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Efficient Software Verification:
Statistical Testing Using Automated Search

Simon Poulding and John A. Clark

Abstract—Statistical testing has been shown to be more efficient at detecting faults in software than other methods of dynamic testing
such as random and structural testing. Test data are generated by sampling from a probability distribution chosen so that each element
of the software’s structure is exercised with a high probability. However, deriving a suitable distribution is difficult for all but the simplest
of programs. This paper demonstrates that automated search is a practical method of finding near-optimal probability distributions for
real-world programs, and that test sets generated from these distributions continue to show superior efficiency in detecting faults in the

software.

Index Terms—Software/program verification, testing strategies, test coverage of code, optimization.

1 INTRODUCTION

STATISTICAL testing generates test data by sampling from a
probability distribution defined over the software’s
input domain [1], [2], [3]. The distribution is chosen carefully
so that it satisfies an adequacy criterion based on the testing
objective, typically expressed in terms of functional or
structural properties of the software. This paper considers
structural statistical testing, which uses criteria based on the
program’s control flow graph. The criteria ensure that each
structural element—such as a statement, branch, or path—is
exercised as frequently as possible by inputs sampled from
the distribution, on the assumption that this will improve
the fault-detecting efficiency.

Thévenod-Fosse and Waeselynck demonstrated that test
sets generated by statistical testing can be more efficient at
detecting faults than test sets produced by uniform random
and deterministic structural testing [1], [4]. However, the
derivation of effective probability distributions can be
challenging for software that is larger and more complex
than “toy” examples. In [4], probability distributions for
programs of real-world size were derived manually, using
data returned by executing instrumented code, but it was
necessary to use a relatively weak adequacy criterion for
this approach to be feasible.

Search-Based Software Engineering (SBSE) reformulates
software engineering tasks as optimization problems and
uses efficient modern algorithms, such as metaheuristic
search and operational research techniques, to find solu-
tions [5], [6]. This has proven an effective method of solving
a range of software engineering tasks, with applications
including: requirements engineering [7], project planning
[8], software task allocation [9], code refactoring [10],
protocol synthesis [11], search-based test data generation
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[12], and the design of resource-constrained algorithms [13].
As the performance and affordability of computing re-
sources continues to improve, SBSE becomes a practical
method of solving increasingly complex software engineer-
ing problems that are often intractable by other means.

This paper proposes using a search-based approach to
derive probability distributions for statistical testing. We
believe this to be a novel application of SBSE. It is inspired
by the manual process described by Thévenod-Fosse and
Waeselynck, but uses automated search to enable a more
scalable technique without the need to compromise on the
strength of the adequacy criterion.

One of the current themes of SBSE research is practicality
for the software engineer—the end-user of these applica-
tions—particularly when SBSE techniques are applied to
problems of realistic scale [14]. Therefore, we show that not
only is it feasible to use automated search to derive effective
probability distributions, but also that it is practical to do so
when testing software components of real-world size. In
addition, we use mutation analysis to provide empirical
evidence that probability distributions derived using auto-
mated search continue to demonstrate the superior effi-
ciency of statistical testing compared to both uniform
random and deterministic structural testing. We show that
adding an explicit “diversity” objective to the search can be
beneficial in maintaining this efficiency.

The paper is organized as follows: The next two sections
place this paper in the context of related work on statistical
testing and search-based test data generation. Section 4
defines the hypotheses tested by the experimental work.
Section 5 describes the implementation of automated search
used to test the hypotheses, and Section 6 discusses the
experimental design. The results are analyzed in Section 7.
Conclusions are followed by a discussion of future work in
Section 8.

2 STATISTICAL TESTING

This section describes related work on statistical testing
and compares the technique to two other widely used
dynamic testing techniques: random testing and structural

Published by the IEEE Computer Society
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1 /* 1 <= a <= 50, 1 <= b <= 20 =/
2 int simpleFunc(int a, int b) {
3 int r;

4 if (a<=5) {

5 if (b>=18)

6 r = abs(b-19);

7 else

8 r = b;

9 } else {

10 if (b<=3)

11 r = abs(b-2);

12 else

13 r = 10+b;

14 }

15 return r;

16 }

Fig. 1. The implementation of simpleFunc.

testing. A simple function is introduced that serves as an
example throughout this paper.

2.1 Random Testing

Random testing generates test data by random sampling
from the input domain according to a probability distribu-
tion [15]. No information is required as to the internal
structure of the software under test (SUT), and in this
situation, the choice of distribution is arbitrary. Using the
operational profile—the distribution of input vectors that
would occur when the system is in use—is a common
choice which has the advantage of producing a reliability
estimate in addition to detecting faults. However, it is
difficult to derive the profile for a lower level component
from the operational profile of the system as a whole, and
the operational profile may not be available at the required
stage of the development life cycle [16]. For these reasons, a
uniform distribution is often used for random testing, and
we make this assumption in this paper.

One advantage of random testing is that any vector in the
input domain could be used as a test input and this enables
the detection of faults that can be overlooked by a more
systematic derivation of test cases (see, e.g., [16]). However,
large test sets may be required for effective fault detection,
and this can make random testing cost-inefficient despite
the relative ease of generating test data.

Consider, for example, the function simpleFunc, as shown
in Fig. 1. If we assume that the function arguments are the
only inputs tested, then the input domain is given as follows:

D={(a,b) € Z*:1<a<50,1<b<20}. (1)

For random testing, the argument a would be treated
independently from b and the value of a would be sampled
from a uniform distribution over the interval [1, 50]. Under
such a distribution, the false branch of the i f statement at
line 4 will be taken nine times more frequently than the true
branch. This imbalance means that an unnecessarily large
test size would be required for at least one input vector, on
average, to execute—and therefore potentially detect faults
in—statements in the true branch. Such a test set would
only be efficient if the false branch were nine times more
likely to have faults in it than the true branch.

In the absence of information about the distribution of
faults and the structure of the software, it is impossible to

[ int simpleFunc(int a, int b) J

int 1;
if(a<=5)
Co T

if (b>=18)

CQT FCg

FCl

FC5

[ r=abs(b-19); ][ r:b;] [ r=abs(b-2); ][ r:10+b;]

return r;

Fig. 2. Control flow graph of simpleFunc.

know the optimal distribution for random testing. How-
ever, there is no reason why an arbitrary choice, such as the
operational profile or a uniform distribution, need be close
to optimal, and this accounts for the potential inefficiency of
random testing in detecting faults.

2.2 Structural Testing

In contrast to random testing, structural testing uses
information about the SUT implementation to select input
vectors for test cases. Zhu et al. provide a comprehensive
survey of structural testing in [17]. A set of coverage
elements, C, is defined based on the program’s structure.
Branch coverage defines the elements to be the edges in the
control flow graph of the implemented SUT, corresponding
to branches arising from control statements. For path coverage,
the elements are paths through the flow graph, correspond-
ing to execution paths through the SUT. A number of other
coverage criteria have been proposed, including those that
combine control flow information with knowledge of when
data variables are defined and used by the program.

