cognitive coherence of previous incarnations. This paper is
concerned with automated techniques for suggesting soft-
ware clusterings, delimiting boundaries between modules
that maximize cohesion while minimizing coupling.

Many authors have considered the implications of soft-
ware modularization on many software engineering con-
cerns. Badly modularized software is widely regarded as a
source of problems for comprehension, increasing the time
for ongoing maintenance and testing [27], [29], [31]. The use
of cohesion and coupling to assess module structure was
first popularized by the work of Constantine and Yourdon
[8], who introduced a seven-point scale of cohesion and
coupling measurement. These levels of cohesion and their
measurement have formed the topic of much work which
has sought to define metrics to compute them and to assess
their impact on software development [1], [3], [25], [14].

There are many ways to approach the module clustering
problem. Following Mancoridis et al., who first suggested

the search-based approach to module clustering [20], this
paper follows the search-based approach. In the search-
based approach, the attributes of a good modular decom-
position are formulated as objectives, the evaluation of
which as a “fitness function” guides a search-based
optimization algorithm.

The module clustering problem is essentially a graph-
partitioning problem which is known to be NP-hard [11],
[20], so there is no efficient algorithm for solving the
problem to its exact optimum unless P=NP [11]. This
observation provided the motivation for previous work on
this problem, which aimed at finding a near-optimal
solution within a reasonable amount of time.

Without exception, all previous work on the module
clustering problem [20], [19], [23], [10], [22], [18], [15] and
other work inspired by it [7] has used a single-objective
formulation of the problem. That is, the twin objectives of
high cohesion and low coupling have been combined into a
single objective called Modularization Quality (MQ) (using
weights applied to the measurements of cohesion and
coupling). In all studies reported upon to date, the hill-
climbing algorithm has performed the best in terms of both
the quality of solutions found (measured by MQ values) and
in terms of the execution time required to compute them.

However, despite its success, this single-objective
approach raises the uncomfortable question:

How much cohesiveness should be sacrificed for an
improvement in coupling?

This question, and its converse, are uncomfortable for
several reasons. Such questions ignore the fact that the
measurements of cohesion and coupling are inherently
ordinal scale metrics and, so, even attempting to pose such
a question contradicts sound measurement theory [28].
Even if it were possible to compare the cohesion and
coupling measurements on an interval or ratio scale, there
is the additional problem that this essentially requires the
mistaken comparison of “applies and oranges”; it is not
possible to normalize coupling and cohesion in a mean-
ingful way so that each can be measured in comparable
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units nor is it easy to decide upon the relative weights that
should be applied to each.

There is a natural tension between the objective of
achieving low coupling and the objective of achieving high
cohesion when defining module boundaries. These two
aspects of the system will often be in conflict. Therefore, any
attempt to conflate cohesion and coupling into a single
objective may yield suboptimal results. In similar software
engineering scenarios in which there are a set of two or
more possibly conflicting objectives, a natural step is the use
of Pareto optimality [2], [30], [32].

This paper introduces the first Pareto optimal multi-
objective formulation of automated software module clus-
tering, presenting results that show how this approach can
yield superior results to those obtained by the single-
objective formulation. The paper also explores the ways in
which the richer solution space afforded by a Pareto optimal
approach can be used to yield insight into the choices
available to the software engineer faced with the task of
restructuring to improve modular cohesion and coupling.

The primary contributions of the paper are as follows:

1. The multi-objective paradigm for automated soft-
ware module clustering is introduced. Two formula-
tions of the multiple objective approach are studied:
the Equal-size Cluster Approach (ECA) and the
Maximizing Cluster Approach (MCA).

2. A novel two-archive Pareto optimal genetic algo-
rithm is introduced for the solution of multi-
objective module clustering.

3. An empirical study into the effectiveness and
performance of the single and multi-objective for-
mulations of the problem is presented. The primary
findings of the study are:

a. The multi-objective approach is able to produce
very strong results for both weighted and
unweighted Module Dependency Graphs. For
weighted Module Dependency Graphs, it pro-
duces better results than the single-objective hill-
climbing approach, even when measured against
the hill climber’s own fitness function (MQ).

b. Though the multi-objective approach performs
well, there are still cases where the single-
objective approach can produce good results
for unweighted graphs, indicating that hybrid
approaches may be worthy of further considera-
tion for unweighted graphs.

c. For producing low cohesion and coupling, the
Equal-size Cluster Approach to the multi-
objective problem produces the best results
overall.

d. The two multi-objective search formulations and
the existing single-objective formulation search
different parts of the solution space.

e. Though the multi-objective formulations pro-
duce far better results, they do so at a
computational cost; two orders of magnitude
more effort are required in order to achieve the
better results using the multi-objective ap-
proach. However, the paper argues that, in
many practical situations, the additional time
required for better results is both available and

also a worthwhile cost for the additional quality
of the modularizations identified.

The rest of this paper is organized as follows: Section 2
presents background material and related work on software
module clustering. Section 3 introduces the multi-objective
paradigm of module clustering. Section 4 describes
the research questions and experiments performed in the
empirical study that aims to assess the effectiveness and
performance of the multi-objective approach compared to the
single-objective formulation. Section 5 presents the findings
of the empirical study and answers to the research questions.
Section 6 discusses the ways in which this work could be used
in order to assist the practicing software engineer. Section 7
considers threats to validity, while Section 8 concludes.

2 AUTOMATED SOFTWARE MODULE CLUSTERING

Many metaheuristic methods have been successfully ap-
plied to software module clustering. The field was
established by the seminal work of the Drexel group [20].
In this work, hill climbing was the primary search technique
[20], leading to the development of a tool called Bunch [19]
for automated software module clustering.

Several other metaheuristic search technologies have
been applied, including simulated annealing and genetic
algorithms [13], [18], [22]. However, these experiments have
all shown that other techniques are outperformed in both
result quality and execution time by hill climbing.

