
A Principled Evaluation of the Effect of Directed
Mutation on Search-Based Statistical Testing

Simon Poulding
Department of Computer Science

University of York
York YO10 5GH, United Kingdom

Email: smp@cs.york.ac.uk

John A. Clark
Department of Computer Science

University of York
York YO10 5GH, United Kingdom

Email: jac@cs.york.ac.uk

Hélène Waeselynck
LAAS-CNRS

7, avenue du Colonel Roche
31077 Toulouse Cedex 4, France

Email: waeselyn@laas.fr

Abstract—Statistical testing generates test inputs by sampling
from a probability distribution that is carefully chosen so that the
inputs exercise all parts of the software being tested. Sets of such
inputs have been shown to detect more faults than test sets gener-
ated using traditional random and structural testing techniques.
Search-based statistical testing employs a metaheuristic search
algorithm to automate the otherwise labour-intensive process
of deriving the probability distribution. This paper proposes
an enhancement to this search algorithm: information obtained
during fitness evaluation is used to direct the mutation operator
to those parts of the representation where changes may be most
beneficial. A principled empirical evaluation demonstrates that
this enhancement leads to a significant improvement in algorithm
performance, and so increases both the cost-effectiveness and
scalability of search-based statistical testing. As part of the
empirical approach, we demonstrate the use of response surface
methodology as an effective and objective method of tuning
algorithm parameters, and suggest innovative refinements to this
methodology.

Index Terms—Software/Program Verification, Testing Strate-
gies, Test Coverage of Code, Optimization, Experimental Design

I. INTRODUCTION

Statistical testing is a highly effective technique for gener-
ating test inputs for software verification. Test data is sampled
from a probability distribution over the input domain—in
a similar manner to random testing—where the probability
distribution is carefully chosen so that every part of the
software is covered by the test set—in a similar manner
to structural testing. Thévenod-Fosse and Waeselynck have
shown that statistical testing has superior fault-detecting ability
compared to both random and structural testing [1], [2], [3],
[4], [5].

In [6], Poulding and Clark proposed and evaluated a search-
based approach to deriving probability distributions for statis-
tical testing in order to automate this part of the technique
and therefore improve its cost-effectiveness. The viability
of this approach, called search-based statistical testing, was
demonstrated even though the search algorithm used a rela-
tively straightforward representation, fitness metric, and search
method. Subsequent work has focussed on improving the
performance through enhancements to the search algorithm,
with the objective of enabling the approach to be used on more
complicated software and to satisfy more ambitious testing
objectives.

In this paper, we present one such enhancement to the
search algorithm: the use of directed mutation. When eval-
uating potential solutions, feedback is normally returned to
the search algorithm in the form a fitness metric, and this
information is used to guide the algorithm’s selection operator.
In our implementation of directed mutation, a second feedback
pathway is used to direct (or bias) the mutation operator to
parts of the representation where changes are most likely to
result in fitter solutions.

The contributions of this work are:

∙ An assessment of the effect of directed mutation on
search-based statistical testing. We show that the perfor-
mance of algorithm is significantly improved, by a factor
of over 5 times in some cases.

∙ A demonstration of response surface methodology (RSM)
as an approach to objectively tuning the algorithm pa-
rameters in order to enable a principled evaluation of the
effect of directed mutation. We show that it is possible
to successfully apply RSM to a large set of algorithm
parameters, and also suggest a number of innovative
refinements to the methodology.

∙ The application of search-based statistical testing to a
wider range of software, including software used in
Thévenod-Fosse and Waeselynck’s evaluations of statis-
tical testing.

The paper is structured as follows. In section II, we review
related work on statistical testing, and provide an overview of
both the search-based statistical testing algorithm and response
surface methodology. The proposed algorithm enhancement
using directed mutation is described in section III. Section IV
defines the two research objectives for the empirical evalua-
tion. In section V, we describe the methods employed in the
empirical evaluation, including the refinements we propose to
the standard RSM process. Results are presented and analysed
in section VI. In the conclusion, we consider the results in the
context of the research objectives, and discuss future work.

II. RELATED WORK AND BACKGROUND

A. Statistical Testing

Statistical testing might be considered to be a combina-
tion of the most advantageous features of both random and

2011 Fourth International Conference on Software Testing, Verification and Validation Workshops

978-0-7695-4345-1/11 $26.00 © 2011 IEEE

DOI 10.1109/ICSTW.2011.36

184

structural testing. As for random testing, statistical testing
generates test inputs stochastically according to a probability
distribution over the inputs of the software. A significant
advantage is that it is straightforward, and therefore cheap,
to create test inputs in this way. However, random testing
typically uses a probability distribution that is either uniform—
all inputs have the same chance of being chosen—or based on
the operational profile of the system. Using either of these
distributions can mean that since some parts of the software
are very rarely executed by the test set, some faults may
not be detected. To avoid this disadvantage, statistical testing
uses more sophisticated input probability distributions that
ensure every part of the code is executed ‘reasonably often’.
The specification of ‘reasonably often’ is expressed as an
adequacy criterion similar to those employed by structural
testing, defining both a set of structural elements (e.g., paths,
statements or branches) and a constraint on how frequently
these elements are executed. For example, the test engineer
may specify that every branch must have a probability of at
least 0.1 of being executed by a single test input. We will refer
to distributions satisfying the adequacy criterion as adequate
distributions, and the constraint on the frequency of executing
a branch (0.1 in the previous example) as the probability lower
bound.

Given an adequate distribution, the test engineer can calcu-
late the test set size that ensures that (with high likelihood)
every branch is executed at least once by the test set: an
example of this calculation is given in [7]. Thus, it is beneficial
to specify a high value for the probability lower bound in
order to ensure that the test size is small and therefore
that the testing is cheap to perform. Alternatively, given the
imperfect relationship between software coverage and fault-
detecting ability, the test engineer may choose to use a larger
test set that executes each branch multiple times rather than
only once, with the objective of detecting more faults. Using
statistical testing, there is little additional effort in sampling
more test inputs for these larger test sets once an adequate
distribution has been derived1. In contrast, many structural test
data generation techniques would require substantial additional
effort to generate the larger number of distinct test inputs
required.

Thévenod-Fosse and Waeselynck investigated the efficacy of
the approach using adequacy criteria based on the software’s
structure [2], [3], [4], [5]; and based on a functional specifica-
tion expressed in terms of an executable model [3]. The results
of these investigations demonstrated that statistical testing
detects more faults than random testing, and that test sets
generated using statistical testing that executed each structural
element multiple times detected more faults than minimal tests
sets generated by traditional structural testing.

