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Abstract—Recent research in search-based software engi-
neering (SBSE) has demonstrated that a number of software
engineering problems can be reformulated as a search problem,
hence search algorithms can be applied to tackle it. However,
most of the existing work has been of empirical nature and the
techniques are predominately experimental. Therefore in-depth
studies into characteritics of SE problems and appropriate
algorithms to solve them are necessary. In this paper, we
propose a novel method to gain insight knowledge on a
variant of the next release problem (NRP) using elementary
landscape analysis, which could be used to guide the design of
more efficient algorithms. Preliminary experimental results are
obtained to indicate the effectiveness of the proposed method.

I. INTRODUCTION

In the current state of Search-based software engineering
[1], a wide range of search-based optimisation techniques
have been successfully developed and applied to a number
of software engineering activities, right across the life-
cycle from requirements engineering to software testing
[2], including local search, simulated annealing, genetic
algorithms, etc. As a new flourishing research area it is being
natural that the existing methodology in SBSE has been
predominately experimental and lacks in-depth theoretical
work except for a few cases [3]. However, to allow the future
development of the field requires a deeper understanding of
problem and algorithm characteristics.

In order to acheive this goal, fitness landscape charac-
terisation shows a lot of promise. Since no matter what
algorithm is employed and what problem is investigated,
it is the fitness landscape that captures the nature of the
relationship between these two. So far little attention in the
literature has concerned the analysis of the fitness landscapes
arising from software engineering problems.

There is a special class of fitness landscapes termed
“elementary landscapes” [4]. Elementary landscapes possess
a unique characteristic where the objective function is an
eigenfunction of the graph Laplacian induced by the search
operator. This has resulted in several properties, which could
be applied implictly or explicitly to design a novel more
successful algorithm for a particular problem.

In particular, Whitley et al. [5] observed an interesting
consequence that in most practical elementary landscapes
studied, the objective function for a particular candidate so-
lution can be written as a linear combination of a subset of a

collection of components. A good example is TSP, in which
a fitness function is a linear combination of edge weights. As
a landscape is not necessarily an elementary landscape, this
property enables the construction of elementary landscapes,
where both the objective function and the search operator
should be appropriately designed as well.

There are a number of software engineering problems
sharing the property that the fitness function is linearly
decomposable, e.g. a variant of the Next Release Problem
(NRP) [6]. In this paper, we propose a methodology to apply
the elementary landscape analysis to gain insight knowledge
on a variant of NRP. The insight knowledge gained could
be used to construct more suited algorithms for this class of
problems. We choose to analyze the Sampling Hill Climbing
(SHC) algorithm [7], since only a single operator is involved
in this algorithm that makes it simple and clear for analysis.

The main contributions of this paper include:
• We develop a method to construct elementary land-

scapes and carry out the elementary landscape analysis
to gain insight knowledge.

• We show how the insight knowledge gained could be
applied to design a novel better algorithm.

The remainder of the paper is organised as follows.
Section 2 is a brief introduction to elementary landscapes.
The problem formulation that we choose to analyze follows
in Section 3. In Section 4 we propose the method in detail.
Section 5 presents the results from the experiments. Finally,
we conclude this paper in Section 6.

II. ELEMENTARY LANDSCAPES

Elementary landscapes [4] are a special class of fitness
landscapes, which possess certain properties that could be
applied to design novel more successful algorithms. We
could characterise software engineering problems that obey
certain constraints using elementary landscape analysis,
which would give insight knowledge on both selection and
design of the algorithms.

A. Fitness Landscapes

The notion of fitness landscapes [8] has been studied
extensively in both evolutionary biology and evolutionary
optimisation. It has proved to be very powerful in evolu-
tionary optimisation theory, particularly in understanding the
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behaviour of search algorithms for combinatiorial optimisa-
tion problems and in predicting their performance.

Formally, the fitness landscape of a problem instance for
a combinatorial problem is defined by a triple (X,N, f),
where X is a set of candidate solutions, the objective func-
tion f : X 7−→ < asigns a real-valued fitness to each point in
X and the neighbourhood operator N : x 7−→ N(x) imposes
a neighbourhood structure among X . Given a candidate
solution x ∈ X,N(x) is the neighbourhood set that can
be reached by one application of the operator.