In order to formulate software engineering problems as
search problems, the representation and fitness function need
to be defined [6], [12]. In the case of module clustering,
previous work has used the Module Dependency Graph
(MDG) as a representation of the problem [20]. The MDG is
represented as a simple array mapping modules (array
indices) to clusters (array elements used to identify clusters)
[20]. The array f2; 2; 3; 2; 4; 4; 2; 3g denotes a clustering of
eight modules into three clusters, identified by the numbers 2,
3, and 4. For example, modules numbered 0, 1, 3, and 6
are all located in the same cluster (which is numbered 2).
The choice of numbers of module identifier is arbitrary, so
this clustering is equivalent to f1; 1; 3; 1; 4; 4; 1; 3g and
f3; 3; 2; 3; 4; 4; 3; 2g.

The MDG can thus be thought of as a graph in which
modules are the nodes and their relationships are the edges.
Edges can be weighted, to indicate a strength of relation-
ship, or unweighted, merely to indicate the presence or
absence of a relationship. As will be seen, the algorithms
studied in this paper differ noticeably in their performance
on weighted MDGs when compared to the results obtained
for unweighted MDGs and so this distinction between
weighted and unweighted turns out to be an important
aspect of problem characterization. The choice of what
constitutes a “module” and what precisely can count as a
“relationship” are parameters to the approach. In previous
work (and in the present paper), a module is taken to be a
file and a relationship is an inclusion of reference relation-
ship between files (e.g., a method invocation).

In order to guide the search toward a better modulariza-
tion, it is necessary to capture this notion of a “better”
modularization. Traditionally, single-objective approaches
used the Modularization Quality measure, introduced by
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Mancoridis et al. [20]. The intra-edges are those for which
the source and target of the edge lie inside the same cluster.
The inter-edges are those for which the source and target lie
in distinct clusters. MQ is the sum of the ratio of intra-edges
and inter-edges in each cluster, called the Modularization
Factor (MFk) for cluster k. MFk can be defined as follows:

MFk ¼
0; if i ¼ 0;
i

iþ1
2j
; if i > 0;

�
ð1Þ

where i is the weight of intra-edges and j is that of inter-
edges, that is, j is the sum of edge weights for all edges that
originate or terminate in cluster k. The reason for the
occurrence of the term 1

2 j in the above equation (rather than
merely j) is to split the penalty of the inter-edge across the
two clusters that connected by that edge. If the MDG is
unweighted, then the weights are set to 1.

The MQ can be calculated in terms of MF as

MQ ¼
Xn
k¼1

MFk; ð2Þ

where n is the number of clusters.
The goal of MQ is to limit excessive coupling, but not to

eliminate coupling altogether. That is, if we simply regard
coupling as bad, then a “perfect” solution would have a
single module cluster containing all modules. Such a
solution would have zero coupling. However, this is not
an ideal solution because the module would not have the
best possible cohesion. The MQ measure attempts to find a
balance between coupling and cohesion by combining them
into a single measurement. The values produced by MQ
may be arbitrarily large because the value is a sum over the
number of clusters present in a solution and so the MQ
function is not a metric. The aim is to reward increased
cohesion with a higher MQ score and to punish increased
coupling with a lower MQ score.

In order to handle weighted and unweighted graphs
using the same approach, an unweighted graph is essen-
tially treated as a weighted graph in which all edges have
an identical weight.

3 SOFTWARE MODULE CLUSTERING AS A

MULTI-OBJECTIVE PROBLEM

Existing approaches to the twin objectives of high cohesion
and low coupling have combined these two objectives into a
single-objective function, with all of the drawbacks to which
the introduction of this paper referred. Pareto optimality is
an alternative approach to handling multiple objectives that
retains the character of the problem as a multi-objective
problem. Using Pareto optimality, it is not possible to
measure “how much” better one solution is than another,
merely to determine whether one solution is better than
another. In this way, Pareto optimality combines a set of
measurements into a single ordinal scale metric.

The fitness F ðxÞ of a candidate solution vector, x, is
defined in terms of the fitness ascribed to x by each of the
constituent fitness functions, fi, but this does not yield a
single number for an “aggregated fitness.” Rather,
a relationship is defined on candidate solution vectors that
define when one solution is superior to another. Under the

Pareto interpretation of combined fitness, “no overall fitness
improvement occurs no matter how much almost all of the
fitness functions improve, should they do so at the slightest
expense of any one of their number” [12]. More formally,
the relation is defined as follows:

F ðx1Þ > F ðx2Þ
,

8i:fiðx1Þ � fiðx2Þ ^ 9i:fiðx1Þ > fiðx2Þ:

That is, solution x1 is better than another x2 if it is better
according to at least one of the individual fitness functions
and no worse according to all of the others. Such a solution
x1 is said to “dominate” x2. If no element of a set X
dominates some solution x, then x is said to be nondomi-
nated by X.

A Pareto optimal search yields a set of solutions that are
mutually nondominating and which form an approxima-
tion to the Pareto front. The Pareto front is the set of
elements that are not dominated by any possible element of
the solution space. The Pareto front thus denotes the best
results achievable; it is the equivalent of the set of globally
optimal points in a single-objective search. As with the
single-objective formulation, it is not possible to guarantee
to locate this globally optimal solution set, merely to
attempt to approximate it as closely as possible.

Each set of objectives leads to a different multi-objective
formulation of the problem. In this paper, two sets of
objectives will be considered: The Maximizing Cluster
Approach and the Equal-size Cluster Approach. These are
explained below:

3.1 The Maximizing Cluster Approach

The Maximizing Cluster Approach uses the following set of
objectives:

. the sum of intra-edges of all clusters (maximizing),

. the sum of inter-edges of all clusters (minimizing),

. the number of clusters (maximizing),

. MQ (maximizing),

. the number of isolated clusters (minimizing).

The inter-edges, the intra-edges, and the MQ are used to
measure the quality of the system partitioned. An isolated
cluster is a cluster that contains only one module.
Experience and intuition dictate that isolated single module
clusters are uncommon on good modular decompositions
and so they are deprecated in the MCA approach by
including the number of isolated clusters and an objective to
be minimized.