In some cases, adequate distributions could be derived using
static analysis of the software. However, for larger software
and to meet stronger adequacy criteria, it was necessary to

1There is, of course, additional effort in deriving predicted test outputs for
the test cases and running the test cases themselves, but this is the same
regardless of the method of deriving the test inputs.

derive a distribution using a manual approach: the software
was run using a sample of test inputs derived from a candidate
distribution and the distribution was modified based on the
coverage elements executed. While effective, this approach is
costly and is impractical for large software. It is this limitation
that motivated the use of automated search to derive adequate
distributions.

B. Search-Based Statistical Testing

In [6], Poulding and Clark demonstrated that a relatively
straightforward search algorithm was a viable approach for
deriving adequate probability distributions for statistical test-
ing. Since the search algorithm proposed in this paper is an
enhancement to that algorithm, we summarise the key features
as follows:

1) Representation: For the software under test (SUTs)
considered in this work, the test inputs are the arguments
to a function. In general, we cannot treat each argument
independently since they will interact with each other in the
code. Therefore a joint (multivariate) distribution is necessary,
and a Bayesian network is used to represent such a distribution.

A Bayesian network is a directed acyclic graph, and in
our representation each node corresponds to the probability
distribution of one SUT argument. We partition the input
domain of the argument into a number of contiguous bins and
assign a probability to each bin. When we sample a value for
the argument, a bin is picked according to the bin probabilities,
and then the argument value is chosen from within the bin
according to a uniform distribution.

For example, consider a SUT with three floating point
arguments: 𝑎, 𝑏, and 𝑐. If the valid domain of 𝑎 is [3.5, 8.0),
this might be split into three bins: [3.5, 5.921), [5.921, 7.508),
and [7.508, 8.0), with probabilities 0.055, 0.7014, and 0.244
respectively. When a value is sampled for 𝑎, one of these
three bins, say [7.508, 8.0), is chosen at random according to
the probabilities, and then the input for 𝑎 is chosen according
to a uniform distribution over the interval [7.508, 8.0).

Interactions between arguments are expressed as directed
edges between nodes in the Bayesian network: such edges
indicate that the probability distribution of the child argument
is conditionally dependent on the values taken by the parent ar-
gument(s). In our representation, this conditionality is defined
in terms of bins rather than the actual values. For example, a
directed edge from 𝑎 to 𝑐 would indicate that argument 𝑐 is
conditionally dependent on the argument 𝑎, and so we would
store three different sets of probabilities for the bins of 𝑐:
one for each of the three bins of 𝑎. When we sample from
the network, we first choose a bin for 𝑎 as discussed above,
and then this choice determines which of the three sets of
probabilities we use to select a bin for 𝑐.

2) Fitness Metric: The fitness metric we use is an estimate
of the probability lower bound achieved by the candidate
probability distribution. To obtain this estimate, we sample
a number, 𝐾, of inputs from the distribution, and use them
to run an instrumented version of the SUT that identifies the
structural elements (such as branches) executed by each input.

185

If the set of structural elements is 𝐶, and for each 𝑐 ∈ 𝐶, 𝑒𝑐;𝑖
is an indicator variable set to 1 if 𝑐 is executed one or more
times by the 𝑖th input, and set to 0 otherwise, then the fitness
is calculated as:

𝑓 =
1

𝐾
min
𝑐∈𝐶

(
𝐾∑
𝑖=1

𝑒𝑐;𝑖

)
(1)

Since this estimate is obtained using a random sample of
finite size from the probability distribution, it is unavoidably
noisy: it provides only an approximation to the actual prob-
ability lower bound, and repeated evaluations of the same
candidate probability distribution will return slightly different
fitness values.

3) Search Method: The search method used is stochastic
hill climbing. The initial candidate probability distribution
is a uniform distribution over the input domain. At each
subsequent iteration, a random sample of neighbours, size 𝑚,
of the current candidate probability distribution is evaluated.
These neighbours are each formed by a single mutation to
the current distribution using one of the following mutation
operators:

𝑀add adding an edge between two nodes in the Bayesian
network (so long as it does not become cyclic);

𝑀rem removing an edge;
𝑀len multiplying or dividing the length of a bin interval

by a fixed value, 𝜌len;
𝑀spl splitting a bin into two equally-sized bins;
𝑀joi joining two adjacent bins;
𝑀prb multiplying or dividing the probability of a bin by a

fixed value, 𝜌prb.

Any change to bin lengths or probabilities is followed by
renormalisation so that the bin lengths sum to the length of
the input domain, and the bin probabilities sum to 1.

Each of these mutation operators has an associated weight,
𝑤𝑎𝑑𝑑 etc., that applies to every valid mutation of that type.
For example, if there are 49 bins, then there are 49 different
possible 𝑀𝑠𝑝𝑙 mutations possible, and each has a weight 𝑤𝑠𝑝𝑙.
The weight is the relative probability that this is the single
mutation that is used to create a neighbour for the current
candidate distribution.

If the most fit of the neighbours has a better fitness than the
current candidate probability distribution, then that neighbour
becomes the current candidate. The search is terminated when
the fitness of a candidate distribution reaches the target value.

C. Response Surface Methodology

Search performance is often highly dependent on the set-
tings of the algorithm’s parameters. At some parameter settings
our proposed directed mutation enhancement might perform
better than the original algorithm, while at others it may
perform worse. To enable a principled comparison of the two
algorithms—with and without directed mutation—we must
decide how to set the parameters, and we choose here to
compare the algorithms with their parameters set to ensure
near-optimal performance. This is consistent with how the

algorithms would be used in practice: either automatically, or
set by the test engineer, the parameters of the search algorithm
would adjusted to suit the SUT. One long-term objective of
our research is to understand how effective parameter settings
can be derived automatically from the characteristics of the
SUT, but in the absence of this understanding, we must tune
the algorithm parameters empirically for the purpose of our
evaluation here.

A number of sophisticated parameter tuning approaches
exist. Since the tuning of parameters is itself an optimisation
problem, one approach is to apply evolutionary search algo-
rithms to the parameters, resulting in meta-evolutionary algo-
rithms. For example, Grefenstette uses one genetic algorithm
to tune the control parameters of another [8]. Other approaches
apply design of experiments (DoE) techniques to derive an
approximate model of how the algorithm performance depends
on parameter settings, and predict optimal parameters using
this model. This technique has been applied to the parameters
of ant colony systems [9], and genetic programming [10]. Tsai,
Chou and Liu describe an approach that combines a genetic
algorithm with the Taguchi method, a technique that shares
some of the characteristics of DoE [11].