For each coverage element c € C, there is a subdomain,
S., of the input domain consisting of vectors that exercise
the element. As an example, consider again simpleFunc. Its
control flow graph is shown in Fig. 2. The edge labeled c;
corresponds to the predicate (b >= 18) at line 5 of the
function evaluating to true. To exercise this branch also
requires the predicate (a <= 5) at line 4 to be true, so the
subdomain for this branch coverage element is:

Se, ={(a,b) € Z*:1<a <518 <b<20}. (2)

An adequacy criterion is defined for test sets used for
structural testing specifying that they must exercise each
coverage element at least once. In other words, the test set
must contain at least one vector from each subdomain S..

If it is assumed that satisfying this adequacy criterion is
sufficient for test sets to effectively detect faults, then
efficiency can be improved by finding small test sets that
satisfy the criterion. One approach is to consider each
coverage element, ¢, in turn and find an input vector in its
subdomain S.. An alternative is to initially create a large test
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set that satisfies the adequacy criterion—for example, by
combining existing test sets—and then derive a smaller
subset that still meets the criterion [18], [19].

However, this assumption does not necessarily hold:
Test sets that satisfy the adequacy criteria need not be
effective at detecting faults. It is possible for a set of input
vectors that exercises all of the coverage elements to
nevertheless contain none of the input vectors that would
detect a particular fault. For example, the following set
satisfies the adequacy criterion for branch coverage of
simpleFunc, as well as the stronger path coverage criterion:

T =1{(9,2),(4,6),(5,19),(7,18)}. (3)

Assume that line 6 of the function is incorrectly implemen-
ted asr =b-19;,i.e., omitting the abs () function call. Any
input vector in the following subset of the input domain
would detect the presence of this fault:

Dy, = {(a,b) € Z*: 1 < a < 5,b = 18}. (4)

Although T satisfies the adequacy criterion, it contains none
of the fault-detecting input vectors in Dy,.

Whether structural testing generates test sets that are
efficient at detecting faults depends on the nature of the
software and the adequacy criterion chosen. Theoretical and
empirical evidence suggests that structural testing can be no
better at detecting faults than random testing in many
circumstances, and therefore often less efficient when the
overall cost of testing is considered [15], [20]. Nevertheless,
the use of structural testing is a mandatory part of many
formal software certification processes [21], [22].

2.3 Statistical Testing

Statistical testing overcomes some of the shortcomings of
random testing and structural testing by combining
approaches from both of these techniques [1], [2], [4], [23],
[24], [25]. Statistical testing may also be used for functional
coverage [3], but here we consider statistical testing applied
to coverage of the SUT’s structure.

Statistical testing, like random testing, generates test sets
by sampling input vectors according to a probability
distribution. The difference is that the probability distribu-
tion must satisfy an adequacy criterion defined in terms of
the structure of the SUT, in a similar way to the adequacy
criteria used by structural testing. Structural testing defines
an adequacy criterion for the test set itself, but the adequacy
criterion for statistical testing is defined for the probability
distribution from which test sets are generated.

As in structural testing, the adequacy criterion considers
a set, C, of coverage elements. For a given probability
distribution, ®, over the input domain, a coverage element,
c € C, has a particular probability of being exercised by an
input vector sampled from ®. We denote the probability of ¢
being exercised as p.. We denote the lowest probability p.
across all elements of C' as p and will refer to this as the
probability lower bound. The adequacy criterion that & must
satisfy is that p must be greater than or equal to a given
target value: This ensures that there is a “good” chance that
any particular coverage element c is exercised by a single-
input vector sampled randomly from ®. The target value for
p will depend on the nature of the SUT and type of coverage

elements chosen. We will refer to distributions that have the
highest possible value of p for a given SUT and coverage
type as optimal.

Statistical testing may be considered to be an extension to
random testing where structural information is used to
derive a probability distribution which is more “balanced”
in terms of coverage of structural elements of the SUT. The
intention is that such a distribution will be more efficient: A
test set will detect more faults than a test set of the same size
generated from a uniform distribution.

Alternatively, statistical testing may be viewed as a form of
structural testing where random sampling from a probability
distribution is the means used to generate multiple input
vectors that exercise each coverage element. Multiple input
vectors should detect more faults than a test set consisting of
one input vector for each coverage element. We borrow the
terminology used in [1] to describe the latter, more traditional
form of structural testing as “deterministic.”

As an example, consider the following probability
distribution over the input domain of simpleFunc:

294 %1073, if1<a<5,1<b<17,

1.67x 1072, if1<a<5,18<b<20,
Fab) =9 1852 10% if6<a<501<b<3, O

3.27 x 107, if6 <a <50,4 <b<20.

The distribution is constructed as follows: Each separate
case in the equation refers to a subdomain that exercises one
of the four, mutually exclusive, innermost branches of
simpleFunc’s control flow graph, labeled c; to ¢5 in Fig. 2. For
example, subdomain D, = {(a,b):1<a<5,1<b<17},
the first case in (5), consists of the input vectors that exercise
branch c3. Probabilities are assigned to each individual
vector in a subdomain in inverse proportion to the
subdomain’s cardinality in order that the probability of
selecting any input vector from that domain is 0.25.
Considering D., again, this subdomain has a cardinality
of 5 x 17 = 85, so the probability assigned to each vector in
D,, is 0.25/85 ~ 2.94 x 1073.

This construction ensures that each of the branches ¢, to c3
has the same probability, 0.25, of being exercised by a single-
input vector sampled from the distribution defined by (5). It
follows that the branches ¢; and ¢; each have a probability
0.5 of being exercised. As every branch has a probability of
0.25, or more, of being exercised by an input vector sampled
from the distribution, the distribution has a probability
lower bound, p, of 0.25. (Since one, and only one, of the
branches ¢; to c; is exercised by every possible input vector
to simpleFunc, 0.25 is also the highest possible value for the
lower bound when inducing branch coverage of simpleFunc,
and so this distribution may be considered optimal.)

For many coverage criteria, an input vector may exercise
more than one coverage element and the control structure
and data dependencies of the SUT result in complicated
dependencies between the coverage element probabilities.
For this reason, the construction of a suitable probability
distribution using analytical means, such as that used to
derive the distribution of (5) for simpleFunc, is often
infeasible for nontrivial programs.

In practice, a test engineer using statistical testing may
select the size of test sets generated from the probability
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distribution so that there is a high likelihood that all
coverage elements are exercised at least m times by the test
set, where m is a choice made by the engineer. The
dependencies between coverage elements discussed above
typically mean that there is not a simple relationship
between test size, the probability of exercising all coverage
elements at least m times, and the probability lower bound,
p. However, it is reasonable to expect that the higher the
value of the lower bound p, the smaller the test sets that are
required to exercise each coverage element at least m times.
If the purpose is to derive efficient test sets—ones that
detect the most faults using the fewest test cases—this
suggests that setting the probability lower bound as high as
possible is a sensible objective.