B. Elementary Landscapes and Properties

Grover [9] first observed that the landscapes of cer-
tain combinatorial optimisation problems such as Travelling
Salesman Problem (TSP), could be characterised by a wave
equation. Stadler [4] gave a definition to this kind of land-
scape and named it ”Elementary Landscape”. A landscape is
elementary when the objective function is an eigenfunction
of the laplacian of the graph induced by the neighbourhood
operator [4].

From a simpler perspective, Whitley et al. [5] provided
a wave equation in terms of the expected value of
the neighbours, which more concretely expressed the
properties of elementary landscapes. Suppose x is some
fixed but arbitrary element of X, y is an element drawn
uniformly at random from the neighbourhood set N(x) of
x and f is the mean value over all solutions in X . On
an elementary landscape, the following wave equation holds.

E[f(y)] = f(x) +
k

d
(f − f(x))

for some k which is fixed for the entire landscape. Since
y is drawn uniformly at random, the expected value of the
fitness value of a neighbour y is always equal to the average
fitness value over all solutions in the neighbourhood [5].

Barnes et al. [10] classifed the elementary landscapes in
smooth and rugged. The wave equation holds for smooth
elementary landscapes has resulted in several properties,
which include relative smoothness, constraints on certain
plateaus structures and local optima, as well as allowing
for predictions about the fitness values of partial or full
neighbourhoods during search, etc. In addition, arbitrary
fitness landscapes can be decomposed into a superposition
of elementary landscapes.

Additionally, landscapes with this property tend to be
relatively smooth when contrasted to other combinatorial
optimisation problems with well-studied local move oper-
ators, which could be considered to be an advantage for
local search algorithms [5].

The wave equation also imposes constraints on the struc-
ture of local optima and precludes the existence of certain
plateaus structure. One of the following observations by
Codenotti and Margara [11] is true.
• if f(x) = f f(x) = E[f(y)] = f

• if f(x) < f f(x) < E[f(y)] < f
• if f(x) > f f(x) > E[f(y)] > f

Grover [9] observed similar consequences. Let Zmin

and Zmax be a local minimum and a local maximum,
respectively. Then

Zmin < f < Zmax

In other words, all local minima lie below the average
function value of the search space.

Whitley et al. [5] also proved that for a plateau P on a
(non-flat) elementary landscape, if x ∈ P has only equal
and disimproving neighbours, then there cannot exist a
solution z ∈ P with only equal and improving neighbors.
A plateau is a set P of candidate solutions in X such
that for all a, b ∈ P , f(a) = f(b) and there is a path
(a = x1, x2, ..., xk = b) such that xi+1 ∈ N(xi). Plateaus
(also known as neutral networks) are structural features that
arise in many combinatorial problems [12]. Plateau structure
is a challenge for local search that can cause the algorithm
to cease progress.

We have seen that the expected fitness value of the
full neighbourhood can be predicted by the wave equation.
Moreover, we could expand a partial neighbourhood during
search, and make predictions for the remaining neighbour-
hood. This property gives significant insight knowledge to
the search algorithm that could be explicitly applied in
designing algorithms.

In addition, arbitrary fitness landscapes can be decom-
posed into a superposition of ”elementary landscapes” via
a Fourier series expansion. A series expansion f(x) =∑N

i=1
αiϕi(x), where ϕi forms a complete and orthonor-

mal system of eigenfunctions of the graph laplacian, is
termed a Fourier series expansion of the objective func-
tion. This decomposition is helpful in a sense that some
statistical properties of the landscape could be computed
and the decomposed elementary landscapes can be studied
individually. The information about the effective hardness of
an elementary landscape is contained in the relative ordering
of the associated eigenvalues [13].

C. Component-based Model

Whitley et al. [5] observed several interesting
consequences arise from the expected value equation.
In most practical elementary landscapes studied, the
objective function for a particular candidate solution can be
written as a linear combination of a subset of a collection
of components. A good example is TSP, in which a fitness
function is a linear combination of edge weights. Let C be
a set of real valued components and there exists Cx ⊂ C

such that f(x) =
∑
c∈Cx

c. The set Cx is referred to as the

intracomponents of a solution x and the set C − Cx as
the intercomponents of x. When a local search move has
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been made from an incumbent solution x to a neighbouring
solution, an exchange of components is made. In particular,
a subset of the intracomponents is removed and a subset of
the intercomponents is added.

