
������� ���	
��� �
 ������ ���������� ��

��
����� ����������� ����	���

Per Kristian LEHRE , Xin YAO

The Centre of Excellence for Research in Computational Intelligence and Applications (CERCIA), School of Computer Science,

University of Birmingham, Birmingham B15 2TT, United Kingdom

c© Higher Education Press and Springer-Verlag 2009

Abstract Many software engineering tasks can potentially
be automated using search heuristics. However, much work
is needed in designing and evaluating search heuristics be-
fore this approach can be routinely applied to a software
engineering problem. Experimental methodology should be
complemented with theoretical analysis to achieve this goal.
Recently, there have been significant theoretical advances in
the runtime analysis of evolutionary algorithms (EAs) and
other search heuristics in other problem domains. We sug-
gest that these methods could be transferred and adapted to
gain insight into the behaviour of search heuristics on soft-
ware engineering problems while automating software engi-
neering.

Keywords software engineering, evolutionary algorithms,
runtime analysis

� �������	�
��

Software development is expensive. One strategy for re-
ducing development costs is to identify software engineer-
ing tasks that can be automated. The field of search based
software engineering (SBSE) suggests that automation can
be achieved by reformulating the software engineering tasks
as optimisation problems to which search heuristics can be
applied. In principle, the only required ingredients in the ap-
proach is an encoding of candidate solutions and a way of
comparing the quality of two candidate solutions.

Why should search heuristics sometimes be preferred over
classical algorithms? Many software engineering problems
are NP-hard [1], hence it is unlikely that they can be solved

Received September 8, 2008; accepted October 29, 2008

E-mail: P.K.Lehre@cs.bham.ac.uk

exactly with efficient algorithms. Although one cannot in
general guarantee that search heuristics provide optimal so-
lutions, it has been found that search heuristics often give
satisfactory results on several NP-hard problems. Hence, it is
worth also considering search heuristics on hard software en-
gineering problems. Search heuristics can also be attractive
on computationally tractable problems, e.g., when there are
insufficient human resources to develop a problem-specific
algorithm. Search heuristics can often be adapted with rela-
tively little effort to new problem domains with satisfactory
results [2].

In fact, search-based software engineering has already
proven successful in several software engineering domains.
A large body of the literature has focused on software test-
ing [3], but there is a long list of other software engineering
problems which have been successfully tackled with search
heuristics. For an overview of some of this work, see Clark
et al. [4], and Harman [1].

Although the application of search heuristics in principle
reduces many software engineering problems to finding an
appropriate fitness function and solution encoding, it also in-
troduces some new methodological challenges. The theoreti-
cal understanding of these algorithms is incomplete. Despite
several decades of research on search heuristics, many fun-
damental questions regarding their behaviour remain open
and the theoretical understanding of their behaviour is in-
complete. Hence, when experiments sometimes show that a
given search heuristic has an unsatisfactory performance on
a problem, the underlying reasons for this are many times
unclear. Sometimes, the successful application of a search
heuristic on a given problem depends on finding appropri-
ate parameter settings, and the cost of finding such param-
eter settings can be high. Good experimental design can in
some cases reduce the cost of parameter tuning [5]. How-

Front. Comput. Sci. China 2009, 3(1): 64–72 65

ever, finding the correct parameter setting may be futile if
the algorithm is unsuitable for the problem. In general, there
does not exist a single search heuristic that works optimally
on all problems [6]. Hence, there is a need to better under-
stand which search heuristics are most applicable to a given
software engineering problem.

Theoretical research like runtime analysis will seldom
provide the optimal choice of search heuristic or parameter
settings for specific real world problems. However, it may
provide insight into how and why search heuristics work and
sometimes fail. In particular, a theoretical analysis can point
out simple general cases where the choice of an algorithm or
parameter setting has a particularly important effect on the
behaviour of the algorithm. With an understanding of how
search heuristics behave in such archetypical cases, a prac-
titioner will be better equipped for making an informed de-
cision as to how to choose parameter settings and heuristics
on a specific real world problem.

So far, there has been little theoretical research in search-
based software engineering. Except for the research related
to runtime analysis of search heuristics that will be described
in Sections 3 and 4, the only theoretical study within evolu-
tionary computation on SBSE we are aware of is the work by
Harman and McMinn [7] where schema theory is adapted to
the evolutionary software testing domain. Their theoretical
study suggests that there exist so-called Royal Road prob-
lems in evolutionary testing where genetic algorithms using
crossover should have an advantage over hill climbers.