Thévenod-Fosse and Waeselynck provide convincing
empirical evidence of the superior efficacy of test sets
generated using structural statistical testing, compared to
test sets of the same size generated using uniform random
testing and deterministic structural testing [1], [4]. The
efficacy was measured by introducing mutation faults into
the SUT and assessing how many faults are detected by
test sets generated by each of the techniques. (We use a
similar method to assess fault-detecting ability in the
experimental work of this paper, and this is described in
detail in Section 6.2.)

In these papers, Thévenod-Fosse and Waeselynck con-
structed probability distributions for the statistical testing in
two different ways. For simple software, it was possible to
derive an optimal distribution by a static analysis of the
code [3], similar in technique to how the probability
distribution of (5) was constructed for simpleFunc above.
For more complicated software, a suitable distribution was
found empirically as follows [4]: A number of input vectors
were sampled from an initial probability distribution (such
as a uniform distribution) and used to execute an
instrumented version of the software in order to identify
the coverage elements exercised. The input vectors that
exercised the least-exercised coverage element were re-
viewed manually and used to intuitively “refine” the
probability distribution with the intention of increasing
the likelihood of exercising the least-exercised element
(increasing the probability lower bound using the terminol-
ogy introduced above). This trial-and-error process was
repeated until the desired probability lower bound was
achieved. However, to ensure that this manually intensive
approach was feasible, a weak coverage criterion was used
and the refinement halted once the coverage probabilities
were “deemed sufficiently high.”

The manual empirical search described by Thévenod-
Fosse and Waeselynck provides the inspiration for the use
of automated search proposed by this paper. A practical
application of automated search to this problem would not
only be more cost-effective, but would also facilitate the use
of statistical testing on more complicated software compo-
nents than would be possible otherwise.

3 SEARCH-BASED TEST DATA GENERATION

The use of search in generating test data is one of the most
active areas of SBSE research [10]. McMinn [12] provides a
detailed survey of techniques that have been described for

both structural and functional testing, as well as for testing
nonfunctional properties such as execution time.

For techniques that generate test data for structural
testing, the objective of the search is typically an input vector
that exercises a specific coverage element. As for other SBSE
applications, two of the distinguishing features are the
optimization method used and the associated fitness
function. The fitness function assesses how close a candidate
input vector is to exercising the desired coverage element,
and this information is used to guide the optimization
algorithm on an efficient trajectory to this objective.

The fitness is often calculated using the data returned by
executing an instrumented version of the SUT with the
candidate input vector. One measure of fitness, the approach
level, compares the executed path through the SUT to a path
that exercises the desired element. The more nodes the paths
have in common, i.e., the closer the input vector comes to
reaching the desired coverage element before following a
divergent path, the better the fitness. Pargas et al. [26] use
the approach level as the fitness and apply a genetic
algorithm as the optimization method.

An alternative fitness measure considers the branch at
which the executed path diverges from the desired path.
The fitness quantifies how close the predicate for this
branch came to returning the Boolean value that would
have taken the desired branch. Korel [27] uses this fitness
measure, the branch distance, and sequential search as the
optimization method, while Tracey et al. [28] apply
simulated annealing to a refined form of the branch
distance metric. Later work by Tracey [29] and Wegener
et al. [30] shows that a combination of both approach level
and branch distance is the most effective.

In this paper, we take a similar approach by using
information provided by an instrumented version of SUT to
calculate the fitness. However, a key difference, and a novel
aspect of this work, is that the objective of the search is not
an input vector exercising a specific coverage element, but
instead a probability distribution over the entire input
domain that satisfies the adequacy criterion. For this reason,
a different type of fitness function is required, as well as a
method of representing probability distributions. We
propose forms for both in Section 5.

4 EXPERIMENTAL HYPOTHESES

The objectives of the experimental work described in the
remainder of this paper are:

e to demonstrate that automated search is a practical
method of deriving probability distributions for
statistical testing,

e to verify that test sets generated from these
distributions maintain the superior efficiency over
uniform random testing and deterministic structural
testing that has been demonstrated in previous work
on statistical testing.

These objectives are formalized as the following hypotheses:
Hypothesis 1. Automated search is able to derive input

probability distributions with near-optimal probability lower
bounds for a range of software, including SUTs significantly
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more complex than “toy” problems. It is possible to find such
solutions in a practical time, using computing power typical of
a desktop PC.

Hypothesis 2. Test sets generated by statistical testing using
automated search detect more faults than sets of the same size
derived using random testing with a uniform distribution
(uniform random testing).

Hypothesis 3. Test sets generated by statistical testing using
automated search that exercise each coverage element multiple
times detect more faults than test sets typical of traditional
structural testing that exercise each element once (determi-
nistic structural testing).

Hypothesis 4. Test sets generated from probability distributions
that demonstrate high lower bounds for the coverage element
probabilities detect more faults than test sets of the same size
generated from distributions with lesser lower bounds. In other
words, it is beneficial to search for distributions with near-
optimal lower bounds.

Hypothesis 5. Test sets generated from probability distributions
found by automated search with a diversity constraint are
more effective at detecting faults than those derived without
such a constraint.

The term diversity is used here to describe probability
distributions that sample many different input vectors from
the subdomains associated with each coverage element. For
example, the following distribution for simpleFunc has the
same optimal lower bound as that defined by (5):

0.25, ifa=3b=09,
0.25, ifa=3,b=19,
fla,b) =< 025, ifa=280b=2, (6)
0.25, ifa=28,b=12,
0, otherwise.

However, a test set generated from this distribution
would contain only four different input vectors, and it is
reasonable to expect that this lack of diversity would lead to
a reduced ability to detect faults in the SUT compared to the
more diverse distribution defined by (5).

The notion of diversity is implicit in existing work on
statistical testing, but Hypothesis 5 proposes that it is
beneficial to make this an explicit objective when using
automated search. The hypothesis was formulated as a
result of experimental work on the first four hypotheses.
Some distributions found using automated search that had
near-optimal lower bounds nevertheless demonstrated poor
fault-detecting ability. A manual inspection of the test cases
generated by these distributions suggested a lack of
diversity might be the cause.

5 IMPLEMENTATION

In order to test the experimental hypotheses, an automated
search method was implemented. The following aspects of
the implementation are described in this section:

e the representation of a probability distribution over
the software’s input domain,
e how the fitness of a candidate solution is evaluated,

767

Fig. 3. Example BN for an SUT with four input arguments.

e the search method used to locate the fittest solutions,
e brief details of the software engineering.