On this basis, Whitley et al. [5] constructed a
component-based model that can be used to characterise a
neighbourhood structure. In this model, the neighbourhood
size is regular and denoted by d. The model consists of the
following equations.

f = p3
∑
c∈C

c

E{f(y)} = f(x)− p1f(x) + p2(
∑
c∈C

c− f(x))

= f(x)− p1f(x) + p2(
1

p3
f − f(x))

where 0 < p1 < 1 is the proportion of the intracompo-
nents that that are removed from the solution in one move,
0 < p2 < 1 is the proportion of the intercomponents that are
added to the solution in a move. Finally, 0 < p3 < 1 is the
proportion of the total components in C that contribute to
the cost function for any randomly chosen solution, which
is independent of the neighborhood size. Whitley et al. [14]
proposed a component theorem:

Theorem 1: If p1, p2 and p3 (must be constants) can be
defined for any regular landscape such that the evaluation
function can be decomposed into components where p1 =
α/d and p2 = β/d and

f = p3
∑
c∈C

c =
β

α+ β

∑
c∈C

c

then the landscape is elementary.

III. THE NEXT RELEASE PROBLEM (NRP)

The Next Release Problem (NRP) was originally formu-
lated by Bagnall et al. [6]. The variant of the NRP studied
in this paper is a representative of a class of software
engineering problems where the fitness functions could be
linearly decomposed. The problem is formulated as follows.

Given a software product, let R denote a set of candidate
requirements to be considered to implement for the next
release of the software, each r ∈ R has an associated cost(r)
which is a measure of the resouce consumption to imple-
ment it. and a weight wi which reflects the requirement’s
importance. Also there is a budget for the total cost of the
implemented requirements.

Associated with R, there is a directed acyclic graph G
= (R,E) where (ri, rj) ∈ E iff ri is a prerequisite of rj ,
G is also transitive since (ri, rj) ∈ E ∧ (rj , rk) ∈ E ⇒
(ri, rk) ∈ E. If the company decides to satisy requirement
ri, it must satisfy the prerequisites of ri. In a special case

where no requirement has any prerequisite E = ∅, we say
the problem is basic.

Assuming there are n requirements, the problem faced is
to find a subset S of R, the cardinality of S is fixed and is
k, such that∑

ri∈S
wi is maximised,

∑
ri∈S

cost(ri) is minimised.

Different search algorithms have been applied to NRP [6],
but they were all experimental work. There is no analysis of
whether the obtained results are good and whether they could
be improved. There is no analysis either what characteristics
the NRP has and whether the search algorithms used are
appropriate.

IV. PROPOSED METHOD FOR ANALYSING SE
LANDSCAPES

A. Overview of the Proposed Method

The elementary properties possessed by certain fitness
landscapes are promising and could be applied to im-
prove the performance of certain algorithms on particular
problems. Initially, a fitness landscape is not necessarily
elementary, and thus we will need to modify either the fitness
function or the neighbourhood operator to construct an ele-
mentary landscape. In addition, to the best of our knowledge,
the fitness function should be linearly decomposable in order
to enable the construction of an elementary landscape.

In this section, we give a detailed description of our
proposed method, with a case study on how the elementary
landscape analysis could be applied to the Sampling Hill
Climbing (SHC) algorithm on a variant of the Next Release
Problem (NRP).

We categorize the elementary properties into two classes.
One is implicit, which are inherent given the landscape is
elementary and do not affect the design of the algorithm,
e.g. relative smoothness. The other one is explicit, which can
be explicitly applied while designing algorithms e.g. allow
prediction for partial neighbourhoods. Here is an overview
of the proposed method.

a. For a given software engineering problem where its
fitness function is linearly decomposable, pick up a
search algorithm and develop a fitness function and a
neighbourhood operator for the selected algorithm.

b. Carry out the elementary landscape analysis.
c. Apply the insight knowledge to the initial algorithm

and develop the improved algorithm.
d. Evaluate the performance of the improved algorithm.

B. Initialisation

As a simple but effective local search algorithm, and
involving only a single move operator, Sampling Hill Climb-
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ing (SHC) is selected as the initial search algorithm. This
algorithm works by moving from an inital solution to a local
optima providing the move is improving. In each iteration,
it simply samples, randomly, a number of solutions from
the neighbourhood and take the best of them. The algorithm
might get stuck when each of the samples is worse than
the current solution, we chose to continue the search by
accepting the best move irrespective of whether or not it is
improving. The algorithm will terminate after a fixed number
of iterations.