The aim of the MCA measure is to capture the attributes
of a good clustering. That is, it will have maximum possible
cohesion (maximizing intra-edges) and minimal possible
coupling (minimizing inter-edges). However, it should not
put all modules into a single cluster (maximizing the
number of clusters) and not produce a series of isolated
clusters (so the number of isolated clusters is minimized).

Since MQ is a well-studied objective function, this is also
included as an objective for MCA. This is one of the
attractive aspects of a multi-objective approach; one can
always include other candidate single objectives as one of
the multiple objectives to be optimized. The MQ value will
tend to increase if there are more clusters in the system, so it
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also makes sense to include the number of clusters in the
modularization as an objective. Notice that this objective is
in partial conflict with the objective of minimizing the
number of isolated clusters. Furthermore, the relationship
between cohesion and coupling is potentially in conflict,
making this a nontrivial multi-objective problem.

To illustrate the MCA approach, consider the MDG in
Fig. 1. The objective values for MCA are as follows:

. intra-edges of all clusters (cohesion): 6,

. inter-edges of all clusters (coupling): �6,

. the number of clusters: 3,

. MQ: 1.928571,

. the number of isolated clusters: 0.

The sum of inter-edge of all clusters is multiplied by �2
because each edge is counted twice. The number of isolated
clusters is multiplied by �1 (since it is to be minimized).

3.2 The Equal-Size Cluster Approach

The Equal-size Cluster Approach does not attempt to
optimize for the number of clusters in the modularization.
However, this does not mean that solutions may not emerge
that happen to have a large number of clusters. Rather,
the number of clusters is left as a implicit consequence of
the other optimization objectives, allowing the search
process the freedom to choose any number of clusters
(large or small) that best suits the other explicit objectives.

However, the ECA does attempt to produce a modular-
ization that contains clusters of roughly equal size, thereby
decomposing the software system into roughly equal-size
modules. This tends to mitigate against small isolated
clusters and also tends to avoid the presence of one larger
“god class”-like structure.

The objectives of the ECA are as follows:

. the sum of intra-edges of all clusters (maximizing),

. the sum of inter-edges of all clusters (minimizing),

. the number of clusters (maximizing),

. MQ (maximizing),

. the difference between the maximum and minimum
number of modules in a cluster (minimizing).

To illustrate the ECA approach, consider again the
example MDG in Fig. 1. The set of objectives for ECA are
assigned as follows:

. intra-edges of all clusters (cohesion): 6,

. inter-edges of all clusters (coupling): �6,

. the number of clusters: 3,

. MQ: 1.928571,

. the difference between the maximum and minimum
number of modules in a cluster: 1.

In this paper, these two formulations of the multi-
objective clustering problem will be implemented in terms
of the two-archive multi-objective evolutionary algorithm of
Praditwong and Yao [26]. This algorithm has been applied to
other multi-objective problems, but this paper is the first to
report on its application to the module clustering problem.

4 EXPERIMENTAL SETUP

This section describes the experiments conducted to
compare the multi-objective and single-objective software
module clustering problems.

4.1 Research Questions

1. MQ Value as Assessment Criterion: How well does
the two-archive multi-objective search perform
when compared against the Bunch approach using
the MQ value as the assessment criterion?

This question compares the two-archive approach
to Bunch, using Bunch’s own fitness value. It would
be expected that Bunch, optimizing for the single
objective of MQ, should be able to outperform the
two-archive approach, which is optimizing for a
balance between this and several other objectives.

2. Cohesion and Coupling: How well do the two-
archive algorithm and the Bunch perform at opti-
mizing each of the two primary software engineer-
ing objectives of low coupling and high cohesion?

This research question focuses on the primary
software engineering objectives of cohesion and
coupling. Notwithstanding other interesting assess-
ments, these two criteria are those for which
automated software modularization was conceived,
so they form a natural topic for investigation in
this paper.

3. Pareto Optimality as Assessment Criterion: How
good is the Pareto front achieved by the two
approaches?

This question compares Bunch to the two-
archive approach according to the goals of the
two-archive approach. It would be expected that
the two-archive approach would prevail in such a
comparison since it is designed to solve multi-
objective problems.

4. Location of Solutions on the Approximated Pareto
Front: What do the distributions of the sets of
solutions produced by each algorithm look like?

This question is concerned with the qualitative
evaluation of the solutions produced. As a qualitative
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question, it is naturally a little more subjective than
the other questions. However, it does decompose into
two related subquestions, for which a quantitative
analysis is possible:

a. How diverse are the solutions produced?
b. What is the relationship between the areas of the

solution space covered by each approach?

5. Effort: What is the computational expense of
executing each of the two approaches in terms of
the number of fitness evaluations required.

As well as comparing each algorithm for the
number of evaluations required, we shall also
give each the same budget of fitness evaluations
(i.e., the same effort) and see whether one outper-
forms the other for quality of results, as measured by
the MQ values obtained and the intra- and extra-
edges present in the solutions obtained. Finally,
we shall also consider the relationship between the
size of the problem and the effort (measured by the
number of fitness evaluations required).

4.2 Test Problems

The experiment studies the application of the algorithms to
17 different MDGs. The numbers of modules vary from 20 to
over 100. The MDG in this experiment has two types. The
first type is unweighted edges and the second type is
weighted edges as shown in Table 2. In unweighted graphs,
an edge denotes a unidirectional method or a variable passed
between two modules. The weighted edge is assigned by
considering the number of unidirectional method or vari-
ables passed between two modules; the greater the weight,
the more dependency between two modules [18].

4.3 Genetic Algorithms

Genetic algorithms use concepts of population and of
recombination inspired by Darwinian Evolution [16]. A
generic genetic algorithm [6] is presented in Fig. 2.

An iterative process is executed, initialized by a ran-
domly chosen population. The iterations are called genera-
tions and the members of the population are called
chromosomes because of their analogs in natural evolution.
The process terminates when a population satisfies some
predetermined condition (or a certain number of genera-
tions have been exceeded).