5.1 Representation

The components of the input vector are represented
internally by real numbers from the unit interval. We
denote the internal components as z;, where 0 < z; < 1.
This normalization enables the internal representation to be
independent of the actual data types and domains of the
input arguments. The mapping from the normalized value,
x;, to a realized input argument is straightforward for
integer, floating-point, and Boolean data types. For exam-
ple, if z; is the internal value of the argument a of
simpleFunc, then a sensible mapping is:

a=14[50z]. (7)

We believe this mechanism can be extended to other data
types by defining a mapping from the unit interval,
0 <z; <1, to the domain of the data type. For nonnumeric
and compound data types—such as strings, pointers, or
object data types—the construction of a suitable mapping
will be nontrivial and may need to incorporate context-
specific information such as object constructor methods or
valid pointer values. One possibility is to include the
generation of suitable mappings as part of the search itself:
The search method would locate both a probability
distribution over the unit interval and a mapping from the
unit interval to the domain of the data type. However, for
the empirical work described in this paper, we consider
only scalar numeric data types where the mapping can be
predefined, as in the example above.

In general, there will be dependencies between the
components of the input vector. The representation of the
probability distribution must therefore be capable of
describing these dependencies as a joint multivariate
probability distribution. It would be insufficient to repre-
sent only the marginal distributions of each input vector
component: This would enforce independence between the
components and prevent the derivation of the most optimal
probability distributions for statistical testing.

For this reason, a Bayesian network (BN) is used to
describe the probability distribution. A BN consists of a
directed acyclic graph in which each node represents a
component of the input vector, and a directed edge
indicates that the child node’s probability distribution is
conditionally dependent on the parents node’s value.

Fig. 3 is an example of a BN describing a probability
distribution over the input domain of an SUT with four
arguments. The directed edges indicate that the distribution
of argument z, is conditional on the value taken by its
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parent, z3. Similarly, z4 is conditional on x3, while x; is
conditional on the values taken by both its parents, x3 and .

A BN typically describes a probability distribution over a
discrete set of values. Since the internal component
representations, z;, take real—and therefore nondiscrete—
values, the unit interval for each component is discretized
by partitioning it into contiguous intervals or “bins.” The
number of bins and the bin boundaries are variable and are
not the same for each node. As a result of this discretization,
the nodes in the BN define conditional probability distribu-
tions in terms of the bins rather than the actual values.

As an example, consider again the function simpleFunc.
The two arguments, a and b, are represented internally
using real-valued components z; and z5.

Assume the BN for a distribution indicates that the
probability distribution of z, is conditional on z;. Assume
also that z; is discretized by two bins, say [0, 0.12), [0.12, 1),
and z; by three bins, [0,0.17), [0.17,0.88), [0.88, 1). Atnode z;,
a single probability distribution defines the chances of
selecting bin 1 or bin 2. However, at node x5, two conditional
probability distributions are defined: The first specifies the
chance of selecting bin 1, 2, or 3 for z, if x; takes a value from
bin 1 of node 1; the second specifies a different distribution
that is used if z; takes a value from bin 2.

A random vector is sampled from the BN by traversing
the graph from parent nodes to child nodes. At each child
node, one bin is randomly selected according to the
conditional probability distribution defined by the bins
chosen at its parent nodes. To convert bin choices to
component values, a value is sampled from the bin’s
interval according to a uniform probability distribution.
(This is an arbitrary choice, and we suspect other distribu-
tions may be more effective.)

5.2 Fitness Evaluation

The fitness is a measure of how close a candidate
probability distribution is to satisfying both a coverage
constraint—the statistical testing adequacy criterion—and a
diversity constraint. These constraints are expressed using
target values: t., for the lower bound of the coverage
element probabilities and ¢4, for the diversity.

To calculate the fitness, K input vectors are sampled
from the probability distribution. An instrumented version
of the SUT is executed using the sampled input vectors. The
instrumentation identifies which coverage elements are
exercised during each execution.

To assess the coverage, the indicator variable e.; is set
to 1 if the coverage element c € C' is exercised one or more
times when the SUT is executed using the ith input vector
from the sample, and set to 0 otherwise. An estimate of the
lower bound of the coverage element probabilities is then
calculated as:

1 K
Geov = ?Igélg Z €ci |- (8)

To assess the diversity, the same sample of input vectors
is considered. For each coverage element ¢, i, denotes the
number of times that the most frequent input vector that
exercises the element occurs in the sample. For example, if
branch ¢, of simpleFunc is exercised by input vectors

{(1,19),(3,20),(1,18),(1,20),(3,20)}, then h., is 2 since
the most frequent input vector, (3,20), occurs twice. The
diversity is estimated as follows:

he
gaiv =1 — %Z (K—> . (9)

ceC i=1 Cei

The term h./ Zfil e.; estimates the diversity for a single-
coverage element, with the denominator adjusting for the
number of times the element was exercised by the sample of
input vectors. If a single input vector tends to domina-
te—i.e.,, the sample of input vectors that exercises the
coverage element is not diverse—then this term will be
close to 1. The average of this value is taken over all of the
coverage elements, and then subtracted from 1 so that more
diverse probability distributions have a value of g4, that is
numerically higher. This is for consistency with g.,,, which
also takes higher values for distributions with better
coverage.

An overall fitness is formed by a weighted sum of the
distance of the coverage and diversity values from their
respective targets:

f = Weov max(tmv — Geov, 0)

(10)
+ waiy max(taiv — Gaiv, 0),

where we,, and wg;, are weightings that adjust the relative
contributions of each constraint in guiding the search’s
trajectory. The weightings are parameters to the search
algorithm: As for the other algorithm parameters, suitable
values must be chosen that ensure an effective algorithm, by
means of preliminary experimentation, for example.

The search method attempts to minimize the fitness with
the objective of finding a distribution with a fitness of 0.
This value indicates that both constraints have been
satisfied.

5.3 Search Method

Stochastic hill climbing is used as the search method. The
method is similar to the random mutation hill climbing
algorithm described by Forrest and Mitchell in [31].
Preliminary experimentation with a number of local search
methods indicated that stochastic hill climbing is suffi-
ciently effective, in terms of performance and quality, in
finding probability distribution for statistical testing, with
the benefit of relative simplicity in terms of both imple-
mentation and the number of search parameters.

We explicitly made no attempt to find the most effective
search method for the SUTs under investigation nor to find
the optimal search parameter settings. Since one of the
experimental objectives is to assess the practicality of the
technique, extensive optimization of the search method and
parameters for each SUT would not have been realistic.

The initial candidate solution is a BN, where all variables
are independent and the marginal distribution of each
variable is the uniform distribution over its domain. This
choice of a constant, rather randomly-chosen, initial dis-
tribution facilitated the experimentation by controlling one
source of stochastic variance.

At each iteration of the algorithm, a small sample, size ),
of the neighbors to the candidate solution is chosen at
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random. Neighbors are defined as BNs formed by making
one, and only one, of the following mutations:

e adding an edge between two nodes (as long as the

graph does not become cyclic),

e removing an edge,

e multiplying or dividing the length of a bin interval

by a fixed value,

e splitting a bin into two equally sized bins,

e joining two adjacent bins,

e multiplying or dividing the conditional probability

of a bin by a fixed value.

