Self-Optimizing Architecturefor Ensuring Quality Attributesin the Cloud

Vivek Nallur, Rami Bahsoon
School of Computer Science, University of Birmingham
Birmingham B15 2TT, UK
{V.Nallur, R.Bahsooh@cs.bham.ac.uk

Abstract them. We envisage that Quality Attributes like performance
security, availability, reliability will be important pameters
We describe various challenges in ensuring Quality At-that organizations would want to monitor and optimize.
tributes(QA) of applications hosted in the cloud and hencét is in this context, that self-optimization of applicat®
the perceived quality of service of the cloud as a wholedistributed in the cloud, becomes important.
We advocate a self-management/optimisation architecture Usually, applications in the cloud are of the following
driven approach to ensure that Quality Attributes are met.types:
We discuss the limitations of current approaches to self-
managing architecture. We propose a novel approach, which
exploits the El Farol problem as a modelling mechanism
for QAs in architectures of applications in the cloud. The
approach uses Service Level Agreements (SLA) and Utility
Theory to direct the self-optimization. We conclude by ook
ing at directions for further work.

1) Web-applications that cater to diverse users across the
internet and demand fast response times.

2) Enterprise applications that cater to different busines
units across the world and require large amounts
of secure, reliable data transfer and high availability
(99.999%).

3) Scientific applications that need raw cpu or enterprises

that perform batch processing

1. Introduction The third type of application has the natural advantage of

. .) ‘cost associativityoffered by the cloud[[B]. The first two
Advances in networking, storage and processing teChnOIOL'ypes of applications represent a slice of systems that we

gies have giv_en us software that is rnind-bog.gling in Sizedepend on in our daily life; these need to be dependable and
and complexity of structure. Enterprises routinely deploylong-lived. By dependable, we refer to qualities like reiia

applications that span continents (e.g. through Grids, WAN ., 2\ ailability, and other non-functional requiremenisich

Internet), are composed of computing elements that argeoq 1o he provided, maintained, evolved and monitored

heterogeneous, and connected in complex topologies. Thg | niime. These requirements often evolve in response to
combination of development, configuration and managemerghanges in users’ needs, services, and the runtime environ-

complexity has resulted in software fragility and increse ¢ Consequently, this will necessitate dynamic change,

mtere_st In autonomic software.[l], [2]. In the wake of evolution, and self-optimisation of applications hosted i
](c)rga_nlﬁatpnal rc]habngle, economic d(;]wntu_rn and ‘Z demad e cloud with respect to the said requirements. Needless to
or tightening the belt on IT costs, there is a trend towardg,, e\ oution and self-optimisation needs to be constthin

moving large applications to the cloud [3]. Organizationsby cost, available resources, and any other operational con
such as IBMI[4] and Gartner [5] advocate cloud computingg aints specific to the cloud

as a potential cost-saver as well as provider of higher servi

quality. The applicability of current research on self-managing

architectures to the cloud is doubtful. This is becauseethes
Cloud computing refers to both the applications approaches assume that the system is a closed-loop and self-
delivered as services over the Internet and the managementis done via a centralized component. As we will
hardware and systems software in the datacenters giscuss in the section on Related Work, the environment of
that provide those servicef§] the cloud is sufficiently different (no control over phydica
Clouds, as made available by the major players like Amatopology, for instance), for centralized control and clbse
zon, Google and 3Tera, use the Software-As-A-Service oloop type feedback to be inapplicable. The contribution of
Infrastructure-As-A-Service model. This means that pay-this paper is as follows: we highlight existing work on self-
ment for the services of the cloud are made on the basis ahanaging architectures and discusses their inapplitakbali
cpu-hours used as well as storage used [7], which is highlyhe case of the cloud. We turn to a motivating example to
economical. However cloud providers make no guaranteediscuss the need for self-optimization in the cloud. We argu
about the Quality of Service attributes being provided bythat Service Level Agreements (SLA) can assist the problem

of self-optimization in the cloud. We introduce the idea nf a
application changing/optimizing its architecture by meah
modifying its components and connectors, through the use of
composable web-services, that automatically negotiai th
cost versus feature offering via SLAs. We propose to use
the emergent effect of simple self-optimizations at lower
levels (feature level) to achieve a higher level optimizati
(application-wide) in the cloud. We model the simple self-
optimizations as solutions to the&l Farol Bar problem