At each iteration (that is, each generation), some
members of the population are recombined, crossing over

elements of their chromosomes. A fraction of the offspring
of this union are mutated and, from the offspring and the
original population, a selection process is used to determine
the new population. Crucially, recombination and selection
are guided by the fitness function, fitter chromosomes
having a greater chance to be selected and recombined.

There are many variations on this overall process, but the
crucial ingredients are the way in which the fitness guides
the search, the recombinatory, and the population-based
nature of the process. In the application of any genetic
algorithm to any problem, there is a need for a tuning phase
to determine the best choice of parameter values governing
the likelihood of mutation, crossover, and the determination
of the size of the population.

4.4 Algorithmic Parameters

The genetic encoding used here employs the same system
as that introduced by Doval et al. for the Bunch system [10].
The crossover operator uses single-point crossover and the
mutation operator uses single-point mutation [10].

Algorithmic parameters are dependent on the number of
modules (N). The probability of crossover is 0.8 if the
population size is less than 100. Otherwise, the probability
is 1.0. The probability of mutation is 0:004log2ðNÞ. The
population size is 10N and the maximum number of
generations is 200N . The total size of archives is equal to the
size of the population.

The hill-climbing algorithm used in the experiments
reported upon here is the Bunch API [19]. The algorithm
uses the hill-climbing method from the Bunch library with
one individual. A first neighbor which produces a better
result is accepted (this is the “first ascent” hill-climbing
approach). The output files (in dot format) were generated
for the detailed level; this output is the lowest level of the
Bunch cluster tree and the one that tends to produce the
highest value of MQ.

Higher levels than the detailed level are essentially
clusters of clusters, which produce a lower value of MQ.
While these metaclusters may be very useful to engineer,
they are not an appropriate choice for an unbiased
empirical comparison with the multi-objective approach
because the multi-objective approach always produces
results at the detailed level.

The other parameters are set to their default settings. The
information reported, such as the number of intra-edges,
the number of inter-edges, MQ, was calculated from the dot
format file.

4.5 Collecting Results from Experiment

Each execution of each algorithm on each MDG was
independently repeated 30 times. There are two different
ways to calculate the average of the MQ. The hill-climbing
algorithm gives only one solution in each run. The average
of MQ can be calculated indirectly from the solutions.
However, the two-archive algorithm produces the set of
solutions. The solution with the highest MQ is chosen to be
the best solution in each run. Thus, the average of the MQ of
obtained solutions from the two-Archive algorithm is
estimated using the representatives from 30 runs. This is
the method to collect the MQ values from the experiment.
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Both algorithms, the hill-climbing algorithm and the
two-archive algorithm, give clustered systems when they
finish searching. The hill-climbing algorithm has only one
system per run, while the two-Archive algorithm selects
the system which corresponds the highest MQ value. The
numbers of intra-edges and inter-edges are calculated by
analysis of the clustered systems yielded by the algorithms.

5 RESULTS AND ANALYSIS

This section presents the results of the empirical study. Each
section addresses one of the five research questions outlined
in Section 4. The results concern three algorithms, the Bunch
hill-climbing algorithm, and the two multi-objective for-
mulations of the clustering problem, ECA and MCA,
described earlier in Section 3. Table 1 presents details of
the subject MDGs studied. These systems are not necessa-
rily “degraded” systems in terms of their modular
structure, but they have been studied widely by other
researchers to evaluate their algorithms for module cluster-
ing and so they denote reasonable choices for comparison.

5.1 The MQ Value as Assessment Criterion

This section presents the results of the experiments that
compare the MQ values obtained for the three approaches.
That is, the results assess how well the two multi-objective
approaches perform when compared with Bunch, using
Bunch’s sole criterion: MQ.

Tables 2 and 3 present the results comparing MCA and
ECA, respectively, with the hill-climbing approach, while
Table 4 shows the comparison of results between the two
multi-objective approaches (MCA and ECA). Bold numbers
denote comparisons where there is a significant difference
(at the 95 percent confidence level) in the means of MQ
values found between the approaches (compared using a
two-tailed t-test).

In Table 2, the results from two algorithms were
comparable. There is good evidence to suggest that for
the unweighted problems, the hill-climbing algorithm
outperformed the MCA approach. That is, the hill-climbing
algorithm gives higher values for MQ in six from seven
problems, including four problems in which the results are
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The Systems Studied

TABLE 2
Comparison of Solutions Found by the MCA Approach and Bunch’s Hill-Climbing Approach

Using a Two-Tailed t-Test with 58 Degrees of Freedom

Numbers in bold are significant at the 95 percent level.



statistically significant. However, for weighted MDG

problems, the results provide evidence to suggest that the

MCA approach outperforms the hill-climbing approach.

That is, MCA beats the hill-climbing algorithms in 7 from

10 problems, including six in which the results are

statistically significant.
This finding was something of a surprise. One would

expect the hill-climbing approach to perform well at
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TABLE 3
Comparison of Solutions Found by the ECA Approach and Bunch’s Hill-Climbing Approach

Using a Two-Tailed t-Test with 58 Degrees of Freedom

Numbers in bold are significant at the 95 percent level.

TABLE 4
The Averaged MQ Values of the Best Solutions Found by the Two-Archive Algorithm with Maximizing Cluster Approach,

and by the Two-Archive Algorithm with Equal-Size Cluster Approach, and the Value of a Two-Tailed t-Test with 58 Degrees of
Freedom



optimizing for the single-objective MQ since this is its sole

objective. However, there is evidence to suggest that the

multi-objective MCA approach outperforms hill climbing

for weighted MDGs (though not unweighted MDGs).
Turning to the results for the ECA multi-objective

approach, the surprise was even greater. There is no evidence

to suggest that the ECA approach is outperformed by the hill-

climbing approach for unweighted graphs. However, there is

very strong evidence to suggest that the ECA approach

outperforms the hill climber for weighted MDGs. That is, in

no unweighted case did either approach outperform the

other with statistical significance. However, for weighted
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TABLE 5
Number of Evaluations by the Two-Archive Algorithm and Hill-Climbing

TABLE 6
Number of Evaluations by the Two-Archive Algorithm and Hill Climbing



graphs, the ECA approach outperforms the hill climber in all
problems studied with statistically significant differences in
the means in all cases, as indicated in Tables 7 and 8.

