
Theoretical Analysis of Rank-based Mutation - Combining
Exploration and Exploitation

Pietro S. Oliveto, Per Kristian Lehre, Frank Neumann

Abstract— Parameter setting is an important issue in the
design of evolutionary algorithms. Recently, experimental work
has pointed out that it is often not useful to work with a fixed
mutation rate. Therefore it was proposed that the population
be ranked according to fitness and the mutation rate of an
individual should depend on its rank. The claim is that this
allows the algorithm to explore new regions in the search
space as well as progress quickly towards optimal solutions.
Complementing the experimental investigations, we examine
the proposed approach by presenting rigorous theoretical anal-
yses which point out the differences of rank-based mutation
compared to a standard approach using a fixed mutation
rate. To this end we theoretically explain the behaviour of
rank-based mutation on various fitness landscapes proposed
in the experimental work and present new significant classes of
functions where the use of rank-based mutation may be both
beneficial or detrimental compared to fixed mutation strategies.

I. INTRODUCTION

Determining the optimal parameters for an evolutionary

algorithm is a challenging task that has been widely studied

in the field of evolutionary computation [8]. There are many

parameters in an evolutionary algorithm and many studies

have focused on how parameters such as representation, pop-

ulation size or variation operator rates affect the algorithm’s

performance.

In this paper, we focus on the mutation rate used in an

evolutionary algorithm. The optimal mutation rate is known

only for very simple problems such as ONEMAX [2]. Often

it is useful to work not only with one fixed mutation rate but

to adapt it during the optimization process. This is usually

done in continuous optimization where the mutation strength

depends on the progress that the algorithm has achieved

during the last iterations. On the other hand, in combinatorial

optimization it is less common to adapt the mutation rate

during the optimization process. In fact most computational

complexity analyses of evolutionary algorithms for combina-

torial optimization consider algorithms with fixed mutation

rates (see [10] for a review of results).

Nevertheless, the use of different mutation rates with

respect to the runtime behaviour of evolutionary algorithms

has already been studied in literature. Jansen and Wegener [7]

have examined the choice of the mutation probability in

the (1+1) EA and proposed a dynamic (1+1) EA that uses

Per Kristian Lehre and Pietro S. Oliveto are with the Centre of
Excellence for Research in Computational Intelligence and Applications
(CERCIA), University of Birmingham, Edgbaston, Birmingham, B15 2TT,
UK (email:{P.S.Oliveto,P.K.Lehre}@cs.bham.ac.uk). Frank Neumann is
with the Department 1: Algorithms and Complexity, Max-Planck-Institut
für Informatik, Saarbrücken, Germany (email: firstname.lastname@mpi-
inf.mpg.de).

different mutation probabilities at different time steps. In [4]

the effect of bit-wise neutrality with respect to the mutation

rates has been examined and it has been shown that it may

be helpful to use different mutation rates for each gene in

the genotype. Recently, in [13] an immune inspired mutation

operator has been analysed for the ONEMAX function where

the mutation rate of an individual is inversely proportional

to its fitness.

Instead of focusing on algorithms that work with a single

solution, we examine population-based algorithms where the

different individuals have different mutation rates as recently

proposed in [1]. The individuals in the current population

are ranked with respect to their fitness and the mutation rate

increases with the rank of an individual. The idea behind this

is that good individuals should produce offspring that are

close whereas bad individuals should explore regions of the

search space that are very different. The use of this approach

has been examined experimentally in [1]. In particular, based

on their experiments, the authors claim that using rank-

based mutation allows the algorithm to have a good balance

between exploration and exploitation. In this paper, we want

to show the impact that rank based mutation has on the

optimization process in a rigorous manner.

After having defined the algorithms considered throughout

the paper in Section II, we start our theoretical analysis

in Section III by pointing out some general results of the

mentioned approach. These relate it to the use of random

search by proving a general upper bound on the expected

optimization time on any pseudo-Boolean function. This

bound will be proved to be tight further on in the paper

(i.e. Section V).

After that we analyse the use of rank-based mutation on

landscapes with different difficulties that have already been

examined experimentally in [1]. Our analyses point out the

different effects that the use of rank-based mutation has

on simple unimodal functions (Section IV) as well as on

difficult deceptive trap functions (Section V). In Section IV,

through an analysis for the ONEMAX function, we show

that the rank-based mutation strategy is effective in climbing

up slopes. In Section V we give theoretical evidence of the

better performance of rank-based mutation rates compared to

fixed mutation rates for the trap functions considered in [1].

However, we also show that there exist classes of functions

which are deceptive for rank-based mutation leading to

exponential runtime while fixed-mutation rate algorithms are

efficient with high probability. In any case, when rank-based

mutation has a better performance, the runtime required by

both strategies to solve the trap functions is exponential in

1455978-1-4244-2959-2/09/$25.00 c© 2009 IEEE

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on August 7, 2009 at 13:24 from IEEE Xplore. Restrictions apply.

the problem size.

To this end, in the last part of the paper (Section VI),

we present a class of functions where we can point out

that rank-based mutation significantly helps to speed up the

optimization process. These functions include sub-problems

with different difficulties (i. e. a deceptive and a unimodal

part).

II. ALGORITHMS

We study a simple (μ+1) EA using rank-based mutation.