The rest of this paper is organised as follows: In section
2, we present a motivating example to elucidate some of
the Quality Attributes that need optimization. In section
3 we look at related work on self-managing architecture
and discuss how it does not solve the problem mentioned
in section 2. In section 4, we propose the idea of self-
optimization in detail. And in the final section, we discuss
future work.

to turn away in search of alternatives. myChaseBook
should be resilient in times of increased traffic and
always be available.

« Q0S: myChaseBook provides a lot of its services by
composing several other web-services, that are created
and controlled by third-parties. If these web-services
fail to provide proper performance, then myChase-
Book’s reputation plummets. Hence, myChaseBook
would like QoS from these web-services to be guar-
anteed via Service Level Agreements (SLA)

« Cost: The cost of using other web-services could fluc-
tuate depending on demand and supply. myChaseBook
should be able to automatically switch to a lower cost
web-service, as long as it meets other requirements.

Using web-services in a composable manner to provide

2. Motivating Example

functionality is a typical instantiation of Service-Orted
Architecture. However for myChaseBook to consider using
web-services in the cloud, its own design must have the

following features:

We motivate the need for research in self-managing
architecture of cloud-based applications by the following
example:

Consider a new social networking site (myChaseBook),
much like Facebook, but in addition to the Web it also
incorporates new media like cellphones and online radio.
myChaseBook offers the following innovative services:

« Track friends geographically via cellphone, overlaid on
a city map.

« Tagging of streaming radio.

« Recommend radio snippets to friends who can then
chose to listen via cellphone and buy them from online

« Service Discovery — myChaseBook should be able to
discover other services that it can leverage to provide
its own features.

« Contract negotiation for SLA[8] — myChaseBook’s
services should be able to automatically negotiate con-
tracts with regard to performance and availability.

« Web-service provenance for process, data and workflow
[Q] — Payment for services could be based on data-
flow or number of web-service invocations. In such
cases, auditing of number of invocations and amount of
data transfer would be necessary to ensure that correct

stores.
Cellphone-based access to photos, music tracks, friends
and their recommendations based on the location of the
user.

payment is made.

Using these features, myChaseBook should be able to
dynamically evolve its architecture by modifying the web-

Suppose that myChaseBook becomes wildly popular andervices to which it connects. When organizational priiesit
the creators of myChaseBook decide to move their site ontghange, and myChaseBook wants to optimize on dependabil-

the Cloud. Their principal requirements are:

ity (say), it could search for a web-service that offers a\SL
Scalability: The application’s design allows for scal- with high dependability and use that web-service instead
ability and hence the provisioning of computing re- of the high performance web-service that it is currently
sources like cpu, bandwidth should scale with demandusing. However, decisions like changing focus from one
Cloud providers charge for their service on the basisQuality Attribute to another (performance to dependayilit
of cpu-hours used, storage and bandwidth usage. Sinagill probably not be optimal for the entire myChaseBook
myChaseBook is a startup and does not have too muchpplication. Each feature might want to optimize for a dif-
cash in hand, the application should also scale down ifierent Quality Attribute. For example, features like tagpi
times of low demand, to ensure maximum Return Onof streaming radio and tracking of friends via cellphone
Investment. might want to optimize for performance, while features
Availability: Users are turned off if the service is not like purchase of music tracks via cellphone might want
available due to frequent over-loading. The popularityto optimize for security. Further, all of these optimizaiso

of social networking sites tend to spike when websiteswould have cost as a constraint as well. In this context, it is
like Slashdot recommend it or a celebrity starts using it.easy to see how different parts of an application might want
At such times, if the site is unavailable, then users tendo optimize differently, each realizing different tradésof