We choose to tune the algorithm parameters using response
surface methodology (RSM), an approach based on DoE tech-
niques. RSM is used to efficiently optimise industrial processes
[12], but has only occasionally been applied to software; one
of the few examples is the optimisation of wireless protocol
parameters [13]. Our decision to use RSM was based on
a belief that would require few subjective decisions and so
would contribute to a fair comparison of the algorithms.

In this section, we do not attempt to fully describe the
details of RSM as there are a number of excellent texts on the
subject, such as Myers [12] and Montgomery [14]. Instead,
we provide an overview of the standard RSM approach and
later, in section V-C, discuss some innovative refinements that
we applied for the empirical work in this paper.

If we consider the settings of the algorithm parameters as
defining the coordinates on a surface whose height represents
the response (in our case, the performance) of the algorithm,
we can envisage a response surface that is analogous to a
fitness landscape. (However the response surface, here relating
to algorithm performance, should not be confused with the
fitness landscape of candidate probability distributions that
is discussed in section III.) RSM assumes that the optimum
point on this surface can be reached by hill-climbing and uses
traditional DoE techniques—factorial designs and regression
analysis—to locate it.

In RSM the coordinates of the response surface are typically
coded values that normally lie in the range [−1, 1]: this is
for convenience and to avoid inaccuracies than can arise
in the analysis techniques when parameters differ greatly in
magnitude. Therefore the actual parameters, which we denote
𝑥𝑖, are linearly mapped to coded parameters, 𝑥∗

𝑖 , so that −1
and 1 represent the extremes of a ‘reasonable’ range for the
parameter. Although deciding what constitutes ‘reasonable’
ranges for parameters is somewhat arbitrary, it does not place

186

constraints on the parameters: the coded parameters can take
values outside the interval [−1, 1].

A starting point is chosen for the hill climb on the response
surface, such as the origin (coded parameter values all zero).
In the first RSM phase, a set of points is chosen in a
small region around this starting point; often the points are
chosen according to factorial or central composite designs.
The algorithm is run at the points defined by the design, and
the response, 𝑦, of the algorithm is measured. The responses
are used to fit a first-order linear of the following form using
regression analysis:

𝑌 = 𝛽0 +
∑
𝑖=1

𝛽𝑖𝑥
∗
𝑖 + 𝜖 (2)

where 𝑌 is a random variable representing the response, 𝑥∗
𝑖

are the coded algorithm parameters, 𝛽0 and the 𝛽𝑖 are model
parameters estimated by regression analysis, and 𝜖 is a ‘noise’
or ‘error’ term that accounts for the variance in the algorithm
response. (In the case of the algorithms considered in this
paper, the variance is entirely due to their stochastic nature:
i.e., running the algorithm with the same parameters, but
different seeds to the pseudo-random number generator, will
lead to different responses.)

Since the region sampled around the starting point is small,
a linear model gives a reasonable approximation of the surface
at this point, and the vector 𝑑 = (𝛽1, 𝛽2, . . .) gives an estimate
of the direction of the steepest slope. This direction should
point towards the top of the hill, i.e., the optimum parameter
settings.

In the second phase, a path in the direction of this vector
is followed, and at regular intervals along the path, experi-
ments are run to measure algorithm response until no further
improvement is detected.

The slope vector is only an estimate, and the further away
from our starting point, the less accurate it will be at indicating
the direction of the optimum. Therefore, we are unlikely to
have reached the optimum on the surface, but, conceptually,
we will be on a ridge to one side of the summit of the hill. For
this reason, we treat the point at which no further improvement
is possible along the path as a new starting point, and repeat
phases 1 and 2. This iterative process is repeated a predefined
number of times, or until regression analysis suggests the
linear model is a poor fit owing to curvature in the surface
which is indicative of reaching the summit of the hill. At
this point, a second-order model may be fitted in order to
accurately estimate the optimum point on the surface.

III. DIRECTED MUTATION

Using the existing algorithm used by search-based sta-
tistical testing, we observed that—especially at the start of
the search—some structural elements may only very rarely
be executed by candidate distributions, and so the fitness
metrics are very close, or equal, to zero. Since the fitness
metric is noisy, even if a candidate distributions does, by
chance, execute one of these rare structural elements, it may
not on subsequent evaluations. Thus the fitness landscape is

essentially ‘flat’ in this region and provides very little guidance
to the search algorithm. We speculate that the algorithm can
spend many iterations performing a random walk on this flat
region before locating a region that has a gradient which can
guide the search towards a solution.

Our proposed solution is to more effectively utilise the
‘chance’ executions of the most rarely executed structural ele-
ments through the use of directed mutation. During the fitness
evaluation, we keep track of the bins in our Bayesian network
representation that gave rise to inputs that executed the least
executed element(s), and we use this information to increase
the probability of mutations to these bins (and correspondingly
decrease the probability of mutating other bins). The effect is
that sampling the neighbourhood around the current candidate
distribution is now biased towards neighbours that may be
expect to change (ideally, but not necessarily, increase) the
frequency of executing the least-exercised structural element.

A similar concept of directed (or targeted) mutation op-
erators has been applied, for example, to the construction
of timetables using memetic algorithms [15], [16]. In these
studies, the mutation operator is directed towards those parts
of the representation that have the potential to resolve vi-
olations of timetabling constraints in the current individual.
The infected genes evolutionary algorithm (igEA) of Tavares
et al. is a generalisation of this approach: information from
phenotypic evaluation is used to ‘protect’ desirable genes in
the representation from variation by mutation and crossover
[17].

Directed mutation is distinct from adaptive mutation. In
most forms of adaptive mutation (such as those discussed
in [18]), the overall mutation rate is modified—over time,
based on the recent changes in fitness, or by self-adaption as
part of the representation—but the mutation operator itself is
unchanged. In the directed mutation proposed here, the overall
mutation rate is unchanged; instead the mutation operator
is dynamically modified in order to bias mutations towards
particular parts of the representation.