These six mutations modify all of the nonconstant
properties of the representation: the directed edges between
nodes, the number and length of bins, and the probabilities
assigned to bins can all be mutated by these operators, but
the number of nodes—which is determined by the number
of input arguments to the SUT—remains constant. The
mutations are also reversible: Any single mutation has a
corresponding mutation that reverses it. Nevertheless, the
choice of these particular mutations is arbitrary, and it is
possible that other mutation operators would result in a
more effective algorithm.

All of the neighbors are equally likely to be sampled,
apart from those formed by mutations that increase the
number of bins in a node or increase the number of edges in
the network graph. These neighbors have a smaller chance
of being sampled than the others, the difference being
controlled by a parameter p < 1. The decreased probability
of these mutations encourages parsimony in the representa-
tion, and this was found to improve performance, to avoid
unnecessarily large data structures, and to produce more
compact solutions that are easier to interpret.

If the fittest of the sampled neighbors is fitter than the
current candidate solution, it becomes the candidate
solution at the next iteration. The search is terminated
when a candidate solution is found with a fitness of 0,
indicating that both the coverage and diversity constraints
have been met, or if no solution has been found after a
(large) number of iterations.

A particular consideration for the search method is that
the fitness is noisy since both g.., and gq are estimates
calculated from a finite sample from the candidate prob-
ability distribution.

The effect of noise is controlled in two ways. First, a
relatively large sample size, K, is used so that the noise is
reduced, and it does not overwhelm the search. Second, a
further sample of input vectors is taken for the candidate
solution at each iteration. This sample is combined with the
existing sample, and the fitness is evaluated over the larger
accumulated sample. Consider the case where a solution
survives to the next iteration because its initial fitness
estimate was much better than its “true” value owing to the
noise. At subsequent iterations, the larger size of the
accumulated sample enables increasingly better estimates
of the “true” fitness, and the solution continues to survive
only if it really has the best fitness.

5.4 Software Engineering Details

The search method is implemented using C++. The GNU
Scientific Library [32] is called in order to generate

TABLE 1

SUT Characteristics
Characteristic simpleFunc bestMove nsichneu
Lines of Code 15 89 1967
No. Input Arguments 2 2 11
Input Domain Cardinality 1000 2.621x10° 3.395x10°
Number of Loops 0 7 1
Coverage Elements 6 42 490
Mutants Tested 178 1923 6699

pseudorandom numbers, using the Mersenne Twister
algorithm.

For the experiments in this paper, the SUT functions
were instrumented manually and linked directly with the
search algorithm to form a single executable. Although the
facility was created to call instrumented SUTs in the form of
stand-alone executables, linking the function with the
search algorithm—where this is possible—avoids the
significant overhead of calling a separate SUT executable.

6 EXPERIMENTAL DESIGN

To test the hypotheses proposed in Section 4, four sets of
experiments were performed. This section describes the
SUTs used for the experiments, the mechanism by which
the fault-detecting ability of test sets was assessed and the
design of each experiment.

6.1 Software Under Test

In order to demonstrate applicability of the proposed
technique to different types of software, each experiment
was performed on simpleFunc and two larger SUTs based on
real-world examples.! Apart from their realistic size, the
criteria for choosing the two real-world SUTs were that
adequate probability distributions would be difficult to
derive by either manual or analytical methods, and that
they have contrasting characteristics.

Relevant characteristics of the SUTs are shown in Table 1,
and the two real-world examples are described in more
detail below. The table shows the number of elements,
using a branch coverage criterion, and this coverage
criterion was used for all experiments. The diversity metric
proposed in Section 5.2 assumes a discrete input domain,
and so, to permit experimentation on diversity, SUTs were
chosen whose arguments were integer data types.

6.1.1 bestMove

This C function determines the best move for the current
player in a tic-tac-toe (noughts-and-crosses) game. The two
input arguments are the current board position of each
player: When considered as a binary string, the set bits
indicate locations occupied by the player. The function is
adapted from a demo applet on Sun’s Java Website [33].
Apart from conversion to C syntax, the major change was
to increase complexity by adding code that validates the
input arguments.

1. The source code of all three SUTs in available from: http://
www.cs.york.ac.uk/~smp/supplemental.
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Finding near-optimal probability distributions for this
SUT is particularly difficult. For many coverage elements,
there are only a few input vectors that exercise the
element—e.g., code reached only when the player has a
winning position—and the vectors belong to disconnected
regions in the input domain.

6.1.2 nsichneu

This function consists of automatically generated C code
that implements a Petri net. It forms part of a widely used
suite of benchmark programs used in worst-case execution
time research [34]. The complexity of this example arises
from the large number (more than 250) of if statements
and the data-flow between them. The function was
modified to restore the number of iterations of the main
loop to the original (larger) value in order to reduce the
amount of unreachable code.

Not only does this function have a large number of
coverage elements, the code itself takes significantly longer
to execute than the other two SUTs, making fitness
evaluation particularly time consuming.

6.2 Assessing Fault-Detecting Ability
The fault-detecting ability of a test set was assessed by its
ability to detect mutant versions of the SUT.

The mutants were generated using the Proteum/IM tool
[35]. Sets of mutants were created by making single-point
mutations, using each of the large number of mutation
operators built in to the tool. Since mutants were being used
only to compare test sets, there was no need to identify and
remove equivalent mutants. For nsichneu, a random selection
consisting of 10 percent of all possible mutants were used so
that the mutant set was of a practical size; for the other two
SUTs, all of the possible mutants were used (see Table 1).

The mutation score—the proportion of mutants “killed”
by a test set—is used as the measure of its ability to detect
faults. A mutant was considered as “killed” if for one or
more test cases, a mutant produced a different output or the
process was terminated by a different operating signal,
from the unmutated SUT. The testing process was config-
ured so that mutant executables were terminated by the
operating system if they used more than 1 s of CPU time.
This limit is significantly longer than the CPU time required
by the unmutated versions of the SUTs, and so identifies
and terminates any mutant that entered an infinite loop.

Test sets were generated by random sampling of input
vectors from the probability distribution without replacement:
If an input vector was already in the test set, it was rejected
and a further input vector was sampled. We believe this is
consistent with how test sets would be generated in practice:
Using more than one test case with the same input vector
usually offers little benefit in terms of the number of faults
detected. (Although not described here, initial experimenta-
tion showed that using a with replacement mechanism
produced results that were qualitatively no different.)

6.3 Experiment A

Thirty-two runs of the search algorithm were performed
and the proportion of searches that found distributions
satisfying the coverage constraint—the statistical testing

TABLE 2
Search Parameters

Parameter simpleFunc bestMove nsichneu
Common

No. of neighbors, A 4 4 4
Bin length mutation ratio 10 10 10
Bin prob. mutation ratio 10 10 10
Parsimony parameter, p 0.8 0.8 0.8
Evaluation sample size, K 200 1000 1000
Experiment A

Coverage target, tcov 0.24 0.14 0.035
Maximum iterations 4000 60000 4000
Experiment D

Coverage target, tcov 0.24 0.10 0.025
Coverage weighting, weov 0.8 0.8 0.95
Diversity target, tg;, 0.95 0.80 0.995
Diversity weighting, wgiy, 0.2 0.2 0.05

adequacy criterion—were measured. A diversity constraint
was not applied in this experiment.