3. Related Work due to multiple factors like combinatorial explosion,
computational complexity or a fast rate of change.
There has been a lot of work on self-managed architecture,
as reported by Kramer and Magee |[10]. Current researcd. Our Approach
pursues software architectures as the appropriate level of
abstraction for evaluating, reasoning about, managing and.1. Problem in Detail
facilitating the dynamic change and evolution of complex
software systems. It is easy to see that the architectural approaches pro-
There have been a plethora of attempts at creating selfposed in the previous section do not fit the requirements
managing architectures. These attempts can be classified as myChaseBook. The limitations elucidated preclude the
approaching the problem from the following perspectives: achievement of the properties discussed in the motivating
« Map system to ADL, dynamically change ADL, check example. We envisage that applications that want to provide
for constraints, transform ADL to executable codel [11],/ consume services register themselves with the cloud,twhic
2], [13]. acts as the central registry or even as a broker for negagiati
. Create a framework for specifying types of adaptationprice and SLAs. However, different web-services would have
possible using constraints, tactics thus ensuring ‘goodliffering agendas and different properties that they wish t

adaptation ’[[14], [[15]. optimize for. It is in this context that this paper's main
« Using formalized methods like SAM[16], control the- contribution lies. We consider web-services running in the
ory [17] and middleware optimizations [18]. cloud ecosystem and consider how these services might

However, all of these approaches envision a closed-looPtimize themselves and what this means for the quality
system. That is, all of them assume that of the cloud as a whole.

1) The entire state of the application and the resources Each web-service will set its own priorities with regard
. . - o0 cost, performance, reliability and availability. Negaion
available for adaptation are known/visible to the man- b y Y

agement component amongst these services will occur through any of a variety
2) T%e ada tat'og orderéd by the management com oneﬁi resource reservation protocols as long as they conform to
: aptation y 9 . P e Web services agreement specificatjb@]. The problem
is carried out in full, never pre-empted, ignored or . . :
that we consider is whether such a system would reach its

disobeyed.
3) The management component gets full feedback or ingmaI level of cost vis-a-vis other quality attributes.

able to view the results of changes made, on the entirtzL > The El Earol solution

system.
We feel that these are limiting assumptions because of the e view the distributed selfish self-optimization as the El
following reasons: Farol Bar problem[[20] and seek inspiration in the solutions

1) In a system of systems, each software component wilproposed in[[21],[[22]. Specifically, the constraint that we
have a different objective to attain and hence need noimpose on any solution is that each web-service should
cooperate. In a cloud, we expect a system of systemattempt local self-management only, without any knowledge
to be implemented through composable web-servicessf the application as a whole. Also, it is not binding on
Also, since each web-service is potentially ownedany web-service to cooperate with any other web-service.
or managed by a different entity, its optimization Yagan and Thardescribe a successful attemipt][23] in using
objective could be different. Reinforcement Learning to optimize network routing. We

2) In a truly large scale system, communication betweerhope that a similar mechanism would work amongst web-
centralised management components and distributegervices as well. A software architecture can be specified
lower-level components may not be feasible/robustas a triad of components, connectors and topology [24]. In
For example, a performance optimizer component thathe particular case of the cloud, topology is opaque to the
is located on a server in the US may not be inweb-services and hence, the only optimization possible is i
a position to communicate adaptation orders to athe types of components and connectors used.
component located on a server in Australia on a timely
basis. 4.2.1. Modelling. Modelling the web-services in a cloud in

