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ABSTRACT
The interplay between the mutation operator and the selec-
tion mechanism plays a fundamental role in the behaviour of
evolutionary algorithms. However, this interplay is still not
completely understood. This paper presents a rigorous run-
time analysis of a non-elitistic population based evolutionary
algorithm that uses the linear ranking selection mechanism.
The analysis focuses on how the balance between parameter
η controlling the selection pressure in linear ranking selec-
tion, and parameter χ controlling the bit-wise mutation rate
impacts the expected runtime.

The results point out situations where a correct balance
between selection pressure and mutation rate is essential for
finding the optimal solution in polynomial time. In particu-
lar, it is shown that there exist fitness functions which under
a certain assumption can be solved in polynomial time if the
ratio between parameters η and χ is appropriately tuned to
the problem instance class, but where a small change in this
ratio can increase the runtime exponentially. Furthermore,
it is shown that the appropriate parameter choice depends
on the characteristics of the fitness function. Hence there
does in general not exists a problem-independent optimal
balance between mutation rate and selection pressure.

The results are obtained using new techniques based on
branching processes.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Computa-
tions on discrete structures; G.3 [Probability and Statis-
tics]: Probabilistic Algorithms

General Terms
Algorithms, Theory
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1. INTRODUCTION
Evolutionary algorithms (EAs) have been applied success-

fully to many optimisation problems [14]. However, despite
several decades of research, many fundamental questions
about their behaviour remain open. One of the central ques-
tions regarding EAs is to understand the interplay between
the selection mechanism and the genetic operators. Sev-
eral authors have suggested that EAs must find a balance
between maintaining a sufficiently diverse population to ex-
plore new parts of the search space, and at the same time
exploit the currently best found solutions by steering the
search in this direction [6, 16, 7].

Much research has therefore focused on finding measures
to quantify the selection pressure in selection mechanisms,
and subsequently on investigating how EA parameters in-
fluence these measures [7, 1, 2, 15, 2, 3]. One such mea-
sure, called the take-over time, considers the behaviour of
an evolutionary process consisting only of the selection step,
and no crossover or mutation operators [7, 1]. Subsequent
populations are produced by selecting individuals from the
previous generation, keeping at least one copy of the fittest
individual. Hence, the population will after a certain num-
ber of generations only contain those individuals that were
fittest in the initial population, and this time is called the
take-over time. A short take-over time corresponds to a
high selection pressure. Other measures of selection pres-
sure consider properties of the distribution of fitness values
in a population that is obtained by a single application of
the selection mechanism to a population with normally dis-
tributed fitness values [2]. One of these properties is the
selection intensity, which is the difference between the aver-
age population fitness before and after selection [15]. Other
properties include loss of diversity [2, 12] and higher order
cumulants of the fitness distribution [3].

To completely understand the role of selection mecha-
nisms, it is necessary to also take into account their inter-
play with the genetic operators. There exists few rigorous
studies of selection mechanisms when used in combination
with genetic operators. Happ et al. analysed variants of
the RLS and (1+1) EA that use fitness proportionate selec-
tion, showing that both these algorithms have exponential
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runtime on the class of linear functions [9]. However, the al-
gorithms considered only use a single individual, so it is dif-
ficult to draw any conclusion regarding population-based al-
gorithms. Witt analysed a population-based algorithm with
fitness proportionate selection, however with the objective
to study the role of populations [18]. Recently, Chen et al.
have analysed the runtime of the (N+N) Evolutionary Al-
gorithm using either truncation selection, linear ranking se-
lection or binary tournament selection on the LeadingOnes
and OneMax fitness functions [4]. They show that the ex-
pected runtime on these fitness functions is the same for all
three selection mechanisms. These results do not show how
the balance between selection pressure and mutation rate
impacts the runtime. It is worth noting that the considered
algorithm in their work is elitistic, i. e. the best individual
in every generation is always copied to the next generation.

This paper analyses rigorously a non-elitistic, population
based EA that uses linear ranking selection and bitwise mu-
tation. The main contributions are an analysis of situations
where the mutation-selection balance has an exponentially
large impact on the expected runtime, and new techniques
based on branching processes for analysing non-elitistic pop-
ulation based EAs.

1.1 Notation and Preliminaries
The following notation will be used in the rest of this

paper. The length of a bitstring x is denoted `(x). The
ith bit, 1 ≤ i ≤ `(x), of a bitstring x is denoted xi. The
concatenation of two bitstrings x and y is denoted by x · y,
and sometimes xy. Given a bitstring x, the notation x[i, j],
where 1 ≤ i < j ≤ `(x), denotes the substring xixi+1 · · ·xj .
For any bitstring x, define ‖x‖ :=

P`(x)
i=1 xi/`(x), i. e. the

fraction of 1-bits in the bitstring.
In contrast to classical algorithms, the runtime of evolu-

tionary algorithms is usually measured in terms of the num-
ber of evaluations of the fitness function, and not the number
of basic operations.

Definition 1 (Runtime [5, 10]). Given a class F of
fitness functions fi : Si → R, the runtime TA,F (n) of a
search algorithm A is defined as

TA,F (n) := max{TA,f | f ∈ Fn},

where Fn is the subset of functions in F with instance size
n, and TA,f is the number of times algorithm A evaluates
the cost function f until the optimal value of f is evaluated
for the first time.

The variable name τ will be used to denote the runtime
in terms of number of generations of the EA. Given a pop-
ulation size λ, this variable is related to the runtime T by
λ(τ − 1) ≤ T ≤ λτ .

2. DEFINITIONS

2.1 Linear Ranking Selection
In ranking selection, individuals are selected according to

their fitness rank in the population. A ranking selection
mechanism is uniquely defined by the probabilities pi of se-
lecting an individual ranked i, for all ranks i [2]. For math-
ematical convenience, an alternative definition due to Gold-
berg and Deb [7] is adopted, in which a function α : R→ R
is considered a ranking function if it satisfies the following
three properties

1. α(x) ∈ R for x ∈ [0, 1],

2. α(x) ≥ 0, and

3.
R 1

0
α(y)dy = 1.

Individuals are ranked from 0 to 1, with the best individual
ranked 0, and the worst individual ranked 1. For a given
ranking function α, the integral β(x, y) :=

R y
x
α(z)dz gives

the probability of selecting an individual with rank between
x and y. By defining the linearly decreasing ranking function
α(x) := η− c · x, where η and c are parameters, one obtains
linear ranking selection. The ranking function properties
imply that η ≥ c ≥ 0, and c = 2 · (η − 1). Hence, for linear
ranking selection, we have

α(x) := η · (1− 2x) + 2x, and (1)

β(x) := β(0, x) = x · (η · (1− x) + x). (2)

Given a fixed population size λ, the selection pressure,
measured in terms of take-over time, is uniquely given by
and monotonically decreasing in parameter η [7]. The weak-
est selection pressure is obtained for η = 1, where selection
is uniform over the population, and the highest selection
pressure is obtained for η = 2.