In each local search algorithm, there is an objective
function to guide the search. According to the problem
formulation of a variant of the Next release problem (NRP),
the objective function can be defined as

f(S) =
∑
Ri∈S

wi + Budget−
∑
Ri∈S

cost(Ri).

With respect to the local search operator, the initial
choice is 2-exchange, which will randomly exchange two
requirements in S and R− S.

C. Elementary Landscape Analysis
First of all, we apply the component-based model to

determine whether the fitness landscape generated by the
initial algorithm is elementary or not.

The objective function defined above is a combination of
weights and costs, which is similar to Whitley’s observation
of components. Let the set wi − cost(Ri) make up the set
of components C, where |C| = |R|, we could apply the
component-based model and component theorem to prove
whether the induced landscape is elementary or not.

We first compute p3 and f , since k components have
been picked up to contribute to the objective function.

p3 =
k

|R|
, f = p3

∑
c∈C

c =
k

|R|
(
∑
Ri∈S

wi −∑
Ri∈S

cost(Ri) + |R| ∗Budget).

To compute p1 note there are k components in any
solution, and two-exchange changes exactly 2 components.
Therefore p1 = 2/k.

To compute p2 note there are |R| − k components with
the components in f(x) removed and 2 new components are

picked from these.Therefore p2 =
2

|R| − k
.

Adding the terms to the component-based model yields:

Avg{f(y)} = f(x)− p1f(x) + p2(
1

p3
f − f(x))

= f(x)− 2

k
f(x) +

2

|R| − k
(
|R|
k
f − f(x))

= f(x) +
2|R|

(|R| − k)k
(f − f(x))

Hence the fitness landscape induced is elementary.

D. Apply the Insight Knowledge

Given the fact that the landscape is elementary, certain
explicit elementary properties could be applied in a form
of heuristics to replace certain components of the initial
algorithm. In the initial Sampling Hill Climbing (SHC)
algorithm, it randomly samples N solutions from the neigh-
bourhood. The size of samples has a large impact on the
search behaviour - expanding the size is more likely to find
an improving move. Since one of the following observations
is true for elementary landscapes
• if f(x) = f f(x) = E[f(y)] = f
• if f(x) < f f(x) < E[f(y)] < f
• if f(x) > f f(x) > E[f(y)] > f

When f(x) < f f(x) < E[f(y)], one can be sure
that a neighbourhood includes an improving move (Assume
maximisation). A significantly smaller sample size could
have identified an improving move under this circumstance.

When f(x) > f f(x) > E[f(y)], one cannot be sure
that a neighbourhood includes an improving move, however,
elementary properties allow for expanding a partial neigh-
bourhood and predict for the remaining neighbourhood.
This prediction is expected to guide the search to a more
promising direction and reduce the time wasted in less
promising expansions and evaluations. Here is a sketch of
the algorithm.

Algorithm 1 Elementary Sampling Hill Climbing.
1: Randomly generate an initial solution x.
2: for K iterations do
3: if f(x) <= f then
4: Sample A solutions in the neighbourhood and take

the best move among them, A << N ;
5: else
6: Expand a partial neighbourhood of size B, compute

the expected value of the remaining neighbour-
hood.

7: if Exp[Remaining neighbourhood] > f(x) then
8: Sample C solutions in the remaining neigh-

bourhood and take the best move among them,
(B + C) << N ;

9: else
10: Take the best move in the partial neighbourhood;
11: end if
12: end if
13: end for
14: return local optima found;

V. COMPUTATIONAL STUDIES

To evaluate the performance of the algorithm incorporated
with the insight knowledge obtained by the elementary
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Table I
ALGORITHM PARAMETERS

PARAMETERS VALUES
Number of iterations K 100

Initial neighbourhood size N 10−3 * full neighbourhood size
Neighbourhood size A 0.1 * N

Partial neighbourhood size B 0.6 * A
Neighbourhood size C 0.4 * A

landscape analysis, both Elementary Sampling Hill Climbing
(ESHC) and Sampling Hill Climbing (SHC) have been
implemented in MATLAB. We have carried out an empirical
study to pick up the value of different neighbourhood sizes
that can find the solution of best quality. Table I presents
the algorithm parameters obtained.