3) In a large scale system, global application knowledgesuch a manner requires viewing the cloud as a marketplace.
is infeasible. If there are thousands of object instancesizach web-service can be viewed as an agent with a budget
each with its own performance/memory issues, it isto spend and a targetted quality attribute to optimize. The
infeasible to expect a central optimizer to take intocloud provider could be viewed as the ‘market maker 'or the
account each of those instances’ states or metrics whilbroker, that specifies the negotiation protocol to be foldw
trying to optimize in reasonable time. This could be when web-services bid for services. Now, each agent applies

as long as SLAs that it agreed to, are met. Now, if the
organisation’s objective were to change to providing a high
level of availability, the web-service would (due to a chang
in its utility function) switch to more expensive services a

Cloud provider’s "Broker API"

Register Servic Register Services

Seareh for long as they promise higher availablity in their SLA.
Enterprise - 1 Enterprise - 1 Enterprise - 2
Web-service - 2 Web-service - 1 Web-service - 1 5 FUture Wor k
Negotiate SLA
SmToTCEmenT TEamig We think that modelling of the problem in greater detail
A?TH iy would be necessary to carry out any experimental evaluation
Function We will propose more precise application of multi-attriut
~ Update Dulty Punction utility theory to SLA negotiation. Also, modification steat

gies that a web-service can learn from, will be proposed.
This would enable simulations of a cloud with negotiating
web-services, thus allowing us to test our idea of low-level
self-optimization leading to an emergent higher level -opti

its own learning algorithm to choose amongst the stratajies Mizéd application state in the cloud. If successful, thisildo

has, to negotiate with other agents. Depending on the gualif€ad to long-lived applications in the cloud being more
attribute that a particular agent is interested in optimgzi "esilient to change, and successfully adapting to changing

it would be prepared to pay a high price for an SLA Quality Attribute optimization needs.

that offers the desired guarantees. For example, an agent

that is interested in optimizing performance would pay aReferences

premium for an SLA that guarantees a certain bandwidth

or cer@ain algorit_hmic perfgrmance. Alternatively, anath [1] M. Parashar and S. Hariri, Autonomic Com-

agent interested in availability would pay a premium for an puting: An Overview 2005. [Online]. Available:

SLA that promises redundancy. How much premium to pay http://dx.doi.org/10.1007/115278020

for obtaining a particular SLA is an engineering problem

in decision making, with tradeoffs between multiple qualit [2] 'C%'\rf{ uti:'?n” argﬂir:zcmralzoogluepri[gnnnfeo]r al:\‘/’;%"g:g_

attrlbutes gnd .COSt' A. pOSS|bIe solution cquld be modelled http:?IWW\?vi-Ol.ibm.com/software/tivoli/autonomic/mzlAC_BIueprint_Whit(
using multi-attribute utility theory [25]. Allowing eachgant

to set its own parameters in a utility function creates [3] c. Boulton, Forresters Advice to CFOs:

a marketplace where each agent would set a (possibly) Embrace Cloud Computing to Cut Caosts

different price on different quality attributes. As showm i eWeek.com, October 2008. [Online]. Available:

[22], if there are enough agents with differing strategies http://www.eweek.com/c/a/Enterprise-Applicationgtiesters- Advice-to-C

for maximising their utility, the system as a whole quickly

Figure 1. Interaction between autonomous web-
services in the cloud

h imal level [4] 1BM, “Ibm perspective on cloud com-
reaches a near optimal level. , puting,” Whitepaper published on the
To return to the motivating example, myChaseBook’s ~ web, http://www-05.ibm.com/services/ch/download/ibm-

web-services would pay premiums for other web-services cloud-computing-12-08.pdf, 2008. [Online]. ~ Available:
that provided (via SLAs) guarantees of performance and http://www.ibm.com/ibm/cloud/
redundancy. We contend that with enough diversity in the
opulation of web-services (and corresponding learnin 5] €. Boulton, “Gartner sees great saas
Pop . () P 9 . 9 enterprise app growth despite downturn,”
strategies), the cloud as a whole will reach a level of optima eWeek.com October ~ 2008. [Online]. Available:
cost vs. quality attribute tradeoff. http://www.eweek.com/c/a/Enterprise-Applicationsf@ar-Sees-Great-S/