2.2 Evolutionary Algorithm

1 Linear Ranking EA

1: t← 0.
2: for i = 1 to λ do
3: Sample x uniformly at random from {0, 1}n.
4: P0(i)← x.
5: end for
6: repeat
7: Sort Pt according to fitness f , such that

f(Pt(1)) ≥ f(Pt(2)) ≥ · · · ≥ f(Pt(λ)).
8: for i = 1 to λ do
9: Sample r in {1, ..., λ} with Pr [r ≤ γλ] = β(γ).

10: Pt+1(i)← Pt(r).
11: Flip each bit position in Pt+1(i) with prob. χ/n.
12: end for
13: t← t+ 1.
14: until termination condition met.

We consider a population-based non-elitistic evolutionary
algorithm which uses linear ranking as selection mechanism.
The crossover operator will not be considered in this pa-
per. The pseudo-code of the algorithm is given above. After
sampling the initial population P0 at random in lines 1 to 5,
the algorithm enters its main loop where the current popu-
lation Pt in generation t is sorted according to fitness, then
the next population Pt+1 is generated by independently se-
lecting (line 9) and mutating (line 10) individuals from the
previous population Pt. The analysis of the algorithm is
based on the assumption that parameter χ is a constant
with respect to n.

Linear ranking selection is indicated in line 9, where for
a given selection pressure η, the cumulative probability of
sampling individuals with rank less than γ · λ is β(γ). It
can be seen from the definition of the functions α and β,
that the upper bound β(γ, γ + δ) ≤ δ · α(γ), holds for any
γ, δ > 0 where γ + δ ≤ 1. Hence, the expected number of
times a uniformly chosen individual ranked between γλ and
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Figure 1: Illustration of optimal search points.

(γ + δ)λ is selected during one generation is upper bounded
by (λ/δλ) ·β(γ, γ+ δ) ≤ α(γ). We leave the implementation
details of the sampling strategy unspecified, and assume that
the EA has access to some sampling mechanism which draws
samples perfectly according to β.

2.3 Fitness Function

Definition 2. For any constants σ, 0 < σ < 1, and in-
teger k ≥ 1, define the fitness function parameterised by σ
and k as

SelPresσ,k(x) :=

(
2n if x ∈ X∗σ, andPn
i=1

Qi
j=1 xj otherwise,

where the set of optimal solutions X∗σ is defined to contain
all bitstrings x ∈ {0, 1}n satisfying

‖x[1, k + 3]‖ = 0,

‖x[k + 4, (σ − δ)n− 1]‖ = 1, and

‖x[(σ + δ)n, (σ + 2δ)n− 1]‖ ≤ 2/3,

where δ > 0 is any arbitrarily small constant.

Except for the set of globally optimal solutions X∗σ, the
fitness function takes the same values as the well known
LeadingOnes fitness function, i. e. the number of leading
1-bits in the bitstring. The form of the optimal search
points, which is illustrated in Figure 1, depends on the three
problem parameters σ, k and δ. The δ-parameter is needed
for technical reasons and can be set arbitrarily close to 0.
Hence, the globally optimal solutions have approximately
σn leading 1-bits, except for k + 3 leading 0-bits. In addi-
tion, globally optimal search points must have a short inter-
val after the first σn bits which does not contain too many
1-bits.

3. MAIN RESULT

Theorem 1. Let T be the runtime of the Linear Ranking
EA with population size n ≤ λ ≤ nk using linear ranking
selection with a constant selection pressure of η, 1 < η ≤ 2,
and bit-wise mutation rate χ/n, with constant χ > 0, on
fitness function SelPresσ,k with parameter σ, 0 < σ < 1.
Then for any constant ε > 0,

• If η > 2 exp(χ(σ + 3δ + ε))− 1 + δ, then

E [T ] = eΩ(n).

• If η = exp(χσ) and no individual reaches more than
(σ + δ)n leading 1-bits, then

E [T ] = O(nk+3).

Proof. The theorem follows from Theorems 5 and 6.

Expected runtime.

Selection pressure η.
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Polynomial.

Exponential.

Figure 2: Illustration of Theorem 1 with fixed mu-
tation rate χ = 1, indicating expected runtime of the
EA on SelPresσ,k as a function of selection pressure
η (horizontal axis) and problem parameter σ (verti-
cal axis).

Theorem 1 is illustrated in Figure 2 for mutation rate
χ = 1. Each point in the gray area indicates that for the
corresponding values of selection pressure η and problem pa-
rameter σ, the EA has expected exponential runtime (ie. is
highly inefficient). The thick line indicates values of σ and
η where the expected runtime of the EA is a small polyno-
mial (ie. is highly efficient), under the assumption that no
individual reaches more than (σ + δ)n leading 1-bits. The
expected runtime in the white regions is not analysed.

4. RUNTIME ANALYSIS
This section gives the proofs of Theorem 1. The anal-

ysis is conceptually divided into two parts. In Sections 4.1
and 4.2, the behaviour of the main“core”of the population is
analysed, showing that the population enters an equilibrium
state. This analysis is sufficient to prove the polynomial up-
per bound in Theorem 1. Sections 4.3 and 4.4 analyse the
behaviour of the “stray” individuals that sometimes move
away from the core of the population. This analysis is nec-
essary to prove the exponential lower bound in Theorem 1.

4.1 Population Equilibrium
As long as the global optimum has not been found, the

population is evolving with respect to the number of leading
1-bits. In the following, we will prove that the population
eventually reaches an equilibrium state in which the pop-
ulation makes no progress with respect to the number of
leading 1-bits.

The population equilibrium can be explained informally
as follows. On one hand, the selection mechanism increases
the number of individuals in the population that have a rel-
atively high number of leading 1-bits. On the other hand,
the mutation operator may flip one of the leading 1-bits, and
the probability of doing so clearly increases by the number of
leading 1-bits in the individual. Hence, the selection mech-
anism causes an influx of individuals with a high number of
leading 1-bits, and the mutation causes an efflux of individu-
als with a high number of leading 1-bits. At a certain point,
the influx and efflux reach a balance which is described in the
field of population genetics as mutation selection balance.

Our first goal will be to describe the population when it
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Figure 3: Impact of one generation of selection and
mutation from the point of view of the γ-ranked in-
dividual in population Pt.

is in the equilibrium state. This is done rigorously by con-
sidering each generation as a sequence of λ Bernoulli trials,
where each trial consists of selecting an individual from the
population and then mutating that individual. Each trial
has a certain probability of being successful in a sense that
will be described later, and the progress of the population
depends on the sum of successful trials, i. e. the population
progress is a function of a certain Bernoulli process.

4.1.1 Ranking Selection as a Bernoulli Process
We will associate a Bernoulli process with the selection

step in any given generation of the non-elitistic EA, simi-
lar to Chen et al [4]. For notational convenience, the in-
dividual that has rank γ · λ in a given population, will be
called the γ-ranked individual of that population. For any
constant γ, 0 < γ < 1, assume that the γ-ranked individ-
ual has f0 := ξn leading 1-bits for some some constant ξ.
As illustrated in Figure 3, the population can be parti-
tioned into three groups of individuals: λ+ individuals with
fitness higher than f0, λ0 individuals with fitness equal to
f0, and λ− individuals with fitness less than f0. Clearly,
λ+ + λ0 + λ− = λ, and 0 ≤ λ+ < γ · λ.