The algorithm produces in each iteration one offspring by

choosing an individual of the current parent population

uniformly at random. To this individual the mutation operator

is applied which flips each bit with the probability given by

its rank in the population. Afterwards an individual with the

lowest fitness among the μ + 1 individuals is deleted such

that a new parent population of size μ is obtained.

Algorithm 1: (μ+1) EAR

1) Let t = 0 and initialize P0 with μ individuals chosen

uniformly at random.

2) Repeat

a) Rank the individuals {x1 . . . xμ} s.t. f(xi) ≥
f(xi+1).

b) Choose xi ∈ Pt uniformly at random.

c) Create y by mutating each bit in xi with proba-

bility pi.

d) If f(y) ≥ f(xμ) then Pt+1 = Pt \ {xμ} ∪ {y};

else Pt+1 = Pt.

As in [1], the mutation rate of an individual at position i in

the ranked population is assigned according to the following

formula:

pi = pmin + (pmax − pmin) · (i − 1)/(m − 1)

where m is the number of different mutation rates used by the

algorithm. In [1] the following parameters were used: pmin =
0, pmax = 1 and m was set as the size of the population

plus one. Since an elitist selection strategy is used by the

algorithm, there is no advantage in having a mutation rate

of p = 0. In fact, not allowing the best individual to mutate

would probably slow down the optimization process at least

when the algorithm is hill-climbing. Given the elitist strategy,

we believe that unless the global optimum has already been

found it is always preferable to mutate the best individual

even if with a very small mutation rate. So we set pmin =
1/n, pmax = 1 and m = μ where μ is the population size.

This way the mutation rates are linearly distributed between

pmin = 1/n and pmax = 1.

We want to point out the different effects of using

rank based mutation. The algorithm in [1] uses fitness-

proportional selection. However, on one hand it has been

proved in [6, 9] that simple evolutionary algorithms using

fitness-proportional selection are not able to optimize even

simple linear pseudo-Boolean functions such as ONEMAX

in polynomial time. In fact in Section IV it will be proved

that the (μ+1) EAR algorithm is efficient for ONEMAX. On

the other hand, since the goal of the paper is to understand

the effects of the rank-based mutation rates, we feel that it

is easier to understand how mutation is operating if good

solutions generated by mutation are not removed from the

population by the selection operator. In other words, the

mutation operator may create a good solution but at the

same time the selection operator may not consider it for the

next generation. This may happen commonly with fitness-

proportional selection as shown in [6, 9]. When this effect

happens the mutation operator could be “blamed” for an

action for which the selection operator is responsible, hence

the wrong conclusions could be derived about the effects of

rank-based mutation rates. These are the reasons for using

an elitist-strategy in our algorithm.

If the mutation rate does not depend on the rank but is the

same for all individuals, then the algorithm generalises to the

(μ+1) EA. Here each bit is mutated with a fixed probability

p that is independent of the rank of the individual. In the

literature, this algorithm has been examined for the choice

of p = 1/n by Witt [12] for pseudo-Boolean functions and

for combinatorial optimization problems having practical ap-

plications such as Vertex Cover in [11]. If only one mutation

rate is used throughout the optimization process such a rate

seems to be reasonable. In fact, also in practical applications,

when only one mutation rate is used it is usually low. The

(μ+1) EA is obtained from Algorithm 1 by replacing line c
with the following one:

Algorithm 2: Mutation operator for the (μ+1) EA

c’) Create y by mutating each bit in xi with probability p.

We examine the algorithms with respect to their runtime

behaviour on functions with different properties to point out

the effects of using rank-based mutation. We will consider

some functions used in [1] to explain theoretically the

results obtained from the experiments. Furthermore we will

analyse other functions of interest and generalise our results

to greater function classes. The measure of interest is the

number of fitness function evaluations until the algorithm

has produced an optimal search point for the first time. Since

randomised algorithms are of stochastic nature, this number

varies from run to run. We are interested in the expectation of

the random variable representing the number of fitness eval-

uations. We call this expectation the expected optimization
time of the algorithm on the examined function. Sometimes,

the expected optimization time is not a sufficiently accurate

measure to understand the performance of the algorithm for

a given function. In fact, it may happen that the expected

optimization time is exponential but at the same time the

probability that in each run the algorithm finds the optimum

be high, for example a constant. In those cases we will also

consider the success probability of the algorithm, which is

defined as the probability that the optimization time is within

a given time bound.

III. GENERAL COMPUTATIONAL COMPLEXITY

It is well known that the expected time until the (1+1) EA

finds the global optimum of any fitness function is at most

nn steps [3]. Droste et al. have also proved that the bound

1456 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on August 7, 2009 at 13:24 from IEEE Xplore. Restrictions apply.

is tight. A general result will be derived here for the

(μ+1) EAR. The following theorem gives an upper bound

for the expected runtime of the (μ+1) EAR for any function.

It shows that the algorithm is on any function only by a

constant factor slower than random search whose expected

optimization time on any function is 2n. In Section V it will

be shown that there exist functions for which the bound is

tight up to a constant factor. This means that the (μ+1) EAR

algorithm performs better than the (1+1) EA in the worst

case. However the runtime is exponential in the function size.

Theorem 1: Let μ > 2 and μ = poly(n). The expected

optimization time of the (μ+1) EAR algorithm for an arbi-

trary fitness function is at most O(2n).
Proof: The proof will follow the line of thought used

by Droste et al. in [3] for the (1+1)-EA.