This set of comparisons of the two multi-objective
approaches with the single-objective hill climber provides
evidence to suggest that both multi-objective algorithms can
outperform the single-objective hill climber when compared
using the hill climber’s own sole objective. The results also
indicate that, of the two multi-objective approaches, ECA is
to be preferred over MCA. This is borne out by the
comparison of the ECA and MCA approaches (presented in

Fig. 4). In all cases, the ECA approach outperforms the
MCA approach and, in all but the smallest two, the results
are statistically significant.

To answer Research Question 1, the results of the study
provide evidence to support the claim that the Bunch hill-
climbing approach produces superior MQ values for un-
weighted graphs than the MCA approach. However, for
weighted graphs, there is a strong evidence (from the results
in Tables 2 and 3) to suggest that the multi-objective research
(and, in particular, the ECA version of the multi-objective
search) can produce significantly better results for MQ values
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TABLE 7
The Averaged MQ Values of the Best Solutions Found by the Two-Archive Algorithm with the Equal-Size Cluster Approach,

and by Hill Climbing

TABLE 8
The Average of the Intra-Edges and the Inter-Edges of the Best Solutions Found by the Two-Archive Algorithm

with the Equal-Size Cluster Approach, and by Hill Climbing



of weighted MDGs compared to the Bunch Hill-Climbing
approach. There is also very strong evidence to suggest that
the ECA approach is superior to the MCA approach in terms
of MQ values obtained. The computation time of ECA was
also studied and is shown in Table 9 and Fig. 3.

One of the primary reasons for such good results is that
the multi-objective algorithm always searches for a non-
dominated set, rather than any single solution. The
diversity among the solutions in the set is explicitly
encouraged by the algorithm. As a result, the multi-
objective algorithm is more likely to explore widely in the
search landscape. The more complex the search landscape,
the more likely the multi-objective algorithm performs
better. This also explains why our algorithm outperformed
the single-objective method more on weighted graphs.

It is interesting to speculate as to why the ECA approach
should appear to outperform the MCA approach. Clearly,
more experiments and further study would be required to
provide a conclusive answer to this subsidiary question.
However, since the difference rests upon the way in which
ECA seeks to normalize cluster size, favoring solutions that
minimize the difference between cluster sizes, it must be
assumed that in software systems this is a helpful guide to
modularization. By contrast, seeking to punish a solution
for containing isolated clusters (the MCA approach) is less
helpful. In order to explore this further, experiments would
be required that compared software MDGs to dependence
from other (nonsoftware) sources. It may turn out that such
studies could help to explain what it is that makes a
dependence graph a software dependence graph rather than a
graph in general.

5.2 Cohesion and Coupling as Assessment Criteria

This section considers the answer to the second research
question, which addresses the central role played by cohesion
and coupling in all work on module clustering. That is, which
approach can produce the highest cohesion and the lowest

coupling? Cohesion is a measure of the number of intra-edges
in the modularization (those edges that lie inside a cluster),
while coupling is measured by the number of inter-edges in
the modularization (the edges that connect two clusters).
Both of these objectives are construed as maximization
problems in the formulation, so the number of inter-edges
is represented by the negative of the interedges; the goal is to
maximize this value (i.e., to reduce coupling).

Tables 10, 11, and 12 present the results comparing the
performance of {MCA, Hill Climbing}, {ECA, Hill Climb-
ing}, and {MCA, ECA}, respectively.

In Table 10, the comparison of MCA and Hill climbing is
somewhat inconclusive for unweighted graphs, with each
approach able to statistically significantly outperform the
other in some cases. However, for weighted MDGs, the
MCA approach outperforms the Hill-climbing approach in
all cases with statistical significance.

In Table 11, the results provide strong evidence to
suggest that the ECA approach outperforms the hill-
climbing approach for both weighted and unweighted
graphs. That is, in all but one of the problems studied, the
ECA approach outperforms the hill-climbing approach with
statistical significance.

Table 12 provides evidence to suggest that the ECA
approach is preferable to the MCA approach; ECA
statistically significantly outperforms MCA in all but one
case. However, it is interesting to note that, in the one case
where MCA outperforms ECA, it also does so with
statistical significance. This indicates that there remains
some residual merit in the MCA approach. This issue of
complementarity of approaches is revisited in Section 5.4.

To answer Research Question 2, there is strong evidence
(from Tables 10 and 11) to support the claim that the multi-
objective approach (both the MCA and ECA versions)
outperform the Hill-Climbing approach in producing
solution clusterings with both higher cohesion and lower
coupling for weighted graphs. Furthermore, there is also
strong evidence (from Table 11) that the ECA multi-
objective approach can outperform the Bunch Hill-Climbing
approach on both weighted and unweighted graphs when
aiming to produce solutions that minimize coupling while
maximizing cohesion. This provides strong empirical
evidence to support the claim that the multi-objective
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TABLE 9
The Relationship between Size and ECA Computation Time

Fig. 3. The number of nodes and computation time by ECA.



approach is worthy of further consideration as an optimally

performing approach to module clustering.

5.3 Pareto Optimality as Assessment Criterion

This section compares the multi-objective formulations

with the single-objective formulation in terms of how well

each performs at producing good approximations to the

Pareto front. Here, the multi-objective formulations can be

expected to outperform the single-objective formulation

since they are designed to produce good approximations to

the Pareto front, whereas the single-objective approach is

not. Therefore, the more interesting part of this research

question is which of the two multi-objective formulations

performs best.
Tables 13, 14, and 15 display the dominance relationship

for the results obtained from all three approaches. This
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TABLE 10
The Average of the Intra-Edges and the Inter-Edges of the Best Solutions Found by the Two-Archive Algorithm

with Maximizing Cluster Approach, and by Hill Climbing and the Value of a Two-Tailed t-Test with 58 Degrees of Freedom

Numbers in bold are significant at the 95 percent level.