; gH [6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,

4.3. Appllcablllty R. H. Katz, A. Konwinski, G. Lee, D. A. Patterson,
o o) N A. Rabkin, I. Stoica, and M. Zaharia, “Above the
Applications built in this manner should be resilient to clouds: A berkeley view of cloud computing,” EECS
changes in cloud conditions with regard to demand, change Department, University of California, Berkeley, Tech.

in types of supporting services and even organisational Et‘;-‘p_-//UCB/EECﬁ'ZgOF'zsa 'jgbbzgog'héo?lyg%]dgﬁﬁvgcl%%ez:s -
objectives. Thus, maintainability of applications in tHeux P-IIWWW.EECS. DETKEIEY. edUITLIDSTTECTEPLS AL
is greatly increased. For instance, a web-service thatsseekm A. Inc, Amazon Elastic Compute Cloud (Amazon EC2)

to optimize on cost, would constantly monitor the demand ~ * nttp://aws.amazon.com/ec2/#pricing: Amazon Inc., 2008.
being made on it and switch to cheaper composing services [Online]. Available: http://aws.amazon.com/ec2/#pig:i

http://dx.doi.org/10.1007/11527800_20
http://www-01.ibm.com/software/tivoli/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf
http://www.eweek.com/c/a/Enterprise-Applications/Forresters-Advice-to-CFOs-Embrace-Cloud-Computing-to-Cut-Costs/
http://www.ibm.com/ibm/cloud/
http://www.eweek.com/c/a/Enterprise-Applications/Gartner-Sees-Great-SAAS-Enterprise-App-Growth-Despite-Downturn/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://aws.amazon.com/ec2/#pricing

[8] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-Oriented [19] A. Andrieux,

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

cloud computing: Vision, hype, and reality for delivering |
services as computing utilities0808.3558 August 2008.
[Online]. Available: http://arxiv.org/abs/0808.3558

B. Hayes, “Cloud computing,” Commun. ACM
vol. 51, no. 7, pp. 9-11, 2008. [Online]. Available:
http://dx.doi.org/10.1145/1364782.1364786]

J. Kramer and J. Magee, “Self-managed systems: an
architectural challenge,” inFOSE '07: 2007 Future of

Software Engineering Washington, DC, USA: IEEE

Computer Society, 2007, pp. 259—-268. [Online]. Available:
http://dx.doi.org/10.1109/FOSE.2007.19

(21]

E. M. Dashofy, A. van der Hoek, and R. N. Taylor, “Towards [22]
architecture-based self-healing systems,” WOSS '02:
Proceedings of the first workshop on Self-healing systems
New York, NY, USA: ACM Press, 2002, pp. 21-26. [Online].
Available:|http://dx.doi.org/10.1145/582128.582133

——, “An infrastructure for the rapid development [23]
of XML-based architecture description languages,” in

ICSE '02: Proceedings of the 24th International
Conference on Software Engineering New York,
NY, USA: ACM Press, 2002. [Online]. Available:

http://dx.doi.org/http://dx.doi.org/10.1145/5813381374

——, “A comprehensive approach for the development [24]
of modular software architecture description languages,”
ACM Trans. Softw. Eng. Methodol. vol. 14,

no. 2, pp. 199-245, April 2005. [Online]. Available:
http://dx.doi.org/10.1145/1061254.1061258 [25]
|. Georgiadis, J. Magee, and J. Kramer, “Self-orgamgsi
software architectures for distributed systems, WIOSS '02:
Proceedings of the first workshop on Self-healing systems
New York, NY, USA: ACM Press, 2002, pp. 33—38. [Online].
Available:|http://dx.doi.org/10.1145/582128.582135

s. Cheng, D. Garlan, and B. Schmerl, “Architecturedshs
self-adaptation in the presence of multiple objectives,”
in Proceedings of the 2006 international workshop on
Self-adaptation and self-managing systemsShanghai,
China: ACM, 2006, pp. 2-8. [Online]. Available:
http://dx.doi.org/10.1145/1137677.1137679