To implement directed mutation, we create three ‘mutation
groups’ formed using the mutation operators described in
section II-B3:

𝐺edge consists of the operators that modify edges in the
Bayesian network: 𝑀add and 𝑀rem;

𝐺bins consists of the remaining operators that modify bins
directly: 𝑀len, 𝑀spl, 𝑀joi, and 𝑀prb, and applies to
all bins;

𝐺drct consists of the same bin-modifying operators as
𝐺bins, but applies them only to bins that contributed
input vectors that executed the least-exercised struc-
tural element.

It is the last group, 𝐺drct, that implements directed mutation:
the rate at which bins related to the least-exercised structural
element are mutated is enhanced compared to other bins.

Each of the groups also has an associated weight, 𝑤edge

etc. When randomly choosing a mutation, the first step is
to select one of the mutation groups at random according
to the group weights. A mutation is then selected from

187

within that group using the process described in section II-B3.
Without this group weighting mechanism, we speculate that
for representations with many bins, the number of directed
mutations will be very few compared to the number of regular
mutations and any benefit from directed mutation would be
lost. The initial selection by mutation group weight, regardless
of the number of individual mutation operations within the
group, ensures that direct mutation occurs at a rate that is
independent of the number of bins.

IV. RESEARCH OBJECTIVES

A. Evaluation of Directed Mutation

Our first objective is to evaluate whether directed mutation,
as described in section III, enables improved algorithm perfor-
mance. Since the execution of the instrumented SUT accounts
for most of the algorithm run time, we test the following
hypothesis: the use of directed mutation results in an algorithm
that, on average, requires fewer executions of the instrumented
SUT in order to derive an adequate probability distribution.

We will assess this hypothesis by empirically comparing
the performance of the search algorithms without the directed
mutation group, 𝐺drct, to the performance of the algorithm
with this mutation group, on a range of SUTs. We will denote
these algorithms as DM- and DM+ respectively. (DM- is
broadly equivalent, though not identical, to the algorithm used
for the empirical work in [6], and which is summarised in
section II-B3.)

B. Evaluation of RSM

Our second objective is to evaluate response surface
methodology as a mechanism for tuning algorithm parameters.
We set no formal hypothesis for this objective, and instead we
will reflect on our experience of using RSM in terms of its
effectiveness, efficiency, and objectivity.

V. EMPIRICAL METHOD

A. Software Under Test

We compare algorithm performance on four very different C
functions2 for which finding adequate probability distributions
is non-trivial. Two of the SUTs, bestMove and nsichneu, are
real-world software used in the empirical work of [6]. To
ensure a greater variety of SUT characteristics, two additional
real-world SUTs, cArcsin and FCT3, are considered.

bestMove: This function determines the next move for a
player in a tic-tac-toe (noughts-and-crosses) game when given
the current board position. It is adapted from a demo applet
on Sun’s Java website [19]. The execution of certain structural
elements occurs only when, for example, a valid winning
position is passed to the function. Such winning positions are
relatively rare and are not located near one another in the input
domain, and so we suspect an adequate probability distribution
is particularly difficult to derive.

2The source code of three of these SUTs is available from: www-users.cs.
york.ac.uk/smp/supplemental

TABLE I
SUT CHARACTERISTICS

SUT bestMove nsichneu cArcsin FCT3

lines of code 89 1967 70 135

input arguments 2 11 3 8

domain cardinality 2.62×105 3.40×106 ∞ 6.71×107

loops 7 1 0 0

structural elements 42 490 18 19

target fitness, 𝑓target 0.112 0.028 0.12 0.05

nsichneu: This function consists of automatically generated
code that implements a Petri net. It is part of a widely-used
suite of benchmark programs used in worst-case execution
time research [20]. We suspect that the large number of
conditional statements and the data-flow between them makes
this SUT difficult for search-based statistical testing.

cArcsin: This function returns the arcsin of a complex num-
ber. This function is adapted from the GNU Scientific Library
[21]. The arguments to the function are the real and imaginary
parts of the complex number, and are passed as double-
precision floating point numbers. Even though we restrict
the domain of the these arguments to the semi-open interval
[−10, 10), the cardinality of the domain is effectively infinite.
The function behaves very differently when the imaginary
argument is zero, and since the chance of this occurring during
random sampling from the floating point interval [−10, 10) is
effectively zero, we introduce a third Boolean-valued argument
for testing purposes that sets the imaginary argument to zero.

FCT3: This function was used by Thévenod-Fosse, Wae-
selynck and Crouzet in their evaluation of the fault-detecting
ability of statistical testing compared to traditional random and
structural testing approaches [7]. It is used as part of a nuclear
reactor safety shutdown system.

Characteristics of these SUTs are shown in table I. In all
four cases, we specify the adequacy criterion in terms of
branches, so the number of structural elements is the number
of conditional branches in the code. The table also shows
the target fitness, i.e., the minimum chance of executing a
structural element with an input vector sampled at random
from the input distribution. These fitnesses are 80% of the
target values used in [6], which themselves are slightly less
than the maximum probability lower bounds that can be
achieved for each SUT. This lower target is motivated by the
observation made in [6] that very good fault-detecting ability
can be achieved using distributions whose fitnesses are close
to, but not at, the optimal value.

B. Algorithm Parameters

The parameters tuned using RSM are listed in table II,
together with the initial (untuned) parameter value and the
‘reasonable’ range used to derive the coded parameter values
(as described in section II-C). Parameter 𝑥10 applies only to
the DM+ algorithm.

The meanings of these parameters are discussed in sec-
tions II-B3 and III. The mutation weight parameters are not

188

independent of one another since they indicate the relative
probability of making these mutations. We accommodate this
by fixing the weights 𝑤add, 𝑤prb, and 𝑤edge, and expressing the
other weight parameters in terms of these fixed values.

For many of the parameters, the natural logarithm of the
parameter is the value that is tuned using RSM. Preliminary
experimentation suggested that optimal values for these pa-
rameters might differ by orders of magnitudes across different
SUTs and so using the logarithm of the parameter value proved
not only to be convenient, but we suspect enabled optimal
regions in the parameter space to be reached more quickly as
linear changes to the log parameters represented multiplicative
changes to the actual parameters. For clarity, the initial value
and reasonable range shown in table II are the values prior to
taking the logarithm. (It is the conversion back from rounded
logarithmic values that result in the seemingly arbitrary values
in the table.)