TABLE 11
The Average of the Intra-Edges and the Inter-Edges of the Best Solutions Found by the Two-Archive Algorithm

with Equal-Size Cluster Approach, and by Hill Climbing and the Value of a Two-Tailed t-Test with 58 Degrees of Freedom

Numbers in bold are significant at the 95 percent level.



dominance relationship is used to compare any two

solutions in multi-objective space.
The three software engineering objectives considered are

the intra-edge and the inter-edge measurement, and, for

backward compatibility with work on single-objective

formulations, the MQ value obtained. These objectives can

be thought of as collectively denoting the quality of the
clustering produced.

In these tables, A denotes the hill-climbing algorithm, B
denotes the MCA, and C denotes the ECA. The heading
NXY denotes the number of solutions generated by X that
are dominated by solution in Y . In comparison, X is better
than Y if NXY is small and NYX is large.

PRADITWONG ET AL.: SOFTWARE MODULE CLUSTERING AS A MULTI-OBJECTIVE SEARCH PROBLEM 275

TABLE 12
The Average of the Intra-Edges and the Inter-Edges of the Best Solutions Found by the Two-Archive Algorithm with Equal-Size

Cluster Approach, and by the
Two-Archive Algorithm with Maximizing Cluster Approach,

and the Value of a Two-Tailed t-Test with 58 Degrees of Freedom

Numbers in bold are significant at the 95 percent level.

TABLE 13
Results of Dominated Comparison

A: the hill-climbing algorithm and B: the Two-Archive algorithm with the
maximizing cluster approach.

TABLE 14
Results of Dominated Comparison

A: the hill-climbing algorithm and C: the Two-Archive algorithm with the
equal-size cluster approach.



Table 13 shows that the number of solutions produced
by hill climbing outperforms MCA for unweighted pro-
blems (six from seven problems), while, in weighted
systems, the MCA outperforms the hill-climbing algorithm
in all problems. This indicates that hill climbing is effective,
perhaps surprisingly so, for unweighted MDGs.

Table 14 provides strong evidence that ECA outperforms
hill climbing for both weighted and unweighted MDGs.
That is, the values of NAC are higher than NCA in 16 of 17 of
the solutions.

These two findings taken together indicate the ECA is
better than hill climbing, while MCA is only better than hill
climbing for weighted graphs, leading to suspicion that
ECA outperforms MCA. This suspicion is confirmed by the
results from Table 15, which compares ECA and MCA. This
table shows that ECA comfortably outperforms MCA in all
of the problems studied.

To answer Research Question 3, as expected the single-
objective formulation implemented by Bunch is not well
suited to finding nondominated solutions for a set of
objectives. The results are particularly compelling for the
ECA multi-objective approach, which comfortably outper-
forms the other approaches.

5.4 Location of Solutions

This section considers the location of solutions produced by
the two approaches. In order to examine the location of
solutions, it is convenient to compare two of the primary
software engineering objectives. For this reason, cohesion
(intra-edges) and the MQ value are chosen to see the trade-
off between these two objectives. The previous sets of
experiments have indicated a strong degree of difference
between the results of weighted and unweighted MDGs.
Therefore, in considering location of solutions, the results
are categorized into those for weighted MDGs and those for

unweighted MDGs. Fig. 4 shows the locations of solutions
in this two-objective space for unweighted MDGs, while
Fig. 5 shows the location for unweighted MDGs.

In all figures, the two objectives are to be maximized, so
the optimal solutions are located in the uppermost and
rightmost areas of the two-objective space, while the least
optimal are located in the lowermost and leftmost areas of
the space. The results in Fig. 4 confirm the earlier findings
that ECA is to be preferred over MCA for unweighted
MDGs and also that hill climbing (labeled HC) is a strong
performer on unweighted graphs. The results in Fig. 5 are
perhaps a little more interesting. They reveal that each of
the three algorithms concentrates in a different region of the
two objective search space. Visually, it is apparent that the
hill-climbing approach tends to concentrate on the less
optimal areas of the space, while both ECA and MCA are
focused on more productive locations. However, of ECA
and MCA, it is not always possible to say that ECA is the
better of the two. This suggests that for optimal results, both
ECA and MCA should be used. Although previous studies
indicate that ECA will tend to outperform MCA, the
visualization of result locations in two-dimensional objec-
tive space indicates that the two approaches concentrate on
different areas of the solution space and that MCA is
occasionally able to produce results that outperform ECA
for one of the two objectives.

To answer Research Question 4, the resulting locations
indicate that the three approaches produce solutions in
different parts of the solution space. This indicates that no
one solution should be preferred over the others for a
complete explanation of the module clustering problem.
While the results for the ECA multi-objective approach
indicate that it performs very well in terms of MQ value,
nondominated solutions, and cohesion and coupling, this
does not mean that the other two approaches are not
worthy of consideration, because the results suggest that
they search different areas of the solution space.

It is interesting to note how the different approaches
produce solutions in different regions of the solution space
according to the fitness function values obtained. This
suggests that each technique also finds different remodu-
larizations of the software, though more work is required to
examine this in more detail.

5.5 Computational Effort

This section compares the effort required to solve the
clustering problem using the traditional hill-climbing
approach and the new multi-objective approaches intro-
duced in this paper. The results indicate that there is a
trade-off between effort and quality of results. That is, the
number of evaluations required to achieve the better results
of the multi-objective approach is two orders of magnitude
greater than that required for the hill climber. However,
even if we allow the Hill Climber the same number of
fitness evaluations as the multi-objective approaches, the
results for the multi-objective approach are still typically
better than those obtained by the Hill Climber. Finally, we
explore the relationship between the size of the problem
and the number of fitness evaluations required by the
multi-objective approach. This study indicates that there is
no obvious relationship between size of problem and effort.
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TABLE 15
Results of Dominated Comparison

B: the Two-Archive algorithm with the maximizing cluster approach and
C: the Two-Archive algorithm with the equal-size cluster approach.



