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Abstract

We describe various challenges in ensuring Quality At-
tributes(QA) of applications hosted in the cloud and hence
the perceived quality of service of the cloud as a whole.
We advocate a self-management/optimisation architecture-
driven approach to ensure that Quality Attributes are met.
We discuss the limitations of current approaches to self-
managing architecture. We propose a novel approach, which
exploits the El Farol problem as a modelling mechanism
for QAs in architectures of applications in the cloud. The
approach uses Service Level Agreements (SLA) and Utility
Theory to direct the self-optimization. We conclude by look-
ing at directions for further work.

1. Introduction

Advances in networking, storage and processing technolo-
gies have given us software that is mind-boggling in size
and complexity of structure. Enterprises routinely deploy
applications that span continents (e.g. through Grids, WANs,
Internet), are composed of computing elements that are
heterogeneous, and connected in complex topologies. The
combination of development, configuration and management
complexity has resulted in software fragility and increased
interest in autonomic software [1], [2]. In the wake of
organizational change, economic downturn and a demand
for tightening the belt on IT costs, there is a trend toward
moving large applications to the cloud [3]. Organizations
such as IBM [4] and Gartner [5] advocate cloud computing
as a potential cost-saver as well as provider of higher service
quality.

Cloud computing refers to both the applications
delivered as services over the Internet and the
hardware and systems software in the datacenters
that provide those services.[6]

Clouds, as made available by the major players like Ama-
zon, Google and 3Tera, use the Software-As-A-Service or
Infrastructure-As-A-Service model. This means that pay-
ment for the services of the cloud are made on the basis of
cpu-hours used as well as storage used [7], which is highly
economical. However cloud providers make no guarantees
about the Quality of Service attributes being provided by

them. We envisage that Quality Attributes like performance,
security, availability, reliability will be important parameters
that organizations would want to monitor and optimize.
It is in this context, that self-optimization of applications
distributed in the cloud, becomes important.

Usually, applications in the cloud are of the following
types:

1) Web-applications that cater to diverse users across the
internet and demand fast response times.

2) Enterprise applications that cater to different business
units across the world and require large amounts
of secure, reliable data transfer and high availability
(99.999%).

3) Scientific applications that need raw cpu or enterprises
that perform batch processing

The third type of application has the natural advantage of
‘cost associativity’offered by the cloud [6]. The first two
types of applications represent a slice of systems that we
depend on in our daily life; these need to be dependable and
long-lived. By dependable, we refer to qualities like reliabil-
ity, availability, and other non-functional requirementswhich
need to be provided, maintained, evolved and monitored
at runtime. These requirements often evolve in response to
changes in users’ needs, services, and the runtime environ-
ment. Consequently, this will necessitate dynamic change,
evolution, and self-optimisation of applications hosted in
the cloud with respect to the said requirements. Needless to
say, evolution and self-optimisation needs to be constrained
by cost, available resources, and any other operational con-
straints specific to the cloud.

The applicability of current research on self-managing
architectures to the cloud is doubtful. This is because these
approaches assume that the system is a closed-loop and self-
management is done via a centralized component. As we will
discuss in the section on Related Work, the environment of
the cloud is sufficiently different (no control over physical
topology, for instance), for centralized control and closed-
loop type feedback to be inapplicable. The contribution of
this paper is as follows: we highlight existing work on self-
managing architectures and discusses their inapplicability to
the case of the cloud. We turn to a motivating example to
discuss the need for self-optimization in the cloud. We argue
that Service Level Agreements (SLA) can assist the problem



of self-optimization in the cloud. We introduce the idea of an
application changing/optimizing its architecture by means of
modifying its components and connectors, through the use of
composable web-services, that automatically negotiate their
cost versus feature offering via SLAs. We propose to use
the emergent effect of simple self-optimizations at lower
levels (feature level) to achieve a higher level optimization
(application-wide) in the cloud. We model the simple self-
optimizations as solutions to theEl Farol Bar problem.

The rest of this paper is organised as follows: In section
2, we present a motivating example to elucidate some of
the Quality Attributes that need optimization. In section
3 we look at related work on self-managing architecture
and discuss how it does not solve the problem mentioned
in section 2. In section 4, we propose the idea of self-
optimization in detail. And in the final section, we discuss
future work.

2. Motivating Example

We motivate the need for research in self-managing
architecture of cloud-based applications by the following
example:

Consider a new social networking site (myChaseBook),
much like Facebook, but in addition to the Web it also
incorporates new media like cellphones and online radio.
myChaseBook offers the following innovative services:

• Track friends geographically via cellphone, overlaid on
a city map.

• Tagging of streaming radio.
• Recommend radio snippets to friends who can then

chose to listen via cellphone and buy them from online
stores.