Given this large number of parameters, the first step of RSM
is normally to ‘screen’ the parameters so that only those that
have the greatest effect on the response are subsequently tuned.
We attempted screening using analysis of variance (ANOVA)
but found that the stochastic variance of the algorithm led
to unreliable results. For this reason, we decided to forego
screening, and apply RSM to all the parameters listed in
table II.

There are a small number of additional algorithm parameters
that we choose not to tune. These parameters place ‘sensible’
limits on the algorithm actions, such as maximum number of
bins for an argument and the minimum length of a bin. Prelim-
inary experimentation suggested that so long as these limits are
not unnecessarily restrictive, these parameter values have little
effect on algorithm performance, presumably because they are
only applied in exceptional circumstances.

C. Response Surface Methodology

This section describes the specific implementation of RSM
used for the empirical work, including a number of innovative
refinements. Many of the specific choices we made, such as
the number of algorithm runs at design points, the upper limit
on the number of SUT executions, and the size of steps along
the path of steepest slope, are based on experience gained
from preliminary experimentation. The standard RSM process
is described in section II-C.

Phase 1 - Estimating Steepest Slope: Our starting point for
the RSM hill-climb was the origin in the coded parameter
space (the actual parameter values at this point are shown
in table II), and we used a 128 point fractional factorial
design of at least resolution IV (meaning that the model
coefficients of the first-order linear model are not confounded
by any second or third-order interactions) at distances of
±0.1 from this starting point. This gave the acceptable results
given the relatively large stochastic variance in the algorithm
performance. The algorithm was run once at each design point;
we will describe each such run as a trial.

Our response metric was based on the number of executions
of the instrumented SUT required by the algorithm to derive an

adequate distribution. However, to prevent excessively long-
running trials, we terminated the algorithm when a sensible
upper limit on the number of executions was reached, and this
limit was set for each SUT so that only a small proportion of
trials were terminated in this way. So that we can continue
make use of the information provided by these terminated
trials, we define the following response metric:

𝑦 = log(𝑛exec × 𝑓target

𝑓best
) (3)

where 𝑛exec is the number of executions performed when the
algorithm terminated, 𝑓target is the target fitness for candidate
distribution, and 𝑓best is the best fitness achieved over the
course of the algorithm run calculated according to (1). The
effect of this metric is that if the algorithm completes and
an adequate distribution was found (i.e., the target fitness
was achieved), then the response, 𝑦, is based on only the
number of executions since 𝑓target/𝑓best = 1. However, if the
algorithm terminated because the upper limit on the number
of executions was reached, then the number of executions
is increased by a proportion dependent on how close the
algorithm was to achieving the target fitness.

We found that the stochastic variance in the algorithm
performance was proportional to the performance itself. For
this reason, we apply the natural logarithm in equation (3)
when calculating the response. This transformation ensures
that the variance in the response is approximately constant,
a property that is required for the accuracy of some design
of experiments analysis techniques, such as ANOVA. It also
made the distribution of the response more symmetrical and so
the mean and median of the distribution are more similar. This
is beneficial as we (implicitly) use the mean response when
applying regression analysis, but use the median response in
our analysis elsewhere for robustness.

Having fitted a first-order linear model (of the form shown
in equation (2)), we estimate the steepest slope direction as
the vector:

𝑑 =
−1√∑10
𝑖=1 𝛽𝑖

2
(𝛽1, 𝛽2, . . . , 𝛽10) (4)

where 𝛽𝑖 are the fitted linear model coefficients. The numerator
in the fraction is negative as we wish to descend to smaller
responses that indicate better performance, and the denomi-
nator is a scaling factor so that 𝑑 has length 1 in the coded
parameter space.

Phase 2 - Following Steepest Descent Path: We follow
the path of steepest descent defined by the direction 𝑑, and
measure the algorithm response at steps of 0.2𝑑. At each step,
we ran 32 trials and calculated the median response in order
to reduce the effect of stochastic variance.

Innovation 1: In standard RSM, the path is followed until
the response shows no further improvement. Usually a simple
stopping rule is defined, such as two successive steps showing
no improvement. However, it was found that the large variance
in the algorithm response made such rules unreliable. Instead,
we assumed that the section of the response surface along

189

TABLE II
ALGORITHM PARAMETERS TO BE TUNED

Parameter Interpretation Starting Point Reasonable Range

𝑥1 = log(𝐾) no. of input vectors sampled 1097 (cArcsin: 403) 493–2241 (cArcsin: 181–898)

𝑥2 = 𝑚 no. of neighbours evaluated 12 2–22

𝑥3 = log(𝑤bins/𝑤edge) mutation group weight: bins 4.482 1.000–20.09

𝑥4 = log(𝜌prb) bin probability change ratio 4.711 1.105–20.09

𝑥5 = log(𝜌len) bin length change ratio 4.711 1.105–20.09

𝑥6 = log(𝑤rem/𝑤add) mutation weight: remove edge 1.000 0.667–1.500

𝑥7 = log(𝑤spl/𝑤prb) mutation weight: split bin 1.000 0.667–1.500

𝑥8 = log(𝑤joi/𝑤prb) mutation weight: join bin 1.000 0.667–1.500

𝑥9 = log(𝑤len/𝑤prb) mutation weight: bin length 1.000 0.667–1.500

𝑥10 = log(𝑤drct/𝑤bins) mutation group weight: directed 0.606 0.135–2.718

17

18

19

20

21

22

 0 1 2 3 4 5 6 7 8 9 10 11
step

re
sp

on
se

Fig. 1. Example of a cubic curve (dashed line) fitted to the median algorithm
response at steps along the steepest descent path. At each step, the response
of 32 trials is illustrated using a boxplot.

the path followed a smooth cubic curve. Having measured
the response at the first 8 steps along the path, a cubic curve
is fitted to the median response at each point. If the cubic
indicated a minimum somewhere along the path travelled so
far and a visual inspection suggested that the minimum was
not unreliable because the fit of the curve to the median
responses was poor, or because the minimum was close to
the last point in the path, then no further steps on the path
need be considered. Otherwise, further batches of 4 steps
were measured, until the cubic fit demonstrated a minimum.
By fitting a cubic across all points on the steepest descent
path we avoid erroneous termination of the descent owing to
algorithm responses that are, by chance, abnormally high at
one or two points on the path. A further advantage is that
the cubic curved can be used to estimate the minimum at
a position in between the points sampled along the path: in
standard RSM, the estimate of the minimum would be at rather
than between the points.