5.5.1 Number of Evaluations

An important factor for search algorithms is a number of

evaluations. The number of evaluations indicates the

computational cost of an algorithm. The numbers of

evaluations of all algorithms are shown in Table 5. The

two approaches (MCA and ECA) that use the two-archive

algorithm use the same number of fixed evaluations. The

hill-climbing algorithm will terminate when it can no longer

find a neighbor that produces the better MQ. Thus, the

numbers of evaluations for the hill-climbing algorithm are
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Fig. 4. Solutions in the intra-edge and MQ space for unweighted MDGs.



not fixed. The numbers of evaluations in this table are

averaged values from 30 independent runs.

To answer Research Question 5, the results clearly
demonstrate the additional cost incurred by a multi-objective
search using a genetic algorithms. The Bunch hill-climbing
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Fig. 5. Solutions in the intra-edge and MQ space for weighted MDGs.



approach is at least two orders of magnitude more time-
efficient when compared to the two-archive Pareto genetic
algorithm. This confirms the widely observed principle that
hill climbing is a fast and simple search technique when
compared to the genetic algorithm approach. This is
particularly true in cases where multiple objectives have to
be satisfied using Pareto optimality because of the additional
overheads that accrue from the maintenance of a nondomi-
nating set that approximates the Pareto front.

Whether the additional cost is justified by the superior
results will depend upon the application domain. In many
cases, remodularization is an activity that is performed
occasionally and for which the software engineer may be
prepared to wait a few minutes (even hours) for results if
this additional waiting time produces significantly better
results. Specifically, it is likely that the software engineer
will be prepared to wait for results in several situations. For
example, where a system has become difficult to maintain
through degradation of structure, the engineer may be
prepared to wait even for several days in order to obtain an
assessment of the optimally improved structure.

Module clustering represents the top level structure of
the system. As such, it is unlikely that the entire structure of
a system will undergo a major overhaul on a regular basis.
When such an overhaul is required, it is likely to be a
significant event and so it will be important to obtain the
best possible results. For these best possible results, it is
quite likely that the engineer will be prepared to wait.
However, in other more speculative situations, where the
engineer asks a “what if?” question, then it may be more
attractive to obtain results that are merely fast and “good
enough.” In these cases, the single-objective approach may
remain an attractive alternative.

5.5.2 Head To Head Comparison

In this experiment, we give the Hill Climber the same
number of evaluations as the multi-objective approach to
determine whether it can produce equally good or better
solutions when allowed the same budget of fitness evalua-
tions (i.e., the same effort). The Hill Climber is simply
restarted each time it reaches the summit of a hill at a
random point and allowed to continue with random restarts
until it exhausts the budget of fitness evaluations. This is
known as “Random Restart Hill Climbing.”

Table 5 shows the number of evaluations used by the ECA
two-archive approach. We have given the Hill Climber the
same number of evaluations as used in all 30 runs of the ECA
algorithm for complete fairness. That is, for example,
considering the mtunis problem, the number of evaluations
of ECA is 800,000 and it is repeated 30 times (to allow for a
meaningful statistical comparison of results earlier in the
paper). Thus, the total number of evaluations is 24,000,000.
The Hill-Climbing approach was performed until the
number of evaluations passes 24,000,000. The number might
slightly exceed this “fitness evaluation budget” because the
current hill climb is allowed to complete before the budget is
checked. This ensures that the Hill Climber is afforded at
least the same number of evaluations as the ECA approach.
Table 6 shows the number of evaluations and the number of
runs performed by the Hill-Climbing approach.

Table 7 presents the MQ value obtained for each algorithm.
Hill Climbing cannot find better solutions in terms of MQ

when the number of evaluations allowed is increased to the
total used by the multi-objective approach. For only three of
the problems, grappa, bunch, and incl, does the MQ obtained
by Hill Climbing outperform that found by the ECA
algorithm. In the other problems, the ECA algorithm finds
better MQ values than the Hill-Climbing algorithm.

A comparison of intra-edge and inter-edge is shown in
Table 8. Hill Climbing can find the solutions with good intra-
edge and inter-edge, but it does not outperform ECA for
result quality when it has the same number of evaluations.

5.6 Exploration of the Relationship between
Problem Size and Number of Fitness
Evaluations Required

In this section, we consider the relationship between the
size of the problem and the number of fitness evaluations
required. The results show that there is no apparent
relationship between the two. That is, there is no strong
correlation between the sizes of systems (listed in Table 1)
and the effort expended by the search techniques (listed in
Tables 5 and 6).

This provides some tentative evidence to suggest that the
difficulty of a problem (for the multi-objective approach) is
not a function of the problem’s size; the complexity of the
problem may not be directly related to its size. However, as
one might expect, the larger systems do seem to take more
fitness evaluations. More work is required with more
systems in order to fully determine whether there is any
relationship between the size of the MDG and the number
of fitness evaluations required.

It may be that search problem difficulty is related to
problem complexity, not problem size, and that, should
there turn out to be some correlation, then the difficulty of
the search might act as some form of guide as to the
complexity of the problem. However, this remains purely
speculation at this point.

6 USE OF AUTOMATED AND SEMI-AUTOMATED

MODULARIZATION-BASED COHESION AND

COUPLING

Automated approaches to modularization such as that
presented in this paper focus on automated algorithms that
seek out new partitions of software, maximizing cohesion
and minimizing coupling. There have been empirical
studies that show that low coupling and high cohesion
are desirable because they tend to be correlated with a
lower propensity to contain faults [4]. However, care is
required in extrapolating from these studies to the work
reported here; it cannot be assumed that automated
remodularization will necessarily improve quality attri-
butes such as fault proneness.

Also, it would be wrong to assume that cohesion and
coupling are the only requirements for software module
quality. Many other factors have to be taken into account
when deciding upon the quality of software and no attempt
is made in this paper to claim that automatically remodu-
larized software will necessarily be less fault prone nor to
suggest that it will have other desirable properties.

Finally, though the approach advocated here is auto-
mated, this does not mean that a practicing software
engineer should simply press a “modularize button” and
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accept the results of automated modularization without
question. Rather, tools that use these automated techniques
are more likely to be interactive; the tool merely suggesting
candidates for remodularization, perhaps indicating func-
tions that could be moved to improve measurements of
cohesion and coupling. The user of such a tool would then
consider these suggestions and decide whether or not to
accept them.