Theorem 2. For any constant γ, 0 < γ < 1, let ξn be
the number of leading 1-bits in the γ-ranked individual of a
population which does not contain an optimal solution. Then
for any constant δ > 0,

1. if ξ < ln(β(γ)/γ)/χ − δ, then the probability that the
γ-ranked individual in the next generation has at least
ξn leading 1-bits is 1− e−Ω(λ), and

2. if ξ > ln(β(γ)/γ)/χ + δ then the probability that the
γ-ranked individual in the next generation has at most
ξn leading 1-bits is 1− e−Ω(λ),

where β(γ) is as given in Eq. (2).

Proof. For the first part of the theorem, we consider
each iteration of the selection mechanism a Bernoulli trial
where a trial is successful if the following event occurs:

E+
1 : An individual with at least ξn leading 1-bits is selected,

and none of the initial ξn bits are flipped.

Let random variable X denote the number of successful tri-
als. Notice that the event X ≥ γ ·λ implies that the γ-ranked
individual in the next generation has at least ξn leading
1-bits. The assumption ξ < ln(β(γ)/γ)/χ− δ implies that

E [X] = λ ·Pr
ˆ
E+

1

˜
≥ λ · β(γ) · (1− χ/n) · (1− χ/n)ξn−1

≥ λ · β(γ) · (1− χ/n) · e−ξχ

≥ γ · λ · (1− χ/n) · eχδ

≥ (1 + χδ) · γ · λ · (1− χ/n).

For sufficiently large n, a Chernoff bound [13] therefore im-
plies that the probability that the number of successes is less
than γ · λ is e−Ω(λ).

For the second part of the theorem, we define a trial suc-
cessful if one of the following two events occurs:

E+
2 : An individual with at least ξn + 1 leading 1-bits is

selected, and none of the initial ξn+1 bits are flipped.

E−2 : An individual with less than ξn + 1 leading 1-bits is
selected, and the mutation of this individual creates
an individual with at least ξn+ 1 leading 1-bits.

Let random variable Y denote the number of successful tri-
als. Notice that the event Y < γ ·λ implies that the γ-ranked
individual in the next generation has no more than ξn lead-
ing 1-bits. Furthermore, since the γ-ranked individual in
the current generation has exactly ξn leading 1-bits, less
than γ ·λ individuals have more than ξn leading 1-bits. The
probability of the event E+

2 is therefore bounded by

Pr
ˆ
E+

2

˜
≤ β(γ) · (1− χ/n)ξn+1 ≤ β(γ)/eξχ.

If the selected individual has k ≥ 1 0-bits within the first
ξn+1 bit positions, then the probability of mutating this in-
dividual into an individual with at least ξn+1 leading 1-bits,
and hence also the probability of event E−2 , is bounded from
above by

Pr
ˆ
E−2
˜
≤ (1− χ/n)ξn+1−k · (χ/n)k ≤ χ/neξχ.

The assumption ξ ≥ ln(β(γ)/γ)/χ+ δ then implies that for
any constant δ′, 0 < δ′ < 1− e−δξ < 1,

E [Y ] = λ · (Pr
ˆ
E+

2

˜
+ Pr

ˆ
E−2
˜
)

≤ λ · (β(γ) + χ/n) · e−ξχ

≤ γ · λ · (1 + χ/nβ(γ)) · e−χδ

≤ (1− δ′) · γ · λ · (1 + χ/nβ(γ)).

For sufficiently large n, a Chernoff bound therefore implies
that the probability that the number of successes is at least
γ · λ is e−Ω(λ).

In the following, we will say that the γ-ranked individual
x is in the equilibrium position if the number of leading 1-
bits in x is higher than (ξ − δ)n and smaller than (ξ + δ)n,
where ξ = ln(β(γ)/γ)/χ.

4.1.2 Drift Analysis in two Dimensions
Theorem 2 states that when the population reaches a cer-

tain area of the search space, the progress of the popula-
tion will halt and the EA enters an equilibrium state. Our
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next goal is to calculate the expected time until the EA
enters the equilibrium state. More precisely, for any con-
stants γ, 0 < γ < 1 and δ > 0, we would like to bound the
expected number of generations until the fitness f0 of the
γ-ranked individual becomes at least n · (ln(β(γ)/γ)/χ− δ).
Although the fitness f0 will have a tendency to drift towards
higher values, it is necessary to take into account that the
fitness can in general both decrease and increase according
to stochastic fluctuations.

Drift analysis has proven to be a powerful mathemati-
cal technique to analyse such stochastically fluctuating pro-
cesses [10]. Given a distance measure (sometimes called po-
tential function) from any search point to the optimum, one
estimates the expected drift ∆ towards the optimum in one
generation, and bounds the expected time to overcome a
distance of b(n) by b(n)/∆.

However, in our case, a direct application of drift analysis
with respect to f0 will give poor bounds, because the ex-
pected drift of f0 depends on the value of a second variable
λ+. The probability of increasing the fitness of the γ-ranked
individual is low when the number of individuals in the pop-
ulation with higher fitness, i.e. λ+, is low. However, it is
still likely that the sum λ0 +λ+ will increase, thus increasing
the number of good individuals in the population.

Several researchers have discussed this form of alternating
behaviour in population-based EAs [17, 4]. Witt shows that
by taking into account replication of good individuals, one
can improve on trivial upper runtime bounds for the (µ+1)
EA, e.g. from O(µn2) on the LeadingOnes problem into
O(µn logn + n2) [17]. Chen et al. describes a similar situ-
ation in the case of an elitistic EA, which goes through a
sequence of two-stage phases, where the first stage is char-
acterised by accumulation of leading individuals, and the
second stage is characterised by acquiring better individuals
[4].

Generalised to the non-elitistic EA described here, this
corresponds to first accumulation of λ+-individuals, until
one eventually gains more than γλ individuals with fitness
higher than f0. In the worst case, when λ+ = 0, one expects
that f0 has a small positive drift. However, when λ+ is high,
there is a high drift. When the fitness is increased, the value
of λ+ is likely to decrease. To take into account this mutual
dependency between λ+ and f0, we apply drift analysis in
conceptually two dimensions, finding the expected drift of
both f0 and λ+. The drift analysis applies the following
simple property of function β which follows directly from
the definition in Eq. (2).

Lemma 1. The function β defined in Eq. (2) satisfies
β(γ/l)/β(γ) ≥ 1/l, for all γ, 0 < γ < 1, and l ≥ 1.

The following theorem is analogous to Theorem 3, and
shows that if the γ-ranked individual in a given population
is below the equilibrium position, then the equilibrium po-
sition will be reached within expected O(n2) generations.

Theorem 3. Let γ and δ be any constants with 0 < γ < 1
and δ > 0. The expected number of function evaluations
until the γ-ranked individual of the Linear Ranking EA with
population size λ ≥ c lnn, for some constant c > 0, attains
at least n(ln(β(γ)/γ)/χ − δ) leading 1-bits or the optimum
is reached, is O(λn2).