An individual of rank i flips each bit with probability:

pi =
1
n

+
(

1 − 1
n

)
· i − 1
μ − 1

=
i − 1
μ − 1

+
1
n

(
1 − i − 1

μ − 1

)

We consider all individuals xi of the population with μ/3+
1 ≤ i ≤ (1/2)μ.

Using μ/3 + 1 ≤ i ≤ μ/2 we get

1
3
≤ pi ≤ 1

2
+ o(1) ≤ 2

3
Let x∗ be a global optimum of the function to be optimized

and H(xi, x
∗) < n be the Hamming distance between the

bit-string representing xi and that representing x∗. Hence, the

probability that each individual xi, with μ/3 + 1 ≤ i ≤ μ/2
is turned into the global optimum in one mutation step is(

pi)H(xi,x
∗) · (1 − pi

)n−H(xi,x
∗)

≥ (
1/3)H(xi,x

∗) · (1 − 2/3
)n−H(xi,x

∗) ≥ (
1/3

)n = 3−n

Since, the probability bound holds whatever the current

bit-string representing the xi individuals is, 3n expected

mutation steps of these xi individuals are required for the

optimum to be found. The probability that an individual xi

with μ/3 + 1 ≤ i ≤ μ/2 is chosen for mutation in each

generation is

μ/2 − μ/3 − 1
μ

=
μ/6 − 1

μ
≥ μ/7

μ
=

1
7

giving an expected time of 7 generations for this event to

happen. Multiplying, the expected time for the optimum to

be found is at most 7 · 3n = O(2n).
In Section VI functions will be introduced where the

(μ+1) EAR algorithm performs better than the (1+1) EA

and the difference in runtime is a more practical polynomial

versus super-polynomial.

IV. ONEMAX

In this section we will show that the (μ+1) EAR algorithm

is efficient for the ONEMAX function by proving a runtime

of O(μn log n).
Theorem 2: If the population size is bounded by μ =

poly(n), then the expected optimization time of the

(μ+1) EAR on the ONEMAX function is O(μn log n).

Proof: To prove the upper bound, note that the first

individual in the ranked population (i.e. x1) flips each bit

with probability 1/n. We can therefore follow the ideas of

the proof of the (1+1) EA for the ONEMAX function used in

[3]. The best individual in the ranked population gets selected

for mutation in each generation with probability 1/μ. This

implies it is expected to be chosen once in μ generations.

Since the fittest individual x1 requires O(n log n) steps to

reach the optimum (i.e. [3]), we get an upper bound of

O(μn log n) for the optimum to be found.

In [12], Witt proves that the expected time for the

(μ+1) EA to optimize ONEMAX is O(μn + n log n). The

(μ+1) EA obtains a short runtime because at each fitness

level L (i.e. there are L ones in the best individual of the

population), many copies of the best individual are obtained

(i.e. the whole population or at least n/(n − L)) in time

O(μ log(n/(n − L))). Then any of these individuals may

reach the next fitness level, rather than only the best. It

could be that the (μ+1) EAR algorithm cannot always take

advantage of these multiple copies to quickly climb up the

ONEMAX function because the individuals that flip each

bit with high probability end up turning many one-bits

into zero-bits when approaching the optimum. Hence, by

applying different mutation rates according to the rank of

the individuals, the algorithm may climb up slopes more

slowly than a population of individuals that flip each bit with

probability 1/n. In any case the process needs to be analysed

more carefully to understand whether the given bound is

tight or not. We leave a theorem about the lower bound on

ONEMAX as an interesting open question for future work.

V. DECEPTIVE FUNCTIONS

In this section we consider the performance of the

(μ+1) EAR algorithm on deceptive functions. Trap functions

have been considered several times in the analysis of EAs

to show how this class of algorithms may be attracted by a

local optima which leads the population far away from the

global optimum. As a consequence the expected runtime of

the algorithms is exponential.

First we will address a question that appears from the

analysis of the (μ+1) EAR for ONEMAX presented in the

previous section. Although, the (μ+1) EA requires O(μn +
n log n) expected time to optimise the ONEMAX function,

a O(μn log n) bound of has been proved in Theorem 2 for

the (μ+1) EAR. The best individual in the ranked population

flips each bit with probability 1/n and the expected time for

it to be selected for mutation is μ. So, it may be assumed that

the upper bounds obtained in the analysis of the (1+1) EA

could be extended to the analysis of the (μ+1) EAR by

multiplying the upper bounds of the former algorithm by μ to

obtain an upper bound on the runtime of the latter algorithm.

To show that this is not the case we consider a function

that we call LEADINGTRAPJUMP. Theorem 3 proves that

the (μ+1) EA is efficient for this class of functions with

overwhelming probability, while the expected runtime of the

(μ+1) EAR is exponential in the problem size. Hence, not

only is the upper bound of the (1+1) EA not generalisable to

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 1457

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on August 7, 2009 at 13:24 from IEEE Xplore. Restrictions apply.

the (μ+1) EAR, but a class of functions is presented where

the former algorithm (and the (μ+1) EA) is efficient while

the latter is not.
After the analysis of the LEADINGTRAPJUMP function

we will consider the trap function used in [1] which we

choose to call TRAP1. It will be proved in Theorem 4 that the

(μ+1) EAR is efficient for the function. However, this only

occurs because the global optimum is located at a Hamming

distance of n from the local optimum. As it will be shown

in the proof of Theorem 4, the position of the local optimum

gives the (μ+1) EAR a rather unfair advantage over the

(μ+1) EA. To this end, we consider a more generic trap

function which we call TRAP2. The only difference between

the two trap functions is that we place the global optimum

in a generic point having lower Hamming distance from the

local optimum. Theorem 5 shows that the expected runtime

of the (μ+1) EAR on the TRAP2 function is Θ(2n) which is

exponential in the problem size. This means that, although

its expected runtime is better than that of the(μ+1) EA (i.e.