An example of this innovation, taken from the application
of RSM to tuning the algorithm DM- for the SUT bestMove,
is shown in figure 1. This figure shows 12 steps: the starting
point as step 0 and subsequent steps along the path of steepest

descent. The response from the 32 algorithm trials run at each
step are illustrated using a boxplot: the rectangular box is
drawn between the first and third quartiles of the responses
(and so the box height is the interquartile range), and the
line across the box is the median response. (The ‘whiskers’
either side extend to the farthest data point up to 1.5 times
the interquartile range from the box edges, and any ‘outliers’
beyond the whiskers are plotted as individual crosses.) The
fitted cubic curve is shown as a dashed line. In this example,
the curve predicts at minimum response at 6.6 step units from
the starting point. More traditional stopping rules might have
indicated stopping at step 3 (the next step shows an increase in
the response), or step 5 (the next two steps show an increase
in the response).

Innovation 2: A second innovation was in our handling of
integer-valued parameters along the descent path. When the
coded points along the path are converted to actual parameters,
the value must be rounded if the parameter is an integer. When
the parameter takes small integer values, this might lead to
inconsistent steps along the path. For example, the sequence
of real-numbered parameter steps 3.1, 4.3, 5.5, 6.7, 7.9 may be
rounded to 3, 4, 6, 7, 8, with an inconsistent gap of 2 between
the second and third steps, but 1 between the others. This is
likely to create artefacts in the curve along the path, leading
to inaccurate fitting of the cubic. In order to reduce this
effect, when setting the parameter values for the sample of 32
algorithm trials at a step along the path, we probabilitiscally
round up or down, with the probability of rounding up being
given by the fractional part of unrounded parameter value.
Thus, considered across the all 32 trials run at this point, the
average value of the parameter is close to the intended real-
numbered value.

Further Iterations: We choose to perform only two itera-
tions in total of phase 1 (slope estimation) and phase 2 (path
following). Since our objective is to find ‘good’ (near-optimal)
parameters, rather than to find the absolute optimal parameters,
there is no need for further iterations. We might have used only
one iteration, but by using a second iteration we guard against
a situation where, by chance, our initial point is in a relatively
flat area of the response surface and so the path of steepest
descent may show little improvement. In standard RSM, a

190

final phase of regression analysis is used to fit a second (or
higher) order linear model to the response surface in order
to accurately estimate the global optimum, but we omit this
phase for the same reason.

D. Algorithm Comparison

1) Evaluation of Directed Mutation: In order to test the
hypothesis, the performance of the algorithms DM- and DM+
is compared by running a sample of 64 algorithm runs (each
with a different random seed) at the ‘good’ parameter settings
predicted by the RSM tuning process for each SUT.

The multiple runs allow the statistical significance of any
difference to be assessed using a hypothesis test. We apply the
non-parametric Mann-Whitney-Wilcoxon or ‘rank-sum’ test
[22] for which the null hypothesis for the rank-sum test is that
the samples are from the same distribution. The use of a non-
parametric test avoids the need to show that the distribution
of the algorithm performance has a Gaussian distribution as
would be required by its parametric equivalent, the two-sample
𝑡-test. We apply the rank-sum test at the 5% significance level.

It is possible to demonstrate a significant difference between
any two algorithms that do not have identical performance,
given a sufficiently large sample size. Since we do not know in
advance if our chosen sample size of 64 is too large in this way,
we guard against this possibility by also applying a test of the
effect size, i.e. of the difference in the algorithm performance
in comparison to the inherent stochastic variability of the
algorithm. We use the non-parametric Vargha-Delaney 𝐴-test
[23] which has an intuitive interpretation: the 𝐴 statistic is
the probability that a single run of the first algorithm (with
a random choice of pseudo-random number generator seed)
returns a response that it higher than a single run of the
second algorithm. The 𝐴 statistic is calculated easily from
the underlying statistic of the ‘rank-sum’ test and takes a
value between 0 and 1. We will require a ‘medium’ or ‘large’
effect size, which Vargha and Delaney suggest are indicated
by values of the 𝐴 statistic less than 0.36 or greater than 0.64.

2) Evaluation of RSM Tuning Effectiveness: To provide an
assessment of the effectiveness of RSM tuning process, we use
the same tests of statistical significance and effect size on the
untuned and tuned versions of both the DM- and DM+. The
untuned parameter settings are the ‘starting point’ values in
table II, and the tuned parameter settings are those predicted by
RSM. As above, a sample of 64 algorithm runs was performed
for each combination of algorithm and SUT at the untuned and
tuned parameter settings.

E. Materials

The search algorithm was written in C++ and built using
gcc, version 4.4.4. Pseudo-random numbers were generated
using the Mersenne twister (mt19937) implementation in the
GNU Scientific Library, version 1.13 [21], with seeds obtained
from random.org [24].

Algorithm trials were run on a grid cluster using the Sun
Grid Engine. The cluster operating system was a customised
version of Slackware Linux, kernel version 2.6.34.1-x86 64.

TABLE III
COMPARISON OF ALGORITHM PERFORMANCE WITHOUT (DM-) AND WITH

(DM+) DIRECTED MUTATION

SUT bestMove nsichneu cArcsin FCT3

median performance

DM- 18.34 15.29 15.28 17.60

DM+ 16.69 14.91 13.76 15.95

rank-sum p-value <10−21 <10−3 <10−18 <10−14

Vargha-Delaney A 0.992 0.683 0.963 0.908

improvement factor 5.21 1.46 4.57 5.21

median run time (s)

DM- 944.9 110.9 14.8 563.9

DM+ 179.4 76.3 2.7 111.7

improvement factor 5.27 1.45 5.48 5.05

Matlab R2010b was used to generate experimental designs
and perform the statistical analysis of results.

VI. RESULTS AND ANALYSIS

A. Evaluation of Directed Mutation

The results of comparing algorithm performance with and
without directed mutation are summarised3 in table III. The
performance measure considered in the first four rows of the
table is the metric defined in equation (3), and is broadly equiv-
alent to the natural logarithm of the number of executions of
the instrumented SUT made by the algorithm.

For all four SUTs, the performance of the algorithm DM+
(which uses directed mutation) is better than the algorithm
DM- (which does not). The rank-sum test shows that the
differences are statistically significant (p-values < 0.05), and
the Vargha-Delaney test shows that the effect size is in all
cases better than medium (𝐴 > 0.64), and for three of the
SUTs, is very large indeed.