• Cellphone-based access to photos, music tracks, friends
and their recommendations based on the location of the
user.

Suppose that myChaseBook becomes wildly popular and
the creators of myChaseBook decide to move their site onto
the Cloud. Their principal requirements are:

• Scalability: The application’s design allows for scal-
ability and hence the provisioning of computing re-
sources like cpu, bandwidth should scale with demand.
Cloud providers charge for their service on the basis
of cpu-hours used, storage and bandwidth usage. Since
myChaseBook is a startup and does not have too much
cash in hand, the application should also scale down in
times of low demand, to ensure maximum Return On
Investment.

• Availability: Users are turned off if the service is not
available due to frequent over-loading. The popularity
of social networking sites tend to spike when websites
like Slashdot recommend it or a celebrity starts using it.
At such times, if the site is unavailable, then users tend

to turn away in search of alternatives. myChaseBook
should be resilient in times of increased traffic and
always be available.

• QoS: myChaseBook provides a lot of its services by
composing several other web-services, that are created
and controlled by third-parties. If these web-services
fail to provide proper performance, then myChase-
Book’s reputation plummets. Hence, myChaseBook
would like QoS from these web-services to be guar-
anteed via Service Level Agreements (SLA)

• Cost: The cost of using other web-services could fluc-
tuate depending on demand and supply. myChaseBook
should be able to automatically switch to a lower cost
web-service, as long as it meets other requirements.

Using web-services in a composable manner to provide
functionality is a typical instantiation of Service-Oriented
Architecture. However for myChaseBook to consider using
web-services in the cloud, its own design must have the
following features:

• Service Discovery — myChaseBook should be able to
discover other services that it can leverage to provide
its own features.

• Contract negotiation for SLA [8] — myChaseBook’s
services should be able to automatically negotiate con-
tracts with regard to performance and availability.

• Web-service provenance for process, data and workflow
[9] — Payment for services could be based on data-
flow or number of web-service invocations. In such
cases, auditing of number of invocations and amount of
data transfer would be necessary to ensure that correct
payment is made.

Using these features, myChaseBook should be able to
dynamically evolve its architecture by modifying the web-
services to which it connects. When organizational priorities
change, and myChaseBook wants to optimize on dependabil-
ity (say), it could search for a web-service that offers an SLA
with high dependability and use that web-service instead
of the high performance web-service that it is currently
using. However, decisions like changing focus from one
Quality Attribute to another (performance to dependability)
will probably not be optimal for the entire myChaseBook
application. Each feature might want to optimize for a dif-
ferent Quality Attribute. For example, features like tagging
of streaming radio and tracking of friends via cellphone
might want to optimize for performance, while features
like purchase of music tracks via cellphone might want
to optimize for security. Further, all of these optimizations
would have cost as a constraint as well. In this context, it is
easy to see how different parts of an application might want
to optimize differently, each realizing different tradeoffs.



3. Related Work

There has been a lot of work on self-managed architecture,
as reported by Kramer and Magee [10]. Current research
pursues software architectures as the appropriate level of
abstraction for evaluating, reasoning about, managing and
facilitating the dynamic change and evolution of complex
software systems.

There have been a plethora of attempts at creating self-
managing architectures. These attempts can be classified as
approaching the problem from the following perspectives:

• Map system to ADL, dynamically change ADL, check
for constraints, transform ADL to executable code [11],
[12], [13].

• Create a framework for specifying types of adaptation
possible using constraints, tactics thus ensuring ‘good
adaptation ’ [14], [15].

• Using formalized methods like SAM [16], control the-
ory [17] and middleware optimizations [18].

However, all of these approaches envision a closed-loop
system. That is, all of them assume that

1) The entire state of the application and the resources
available for adaptation are known/visible to the man-
agement component.

2) The adaptation ordered by the management component
is carried out in full, never pre-empted, ignored or
disobeyed.

3) The management component gets full feedback or is
able to view the results of changes made, on the entire
system.

We feel that these are limiting assumptions because of the
following reasons:

1) In a system of systems, each software component will
have a different objective to attain and hence need not
cooperate. In a cloud, we expect a system of systems
to be implemented through composable web-services.
Also, since each web-service is potentially owned
or managed by a different entity, its optimization
objective could be different.

2) In a truly large scale system, communication between
centralised management components and distributed
lower-level components may not be feasible/robust.
For example, a performance optimizer component that
is located on a server in the US may not be in
a position to communicate adaptation orders to a
component located on a server in Australia on a timely
basis.

3) In a large scale system, global application knowledge
is infeasible. If there are thousands of object instances,
each with its own performance/memory issues, it is
infeasible to expect a central optimizer to take into
account each of those instances’ states or metrics while
trying to optimize in reasonable time. This could be

due to multiple factors like combinatorial explosion,
computational complexity or a fast rate of change.