Ω(nn)) its performance is no better than that of Random

Search. Theorem 5 also shows that the generic upper bound

given in Theorem 1 of Section III (i.e. O(2n)), which

holds for every pseudo-Boolean function is tight. Hence, the

expected runtime of the (μ+1) EAR algorithm on a generic

pseudo-Boolean function is Θ(2n).
Now we present the LEADINGTRAPJUMP function class

to tackle the first goal proposed in this section. The LEAD-

INGTRAPJUMP is a class of functions designed to show

that whatever the population size of the (μ+1) EAR may

be (as long as polynomial in the problem size), there exists

a class of functions where the (μ+1) EA is efficient while

the (μ+1) EAR is not. This is obtained by considering that if

the population size of the (μ+1) EAR is μ = poly(n) = nk

with k a constant, then as proved in Theorem 3 its expected

runtime is exponential for the following function:

LEADINGTRAPJUMP(x) =⎧⎪⎪⎨
⎪⎪⎩

0 if x = 1(9/10)n∗
LO(xi|i > 2k + 1) + 2k + 1 if x = 02k+11(9/10)n−2k−1∗
n − 1 if x = 0n/10∗
LO(x) otherwise.

The LEADINGTRAPJUMP function consists of a leading

ones path incrementing the fitness by one for each leading

one until (9/10)n − 1 leading ones are reached. Then at

least 2k leading zeroes need to be created to increment the

fitness. Once these leading zeroes have been obtained by

an individual, it may insert the last n/10 leading ones to

reach the optimum. However, there is a trap having n/10
leading zeroes. The only better point than this one is the

global optimum.
Theorem 3: Let 2 ≤ μ ≤ nk and k a constant. With con-

stant probability the (μ+1) EAR optimises the LTJ function

in time 2Ω(n). With probability 1 − 2−Ω(n) the (μ+1) EA

optimises the LTJ in time O(μn2k+2).
Proof: The probability that both algorithms are ini-

tialised with strings having the first 2k + 1 bits set to zero

and the next (9/10)n− 2k− 2 set to one is 2−Ω(n) which is

exponentially small. The same asymptotic probability holds

for both algorithms being initialised with the first n/10 bits

set to zero. The rest of the proof of the statement regarding

the (μ+1) EA follows.

We consider the following three phases:

1) The phase lasts until a solution with (9/10)n − 1
leading ones has been found by at least one individual

for the first time;

2) Starting with at least one individual with (9/10)n −
1 leading ones, the phase lasts until a solution with

2k + 1 leading zeroes has been found by at least one

individual;

3) The phase lasts until the global optimum of the LEAD-

INGTRAPJUMP function has been found.

Now we calculate the expected runtimes for each of the

phases conditional to the event that the trap point is not found

in the mean time. Then we will calculate the probability of

the event that the trap is found first.

The expected time for the (μ+1) EA to find the point with

(9/10)n − 1 leading ones (i.e. the end of the first phase),

if the trap is not reached first is O(μn2). This is because

at each time step the probability the individual with most

leading ones is selected for mutation is 1/μ and it creates

the next leading one with probability 1/n and does not flip

any other bit with probability (1−1/n)n−1 ≥ 1/e, giving an

expected time of at most eμn for each improvement. Since

at most (9/10)n − 1 leading ones need to be created the

expected time is less than t = e(10/9)μn2 = O(μn2). In fact

with slightly more sophisticated arguments an upper bound

of O(μn log n+n2) can be proved for the leading ones part

[12], but is not necessary here.

Following arguments in Droste et al. [3], there exists a

constant c > 0 such that the probability that 9n/10 leading

ones have not been obtained within cμn2 iterations is e−Ω(n).

The expected time to conclude the second phase is

O(μn2k+1), because 1/μ is the probability the individual

with (9/10)μ−1 leading ones is selected and 1/(en2k+1) is

a lower bound on the probability that the first 2k+1 bits are

mutated into zeroes. This gives an expected time of eμn2k+1.

The probability that this does not happen in time eμn2k+2

is (
1 − μn−(2k+1)

)μn2k+2

≤
(

1
e

)n

,

meaning that phase 2 is concluded in time O(μn2k+2) with

probability 1 − e−Ω(n) if a trap point is not found first.

Once the 2k + 1 leading zeroes have been found, the last

n/10 + 1 leading ones may be added, phase 3 concluded

and the optimum found. Just like for phase 1 this happens

in time O(μn2) with probability 1 − e−Ω(n) if a trap point

is not found first. Summing up we get a total runtime of

O(μn2k+2) with probability at least 1− e−Ω(n) to reach the

optimum conditional to not finding the trap first.