Since the performance measure is the logarithm of the
number of executions, the differences in the response metric
actually relate to ratios in the number of executions. So for
example, for bestMove, the difference of 18.34−16.69 = 1.65
is indicative that the directed mutation algorithm requires
approximately exp(1.65) ≈ 5.21 times fewer executions of
the SUT than the original algorithm. This improvement factor
for each algorithm is shown in the fifth row of table III.

Therefore, the results provide strong evidence that, for these
four SUTs, the proposed hypothesis is correct: the use of
directed mutation results in an algorithm that, on average,
requires fewer executions of the instrumented SUT in order
to derive an adequate probability distribution.

The hypothesis was expressed in terms of SUT executions as
this accounts for the majority of the run time of the algorithm
and this value is independent of the performances of the
machines used to run experiments. However, our underlying
objective is to improve algorithm run time itself, and so we
check that this is correspondingly improved using the results

3The detailed empirical data from which the results in this section are
derived is available from: www-users.cs.york.ac.uk/smp/supplemental

191

shown in the last three rows of table III. The values are
the processor run times (in seconds) calculated using the
standard C function clock(). It can be seen that the run times
show corresponding improvements for algorithm DM+. The
multiplicative improvements are shown in the final row of the
table. (The host machines making up the grid cluster on which
these experiments were run have a variety of processor speeds
and memory sizes which make any statistical analysis of these
run times unreliable; we present them only as a check on
the improvements on performance predicted in terms of the
number of SUT executions.)

B. Evaluation of RSM

We reflect on the RSM tuning process in terms of its
efficacy, efficiency and objectivity. The context in which we
are assessing RSM is its use by researchers in tuning the
parameters of search algorithms as part of empirical investi-
gation; we are not advocating its use as a part of the practical
application of such search algorithms.

1) Efficacy: The first four rows of table IV summarise
performance of the algorithms before and after tuning using
RSM. In seven of the eight cases, RSM tuning results in
a statistically significant improvement in performance with
effect sizes that are medium or larger. The exception is
algorithm DM- for SUT FCT3 for which any improvement is
statistically insignificant. This is not necessarily an indication
of the ineffectiveness of RSM in tuning the algorithm if, for
example, the untuned parameters were, by chance, reasonably
close to optimal values.

2) Efficiency: The last row of table IV shows the total
number of algorithm trials performed while applying the RSM
process to each combination of algorithm and SUT. The
numbers vary owing to the different distances travelled along
the steepest descent path before a minimum is identified. The
average number of trials is over 1000, and for algorithms, such
as DM+, which can take over 15 minutes to run, this represents
an extensive investment in computing time that is only realistic
when the researcher has access to affordable grid or cloud
resources. It is difficult to assess whether these numbers of
trials represent an efficient process without comparison to
other tuning techniques such as meta-evolutionary algorithms,
and this will be a subject for our future research.

3) Objectivity: One reason for our choice of RSM was
that we believed it would enable a principled tuning of the
algorithms that required few subjective assessments by the
experimenter. In practice, this initial belief was supported. The
two major subjective decisions we made were:

∙ The choice of starting point, i.e., the initial algorithm
parameter settings. This may have little effect if there
is—as RSM assumes—a single optimum reachable by
hill-climbing, but if there are multiple local optima, then
the starting point may have a significant effect on the
outcome. One possibility is to pick a random starting
point and/or use a number of different starting points
(equivalent in principle to random restart hill climbing).

∙ The identification of the minimum along the path of
steepest decision. We suspect our innovative use of fit-
ting a smooth cubic curve to the responses along the
path improved the reliability objectivity of this decision.
However, a visual inspection was necessary to check the
reliability of any minimum found, and this is currently
a subjective decision. The decision could be converted
to an objective one by applying a deterministic rule in
this situation, perhaps based on a statistic that measured
the goodness of fit of the cubic curve to the median
responses in order to assess the reliability of the predicted
minimum.

Other decisions—such as the mapping of actual to coded
parameter values, and the length of steps along the steepest
descent path—are common to the tuning of both algorithms
and are less of a concern when our objective is to compare
algorithms, as it is here, rather than deriving absolutely optimal
parameters.

VII. CONCLUSION

Our primary research objective was to evaluate whether
directed mutation improved the performance of search-based
statistical testing. Using a principled empirical method, we
have evidence that—for four SUTs—directed mutation leads
to significantly improved algorithm performance, by a factor
of over 5 in some cases. Without an understanding of the effect
of SUT characteristics on search-based statistical testing, we
cannot extrapolate these results to other SUTs with absolute
certainty. However, the range of four SUTs used for the
empirical evaluation have contrasting characteristics, and this
increases our confidence that the effect of directed mutation
is generalisable.

A secondary research objective was to evaluate response
surface methodology as a method of tuning algorithm pa-
rameters. RSM is shown to be an effective tuning approach:
the algorithm performance is significantly improved in the
majority of cases. The methodology, in conjunction with our
suggested innovations, was a largely objective process and this
contributed to a fair evaluation of directed mutation. It is less
clear whether this method is more efficient than other tuning
approaches, and whether some assumptions of the approach,
such as a single optimum, are generally valid. These are
questions we will address in future work. Nevertheless, our
intention is that the application of RSM described in this paper,
and the results we obtained, provide a useful example for other
researchers in this field.

In [6], Poulding and Clark identified that not only must
search-based statistical testing derive probability distributions
that satisfy the adequacy criterion in terms of frequently
exercising all structural elements, but also that the distributions
should exhibit diversity in the test inputs that are sampled
from it. In other words, the distribution should return a
variety of different test inputs that exercise the same structural
elements. Without such diversity, the fault-detecting ability of
the resultant test sets is reduced. In this paper, we have not
considered the impact of directed mutation on the diversity of

192

TABLE IV
COMPARISON OF ALGORITHM PERFORMANCE BEFORE AND AFTER TUNING USING RSM

SUT bestMove nsichneu cArcsin FCT3

Algorithm DM- DM+ DM- DM+ DM- DM+ DM- DM+

median performance:

before tuning 19.22 17.45 16.68 15.84 15.74 14.84 17.64 16.76

after tuning 18.34 16.69 15.29 14.91 15.28 13.76 17.60 15.95

rank-sum p-value <10−10 <10−12 <10−4 <10−9 <10−3 <10−17 0.663 <10−7

Vargha-Delaney A 0.841 0.866 0.719 0.820 0.690 0.946 0.523 0.792

no. of tuning trials 896 1280 1088 960 800 1216 1280 896

test inputs, and future work will make this assessment. Initial
results suggest that diversity is not greatly changed by the
use of directed mutation, and we will confirm these results by
assessing the fault-detecting ability of the derived distributions
using mutation analysis.