The searches were run on a server class machine running
a customized version of Slackware Linux. Each search was a
single-threaded process and used the equivalent of one core
of a CPU running at 3 GHz with a 4 MB cache. The CPU
user times taken by both successful (those finding a suitable
distribution) and unsuccessful searches were recorded. The
CPU user time is approximately equivalent to the wall-clock
time when running on an otherwise unloaded server.

The parameters used for the search runs are listed in
Table 2. Since the objective of the experiment is to show
practicality of the technique, little time was spent in tuning
the parameters and, where possible, the same parameters
were used for all three SUTs. The only difference between
the 32 runs were the seeds provided to the pseudorandom
number generator (PRNG).

Using multiple runs in this way allows us to estimate the
expected proportion of successful searches and the expected
time taken across all possible seeds to the PRNG. The choice
of 32 runs is a compromise between the accuracy of these
estimates and the resources (computing power and time)
that were available for experimentation. During the analysis
of the results in Section 7.2, we provide confidence intervals
for these estimates as a measure of the accuracy that was
achieved.

The coverage target—equivalent to the lower bound of the
coverage element probabilities—is near the optimal values
for simpleFunc (0.25) and bestMove (0.1667). These optimal
values are straightforward to determine by a manual
examination of the control flow graph of both these SUTs.
The optimal lower bound itself is not used as the coverage
target since it is difficult to obtain this exact fitness, even
when the distribution itself is optimal. It requires a random
sample where each input vector occurs with a frequency that
is exactly proportional to its probability in the distribution,
and this is unlikely for the relatively small, finite samples
used to evaluate the fitness.

The optimal lower bound for nsichneu is difficult to
determine from its control flow graph owing to the
complexity of the data dependencies. Instead, we use a
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coverage target that is close to the best value found during
preliminary experimentation.

This experiment is designed to provide evidence for
Hypothesis 1, that it is practical to use automated search to
derive probability distributions for statistical testing.

6.4 Experiment B

Experiment B measures the fault-detecting ability of test
sets generated by 10 of the probability distributions found
in Experiment A. For each of the 10 distributions, 10 test sets
were generated by random sampling without replacement,
using a different PRNG seed in each case. Each time a test
case was added to the test set, the mutation score was
assessed using the method described in Section 6.2.

For comparison with random testing, the same experi-
ment was performed using a uniform distribution in place
of that derived by automated search. One hundred test sets
were generated from the uniform distribution so that the
two samples had the same size.

This experiment is designed to provide data to demon-
strate Hypotheses 2 and 3 that, when using automated
search, the superior efficiency of statistical testing com-
pared to uniform random and deterministic structural
testing is maintained.

6.5 Experiment C

Experiment C compares the fault-detecting ability of
probability distributions that have different lower bounds.
It is designed to provide evidence for Hypothesis 4, that
probability distributions with higher lower bounds generate
more efficient test sets.

For each SUT, a sequence of probability distributions
was taken at points along the trajectory of one search run. In
general, such a sequence consists of distributions with
increasing probability lower bounds. The search run used
the same parameters as in Experiment A. Twenty test sets
were generated from each distribution and their mutation
scores assessed over a range of test sizes.

6.6 Experiment D

Experiment D compares the fault-detecting ability of test
sets generated from distributions found by automated
search with and without a diversity constraint. It provides
data to support Hypothesis 5, that the use of a diversity
constraint results in more efficient test sets.

A sample of 10 distributions was found using the
parameters specified in Table 2. The parameters have a
nonzero value for wgi, and so add a diversity constraint to
the search objectives. The coverage target parameters (tov)
for bestMove and nsichneu were less than the near-optimal
values of Experiment A in order to demonstrate that a lack
of diversity has a significant effect even when using
distributions with only moderate lower bounds.

For comparison, a further sample of distributions was
found using the same parameters, but with wg, set to zero
in order to disable the diversity constraint. More than
10 such distributions were found, and a subset of size 10
was selected in a principled manner so that the distribu-
tions of the coverage fitnesses across the two samples were
as similar as possible. This was designed to minimize the
effect of probability lower bounds on this experiment.

Ten test sets were generated from each distribution in the
two samples, and their mutation scores assessed over a range
of test sizes.

TABLE 3
Search Times (Experiment A)

simpleFunc bestMove nsichneu
Proportion successful, 7 1.0 0.72 fg:%g 0.31 fgig
CPU user time (mins)
Successful search, Ty 0.04 fgg? 80 fﬁ 144 f%g
Unsuccessful search, T 124 fi 204 fi
Until success, Cy 0.04T3-02 129176 592 1702

7 RESULTS AND ANALYSIS

7.1 Statistical Analysis

In this section, results are summarized using the mean.
Although the median is potentially a more robust statistic
for the skewed distributions that the results could exhibit, it
was found to be misleading when, on occasion, the data
formed similarly sized clusters around two (or more)
widely separated values. In this case, the median returned
a value from one of the clusters, while the mean gave a
more meaningful statistic located between the two clusters.

Confidence intervals quoted for the mean values, and the
error bars shown in the graphs, are at the 95 percent
confidence level. They are calculated using bootstrap
resampling, specifically the bias corrected and accelerated
percentile method [36].

Nonparametric statistical tests are used to analyze the
data. Since parametric statistical tests can be invalidated
by small deviations from the assumptions that the tests
make [37], the use of nonparametric tests ensures the
validity of the analysis, while avoiding the need to
perform additional analysis to verify that the data conform
to the test assumptions.

To compare samples, the nonparametric Mann-Whitney-
Wilcoxon or rank-sum test is applied [38]. The null
hypothesis for the rank-sum test is that the samples are
from the same distribution; the alternate hypothesis is that
the distributions are different. We apply the test at a
5 percent significance level.

Given a sufficiently large sample, hypothesis tests such as
the rank-sum test can demonstrate statistically significant
results even when the underlying differences are extremely
small. Therefore, we use an additional test to show that the
effect size—in this case, a difference in the ability to detect
faults—is large enough to be meaningful, given the varia-
bility in the results. The nonparametric Vargha-Delaney
A-test [39] is used here since its value can be calculated from
the statistic used by the rank-sum test. We use the guidelines
presented in [39] that an A-statistic of greater than 0.64 (or
less than 0.36) is indicative of a “medium” effect size and
greater than 0.71 (or less than 0.29), of a “large” effect size.

7.2 Experiment A

The results of Experiment A are summarized” in Table 3.
In this table, 7, is the proportion of search algorithm

runs that found a suitable probability distribution (i.e., with

2. The unsummarized data for all four experiments is available from:
http://www.cs.york.ac.uk/~smp/supplemental.
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Fig. 4. Fault-detecting ability of statistical testing compared to uniform random testing (Experiment B). (a) simpleFunc, (b) bestMove, (c) nsichneu.

a probability lower bound greater than or equal to the target
value, t.y given in Table 2). T is the mean time taken by
these successful runs (measured as CPU user time), and 7_
the mean time taken by unsuccessful runs.