To rate the effectiveness of ESHC requires comparison
with SHC on different problem instances, in terms of the
quality of the best solution found and the time consumed.
By varying the size of candidate requirements set |R| and the
selected requirements set |S|, we have studied 16 problem
instances. These synthetic problem instances are randomly
generated according to the data sets generator described in
[15]. For each problem instance (PI), 50 algorithm runs are
performed. The experimental results are listed in Table II, in
the first column, the value after slash is the size of candidate
requirements set R and the ratio before slash specifies the
proportion of R to be selected.

In order to measure the performance of ESHC, we have
performed a statistical analysis on the experimental data
above using T-test with confidence level at 95%. From which
we could show that the algorithm running time of ESHC
is significantly less than that of SHC, while there is no
significant difference between the quality of the best solution
found by both algorithms, on each problem instance studied.

The experimental results show that the Sampling Hill
Climbing algorithm incorporated with elementary properties
outperforms the initial SHC with far less running time
while being able to find roughly the same optimal solution.
As described in Section IV, the insight knowledge gained
from the elementary landscape analysis can lead the search
to focus on promising moves that prevent wasting time
in non-promising exploitations. Hence we suppose this is
where the performance improvement in time comes from.
The experimental results presented in this work are still
preliminary, since only one elementary property has been
used, which is the predictions for the fitness values of the
partial or full neighbourhood. However, if more elementary
properties could be appropriately applied to the algorithms, it
shows some promise that the elementary landscape analysis
can be useful to construct a more suited algorithm for
a particular problem, or a class problems sharing certain
similarities.

Table II
PERFORMANCE AVERAGES AND STANDARD DEVIATIONS

OF 50 RUNS OF ESHC AND SHC ON 16 PROBLEM INSTANCES

BEST SOLUTION TIME
PROBLEM
INSTANCE

ESHC SHC ESHC SHC

PI-1
(10%/50)

31.2±0.88 25.8±2.17 0.03±0.0007 0.08±0.003

PI-2
(20%/50)

59.2±2.4 61.9±1.9 0.15±0.0036 0.26±0.0027

PI-3
(50%/50)

117±1.5 118.6±1.56 0.36±0.0077 0.66±0.0015

PI-4
(80%/50)

146.2±2 146.1±2.74 0.15±0.0035 0.26±0.0009

PI-5
(10%/100)

74.76±0.43 72±1.02 0.6±0.0026 1.42±0.0028

PI-6
(20%/100)

137.1±1.1 137.9±0.81 2.43±0.05 4.72±0.025

PI-7
(50%/100)

269.4±0.85 270.3±0.79 6.06±0.15 11.9±0.12

PI-8
(80%/100)

326.1±1.3 327.1±1.1 2.5±0.07 4.78±0.04

PI-9
(10%/200)

149.9±0.76 150.5±0.71 14.1±0.33 28.4±0.12

PI-10
(20%/200)

241.1±0.57 241.7±0.5 43.8±1.03 92.9±0.37

PI-11
(50%/200)

536.6±0.6 536.8±0.5 108.9±2.4 231.3±0.4

PI-12
(80%/200)

370.4±0.55 371±0.71 64.3±0.1 91.7±0.16

PI-13
(10%/500)

357.7±0.48 358.5±0.71 81.65±3.11 178.22±3.70

PI-14
(20%/500)

675.2±0.84 675.4±5.37 241.4±5.37 551.57±1.66

PI-15
(50%/500)

1301.2±1.30 1302±0.45 593.93±12.4 1376.75±17

PI-16
(80%/500)

1601.8±1.30 1604±0.00 249.17±0.23 557.54±1.1

VI. CONCLUSION

In this work we have developed a fitness landscape anal-
ysis method to gain insight knowledge on certain software
engineering problems. The main goal is to characterise
a class of fitness landscapes sharing certain similarities,
which would give more insights that could be applied to
construct more suited algorithms for particular problems. So
far the proposed method is applicable for problems where
the objective functions could be linearly decomposed into
components.

We carried out a case study to analyze the effectiveness
of the proposed method, which is Sampling Hill Climbing
(SHC) on a variant of the Next Release Problem (NRP).
We found out that if the objective function of a software
engineering problem is linearly decomposable, it is possible
to construct an elementary landscape and apply elementary
properties to design a better algorithm for this problem. The
experimental results show that SHC incorporated with ele-
mentary properties outperforms the initial algorithm. There-
fore we could assume that the performance of algorithms for
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a particular problem could be improved by the applicaiton
of the elementary landscape analysis.

The future work will include exploiting other elementary
properties that could be applied to the algorithms, and ex-
tending this method to more software engineering problems.
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