Now we calculate the probability of finding the trap before

O(μn2k+2) steps. As discussed at the beginning of the

proof, a trap point is not created during initialisation with

1458 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on August 7, 2009 at 13:24 from IEEE Xplore. Restrictions apply.

probability 1 − 2−Ω(n). We consider any individual with x
leading ones and the remaining n/10 − x bits which are

uniformly distributed. The probability that a trap point is

created in a step is less than(
1/n

)x · (1/2
)n/10−x ≤ (

1/2
)n/10 = 2−Ω(n)

Hence the probability is highest during initialisation. The

higher the number of leading ones the lower is the probability

that a trap point is created. The above discussion holds until

the end of phase 2.

For the individuals with 2k + 1 leading zeroes (i.e. phase

2 has ended) the probability that they reach a trap point is

less than(
1/n

)n/10−(2k+1) ≤ (
1/n

)n/20 ≤ n−Ω(n)

because at least n/10−(2k+1) one-bits have to flip into zero-

bits. Summing up in each step the probability of reaching a

trap point is less than 2−Ω(n). This means that the probability

that in O(μn2k+1) steps the trap is found is less than:

O(μn2k+1) · 2−Ω(n) = O(nk+2k+1) · 2−Ω(n) = 2−Ω(n)

This completes the proof of the second statement of the

theorem.

Each individual of the (μ+1) EAR algorithm will not be

initialised with a gap point with probability 1−2Ω(n) because

(8/10)n consecutive ones are required. Like in the proof of

the first part of the theorem we consider the following phases:

1) The phase lasts until all the population of the

(μ+1) EAR reaches the point with (9/10)n−1 leading

ones or a trap point;

2) The phase lasts until all the population reaches a trap

point;

We will consider the time required to end each phase

assuming that the gap is not jumped first. Afterwards, we

will consider the probability that an individual jumps over

the gap before the two phases have finished.

Since the best ranked individual mutates each bit with

probability 1/n and it gets selected with probability 1/μ, the

ideas from the proof of the (1+1)-EA for LEADINGONES

[3] may be adapted here. This individual will maintain

the same mutation probability unless some individual gets

more leading ones and gets ranked in first position. Since

we are assuming the gap is not jumped over, in time at

most eμn2 the first individual in the population reaches

(9/10)n − 1 leading ones. At this point, a copy of the

best individual of the population is created with probability

(1/μ)
(
1 − 1/n)n ≥ 1/(4μ) and μ copies are created in at

most time 4μ2. Summing up the expected time for phase 1
to finish is

eμn2 + 4μ2 = en2k + 4n2k ≤ 7n2k.

Now we consider the second phase assuming that no

trap points have been found yet first. Since the population

has converged, the last ranked individual will mutate all its

bits with probability 1 when selected, hence create a point

with n/10 leading zeroes. Actually (9/10)n − 1 leading

zeroes will be created and only the last n/10 + 1 bits will

be uniformly distributed. Since the probability for the last

ranked individual to be selected is 1/μ this event has an

expected time of μ = nk. Then, the only improvement the

individual may obtain is to reach the optimum which does

not happen by hypothesis (i.e. it is a solution on the other side

of the gap). Furthermore, no other individual may be ranked

better unless it reaches the trap (i.e. under the assumption that

the gap is not overtaken). Hence, just like at the end of phase

1, in expected time less than 4n2k all the population will have

been copied into a trap point and phase 2 concluded. This

second part holds even when at least a trap point had been

created before the end of phase 1. Summing up we get a

total expected runtime of at most 11n2k +nk ≤ 12n2k steps

for the two phases to end. By Markov’s inequality with a

probability of 1/2 the phases are concluded in time 24n2k.

Now we consider the failure probability (i.e. the gap is

jumped over before the two phases are concluded).

First we consider the probability if the number of leading

ones in an individual is less than n/10. Then, the probability

to jump over the gap is less than

(
pm

)(2/10)n(
1 − pm

)(2/10)n ≤ (
1/2

)−Ω(n)

because more than (6/10)n uniformly distributed bits have

to be turned into leading ones. This means that in expectation

there are at least (3/10)n zero-bits (and also at least (3/10)n
one-bits) and by Chernoff bounds they are at least (2/10)n
with probability 1 − e−Ω(n).

Now we assume that there are more than (n/10) leading

ones. Then the probability to jump over the gap is less than

the following

(
pm

)2k+1(1 − pm

)(1/10)n−(2k+1) ≤ (
1/n

)2k+1

because at least the 2k+1 leading ones need to be turned into

zeroes and the remaining (1/10)n−(2k+1) ones should not

be flipped. This implies that in each step the probability that

a jump over the gap occurs is less than n−(2k+1). Hence the

probability that the gap is not jumped over in 24n2k steps is

(
1 − (1/n)2k+1

)24n2k

≥ 1/e

Multiplying, the probability that the two phases occur in

24n2k steps without any gap-jumps is 1/(2e) = Ω(1).
Now, the only way to escape from the trap is to flip back

at least all the (8/10)n − 2k zero-bits into one-bits without

flipping any of the one-bits of the last n/10 bits of the string

which are uniformly distributed. Such a probability is upper

bounded as follows:

p(7/10)n
m · (1 − pm

)n/30 ≤ (1/2)n/30 = 2−Ω(n)

This proves the exponential runtime for the (μ+1) EAR

algorithm with probability at least Ω(1).
Now that it has been proved that there exist functions that

are deceptive for the (μ+1) EAR but not for the (μ+1) EA,

we will concentrate on the simple trap functions considered

in [1]. The following trap function was considered.