We may consider each run of the algorithm to be
equivalent to a flip of a coin where the probability of the
coin landing with “heads up” or of the algorithm finding a
suitable distribution is 7, . Trials such as these, where there
are two possible outcomes and they occur with fixed
probabilities, are termed Bernoulli trials [40]. In practice, after
an unsuccessful search, we would run another search with a
new, different seed to the PRNG; in other words, we would
perform a series of Bernoulli trials until one is successful. The
number of failures that occur before a successful outcome in a
series of Bernoulli trials follows a geometric distribution [40],
with the mean number of failures being given by (1 — 7..) /7
[41]. Therefore, we may calculate the mean time taken until a
successful search occurs (including the time taken for the
successful search itself) as:

1—my

Ci = T +1T,. (11)
T+

The calculated values for C are given in the Table 3 and are
a prediction of how long, on average, it would take to find a
suitable probability distribution.

It is a conservative prediction in that it assumes the
availability of only one CPU core on which searches can
be run. Software engineers are likely to have access to
significantly more computing resources than this, even on

their desktop PC, which would allow searches to be
performed in parallel.

We argue that the predicted time until success is
indicative of practicality for all three SUTs. The longest
time—the value of C, for nsichneu—is approximately
10 hours, rising to 22 hours at extreme end of its confidence
interval. These results provide strong evidence for Hypoth-
esis 1, that automated search can be a practical method of
deriving probability distributions for statistical testing.

7.3 Experiment B
The results of Experiment B are summarized in Fig. 4.

The upper row of graphs compares the mutation score of
test sets derived from statistical and uniform random
testing over a range of test sizes. The mutation scores were
assessed at each integer test size in the range, but for clarity,
error bars are shown at regular intervals only.

The lower row of graphs show the p-value (left-hand axis
using a log scale) for the rank-sum test applied at each test
size, and the effect size A-statistic (right-hand axis). Dotted
lines indicate a 5 percent p-value and the lower boundaries of
the medium effect size regions. p-values below the 5 percent
line indicate that the differences in the mutation scores are
statistically significant. A-statistic values above the 0.64 line,
or below the 0.36 line, indicate a medium or large effect size.

The graphs demonstrate statistically significant differ-
ences in the mutation scores of test sets derived by statistical
and uniform random testing, with the former having the
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greater fault-detecting ability for most test sizes. The effect
size is medium or large for many test sizes.

These results support Hypothesis 2 that test sets
generated using statistical testing are more efficient than
test sets generated by uniform random testing: For the same
test size, the former test sets typically have greater fault-
detecting ability.

The exception is for larger test sets (size > 100) applied to
nsichneu. For these larger test sets, uniform random testing
is significantly more effective at detecting faults. We suspect
that this is due to a lack of diversity in the probability
distribution, and this motivates the use of a diversity
constraint during search.

The horizontal dotted lines in the upper row of graphs in
Fig. 4 are the mean mutation score for each statistical test set
at the size at which it first exercises all of the coverage
elements in the SUT at least once. (The vertical dotted lines
are the mean of these sizes.) At these sizes, the test sets
satisfy the adequacy criterion of deterministic structural
testing. However, due to the stochastic nature in which they
are generated, they will usually contain more test cases than
a minimally sized test set. The additional test cases can only
improve the mutation score of the test set; therefore, their
mutation scores—the horizontal dotted line—represent an
upper bound for the mutation scores achievable by
deterministic structural testing.

For each SUT, the mutation scores obtained by statistical
testing exceed this upper bound at sufficiently large test
sizes. This is evidence in support of Hypothesis 3, that test
sets derived using statistical testing where each coverage
element is exercised multiple times detect more faults than
test sets typical of deterministic structural testing that
exercise each element only once.

7.4 Cost-Benefit Analysis

The results of Experiments A and B taken together enable a
simple cost-benefit analysis that compares statistical testing
with uniform random testing. This can be performed in a
number of ways: for example, by considering the difference
in fault detecting ability of test sets of the same size for the
two methods or the difference in the cost of testing for test
sets of different size that have same fault detecting ability.
We take the second of these two approaches in order to
avoid speculation on the costs of later rectifying faults that
are not discovered during testing, as these costs are highly
dependent on the context.

If we choose a fault-detecting ability equivalent to a
mutation score of 0.55 for bestMove, the results of Experi-
ment B show that this occurs at a test size of 4 for statistical
testing and at a test size of 61 for uniform random testing.
(These sizes are obtained from the data used to plot the
graphs of Fig. 4b.) Statistical testing incurs a cost in finding
a suitable probability distribution, and from Table 3, this
search takes, on average, 129 minutes. If executing,
and—often more significantly—checking the results of the
tests against a specification or an oracle takes longer than
129 minutes for the additional 57 test cases required by
random testing, then statistical testing will be more efficient
in terms of time. We argue that when checking test results
involves a manual comparison against a specification, then
the superior time efficiency of statistical testing is likely to
be realized in this case. We also note that the search for a
probability distribution is automated, requiring little or no

manual effort, and so speculate that statistical testing is
likely to be superior in terms of monetary cost (even in
situations where it is not superior in terms of time) if the
execution and checking of the additional 57 test cases is a
predominantly manual, and therefore expensive, process.

We may repeat this analysis for nsichneu, again choosing a
fault detecting ability equivalent to a mutation score of 0.55.
In this case, random testing requires 14 more test cases than
statistical testing: The test sizes are 66 and 52, respectively.
The search for a probability distribution suitable for statistical
testing takes 592 minutes. The superiority of statistical testing
in terms of time is not as convincing for nsichneu: Random
testing is quicker overall if executing and checking the extra
14 test cases takes no longer than 10 hours. However, we
again note that the search for the probability distribution is
automated, and so, considering monetary cost, statistical
testing may be cheaper than random testing if checking the
results of the extra 14 test cases is a manual process.

The simple analyses of this section are dependent on the
mutation score we choose. Nevertheless, for bestMove, the
large difference in the fault-detecting ability of the two
methods shown by Fig. 4b suggests that the general
conclusion remains the same for most choices of mutation
score. For nsichneu, however, any benefit of statistical testing
is lost for mutation scores above approximately 0.6. As canbe
seen in Fig. 4c, mutation scores above this level are achieved
by random testing with test sizes that are smaller than those
required by statistical testing. This underlines the importance
of investigating whether the use of a diversity constraint
improves the fault-detecting ability of statistical testing.