The rest of this paper is organised as follows. Section 2
introduces theoretical runtime analysis and briefly reviews
methods and results that have been obtained for randomised
search heuristics in general problem domains. The next two
sections focus on runtime results that have been obtained
specifically for software engineering problems. These re-
sults are related to problems in conformance testing of finite
state machines and structural software testing. Section 5 sug-
gests future directions and open problems for runtime anal-
ysis within SBSE. Finally, the paper is concluded in Section
6.

� �
�����
	�� ������	

� ����

2.1 Runtime analysis

Evolutionary algorithms and other randomised search
heuristics are attractive due to their versatility. However, in
contrast to many problem-specific algorithms, it can be no-
toriously difficult to establish exactly how these algorithms
work, and why they sometimes fail. Empirical investigations
can be costly and do not always yield the desired level of in-

formation needed to make the right choice of heuristic and
corresponding parameter setting at hand.

To put the application of search heuristics in software en-
gineering and other domains on a firmer ground, it is de-
sirable to construct a theory which can explain the basic
principles of the heuristics and possibly provide guidelines
for developing new and improved algorithms. Such a the-
ory should preferably be valid without making simplifying
assumptions about the algorithms or problems, e.g., assum-
ing that the EA has infinite population size, or ignoring the
stochastic nature of these algorithms.

When studying a particular search heuristic, it is impor-
tant that one makes clear what class of problems one has
in mind. One can say very little about the advantages and
disadvantages of a heuristic without making any assumption
about the problem [6].

For a given heuristic and problem class, an initial theoret-
ical question to ask, is whether the heuristic will ever find a
solution, if it is allowed unlimited time. This type of ques-
tion falls within the realms of convergence analysis, which
is a well-developed area [8]. There exist simple conditions
on the underlying Markov chain of a search heuristic that
guarantee convergence in finite time. These conditions often
hold for the popular heuristics [8]. Note that convergence it-
self gives very little information about whether an algorithm
is practically useful, because no limits are put on the amount
of resources the algorithm uses.

If convergence can be guaranteed within unlimited time,
the next question to ask is how much time the heuristic needs
to find the solution. This type of question falls within the
realms of runtime analysis of search heuristics, and requires
a measure of time. Time can be measured as the number of
basic operations in the search heuristic. Usually, the most
time-consuming operation in an iteration of a search algo-
rithm is the evaluation of the cost function. We therefore
adopt the black-box scenario [9], in which time is measured
as the number of times the algorithm evaluates the cost func-
tion.

Definition 2.1 (Runtime [10,11]) Given a class F of cost
functions fi : Si → R, the runtime TA,F(n) of a search
algorithm A is defined as

TA,F(n) := max {TA,f | f ∈ F with �(f) = n} ,

where �(f) is the problem instance size, and TA,f is the num-
ber of times algorithm A evaluates the cost function f until
the optimal value of f is evaluated for the first time.

A typical search algorithm A in the black-box sce-
nario is randomised. Hence, the corresponding runtime
TA,F(n) will be a random variable. The runtime analy-

66 Per Kristian LEHRE, et al. Runtime analysis of search heuristics on software engineering problems

sis will therefore seek to estimate properties of the distri-
bution of the random variable TA,F(n), in particular the
expected runtime E [TA,F(n)] and the success probability
Pr [TA,F(n) � t(n)] for a given time bound t(n).

The last decade of research in the area show that it is im-
portant to apply appropriate mathematical techniques to get
good results [12]. Initial studies of exact Markov chain mod-
els of search heuristics were not fruitful, except for the the
simplest cases. A more successful and particularly versa-
tile technique has been the so-called drift analysis [11,13],
where one introduces a potential function which measures
the distance from any search point to the global optimum.
By estimating the expected one-step drift towards the opti-
mum with respect to the potential function, one can deduce
bounds on the expected runtime and the success probabil-
ity. Finding the right potential function can sometimes be
a challenge, and can differ considerably from the objective
function. In addition to drift analysis, the wide range of tech-
niques used in the study of randomised algorithms [14], in
particular Chernoff bounds, have proved useful also for evo-
lutionary algorithms.

Initial runtime studies were concerned with simple EAs
like the (1+1) EA on artificial pseudo-boolean functions [10,
15,16]. These studies established fundamental facts about
the (1+1) EA, e.g., that it can optimise any linear function
in O(n log n) expected time [10], that quadratic functions
with negative weights are hard [16], that the hardest func-
tions require Θ(nn) iterations [10] and, in contrast to com-
monly held belief, that not all unimodal functions are easy
[15]. The understanding of the runtime of search heuris-
tics was then expanded in several directions, by analysing
parameter settings (e.g., the crossover operator [17,18], pop-
ulation size [19, 20] and diversity mechanisms [21,22]), by
analysing new algorithms (e.g., ant colony optimisation [23]
and particle swarm optimisation [24]), and by considering
new problem settings (e.g., multi-objective [25, 26] and con-
tinuous [27] optimisation).