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 1459

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on August 7, 2009 at 13:24 from IEEE Xplore. Restrictions apply.

TRAP1(x) =
{

n + 1 if x = 0n

ONEMAX(x) otherwise.

The function consists of a ONEMAX path except for the

optimum which is the bit string with all zeroes.

In the experiments performed in [1] the Rank-GA us-

ing mutation, crossover and fitness proportional selection

required exponential time to optimise the TRAP1 function.

The following theorem proves that the (μ+1) EAR is efficient

for the function.

Theorem 4: Let μ > 1. The expected optimization time of

the (μ+1) EAR on the TRAP1 function is O(μ2 + μn log n).
Proof: The function consists of a ONEMAX path except

for the 0n bit-string which is the global optimum. If the

global optimum is not found first, from Theorem 2 we know

that the local optimum consisting of the 1n bit-string will be

found in time O(μn log n). From this point of time, due to

the elitist nature of the selection mechanism this solution will

not be removed from the population until the global optimum

has been found because it has higher fitness than any other

point in the search space. For the same reason, any copy of

the local optimum will be accepted if the optimum has not

been found,

As shown in the proof of Theorem 3, the expected time

for the whole population to be a copy of the 1n bit-string

conditional to no fitness improvement (i.e. the optimum not

being found) is O(μ2). Now, since individual xμ flips each

bit with probability (n/n) = 1, it will flip all its bits (which

are all ones) into zero-bits with probability 1 when it is

selected for mutation. The expected time for xμ to be selected

for mutation is O(μ). Summing up, if the optimum is not

found previously, it will be found in time O(μ2 + μn log n)

The above theorem proves that the (μ+1) EAR is efficient

for the TRAP1 function. However, this only happens because

the global optimum is the opposite of the local optimum

(or if it is placed at a constant Hamming distance from the

opposite). The following function changes the location of the

local optimum to permit a fair comparison between the two

algorithms.

TRAP2(x) =
{

n + 1 if x = {0n/41(3/4)n}
ONEMAX(x) otherwise.

The following theorem shows that the expected optimiza-

tion time of the (μ+1) EAR on the TRAP2 function is

exponential in the function size.

Theorem 5: Let μ = poly(n). The expected optimization

time of the (μ+1) EAR on the TRAP2 function is Θ(2n).
Proof: The proof of the upper bound follows directly

from Theorem 1.

The probability that the optimum is generated during

the initialisation phase is (1/2)n for each individual. The

expected number of zero bits for each individual is n/2.

By Chernoff bounds, with overwhelming probability each

individual has at least n/3 zero bits after initialisation. Hence

for the optimum to be found at least n/12 zero bits have to

be flipped into one bits. The probability that each individual

is mutated into the optimum is

pH(xi,x
∗)

m · (1 − pm

)n−H(xi,x
∗)

≤ pn/12
m · (1 − pm)(11/12)n ≤ (1/2)n/12 = 2−(n/12)

Hence, the expected number of mutation steps for the opti-

mum to be found is at least 2n/12.

From the proof of Theorem 4 we know that the expected

time for the best ranked individual (i.e. x1) to find the 1n

bitstring and then to create μ identical copies of itself are

respectively O(μn log n) and O(μ2). By using Markov’s

inequality, we prove that with probability 1−o(1) the whole

population consists of copies of the 1n bitstring in time μ2n.

Once this point has been reached, the probability that any

individual is mutated into the optimum is upper bounded as

follows.

p(n/4)
m · (1 − pm

)(3/4)n ≤ (1/2)n = 2−n

Hence, the expected time for the optimum to be found is

2Ω(n).

The expected time of the (μ+1) EA on the trap function

is Ω(nn) [3] meaning that the (μ+1) EAR does require

less time to optimize the function. However, none of the

two algorithms perform better than Random Search on this

function, which means they are inefficient for the function.

In the next section a class of functions will be introduced

were the better performance of the (μ+1) EAR compared to

the (μ+1) EA is a more practical gap between polynomial

and super-polynomial runtimes. Thus a practical advantage

of using the (μ+1) EAR rather than the (μ+1) EA on that

class of functions will be proved.

VI. COMBINING RANDOM AND GUIDED SEARCH

In this section, we want to point out where using rank-

based mutation considerably speeds up the optimization

process compared to algorithms using a fixed mutation rate.

Here, we will show that the different individuals using differ-

ent focuses on exploration and exploitation can significantly

help to deal with landscapes that require different mutation

rates at different stages of the optimization process.

To exemplify where the use of rank-based mutation can

make the difference between a super-polynomial and poly-

nomial runtime we consider the function TRAP-ONEMAX

introduced in [5].

TRAP-ONEMAX(x) =
(k∏

i=1

xi

)(n∑
i=k+1

xi

)
+

k∑
i=1

(1−xi).

We call the first k-bits the TRAP-part and the remaining

n−k bits the ONEMAX-part of a bitstring. The function has

the property that the ONEMAX-part can only be optimized

after the optimum of the TRAP-part has been found. Other-

wise, the function leads an algorithm to search points that

have a large Hamming distance in the TRAP-part from the

set of optimal solution with respect to the TRAP-part which

consists of all search points having at least k leading ones.

1460 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on August 7, 2009 at 13:24 from IEEE Xplore. Restrictions apply.