Proof. We consider the drift according to the potential
function p(Xt) := h(Xt) + λ · g(Xt), which is composed of a

horizontal component g, and a vertical component h, defined
as

g(Xt) := n− LeadingOnes(x(γ)),

h(Xt) := γ · λ− |{y ∈ Pt | f(y) > f(x(γ))}|

where x(γ) is the γ-ranked individual in population Xt. The
horizontal ∆x,t and vertical ∆y,t drift in generation t is
∆x,t := g(Xt)−g(Xt+1), and ∆y,t := h(Xt)−h(Xt+1). The
horizontal and vertical drift will be bounded independently
in the following two cases,

1) 0 ≤ λ+
t ≤ γλ/l, and

2) γλ/l < λ+
t ,

where l is a constant that will be specified later,
Assume that the γ-ranked individual has ξn leading 1-bits,

where ξ < ln(β(γ)/γ)/χ− δ. The horizontal distance can-
not increase by more than n, so by Theorem 2, the expected
horizontal drift in both cases is at least ∆x,t ≥ −ne−Ω(λ).

We now bound the horizontal drift ∆x for Case 2. Let
the random variable St denote the number of selection steps
in which an individual with fitness strictly higher than f0 =
f(x(γ)) is selected, and none of the leading ξn bits are flipped.
The expectation of St is bounded by

E [St] ≥ λ · β(γ/l) · e−ξχ · (1− χ/n)

≥ γλ · (1 + χδ) · β(γ/l)

β(γ)
· (1− χ/n)

≥ γλ · (1 + χδ)

l
· (1− χ/n).

By defining l := (1 + χδ/2), there exists a constant δ′ > 0
such that for sufficiently large n, we have E [St] ≥ (1+δ′)·γλ.
Hence, by a Chernoff bound, with probability 1 − e−Ω(λ),
the number St of such selection steps is at least γλ, and
hence ∆t,x ≥ 1. The horizontal drift in Case 2 is therefore
∆x ≥ 1 · (1− e−Ω(λ))− n · e−Ω(λ).

We now bound the vertical drift ∆y for Case 1. In order
to generate a λ+-individual in a selection step, it is suffi-
cient that a λ+-individual is selected and none of the lead-
ing ξn+ 1 1-bits is flipped. Assuming that λ+

t = γλ/m for
some constant m > 1, the expected number of such events
is at least

λ · β(γ/m) · e−ξχ · (1− χ/n)

≥ γλ · β(γ/m)

β(γ)
· (1 + χδ) · (1− χ/n)

≥ (λγ/m) · (1 + χδ) · (1− χ/n).

Hence, for sufficiently large n, this is at least λ+
t , and the

expected vertical drift is at least positive. In addition, a λ+-
individual can be created by selecting a λ0-individual, and
flipping the first 0-bit and no other bits. The expected num-
ber of such events is at least λ·β(γ/l, γ)·e−ξχ·χ/n = Ω(λ/n).
Hence, the expected vertical drift in Case 1 is Ω(λ/n). Fi-
nally, for Case 2, we use the trivial lower bound ∆y ≥ −γλ.

The horizontal and vertical drift is now added into a com-
bined drift ∆ := ∆y + λ · ∆x, which in the two cases is
bounded by

1) ∆ = Ω(λ/n)− λ · n · e−Ω(λ), and

2) ∆ = −γ · λ+ λ · (1− e−Ω(λ))− λ · n · e−Ω(λ).
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Given a population size λ ≥ c lnn, for a sufficiently large
constant c, the combined drift ∆ is therefore in both cases
bounded from below by Ω(λ/n). The maximal distance is
b(n) ≤ (n + γ) · λ, hence, the expected number of function
evaluations T until the γ-ranked individual attains at least
n(ln(β(γ)/γ)/χ− δ) leading 1-bits is no more than E [T ] ≤
λ · b(n)/∆ = O(λn2).

The following theorem shows that if the γ-ranked indi-
vidual in a given population is above the equilibrium posi-
tion, then the equilibrium position will be reached within
expected O(n) generations.

Theorem 4. Let γ be any constant 0 < γ < 1. If the γ-
ranked individual has more than (ξ+ δ+ ε) ·n leading 1-bits,
with ξ := ln(β(γ)/γ)/χ for any constants δ, ε > 0, then the
expected number of generations until the γ-ranked individual
has no more than (ξ + δ) · n leading 1-bits or the optimum
is reached, is O(n).

Proof. We consider the drift according to a potential
function p(Pt) := h(Pt)+(λ+1) ·g(Pt) that has a horizontal
component g, and a vertical component h defined as

g(Pt) := LeadingOnes(x(γ))− (ξ + δ) · n,
h(Pt) := |

˘
y ∈ Pt | f(y) ≥ f(x(γ)

¯
|.

The vertical distance relates to the number of λ−-individuals
by λ− = λ − h(Pt), implying that if the number of λ−-
individuals increases, then the vertical distance decreases.
Define γ0 := h(Xt)/λ. A λ−-individual is produced in one
selection step if one of the two events E− and E+ occurs:

Event E− occurs when a λ−-individual is selected, and one
of the 0-bits in the interval from 1 to LeadingOnes(x(γ))
is not flipped. At least one such 0-bit must exist in any
λ0-individual. This event happens with probability at least
Pr
ˆ
E−
˜

= (1− β(γ0)) · (1− χ/n) ≥ 1− χ/n− β(γ0).

Event E+ occurs when a λ+- or λ0-individual is selected,
and at least one of the leading (ξ + δ) · n leading 1-bits is
flipped. Noting that γ ≤ γ0 implies γ ·β(γ0)/β(γ) ≤ γ0, the
probability of this event can be bounded by

Pr
ˆ
E+˜ ≥ β(γ0) · χ · (ξ + δ)

= β(γ0) · (ln(β(γ)/γ) + χδ)

≥ β(γ0) · (1− γ/β(γ) + χδ)

≥ β(γ0)− γ0 + β(γ0) · χδ.

We now distinguish between two cases. In the first case,
the number of λ0-individuals created during one generation
is less than (1− γ) ·λ. In this case, we bound the horizontal
drift to ∆x ≥ −n · e−λ using Theorem 2. For sufficiently
large n, the expected vertical drift is in this case bounded
by

∆y ≥ g(Pt)− λ · (1−Pr
ˆ
E−
˜
−Pr

ˆ
E+˜)

≥ λ · γ0 − λ · (γ0 − β(γ0) · χδ + χ/n) = Ω(λ).

In the second case, the number of λ0-individuals produced
during one generation is (1−γ) ·λ or larger, and the number
of leading 1-bits in the γ-ranked individual must therefore
have decreased. The vertical and horizontal drift can in this
case be bounded by ∆x ≥ 1 and ∆y ≥ −λ.

Combining the horizontal and vertical drift ∆ := ∆y +
(λ+1) ·∆x now gives that the drift is bounded by ∆ = Ω(λ)

in both cases. The maximal distance is b(n) ≤ (λ+1) ·n+λ,
hence the expected number of function evaluations T until
the γ-ranked individual has no more than (ξ+ δ) ·n leading
1-bits is no more than E [T ] ≤ λ · b(n)/∆ = O(λ · n).