7.5 Experiment C

The results of Experiment C are summarized in Fig. 5. Each
graph shows the mutation scores for a sequence of
probability distributions taken from the trajectory of one
search run. The probability lower bound for each distribu-
tion (evaluated accurately using a large sample size) is
plotted on the z-axis, and the mutation score (with error
bar) on the y-axis. The lines connect mean mutation scores
calculated at the same test size. Note that the left-hand point
in each graph is the uniform probability distribution that is
used to initialize the search: This distribution is equivalent
to that used for uniform random testing.

At small values of the lower bound—at the left of the
graphs—mutation scores get better as the probability lower
bound increases. However, for larger values of the lower
bound at the right of Fig. 5c, the mutation score begins to
decrease. There is also some evidence for this effect at the
highest lower bound values in Fig. 5b.

We suspect that is because diversity can be lost as the
search proceeds—the probability distribution is “over-
fitted” to the coverage constraint—and so, despite a high
lower bound, the distribution generates test sets that are
relatively poor at detecting faults. This again motivates the
use of a diversity constraint in order to avoid this loss of
efficiency as the search proceeds.

The results of Experiment C provide some evidence in
support of Hypothesis 4 that distributions with higher lower
bounds generate test sets with a greater ability to detect
faults. However, this is not true in all cases: Searching for
near-optimal lower bounds can be counter-productive for
some SUTs, and we suspect this is a result of losing diversity.
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7.6 Experiment D

The results of Experiment D are summarized in Fig. 6. The
upper row of graphs compares the mutation score of test
sets derived from probability distributions found, using
automated search with and without a diversity constraint,
and the lower row shows the rank-sum p-value and effect
size A-statistic, as for Experiment B.

It can be seen that probability distributions found using a
diversity constraint are better at detecting mutants. How-
ever, the p-values and A-statistics indicate that the effect is
only significant for some test sizes. For simpleFunc and
bestMove, the improvement is greatest for larger tests sizes.
For msichneu, the converse is true: The improvement
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brought about by the diversity constraint is greatest at
smaller test sizes, but the effect size is generally small.

The additional dotted line in Fig. 6¢ plots the mutation
scores for uniform random testing taken from Experiment B.
It can be seen that the improved efficiency enabled by the
diversity constraint is insufficient to close the gap with
uniform random testing at the largest test sizes.

These results provide partial evidence for Hypothesis 5
that using a diversity constraint during the search improves
the efficiency of statistical testing. However, the nature of the
improvement depends on both the SUT and the test size.

8 CONCLUSIONS AND FUTURE WORK

The experimental results support a number of the hypoth-
eses proposed in Section 4. We have shown that using
automated search to derive near-optimal probability dis-
tributions for statistical testing is not only viable, but
practical for different types of SUT (Hypothesis 1). We have
demonstrated that statistical testing using automated search
continues to show superior fault-detecting ability compared
to uniform random and deterministic structural testing
(Hypotheses 2 and 3). There was also some evidence that
searching for distributions with the highest probability lower
bounds resulted in the most efficient test sets (Hypothesis 4).

However, uniform random testing was more efficient
than statistical testing at large test sizes for one of the SUTs,
and distributions with near-optimal lower bounds showed
diminished fault-detecting ability. We hypothesize that
both effects result from a lack of diversity in the generated
test data. Although the addition of a diversity constraint as
a search objective did improve test set efficiency (Hypoth-
esis 5), the results indicate that the metric used is probably
too crude to retain all of the important forms of diversity in
the generated data.

Further work is therefore indicated on different diversity
metrics, with the goal of identifying a measure that
correlates well with the ability of the test set to detect
faults. In addition, we plan to expand the notion of diversity
to nondiscrete input domains.

One of the challenges of researching software engineer-
ing techniques is the vast range of software to which a
technique may be applied. We have experimented on three
programs that we feel have contrasting characteristics.
However, in the absence of a detailed understanding of the
software characteristics that affect our proposed technique,
it is inappropriate to extrapolate more widely. In particular,
the cardinality of the input domain for the SUTs was
relatively small as a result of using integer data types. It will
be important to demonstrate that the technique remains
effective and practical for larger input domains.

This suggests further work to investigate the software
characteristics that affect the efficacy of our technique. As
for other SBSE applications, a barrier to take up by software
engineers is the lack of guidance on the types of problems
for which use of search is effective, and how to configure
the search algorithm based on the characteristics of the
problem. For the experimental work in this paper, we took
the conservative approach of using a simple search
algorithm and used similar algorithm parameters across
all three SUTs. However, greater scalability would be
possible if more effective and faster algorithms are

identified—particularly those that make full use of available
computing resources through parallel processing—and if
the optimal algorithm parameters could be set a priori
based on relevant characteristics of the SUT.

An alternative to tuning the algorithm in advance based on
the characteristics of the SUT would be to adapt parameter
values during the algorithm run itself. Eiben et al. refer to this
approach as parameter control in their recent survey of both
parameter tuning and parameter control [42]. Given the vast
range of software that may be tested (noted above) and the
difficulty in identifying SUT characteristics that affect
algorithm performance, parameter control may be a viable
technique if it avoids the need to identify such characteristics.

Currently, the fitness metric for the coverage constraint
uses a count of the elements exercised by a sample of input
vectors. However, if an element is exercised by no input
vectors in the sample, little guidance is provided to the
search. In this case, the incorporation of metrics used by other
search-based test data generation techniques—such as the
approach level and branch distance discussed in Section 3—
into the fitness function might also enable the technique to
scale to larger and more complicated SUTs.

Another path for improvement in algorithm perfor-
mance is the use of optimization methods that efficiently
accommodate—or even make use of—the noise in the
fitness function. (We speculate that some noise in the fitness
may actually be beneficial to the hill climbing algorithm
used for this paper by occasionally permitting moves to less
fit distributions in order to escape nonglobal local optima.)
A number of methods are suggested by existing work on
noisy fitness functions for simulated annealing and evolu-
tionary algorithms [43], [44], [45], [46].

Experiment D used two competing objectives—the
coverage and diversity constraints—to find the most
efficient probability distribution. It might therefore be
constructive to apply optimization techniques that are
explicitly multiobjective, rather than using a single fitness
function that combines the constraints, as we did in this
paper. This use of efficient multi-objective optimization
algorithms is an approach taken by many recent SBSE
applications [7], [10], [13], [47].

The wider applicability of the search technique proposed
in this paper requires an extension of the representation to
other input data types. The current use of real numbers in the
internal representation of probability distributions, and of
binning to control the size of the representation, promises a
relatively straightforward extension to floating point argu-
ments. However, the incorporation of nonscalar data types,
such as strings, objects, and pointers, will be a significant
challenge, and is a current topic of research for other search-
based test data generation techniques (e.g., [48]).

Finally, there is scope to search for distributions
satisfying broader adequacy criteria. The coverage ele-
ments could be specified by other testing objectives, such
as coverage of the software’s functionality. The criterion on
the coverage probability distribution could be expressed in
terms of properties other than the lower bound, such as an
increased probability of exercising parts of the software
that have previously shown a propensity for faults, or that
are particularly critical to the correct or safe operation of
the program.
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