This paper adds to the previous work on cohesion and

coupling by providing automated techniques that can be

used to make such suggestions. It improves the measure-

ments of cohesion and coupling that can be achieved so that,

where this is desirable, the user will have potentially more

interesting suggestions from the tool to consider.
A further interesting practical contribution of this work

is the way in which the paper indicates that multi-objective
search techniques can be useful for improving the fitness
scores obtained for single-objective problems. This is a
phenomenon observed in the wider optimization commu-
nity [5], but, to the authors’ knowledge, it is the first time
that this phenomenon has been demonstrated in search-
based software engineering problems.

That is, the search for solutions that maximize the widely
studied MQ measurement can be improved by searching
for solutions that solve this and several other objectives, as
the results in the present paper indicate. This finding seems
surprising at first glance; how can adding objectives make a
problem easier to solve? The resolution of this apparent
paradox is to be found in the way in which the other
objectives contribute guidance to the solution of the
primary objective (in this case MQ). This finding may be
useful for other SBSE problems; it may be that even
essentially single-objective SBSE problems can be reformu-
lated as multiple-objective search problems in which the
additional objectives provide guidance to the solution of the
primary objective and a Pareto optimal search can thereby
find superior solutions that achieve higher scores for the
primary objective.

The application of search-based modularization is not
merely a technique for application to systems that have
become degraded through ad hoc maintenance, though it
may be particularly useful for such systems. Like all tools to
support software engineers in their decision making, the
approach can be used to raise questions about modulariza-
tion choices, even for very well-maintained systems. Where
the search-based approach suggests a remodularization that
will produce a noticeable improvement in cohesion and
coupling, this can be a starting point for investigation, even
for well-behaved systems.

Furthermore, where the automated approach produces a
suggestion that is not followed, this may indicate a situation
where there are hidden dependencies not reflected in the
MDG. These dependencies will be hidden to the automated
tool, but may be known to the engineer. They may cause the
engineer to reject the modularization suggestions. In such
cases, the tool may have flagged up a need for additional
design documentation to record and document such
dependencies. The authors’ experience with code level
dependencies from industrial partners indicates that real
code does contain many such hidden dependencies.

7 THREATS TO VALIDITY

For an experiment not involving human subjects, there are
two potential threats to validity that need to be considered.
These are threats to external validity and internal validity.
External validity (or selection validity) concerns the degree
to which the findings can be generalized to the wider
classes of subjects from which the experimental work has
drawn a sample.

In work on software engineering, this is a particularly
important threat to validity of findings because of the wide
range of diverse programs available to any study of their
properties. In the experiments reported upon here, this
threat to validity is somewhat mitigated by the fact that the
study is concerned with a highly abstract representation of a
program: the Module Dependency Graph. Since there is a
homomorphism that maps many individual programs into a
single MDG, the results for a set of MDGs of sizeC is relevant
to a class of programs of cardinally far larger than C.

Nonetheless, as with other empirical studies concerning
software, care is required in extrapolation from the results
presented in the present paper to the wider class of
programs and their weighted and unweighted MDGs. In
order to attempt to cater to possible threats to external
validity, the empirical study was constructed to use a range
of MDGs, both weighted and unweighted, and ranging in
size from small to large. The systems under study were also
varied in their application types. However, all systems
considered came from open source programs and this may
affect the degree to which results can be extrapolated.
Naturally, it remains possible that nonopen source pro-
grams will exhibit different behavior.

Internal validity is the degree to which conclusions can
be drawn about the causal effect of independent variables
on the dependent variables. In this experiment, potential
threats come from inappropriate statistical tests or viola-
tions of statistical assumptions, inaccurate underlying
analysis, and the degree to which the variables used in
the study accurately measure the concepts they purport to
measure (a form of construct validity).

In this paper, the choice of subject MDGs and statistical
tests was partly governed by the desire to support
comparability with other studies. The statistical test used
was the t-test. This has been widely used by researchers
comparing results from studies of metaheuristic search
algorithms. The MDGs studied have also been used in other
studies [18], [21], [23], facilitating a degree of comparability.

It is important to use a statistical test for significance of
results obtained because there is an inherent degree of
random selection in all metaheuristic search algorithms that
the experimental result must take into account. It is known
that the t-test is best suited to normally distributed data.
However, there is strong statistical evidence [9], [24] to
suggest that the t-test is robust, even in the presence of
significantly skewed and nonnormally distributed data,
provided the sample sizes are sufficiently large, which they
are in this case.

It is also important to note that this work neither
demonstrates nor implies any necessary association be-
tween quality of systems and the modularization produced
by the approach used in this paper. Indeed, module quality
may depend on many factors, which may include cohesion
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and coupling, but which is unlikely to be limited to merely

these two factors.

8 CONCLUSION AND FUTURE WORK

This paper introduces the multi-objective approach to

software module clustering. It introduced two multi-objec-

tive formulations of the multi-objective problems and

presented results for the application of these techniques,

comparing the results obtained with those from the existing

single-objective formulation on 17 real-world model cluster-

ing problems
The results indicate that one of the two approaches, the

Equal-size Cluster Approach, is able to produce better

solutions than the existing single-objective solution, both in

terms of the multiple objectives it aims to satisfy, but also in

terms of the single objective upon which all previous work

has focused. This improved performance comes at a

significantly increased computational cost. For problems

in which the software engineer is prepared to wait for the

optimal reclustering of their system, the multi-objective

approach therefore has considerable merit.
The multi-objective approach lends itself to extensions to

consider other possible objectives with respect to which

modularization could take place. Future work could

consider such additional objectives. For example, we could

consider the footprint size of each module, the communica-

tions bandwidth (not merely number of inter-edges) the

location of features found in module. Future work should

also consider the degree to which different approaches

produce different kinds of clustering and the underlying

reasons for the difference in the results obtained using the

ECA and MCA approach.
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