4.2 Mutation-Selection Balance
In the previous section, it was shown that the population

reaches an equilibrium state in O(λn2) function evaluations
in expectation. Furthermore, the position of the equilibrium
state is given by the selection pressure η and the mutation
rate χ. By choosing appropriate values for the parameters η
and χ, one can ensure that the equilibrium position occurs
close to the global optimum that is given by the problem pa-
rameter σ. Assuming that the best individual will not reach
too many leading 1-bits, it is straightforward to prove that
an optimal solution will be found in expected polynomial
time, implying a polynomial upper bound on the expected
runtime of the Linear Ranking EA on SelPresσ,k.

Theorem 5. If no individual reaches more than (σ+δ)n
leading 1-bits, then the expected runtime of the Linear Rank-
ing EA on fitness function SelPresσ,k when using popula-
tion size c lnn < λ ≤ nk, for some constant c > 2, and
selection pressure η and bit-wise mutation rate χ/n satisfy-
ing η = exp(σχ) is O(nk+3).

Proof. Let γ > 0 be any constant where ln(β(γ)/γ)/χ >
σ−δ. Let E be the event that all individuals ranked between
0 and γ have at least (σ − δ)n leading 1-bits and at most
(σ+δ)n leading 1-bits, and at most 2nδ/3 1-bits in the inter-
val from n(σ+δ) to n(σ+2δ). Let random variable τc be the
number of generations until event E is satisfied. Under the
assumption that no individual reaches more than (σ + δ)n
leading 1-bits, the bits after position (σ + δ)n will be uni-
formly distributed. Hence, by a Chernoff bound, the prob-
ability that a given individual has more than 2δn/3 1-bits
in the interval from n(σ + δ) to n(σ + 2δ) is exponentially
small. By Theorem 3 and Theorem 4, the expectation is
E [τc] = O(n2). To find the optimum while event E is sat-
isfied, it suffices to select an individual with rank between
0 and γ, and flip the leading k + 3 1-bits, an event which
happens in each generation with probability at least

1−
„

1− β(γ)

nk+3

«λ
≥ 1− exp

„
−λβ(γ)

nk+3

«
≥ 1− 1

1 + λβ(γ)

nk+3

≥ λβ(γ)

nk+3 + λβ(γ)

≥ λ

2nk+3
.

By Theorem 2, with probability e−Ω(λ), the γ-ranked indi-
vidual has either less than (σ − δ)n leading 1-bits or the
0-ranked individual has more than (σ + δ)n leading 1-bits
in the following generation. Hence, the expected number of
generations τ conditional on event E is

E [τ | E ] ≤
„

1− λ

2nk+3
− e−Ω(λ)

«
· (1 + E [τ | E ])

+ e−Ω(λ) · (E [τc] + E [τ | E ])

≤(1/λ) · (2nk+3 + 2nk+5 · e−Ω(λ))

=O(nk+3/λ).
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≤ t(n)

Core.

x

x∗ (global optimum).

Figure 4: Non-selective family tree (triangle) of the
family tree (gray) rooted in individual x.

The unconditional runtime is therefore

E [T ] = λ · (E [τc] + E [τ | E ]) = O(nk+3).

Theorem 5 is conditional on the event that no individual
in the population reaches more than (σ+ δ)n leading 1-bits.
The probability of this event is unknown, but based on the
results in Section 4.1.1, one can conjecture that the probabil-
ity of this event is exponentially close to one. In particular,
Theorem 2 implies that for any arbitrarily small constant
γ > 0, none of the individuals ranked between γ and 1 will
reach more than (σ + δ)n leading 1-bits. Furthermore, if
Conjecture 6 in Section 4.5 holds, then the extra condition
in Theorem 5 can be removed.

4.3 Non-selective Family Trees
Our next goal is to prove that there is an exponentially

small probability that any individual reaches far beyond
the equilibrium position within exponential time. However,
Theorems 2 and 3 assume that the rank parameter γ is a
constant, and cannot be used to analyse the behaviour of sin-
gle “stray” individuals, including the position of the fittest
individual (i.e. γ = 0). This is because the tail inequalities
obtained by the Chernoff bounds used in the proofs of these
theorems are too weak when γ = o(1).

To analyse stray individuals, we will apply the notion of
family trees as described by Witt [17], although in a slightly
different way. A family tree has as its root a given individual
x in some generation t, and the nodes in each level k cor-
respond to the subset of the population in generation t+ k
defined in the following way. An individual y in generation
t + k is a member of the family tree if and only if it was
generated by selection and mutation of an individual z that
belongs to level t + k − 1 of the family tree. In this case,
individual z is the parent node of individual y. If there is
a path from an individual z at level k to an individual y at
level k′ > k, then individual y is said to be a descendant of
individual z, and individual z is an ancestor of individual y.
A path in the family tree is called a lineage. A family tree
is said to become extinct in generation t+ t(n)+1 if none of
the individuals in level t(n) of the tree were selected. In this
case, t(n) is called the extinction time of the family tree.

The idea for proving that stray individuals do not reach
a given part of the search space can be described informally
using Figure 4. One defines a certain subset of the search
space called the core within which the majority of the pop-
ulation is confined with overwhelming probability. In our
case, an appropriate core can be defined using Theorems 2
and 3. One then focuses on the family trees that are out-
side this core, but where the root has a parent in the core.
Note that some descendants of the root may re-enter the
core. We therefore prune the family tree to those descen-
dants which are always outside the core. More formally, the
pruned family tree contains node x if and only if x belongs
to the original family tree, and x and all its ancestors are
outside the core.

We would then like to analyse the positions of the indi-
viduals that belong to the pruned family tree. However, it
is non-trivial to calculate the exact shape of this family tree.
Let random variable Ox denote the number of offspring of
individual x. Clearly, the distribution of Ox depends on how
x is ranked within the population. Hence, different parts of
the pruned family tree may grow at different rates, which
can influence the position and shape of the family tree. To
simplify the analysis, we embed the pruned family tree into
a larger family tree which we call the non-selective family
tree. This family tree has the same root as the real pruned
family tree, however it grows through a modified selection
process. In the real pruned family tree, the individuals have
different numbers of offspring according to their rank in the
population. In the non-selective family tree, the offspring
distribution Ox of all individuals x is identical to the off-
spring distributionOz of an individual z which is best ranked
among individuals outside the core. Hence, each individual
in the non-selective family tree has at least as many offspring
as in the real family tree. The real family tree will therefore
occur as a sub-tree in the non-selective family tree. Fur-
thermore, the probability that the real family tree reaches a
given part of the search space, is upper bounded by the prob-
ability that the non-selective family tree reaches this part of
the search space. A related approach, where faster growing
family trees are analysed, is described by Jägersküpper and
Witt [11].

Approximating the family tree by the non-selective fam-
ily tree has three important consequences. The first conse-
quence is that the non-selective family tree can grow faster
than the real family tree, and in general beyond the popula-
tion size λ of the original process. The second consequence
is that since all individuals in the non-selective family tree
have the same offspring distribution, no individual in the
non-selective family tree has any selective advantage, hence
the name non-selective family tree. The behaviour of the
family tree is therefore independent of the fitness function,
and each lineage fluctuates randomly in the search space ac-
cording to the bits flipped by the mutation operator. Such
mutation random walks are easier to analyse than the real
search process. To bound the probability that such a muta-
tion random walk enters a certain area of the search space,
it is necessary to bound the extinction time t(n) of the non-
selective family tree. The third consequence is that the se-
quence of random variables Zt≥0 describing the number of
elements in level t of the non-selective family tree is a dis-
crete time branching process [8]. We can therefore apply the
techniques that have been developed to study such processes
to bound t(n).
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Definition 3 (Branching Process [8]). A single type
branching process is a Markov process Z0, Z1, ... which for all
n ≥ 0, is given by Zn+1 :=

PZn
i=1 ξi, where ξi ∈ N0 are i.i.d.

random variables having E [ξ] =: ρ.