This work describes one enhancement to the search algo-
rithm used by search-based statistical testing. Our intention
is to continue to enhance other aspects of the algorithm—
particularly the representation, fitness metric and search
method itself— with the objective of further performance
improvements. Such performance improvements are a pre-
requisite to an expansion in the scope of SUTs to which the
technique can be applied. As Arcuri and Yao note in [25],
the testing of object-oriented software, in particular, requires
the ability to provide complex data structures as test inputs,
and to construct sequences of inputs in order to set and test
the state of objects. We intend to investigate how search-
based statistical testing can be enhanced to generate such test
sequences, and to accommodate more complex test input data
types.

ACKNOWLEDGMENT

This work is funded in part by the Engineering and Physical
Sciences Research Council grant EP/D050618/1, SEBASE:
Software Engineering by Automated SEarch.

REFERENCES

[1] P. Thévenod-Fosse, “Software validation by means of statistical testing:
Retrospect and future direction,” in Dependable Computing for Critical
Applications, A. Avizienis and J. C. Laprie, Eds. Springer, 1991, pp.
23–50.

[2] P. Thévenod-Fosse and H. Waeselynck, “An investigation of statistical
software testing,” J. Software Testing, Verification and Reliability, vol. 1,
no. 2, pp. 5–26, 1991.

[3] ——, “Statemate applied to statistical testing,” in Proc. Int’l Symp.
Software Testing and Analysis (ISSTA’93), 1993, pp. 99–109.

[4] P. Thévenod-Fosse, H. Waeselynck, and Y. Crouzet, “Software statistical
testing,” Laboratoire d’Analyse et d’Architecture des Systèmes du CNRS
(LAAS), Tech. Rep. 95178, 1995.

[5] P. Thévenod-Fosse and H. Waeselynck, “Towards a statistical approach
to testing object-oriented programs,” in Proc. IEEE Ann. Int’l Symp.
Fault Tolerant Computing (FTCS-27), 1997, pp. 99–108.

[6] S. Poulding and J. A. Clark, “Efficient software verification: Statistical
testing using automated search,” IEEE Trans. Software Eng., vol. 36,
no. 6, pp. 763–777, 2010, to appear.

[7] P. Thevenod-Fosse, H. Waeselynck, and Y. Crouzet, “An experimental
study on software structural testing: deterministic versus random input
generation,” in Fault-Tolerant Computing, 1991. FTCS-21. Digest of
Papers., Twenty-First International Symposium, Jun. 1991, pp. 410 –
417.

[8] J. Grefenstette, “Optimization of control parameters for genetic algo-
rithms,” Systems, Man and Cybernetics, IEEE Transactions on, vol. 16,
no. 1, pp. 122 –128, 1986.

[9] E. Ridge and D. Kudenko, “Analyzing heuristic performance with
response surface models: prediction, optimization and robustness,” in
Proc. Genetic and Evolutionary Computation Conf. (GECCO 2007),
2007, pp. 150–157.

[10] D. R. White and S. Poulding, “A rigorous evaluation of crossover and
mutation in genetic programming,” in Proceedings of the 12th European
Conference on Genetic Programming, ser. EuroGP ’09. Springer-
Verlag, 2009, pp. 220–231.

[11] J.-T. Tsai, J.-H. Chou, and T.-K. Liu, “Tuning the structure and param-
eters of a neural network by using hybrid Taguchi-genetic algorithm,”
Neural Networks, IEEE Transactions on, vol. 17, no. 1, pp. 69 –80, Jan.
2006.

[12] R. H. Myers and D. C. Montgomery, Response surface methodology:
process and product optimization using designed experiments, ser. Wiley
Series in Probability and Statistics. John Wiley & Sons, Inc., 2005.

[13] K. K. Vadde, V. R. Syrotiuk, and D. C. Montgomery, “Optimizing
protocol interaction using response surface methodology,” IEEE Trans.
Mob. Comput., vol. 5, no. 6, pp. 627–639, June 2006.

[14] D. C. Montgomery, Design and Analysis of Experiments, 6th ed. John
Wiley & Sons, Inc., 2005.

[15] P. Ross, D. Corne, and H.-L. Fang, “Improving evolutionary timetabling
with delta evaluation and directed mutation,” in Parallel Problem Solving
from Nature — PPSN III, ser. Lecture Notes in Computer Science,
Y. Davidor, H.-P. Schwefel, and R. Männer, Eds. Springer Berlin /
Heidelberg, 1994, vol. 866, pp. 556–565.

[16] B. Paechter, A. Cumming, M. Norman, and H. Luchian, “Extensions to
a memetic timetabling system,” in Practice and Theory of Automated
Timetabling, ser. Lecture Notes in Computer Science, E. Burke and
P. Ross, Eds. Springer Berlin / Heidelberg, 1996, vol. 1153, pp. 251–
265.

[17] R. Tavares, A. Teófilo, P. Silva, and A. C. Rosa, “Infected genes
evolutionary algorithm,” in Proceedings of the 1999 ACM Symposium
on Applied computing (SAC ’99), 1999, pp. 333–338.

[18] D. Thierens, “Adaptive mutation rate control schemes in genetic algo-
rithms,” in Evolutionary Computation, 2002. CEC ’02. Proceedings of
the 2002 Congress on, vol. 1, May 2002, pp. 980 –985.

[19] “JDK 1.4 Demo Applets.” [Online]. Available: http://java.sun.com/
applets/jdk/1.4/index.html

[20] “WCET Analysis Project.” [Online]. Available: http://www.mrtc.mdh.
se/projects/wcet/benchmarks.html

[21] M. Galassi et al., GNU Scientific Library Reference Manual, 3rd ed.
Network Theory, 2009.

[22] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[23] A. Vargha and H. Delaney, “A critique and improvement of the CL
common language effect size statistics of McGraw and Wong,” J.
Educational and Behavioral Statistics, vol. 25, no. 2, pp. 101–132, 2000.

[24] “random.org.” [Online]. Available: http://www.random.org/
[25] A. Arcuri and X. Yao, “Search based software testing of object-oriented

containers,” Information Sciences, vol. 178, no. 15, pp. 3075–3095,
August 2008.

193