J. Wang, C. Guo, and F. Liu, “Self-healing based sofewar
architecture modeling and analysis through a case study,”
in Networking, Sensing and Control, 2005. Proceedings.
2005 IEEE 2005, pp. 873-877. [Online]. Available:
http://dx.doi.org/10.1109/ICNSC.2005.1461307

J. Hellerstein, Engineering Self-Organizing
tems 2007, p. 1. [Online].
http://dx.doi.org/10.1007/978-3-540-7491742

Sys-
Available:

M. Trofin and J. Murphy, “A Self-Optimizing container
design for enterprise java beans applications,” Iin
Proceedings of the Second International Workshop on
Dynamic Analysis (WODA 20042003. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi£l059.2979

K. Czajkowski,
H. Ludwig, T. Nakata, J.
S. Tuecke, and M.

agreement specification,” http://xml.coverpages.org/WS
Agreement-13652.pdf. [Online]. Available:
http://xml.coverpages.org/WS-Agreement-13652. pdf

A. Dan, K. Keahey,
Pruyne, J. Rofrano,
Xu, “Web services

B. W. Arthur, “Inductive reasoning and bounded
rationality,” American Economic Review (Papers and
Proceedings)no. 84, pp. 406—411, 1994. [Online]. Available:
http://www.santafe.edu/ }wbarthur/Papers/EFarol.html

D. H. Wolpert and K. Tumer, An Introduction to
Collective Intelligence August 1999. [Online]. Available:
http://arxiv.org/abs/cs.LG/9908014

D. H. Wolpert,

K. R. Wheeler, and K. Tumer,

“Collective intelligence for control of distributed
dynamical systems,” Europhysics Letters vol. 49,
pp. 708-714, 2000. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doifl043.3542

D. Yagan and C. K. Tham, “Self-optimizing architecture
for gos provisioning in differentiated services,” ilCAC
'05: Proceedings of the Second International Conference
on Automatic Computing Washington, DC, USA: IEEE
Computer Society, 2005, pp. 346—347. [Online]. Available:
http://dx.doi.org/10.1109/ICAC.2005.57

L. Bass, P. Clements, and R. KazmarSoftware
Architecture in Practice, Second EditioBdnd ed. Addison-
Wesley Professional, April 2003. [Online]. Available:
http://my.safaribooksonline.com/0201703726

D. L. Thurston, Decision Making in Engineering Design
ASME Press. New York, New York, 2006, ch. Multi-attribute
Utility Analysis of Conflicting Preferences, pp. 125-133.

http://arxiv.org/abs/0808.3558
http://dx.doi.org/10.1145/1364782.1364786
http://dx.doi.org/10.1109/FOSE.2007.19
http://dx.doi.org/10.1145/582128.582133
http://dx.doi.org/http://dx.doi.org/10.1145/581339.581374
http://dx.doi.org/10.1145/1061254.1061258
http://dx.doi.org/10.1145/582128.582135
http://dx.doi.org/10.1145/1137677.1137679
http://dx.doi.org/10.1109/ICNSC.2005.1461307
http://dx.doi.org/10.1007/978-3-540-74917-2_1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.2979
http://xml.coverpages.org/WS-Agreement-13652.pdf
http://www.santafe.edu/~{}wbarthur/Papers/El_Farol.html
http://arxiv.org/abs/cs.LG/9908014
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.3542
http://dx.doi.org/10.1109/ICAC.2005.57
http://my.safaribooksonline.com/0201703726

	Introduction
	Motivating Example
	Related Work
	Our Approach
	Problem in Detail
	The El Farol solution
	Modelling

	Applicability

	Future Work
	References