A branching process can be thought of as a population of
identical individuals, where each individual survives exactly
one generation. Each individual produces ξ offspring inde-
pendently of the rest of the population during its lifetime,
where ξ is a random variable with expectation ρ. The ran-
dom variable Zt denotes the population size in generation
t. Clearly, if Zt = 0 for some t, then Zt′ = 0 for all t′ ≥ t.
The following lemma gives a simple bound on the size of the
population after t ≥ 1 generations.

Lemma 2. If Z0, Z1, ... is a single-type branching process
with Z0 := 1 and mean number of offspring per individual
ρ, then Pr [Zt ≥ k] ≤ ρt/k for any k > 0.

Proof. Markov’s inequality gives

Pr [Zt ≥ k] ≤ E [Zt] /k

= E [E [Zt | Zt−1]] /k

= ρ/k ·E [Zt−1]

= ρt/k ·E [Z0] .

Clearly, the expected number of offspring ρ is important for
the fate of a branching process. For ρ < 1, the process is
called sub-critical, for ρ = 1, the process is called critical,
and for ρ > 1, the process is called super-critical.

4.4 Too high Selection Pressure
In this section, it is proved that SelPresσ,k is hard for

Linear Ranking EA when the ratio between parameters η
and χ is sufficiently large. The proof idea is to show that in
the equilibrium position, a majority of the individuals have
considerably more than (σ + δ)n leading 1-bits. Individuals
close to the optimum are therefore less likely to be selected.
First, it is shown in Propositions 1, 2 and 3 that there is
a non-negligible probability that the equilibrium position is
reached before the optimum is found. In the following, we
will call any search point with prefix x an x-individual.

Proposition 1. If the initial generation contains more
than 2−k−4 ·λ 1k+3-individuals, then the expected number of
generations until the 1k+3-individuals occupy more than half
of the population is O(1).

Proof. The 1k+3-individuals are fitter than any other
non-optimal individuals. Hence, if the fraction of 1k+3-
individuals in the population is 2−k−4 < γ ≤ 2−1, then
the expected fraction of 1k+3-individuals in the following
generation is at least rγ, where

r ≥ β(γ)

γ
·
“

1− χ

n

”k+3

≥ η + 1

2
·
“

1− χ

n

”k+3

.

Hence, for sufficiently large n, there exists a constant c > 0
such that r > 1 + c. Starting with a fraction of γ > 2−k−4

1k+3-individuals, as long as the fraction of 1k+3-individuals
is below 1/2, the expected ratio of 1k+3-individuals in gen-
eration t is at least γ · (1 + c)t. Hence, the expected number
of generations t until the 1k+3-individuals occupy at least
half of the population satisfies 2−k−4 · (1 + c)t ≥ 1/2, which
holds for t = O(1).

Proposition 2. If the Linear Ranking EA with popula-
tion size λ ≤ nk is applied to SelPresσ,k, then the proba-
bility that the first individual that finds the optimum has a
1k+3-individual as ancestor is 1− e−Ω(n).

Proof. We apply the idea of non-selective family trees.
Define the core as the set of 1k+3-individuals. We will now
bound the probability that any given non-selective family
tree outside the core finds the optimum.

By Chernoff bounds, there is an exponentially large prob-
ability that the initial generation contains at least λ · 2−k−4

1k+3-individuals. Hence, By Proposition 1, after a constant
number of generations, any individual outside the core has
rank higher than 1/2. The expected number of times an
individual with rank γ is selected during one generation is
no more than α(γ) as given in Eq. (1). Hence for selec-
tion pressure η > 1, the expected number of times an indi-
vidual with rank higher than 1/2 is selected is less than ρ
for some constant ρ < 1. For a given family tree, let ran-
dom variable Xt denote the number of individuals in the
non-selective family tree in generation t, where X0 = 1 cor-
responds to the single root and assume that every family
member has exactly ρ expected offspring. Then Xt is a
single type branching process [8], and the expected num-
ber of family members in generation t can be bounded by
E [Xt] = E [E [Xt | Xt−1]] ≤ ρ ·E [Xt−1] ≤ ρt.

We will now bound the number of different lineages that
exist within the at most λ family trees. Note that the
number of different lineages within one family tree equals
the number of leaf nodes in the family tree, which is triv-
ially bounded by the product of the height H of the tree
and the maximal width W of the family tree. The family
tree height is the extinction time of the family tree, and
the family tree width corresponds to the maximum num-
ber of alive family members within one generation. The
probability that the height is at most n can be bounded us-
ing Markov’s inequality to Pr [H ≤ n] = 1−Pr [Xn ≥ 1] =
1−E [Xn] = 1− ρn. Furthermore, the probability that the
width exceeds ecwn can be bounded by Pr [W ≤ ecwn] =
Pr [maxtXt ≤ ecwn] ≥ 1 − e−cwn, where cw > 0 is any
constant. Hence, by union bound, the probability that the
number of lineages in the at most λ family trees is less than
λnecwn is at least (1− λ · e−cwn) · (1− λ · ρn) = 1− e−Ω(n).

We will now bound the probability that one given lineage
outside the core finds the optimum, conditional on the event
that the lineage survives at most n generations. The root
of the family tree corresponds to an individual in the first
generation of the EA, which is a bitstring sampled uniformly
at random. Hence, by a Chernoff bound, with probability
1− e−Ω(n), the number of 0-bits in the interval from k + 4
to (σ − δ)n is at least (σ − δ)n/3. In order to reach the
optimum, it is necessary that all these 0-bits are flipped into
1-bits. However, the probability that a given of these bits
has not been flipped within n generations is (1−χ/n)n > c′

for some constant c′ > 0. Hence, the probability that all
of the at least (σ − δ)n/3 0-bits have been flipped within

n generations is less than (1 − c′)(σ−δ)n/3 ≤ e−cn for some
constant c > 0.

Finally, the probability that any of the λnecwn lineages
finds the optimum is by union bound at most nλecwne−cn =
e−Ω(n) for sufficiently small cw. Hence, the unconditional
probability that none of the lineages finds the optimum is
1− e−Ω(n).
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Proposition 3. For any constant r > 0, the probability
that the linear ranking EA with population size λ ≤ nk has
not found the optimum of SelPresσ,k within rn2 genera-
tions is Ω(1).

Proof. By Proposition 2, with exponentially high prob-
ability, the first globally optimal individual has an 1k+3-
individual as ancestor. We therefore bound the probability
of finding the optimum, by the probability that an 1k+3-
individual has a 0k+3-individual as descendant within the
first rn2 generations, or equivalently within λrn2 ≤ rnk+2

selection steps. We distinguish between the following two
cases.