As done in [4, 5], we consider the function for the case

k = log n and show that the use of rank-based mutation

can considerably reduce the runtime. A similar effect has

already been observed in [4] where the effect of using

neutrality in evolutionary algorithms has been analyzed. In

this paper it has been pointed out that a variant of the

(1+1) EA has for each fixed mutation rate a super-polynomial

expected optimization time. The arguments used in the proof

of this lower bound can be generalized to (μ+1) EA if

the population size is not too large. For a sufficiently large

population size, e. g. μ = n2 log n, and mutation rate 1/n the

expected optimization time becomes polynomial as with high

probability at least one individual in the initial population is

optimal with respect to the TRAP-part.

In [4] it has been shown that the function TRAP-ONEMAX

may also be optimized by EAs with a small population size.

Incorporating neutrality into the (1+1) EA an upper bound on

the runtime of O(n2 log n) has been shown in this paper. The

model of neutrality examined in this paper ensures that each

bit in the TRAP-part is flipped with probability 1/2 while

each bit in the ONEMAX-part is flipped with probability

1/n. For the ONEMAX-part the choice of the mutation rate

is optimal. However, after having reached a solution with k
leading ones and at least k + 1 ones in the ONEMAX-part it

is better to work with a smaller mutation rate in the TRAP-

part as a mutation rate of 1/2 implies that a solution with k
leading ones is just re-sampled after an expected number of

Θ(n) and the optimization of the ONEMAX-part is slowed

down by Θ(n). Using these arguments together with the

lower bound for the (1+1) EA on ONEMAX given in [3], it is

not to hard to prove a matching lower bound of Ω(n2 log n)
for the algorithm using bit-wise neutrality investigated in [4]

on TRAP-ONEMAX.

We show that the (μ+1) EAR optimizes the function

TRAP-ONEMAX in time O(n log n) if the population size is

constant. The improvement compared to the use of neutrality

investigated in [4] is due to the fact that the mutation rate of

the best individual is 1/n which implies that the optimum

of the TRAP-part is re-sampled with a constant probability if

the best individual of the population is chosen for mutation.

Basically, our proof consists of the idea that individuals with

a high mutation rate are necessary to sample the optimum

of the TRAP-part for the first time. Later on, the ONEMAX-

part is optimized by considering the best individual in the

population, i. e. the individual with mutation rate 1/n.

Theorem 6: Choosing μ > 2, the expected optimization

time of the (μ+1) EAR on the TRAP-ONEMAX function with

k = log n is O(μn log n).
Proof: To prove the theorem, we consider two phases.

The first phase ends when a search point consisting of k
1-bits in the TRAP-part and at least k + 1 1-bits in the

ONEMAX-part has been found for the first time. After having

reached this intermediate goal the second phase begins and

ends when the optimal search point has been found for the

first time.

In the first phase we consider the individuals of rank i

where μ/3+1 ≤ i ≤ μ/2. The probability of choosing such

an individual in the next iteration is
μ/2−μ/3−1

μ = Ω(1).
The TRAP-part consists of log n bits. Therefore, an expected

number of at most 3log n = O(n) mutation steps applied to

such individuals is necessary to reach a solution consisting

of k leading ones. Such a solution is accepted if it has at

least k + 1 1-bits in the ONEMAX-part.

As long as the TRAP-part has not been optimised, the

ONEMAX-part does not contribute to the fitness, and the

last n − k bits in each individual are therefore uniformly

distributed. Hence, by a Chernoff bound, with exponentially

high probability, the ONEMAX-part contains at least n/4 −
k/4 > k + 1 ones when the TRAP-part has been optimised.

Altogether, the expected time until a solution with k 1-bits

in the TRAP-part and at least k + 1 1-bits in the ONEMAX-

part has been achieved is upper bounded by O(n).
To optimize the ONEMAX-part, we can follow the ideas

in the proof of Theorem 2 to obtain the upper bound of

O(μn log n) on the expected time until an optimal solution

has been achieved.

VII. DISCUSSION AND CONCLUSION

We have presented a rigorous analysis of rank-based

mutation EAs on function classes with significant structures.

We have considered the (μ+1) EAR, which is a rank-based

mutation steady state EA with elitism, and we have compared

it with the (1+1) EA and the (μ+1) EA. The experiments

performed in [1] discussed the impact of rank-based mu-

tation rates by using an algorithm called Rank-GA with

fitness-proportional selection and a crossover operator which

chooses the mating individuals according to their rank. This

could imply that some of the effects that were seen through

the experiments were caused by the selection or the crossover

operators. Now we discuss how the results presented in this

paper compare with those obtained experimentally in [1].

The first result we have presented is a general bound

of O(2n) for the (μ+1) EAR which holds for any pseudo-

Boolean function. This implies that the (μ+1) EAR algorithm

may only perform by a constant factor worse than Random

Search. This runtime reflects the one obtained experimentally

by the Rank-GA (i.e. with fitness-proportional selection and

crossover) in [1] for functions such as NEEDLE and TRAP1

since the number of fitness evaluations reported in the paper

appear like exponential in the problem sizes (i.e. 105 for

n = 16). This seems to imply that for these functions

neither the selection or the crossover operator are of any help

because there seems to be no evident runtime improvement

compared to our upper bound.