The analysis of search heuristics then shifted its focus
from artificial pseudo-boolean functions to classical combi-
natorial optimisation problems. Many of these results are
covered in the survey [28]. Initially, combinatorial opti-
misation problems in P were analysed [29−32]. Giel and
Wegener analysed maximum matching, showing that al-
though the runtime of (1+1) EA is in general exponential, the
EA is a polynomial-time randomised approximation scheme
(PRAS) for the problem [29]. Other problems analysed in-
clude sorting [30], minimum spanning tree [31], and Eule-
rian cycle [32]. For NP-hard problems, one must expect that
the worst-case expected runtime is exponential. Hence, the
focus has been on analysing the runtime on interesting sub-

classes, e.g., for the vertex cover problem [33], or on the
average case runtime over the set of instances [34], or the
approximation quality that can be obtained by the algorithm
in polynomial time [34, 35].

2.2 Runtime analysis of search heuristics for software
engineering

Runtime analysis is practically unexplored within search
based software engineering. This might be due to the fact
that many of these problems have been outside the reach of
the analysis techniques available, partly because many soft-
ware engineering problems are NP-hard [1]. The results on
conformance testing of finite state machines and structural
software testing that will be presented in the next two sec-
tions are the first attempts in theoretical analysis of the run-
time of evolutionary algorithms in search based software en-
gineering.

� ���������	� ����
�� �� �
�
�� �����

��	

���

The behaviour of many software systems can be described
in terms of finite state machines (FSMs). For example, a
server conforming to a communication protocol, can in prin-
ciple be described as a system that is in some internal state,
and which on external inputs outputs a response and makes
a state transition.

Black box testing of finite state machines consists of de-
ducing properties about a finite state machine from its in-
put output behaviour [36]. Conformance testing is a type of
black box testing where the objective is to determine whether
the black box FSM is identical to a specification FSM whose
internals are known. One of the challenges in conformance
testing is the state verification problem [37], which consists
of determining for a given state, whether the black box FSM
is in this state or not. The state verification problem can be
solved using unique input output (UIO) sequences. A UIO
sequence for a given state s in an FSM is an input sequence
x which causes the FSM to output a sequence y if and only
if the FSM was initially in state s.

UIOs are useful in FSM testing, and it would be desirable
to have methods which compute them efficiently. Unfortu-
nately, such exact and efficient methods are ruled out due to
the NP-hardness of the UIO problem [37]. In certain cases,
the UIOs are sufficiently short to be found through exhaus-
tive or random search. However, one can hypothesise that
more sophisticated search heuristics will be more efficient.

Experimental results show that EAs can construct UIOs
efficiently on some instances. Guo et al. compared an evo-

Front. Comput. Sci. China 2009, 3(1): 64–72 67

lutionary approach with a random search strategy, and found
that the two approaches have similar performance on a small
FSM, while the evolutionary approach outperforms random
search on a larger FSM [38]. Derderian et al. presented
an alternative evolutionary approach [39], confirming Guo
et al.’s results.

Theoretical runtime analysis confirm that EAs can outper-
form random search on the UIO problem [40]. The expected
running time of the (1+1) EA on a counting FSM instance
class is O(n log n), while random search needs exponential
time [40]. The UIO problem is NP-hard [36], so one can
expect that there exist EA-hard instance classes. It has been
proved that a combination lock FSM class is hard for the
(1+1) EA [40]. To reliably apply EAs to the UIO problem,
it is necessary to distinguish easy from hard instances. The-
oretical results indicate that there is no sharp boundary be-
tween these categories in terms of runtime. For any polyno-
mial nk, there exist UIO instance classes, as shown in Fig. 1,
where the (1+1) EA has running time Θ(nk) [40].

These theoretical results demonstrate that the runtime of
the (1+1) EA on the UIO problem is highly dependent on the
characteristics of the FSM. A later study investigated to what
degree the runtime depends on characteristics of the EA it-
self [41]. In particular, the study focused on the impact of the
acceptance criterion in the (1+1) EA, and on the effect of a
population and crossover in a steady state genetic algorithm.

With regards to the choice of the acceptance criterion,
the RIDGE FSM instance class is described which induces a
search space with a neutral path of equally fit search points.
Runtime analysis shows that the variant of (1+1) EA which
only accepts strictly better search points will get stuck on

Fig. 1 Finding a UIO for state s1 with (1+1) EA becomes harder when increasing parameter k

Fig. 2 TWOPATHS FSM instance class where crossover is useful

the path, while the standard (1+1) EA which also accepts
equally fit search points will find the UIO in polynomial
time. This result shows that apparently minor modifications
of an algorithm can have an exponentially large runtime im-
pact when computing UIOs.