Case 1 : The 0k+3-individual is created directly from a
1k+3-individual by mutating the k + 3 leading 1-bits simul-
taneously. The probability that this event happens in any
mutation step is no more than (χ/n)k+3, and the probabil-
ity that this does not happen in rnk+2 selection steps is by
union bound 1−O(1/n).

Case 2 : The 0k+3-individual is created by first mutat-
ing a 1k+3-individual into an intermediary individual y that
has m, 1 ≤ m < k 1-bits among the first k bits, and then
individual y has an 0k+3-individual as descendant.

To analyse this situation, we apply the method of non-
selective family trees where the core is defined as the set of
1k+3-individuals. We consider a family tree that is rooted in
y. Let random variable F denote the number of such family
trees occurring in rnk+2 selection steps. The probability
of creating a new family tree from a core member in one
selection step is

`
k

k−m

´
· (χ/n)3+k−m, hence the expected

value of F is no more than (c/2) · nm−1 where c := 2 ·
(2χ)k. The probability of the event F that F is less than
cnm−1 is by Markov’s inequality bounded by Pr [F ] = 1 −
Pr
ˆ
F ≥ cnm−1

˜
≥ 1/2.

For a given family tree, let the random variable Xt de-
note the number of family members in generation t of the
lifetime of the family tree, where X0 = 1. Following the
ideas in Proposition 2 for family trees outside the core, the
expected number of offspring per family member is bounded
by a constant ρ < 1, and one obtains E [Xt] ≤ ρt, and
E [maxtXt] ≤ 1. The extinction time D of any given such
family tree can now be bounded by

Pr [D ≤ m lnn] ≥ 1−Pr [Xm lnn ≥ 1]

≥ 1−E [Xm lnn]

≥ 1− ρm lnn

= 1−O(n−m).

And the probability of event D, that all family trees are ex-
tinct within m lnn generations, is bounded by Pr [D | F ] ≥
(1−O(n−m))cn

m−1
> 1/e.

Let random variable P denote the number of paths from
root to leaf within the forest of all family trees that arise
within rn2 generations. Conditional on the events D and F ,

the random value P is bounded by P ≤ m lnn
Pcnm−1

i=1 Wi,
where random variable Wi denotes the maximal width (ie.
maximum number of living family members during a gen-
eration) of family tree i. By Markov’s inequality, the prob-
ability of the event P that P is less than 2mcnm−1 lnn is

bounded by

Pr [P | F ,D] ≥ 1−Pr
ˆ
P ≥ 2mcnm−1 lnn | F ,D

˜
≥ 1− E [P | F ,D]

2mcnm−1 lnn

≥ 1− (m lnn) · (cnm−1) ·E [maxtXt]

2mcnm−1 lnn

≥ 1/2.

We now calculate the probability that a given path of
length at most m lnn finds the optimum. The probability
of flipping a given bit within m lnn mutation steps is by
union bound less than χm2 lnn/n, and the probability that
all the m remaining 1-bits have been flipped is by union
bound less than (χm2 lnn/n)m.

The probability that any of the at most 2mcnm−1 lnn
paths finds the optimum, conditional on the events F and D
is by union bound less than (2mcnm−1 lnn)(χm2 lnn/n)m =
O((lnn)m+1/n). Hence, the unconditional probability that
the optimum has not been found within the first rn2 gener-
ations is Ω(1).

Definition 4. Let T be any family tree and ξ any con-
stant ξ, 0 < ξ < 1. The ξn≤-pruning of family tree T is the
family tree consisting of any member x of T such that x and
all the ancestors of x in T have at most ξn leading 1-bits.

Proposition 4. Let η > 2 exp(χ(σ + 3δ)) − 1 + δ, and
x any individual which has less than ξn leading 1-bits, with
ξ := σ + 2δ. If the (1 + δ)/2-ranked individual has at least
(ξ + δ)n leading 1-bits, then the probability that the ξn≤-
pruned family tree of individual x is extinct in generation
t0 + n is exponentially high 1− e−Ω(n).

Proof. Let t0 denote the generation number when the
family tree rooted in individual x occurs, and let random
variable Xt denote the number of members of the pruned
family tree in generation t0 + t, where the initial family size
is X0 := 1. For γ := (1 + δ)/2, one has ln(β(γ)/γ)/χ ≥
σ+3δ = ξ+δ, hence by Theorem 2, with exponentially high
probability, the individuals ranked (1 + δ)/2 or better will
have more than ξn leading 1-bits. Therefore, the members
of the ξn≤-pruned family tree must have ranks at least (1 +
δ)/2. The expected number of offspring for a given member
of the pruned family tree in generation t0 + t is therefore no
more than α((1 + δ)/2).

By Lemma 2, the probability that the pruned family tree
is not extinct after n generations is Pr [Xn ≥ 1] ≤ α((1 +

δ)/2)n = (1− (η − 1) · δ)n = e−Ω(n).

Proposition 5. Let η > 2 exp(χ(σ + 3δ)) − 1 + δ and
λ = Ω(n). If the (1 + δ)/2-ranked individual reaches at least
(σ + 3δ)n leading 1-bits before the optimum has been found,
then the probability that the optimum is found within ecn

generations is exponentially small e−Ω(n), where c is a con-
stant.

Proof. Define ξ := σ+2δ, and define the core set, as the
set of search points with more than ξn leading 1-bits. By
Theorem 2, the probability of the event that the (1 + δ)/2-
ranked individual has less than σ + 2δ leading 1-bits in the
next generation is e−Ω(n), and by union bound, the proba-
bility that this happens within ecn generations is e−Ω(n) for
sufficiently small c. In the following, we therefore assume
that this event does not happen within ecn steps.
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The event where an individual x belonging to the core
set has offspring with less than ξn leading one-bits is called
a trial. A trial is called successful if any member of the
ξn≤-pruned family tree from individual x is optimal. We
will now define a non-selective family tree, and bound the
success probability of a trial by the probability of finding a
global optimum within the family tree.

We first bound the number of different lineages in the
family tree. Analogously to the proof of Proposition 2,
the number of different lineages in an family tree can be
bounded by the product of the height H and the width W
of the non-selective family tree. By Proposition 4, with ex-
ponentially high probability, the ξn≤-pruned family tree is
extinct within n generations, hence the height is bounded
by n. To bound the width, note that each individual in the
non-selective family tree has rank at least (1 + δ)/2. Hence,
following the proof of Proposition 4, each individual receives
in expectation less than α((1+δ)/2) number of offspring per
generation. Denoting the number of individuals in the non-
selective family tree in generation t with Xt, the expected
size of the non-selective family tree in generation t can be
bounded by E [Xt] ≤ (1−δ)t < 1, using the same calculation
as in the proof of Proposition 4. The probability that the
non-selective family tree grows beyond (1/p)(lnσ/6)n individ-
uals within n generations, where 0 < p < 1 is a constant that
will be specified later, can now be bounded using Markov’s
inequality by