In Theorem 2 we prove an upper bound of O(μn log n) for

the (μ+1) EAR for ONEMAX meaning that the algorithm is

efficient for the function although it may be slower compared

to the (μ+1) EA. The question of whether the bound is tight

is left open for future work. In any case the algorithm does

not require more than O(μn log n) expected time. This seems

in line with the experimental results regarding the Rank-GA

for ONEMAX presented in [1]. The algorithm seems to be

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 1461

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on August 7, 2009 at 13:24 from IEEE Xplore. Restrictions apply.

efficient for the ONEMAX function with a bitstring length of

n = 100.

However, this does not explain the much worse perfor-

mance of the Rank-GA for the TRAP1 function. In Theorem

4 of Section V we prove that the (μ+1) EAR is efficient

for the TRAP1 function. This happens because, once all

the individuals in the population reach the local optimum

by climbing up the ONEMAX path of the function, the

individuals ranked badly flip many bits and end up on the

global optimum which has Hamming distance n from the

local optimum. In fact the last ranked individual will end up

on the optimum with probability 1, once selected, because

it flips all its bits. If the Rank-GA is really efficient for

the ONEMAX function as claimed in [1], then it would

be expected that once the top of the ONEMAX function

is reached then the algorithm should be able to jump to

the global optimum of the TRAP1 function. However, this

does not seem to be the case. One answer could be that,

although the optimum of the ONEMAX part is found by the

algorithm, the population of the Rank-GA algorithm does

not converge to the top of the ONEMAX part. Hence the

individuals with low rank and high mutation rate do not have

a chance of jumping to the optimum in polynomial time.

From the experimental results of [1] the answer is not clear.

For the functions discussed above, when the rank-based

mutation performs better than fixed-mutation the runtime is

exponential in the problem size and not better than Random

Search. These results do not justify any practical advantage

of using rank-based mutation rather than fixed mutation with

a sensible mutation probability such as p = 1/n. For this

reason in Section VI we have presented functions where we

highlight that the optimization time of rank-based mutation

is polynomial with good probability while algorithms with

fixed-mutation rates are inefficient.

For fairness in the comparison, in Section V we have also

proved the existence of functions where the (μ+1) EAR is

inefficient while the (μ+1) EA is efficient with a success

probability converging fast to 1.

ACKNOWLEDGEMENT

Pietro S. Oliveto was supported by an EPSRC grant

(EP/C520696/1). Per Kristian Lehre was supported by an

EPSRC grant (EP/D052785/1).

The authors are grateful to Jonathan E. Rowe for an

interesting discussion on the use of rank-based variation

operators.

REFERENCES

[1] J. Cervantes and C. R. Stephens. Rank based vari-

ation operators for genetic algorithms. In Proc. of
GECCO ’08, pages 905–912. ACM Press, 2008.

[2] S. Droste, T. Jansen, and I. Wegener. A rigorous com-

plexity analysis of the (1 + 1) evolutionary algorithm for

separable functions with boolean inputs. Evolutionary
Computation, 6(2):185–196, 1998.

[3] S. Droste, T. Jansen, and I. Wegener. On the analysis of

the (1+1) evolutionary algorithm. Theor. Comput. Sci.,
276:51–81, 2002.

[4] T. Friedrich and F. Neumann. When to use bit-wise

neutrality. Natural Computing, 2009. To appear. A

preliminary version appeared in Proc. of CEC 2008.

[5] W. J. Gutjahr and G. Sebastiani. Runtime analysis of

ant colony optimization with best-so-far reinforcement.

Methodology and Computing in Applied Probability, 10

(3):409–433, 2008.

[6] E. Happ, D. Johannsen, C. Klein, and F. Neumann.

Rigorous analyses of fitness-proportional selection for

optimizing linear functions. In Proc. of GECCO ’08,

pages 953–960. ACM Press, 2008.

[7] T. Jansen and I. Wegener. On the choice of the mutation

probability for the (1+1) EA. In Proc. of PPSN ’00,

pages 89–98. Springer, 2008.

[8] F. G. Lobo, C. F. Lima, and Z. Michalewicz, editors. Pa-
rameter Setting in Evolutionary Algorithms, volume 54

of Studies in Computational Intelligence. Springer,

2007. ISBN 978-3-540-69431-1.

[9] P. S. Oliveto and C. Witt. Simplified drift analysis for

proving lower bounds in evolutionary computation. In

In Proceedings of the 10th International Conference on
Parallel Problem Solving From Nature (PPSN X), pages

82–91, 2008.

[10] P. S. Oliveto, J. He, and X. Yao. Computational com-

plexity analysis of evolutionary algorithms for combi-

natorial optimization: A decade of results. International
Journal of Automation and Computing, 4(3):281–293,

2007.

[11] P. S. Oliveto, J. He, and X. Yao. Analysis of population-

based evolutionary algorithms for the vertex cover

problem. In In proceedings of the 2008 IEEE world
congress on computational intelligence (WCCI2008),
pages 1563–1570. IEEE, 2008.

[12] C. Witt. Runtime analysis of the (μ + 1) EA on simple

pseudo-boolean functions. Evolutionary Computation,

14(1):65–86, 2006.

[13] C. Zarges. Rigorous runtime analysis of inversely fit-

ness proportional mutation rates. In Proc. of PPSN ’08,

pages 112–122. Springer, 2008.

1462 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on August 7, 2009 at 13:24 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