4. Our Approach

4.1. Problem in Detail

It is easy to see that the architectural approaches pro-
posed in the previous section do not fit the requirements
of myChaseBook. The limitations elucidated preclude the
achievement of the properties discussed in the motivating
example. We envisage that applications that want to provide
/ consume services register themselves with the cloud, which
acts as the central registry or even as a broker for negotiating
price and SLAs. However, different web-services would have
differing agendas and different properties that they wish to
optimize for. It is in this context that this paper’s main
contribution lies. We consider web-services running in the
cloud ecosystem and consider how these services might
optimize themselves and what this means for the quality
of the cloud as a whole.

Each web-service will set its own priorities with regard
to cost, performance, reliability and availability. Negotiation
amongst these services will occur through any of a variety
of resource reservation protocols as long as they conform to
the Web services agreement specification[19]. The problem
that we consider is whether such a system would reach its
optimal level of cost vis-a-vis other quality attributes.

4.2. The El Farol solution

We view the distributed selfish self-optimization as the El
Farol Bar problem [20] and seek inspiration in the solutions
proposed in [21], [22]. Specifically, the constraint that we
impose on any solution is that each web-service should
attempt local self-management only, without any knowledge
of the application as a whole. Also, it is not binding on
any web-service to cooperate with any other web-service.
Yagan and Thamdescribe a successful attempt [23] in using
Reinforcement Learning to optimize network routing. We
hope that a similar mechanism would work amongst web-
services as well. A software architecture can be specified
as a triad of components, connectors and topology [24]. In
the particular case of the cloud, topology is opaque to the
web-services and hence, the only optimization possible is in
the types of components and connectors used.

4.2.1. Modelling. Modelling the web-services in a cloud in
such a manner requires viewing the cloud as a marketplace.
Each web-service can be viewed as an agent with a budget
to spend and a targetted quality attribute to optimize. The
cloud provider could be viewed as the ‘market maker ’or the
broker, that specifies the negotiation protocol to be followed
when web-services bid for services. Now, each agent applies



Cloud provider’s "Broker API"

Enterprise - 1

Web-service - 2

Enterprise - 1

Web-service - 1

Enterprise - 2

Web-service - 1

Register Services Register Services
Search for 
Services

Negotiate SLA

Reinforcement Learning
 Agent

- Calculate Utility 
Function

- Update Utility Function

Figure 1. Interaction between autonomous web-
services in the cloud

its own learning algorithm to choose amongst the strategiesit
has, to negotiate with other agents. Depending on the quality
attribute that a particular agent is interested in optimizing,
it would be prepared to pay a high price for an SLA
that offers the desired guarantees. For example, an agent
that is interested in optimizing performance would pay a
premium for an SLA that guarantees a certain bandwidth
or certain algorithmic performance. Alternatively, another
agent interested in availability would pay a premium for an
SLA that promises redundancy. How much premium to pay
for obtaining a particular SLA is an engineering problem
in decision making, with tradeoffs between multiple quality
attributes and cost. A possible solution could be modelled
using multi-attribute utility theory [25]. Allowing each agent
to set its own parameters in a utility function creates
a marketplace where each agent would set a (possibly)
different price on different quality attributes. As shown in
[22], if there are enough agents with differing strategies
for maximising their utility, the system as a whole quickly
reaches a near optimal level.

To return to the motivating example, myChaseBook’s
web-services would pay premiums for other web-services
that provided (via SLAs) guarantees of performance and
redundancy. We contend that with enough diversity in the
population of web-services (and corresponding learning
strategies), the cloud as a whole will reach a level of optimal
cost vs. quality attribute tradeoff.

4.3. Applicability

Applications built in this manner should be resilient to
changes in cloud conditions with regard to demand, change
in types of supporting services and even organisational
objectives. Thus, maintainability of applications in the cloud
is greatly increased. For instance, a web-service that seeks
to optimize on cost, would constantly monitor the demand
being made on it and switch to cheaper composing services

as long as SLAs that it agreed to, are met. Now, if the
organisation’s objective were to change to providing a high
level of availability, the web-service would (due to a change
in its utility function) switch to more expensive services as
long as they promise higher availablity in their SLA.

5. Future Work

We think that modelling of the problem in greater detail
would be necessary to carry out any experimental evaluation.
We will propose more precise application of multi-attribute
utility theory to SLA negotiation. Also, modification strate-
gies that a web-service can learn from, will be proposed.
This would enable simulations of a cloud with negotiating
web-services, thus allowing us to test our idea of low-level
self-optimization leading to an emergent higher level opti-
mized application state in the cloud. If successful, this would
lead to long-lived applications in the cloud being more
resilient to change, and successfully adapting to changing
Quality Attribute optimization needs.
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