Pr
h
W ≥ (1/p)(lnσ/6)n

i
=

Pr

»
max

1≤t≤n
Xt ≥ (1/p)(lnσ/6)n

–
≤ p(lnσ/6)n ·E

»
max

1≤t≤n
Xt

–
≤ e−c

′n,

where c′ := (lnσ/6) ln(1/p). Any trial that has more than

(1/p)(lnσ/6)n different random walks from x to the leaf nodes,
is called successful. Consider any other trial. By the defini-
tion of a trial, the initial individual x has only 1-bits in the
interval between (σ + δ) · n and ξn. In order to reach the
global optimum, it is necessary that the random walk flips at
least δn/3 1-bits in this interval, without flipping any 1-bits
before index (σ − δ) · n. Instead of considering the bit-flips
that occur during one generation, we note the positions of all
the bit-flips that occur during n generations, and ignore the
generation number in which the bit-flips occurred. Clearly,
in order to obtain the optimum, at least δn/3 bit-flips must
have occurred. However, the position of each bit-flip is uni-
form from 1 to n, and the probability that a given bit-flip
occurred before position position (σ−δ)·n, is (σ−δ). Hence,
the probability that none of the δn/3 bit-flips occurs before

position (σ − δ)n is less than p(lnσ/3)·n, where p is defined
to be p := 1− σ + δ. The number of lineages in one trial is
bounded by W ·H ≤ (1/p)(lnσ/6)nn. By union bound, the
probability that any of the random walks in the trial finds
the global optimum is bounded from above by

n · (1/p)(lnσ/6)n · p(lnσ/3)·n = e−c
′n+lnn.

The probability that at least one of the at most λ · ecn
trials is successful, is no more than

λ · ecn · e−c
′n+lnn = e−Ω(n)

when c is sufficiently small.

Theorem 6. If η > 2 exp(χ(σ + 3δ + ε)) − 1 + δ, where
ε > 0 is any constant, and n ≤ λ ≤ nk, then the expected
runtime of the Linear Ranking EA on SelPresσ,k is eΩ(n).

Proof. By Theorem 3 and Markov’s inequality, there is
a constant probability that the γ := (1 + δ)/2-ranked indi-
vidual has reached at least

n(ln(β(γ)/γ)/χ− ε) ≥ n(ln((η + 1− δ)/2)/χ− ε)
≥ n(σ + 3δ) := ξn

leading 1-bits within rn2 generations, for some constant r.
By Proposition 3, the probability that the optimum has not
been found within the first rn2 generations is Ω(1). If the
optimum has not been found before the (1 + δ)/2-ranked
individual has ξn leading 1-bits, then by Proposition 5, the
expected runtime is eΩ(n). The unconditional expected run-
time of the linear ranking EA is therefore eΩ(n).

4.5 Too low Selection Pressure
It is natural to ask whether there exists an analogue to

Theorem 6 for parameter settings where the equilibrium
position n(ln η)/χ is significantly below (σ − δ)n. I.e., is
SelPresσ,k also hard when the selection pressure is too low?
We conjecture that this is the case.

Conjecture 1. If η = exp(χ(σ − δ)) − ε for any ε > 0,
then the probability that Linear Ranking EA with population
size λ < nk will find the optimum of SelPresσ,k within ecn

generations is e−Ω(n), where c is a constant.

Unfortunately, modelling family trees outside the core us-
ing a single-type branching process as in the previous sec-
tion will not work in this case. E.g., a direct application
of the ideas above would be to define the core as the set
of search points with less than n ln(ηκ)/χ leading 1-bits for
some small constant κ > 1. The problem with this approach
is that the number of leading 1-bits can potentially increase
significantly by flipping a single 0-bit. A more detailed char-
acterisation of the process may therefore be needed to anal-
yse this case.

5. CONCLUSION
The objective of this paper has been to better understand

the relationship between mutation and selection in EAs, and
in particular to what degree this relationship can have an
impact on the runtime. To this end, we have rigorously
analysed the runtime of a non-elitistic population-based evo-
lutionary algorithm that uses linear ranking selection and
bitwise mutation on a family of fitness functions. We have
focused on the effects of two parameters of the EA, η which
controls the selection pressure, and χ which controls the bit-
wise mutation rate χ/n.

The theoretical results show that there exist fitness func-
tions where the parameter settings of selection pressure η
and mutation rate χ have a dramatic impact on the run-
time. A small change in the mutation rate or the selection
pressure can increase the runtime of the EA from a small
polynomial (ie highly efficient), to exponential (ie. highly
inefficient). The results show that the EA will have expo-
nential runtime if the selection pressure becomes too high, or
the mutation rate becomes too low. The polynomial upper
bound is conditional on an assumption about the maximum
number of leading 1-bits obtained by the best individual in
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the population. If this assumption holds, then to achieve
polynomial runtime on the problem, the settings of these
parameters must be adjusted to a narrow region of the pa-
rameter space, as illustrated in Figure 2. The critical factor
which determines whether the EA is efficient on the problem
is not the individual parameter settings of χ or η, but rather
the ratio ln(η)/χ between these two parameters. Hence, a
too high mutation rate χ can be balanced by increasing the
selection pressure η, and a too low selection pressure η can
be balanced by decreasing the mutation rate χ. The analysis
also shows that the position of the critical region in parame-
ter space in which the EA is efficient is problem dependent.
Hence, the EA may be efficient with a given mutation rate
and selection pressure on one problem, but be highly ineffi-
cient with the same parameter settings on another problem.
There is therefore no optimal balance between the selection
pressure and the mutation rate which is robust on all prob-
lems.

Informally, these results can be explained due to the oc-
currence of an equilibrium state into which the non-elitistic
population enters after a certain time. In this state, the EA
makes no further progress, even though there is a fitness gra-
dient in the search space. The position in the search space
in which the equilibrium state occurs depends on the muta-
tion rate and the selection pressure. When the number of
new good individuals added to the population by selection
equals the number of good individuals destroyed by muta-
tion, then the population makes no further progress. If the
equilibrium state occurs close to the global optimum, then
the EA is efficient. If the equilibrium state occurs far from
the global optimum, then the EA is inefficient.

The results are theoretically significant because the im-
pact of selection pressure on the runtime of EAs has not
previously been analysed. Furthermore, there exists few
results on population-based EAs, in particular those that
employ both a parent and an offspring population. In addi-
tion, the runtime analysis applied techniques that are new
to the field. In particular, the behaviour of the main part
of the population and stray individuals are analysed sepa-
rately. The analysis of stray individuals is achieved using
a concept which we call non-selective family trees, which
are then analysed as single-type branching processes. These
new techniques may potentially be applicable to a wider set
of EAs and fitness functions. Finally, our analysis answers a
challenge by Happ et al. [9], to analyse a population-based
EA using a non-elitistic selection mechanism. The results
also shed some light on the possible reasons for the difficulty
of parameter tuning in practical applications of evolutionary
algorithms. The optimal parameter settings can be problem
dependent, and very small changes in the parameter settings
can have big impacts on the efficiency of the algorithm.

A challenge for future experimental work is to design and
analyse strategies for dynamically adjusting the mutation
rate and selection pressure. Can self-adaptive EAs be ro-
bust on problems like those that are described in this paper?
Future theoretical work should try to prove Conjecture 1.
Furthermore, it would be interesting to extend the analysis
to other selection mechanisms than linear ranking selection,
and to EAs that apply a crossover operator.
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