Regarding the role of populations and crossover on the
UIO problem, the runtime of the (μ+1) steady state ge-
netic algorithm is analysed. The result shows that on the
TWOPATHS FSM instance class shown in Fig. 2, the SSGA
finds the UIO in polynomial time as long as the crossover
probability is a non-zero constant and the population is suf-
ficiently large. However, with crossover probability 0, the
runtime of the (μ+1) SSGA increases exponentially. The
analysis is based on the observation that the fitness function
corresponding to the TWOPATHS FSM consists of two sep-
arate paths, each leading to a local optimum. The global
optimum is located between these two local optima. The
individuals in the population can follow either of the paths,
eventually leading to two sub-populations, one on each local
optimum. The paths are constructed in such a way that it
is unlikely that mutation alone will produce the global opti-
mum. However, the global optimum can easily be reached
by crossing over two individuals that sit on different optima.
It is worth noting that this analysis is based on specific types
of crossover and mutation. This result means that when com-
puting UIOs, the crossover operator can be essential, and
simple EAs including the (1+1) EA can be ineffective. This
result is important because although the crossover operator
is often thought to be important for GAs, there exist very few
theoretical results on non-artificial problems confirming that
this is the case.

68 Per Kristian LEHRE, et al. Runtime analysis of search heuristics on software engineering problems

� ����	����� �������� ����
��

Software testing is both an important and costly task in soft-
ware development. Much research in SBSE has therefore fo-
cused on automating software testing using search heuristics
[3]. Structural testing is a particular type of software test-
ing where test cases are generated using knowledge about
the internal structure of the program. The goal is to generate
test cases which make different parts of the program become
executed.

Arcuri et al. [42] analysed the runtime of three search
heuristics on generating test data for the triangle classifica-
tion program, which is a program that occurs frequently in
the analysis of testing approaches. The program consists of a
single function which takes three integers x, y and z as argu-
ments. The task of the program is first to determine whether
there exists a triangle with side lengths x, y and z, and sec-
ondly, if such a triangle exists, return the triangle type. The
possible triangle types are scalene, equilateral, and isosceles.

The test generation task for a given program branch, is to
find input values x, y, and z such that the branch is executed.
Whether a given branch is executed may depend on whether
predicates in conditional statements that occur in the pro-
gram are satisfied by the program variables. In the case of
the equilateral branch, it is necessary that the program vari-
ables satisfy the predicates a+b>c and a=b=c. Empirical
investigations have shown that the equilateral branch is the
hardest branch to generate test cases for. Therefore, the run-
time analysis focused on the problem of finding integers x,
y and z such that the equilateral branch is executed by the

int tri_type(int x, int y, int z) {

int type;

int a=x, b=y, c=z;

if (x > y) {

//TARGET 2

int t = a; a = b; b = t;

}

if (a > z) { int t = a; a = c; c = t; }

if (b > c) { int t = b; b = c; c = t; }

if (a + b <= c) {

type = NOT_A_TRIANGLE;

} else {

type = SCALENE;

if (a == b && b == c) {

// TARGET 1

type = EQUILATERAL;

} else if (a == b || b == c) {

type = ISOSCELES;

}

}

return type;

}

Fig. 3 Triangle classification (TC) program, adapted from [3]

program.
Search based test case generation techniques are often

guided by a branch distance measure [3]. The branch dis-
tance gives an indication as to how “close” the program vari-
ables are to satisfy the predicates that must be satisfied to ex-
ecute the branch. The particular branch distance function de-
pends on the type of nested conditional statements that occur
before the branch. As an example, for the single conditional

statement if(a>b), the branch distance measure is max{0,

b− a}.
In order to analyse the asymptotic runtime on this prob-

lem, it is necessary to specify the meaning of the meaning of
instance size. The program structure itself is a constant. In
this study, the instance size is defined in terms of the size n of
the integer range [−n/2, . . . , n/2−1] in which the variables
x, y and z are searched for. Other definitions of instance size
may be more suitable on different formulations of the test
data generation problem.

The first and simplest search heuristic considered search
(RS), which in each iteration samples three integers in the
chosen interval uniformly at random until a correct test is
found [42]. The probability of finding the optimal solution
is therefore the same in each iteration, and the expected run-
time is and the expected runtime is Θ(n2).

The second method considered is a hill climber (HC) the
first fitter neighbour in the unit neighbourhood according to
the branch distance measure, or restarts from a random point
if no such neighbour exists. The expected distance to the
optimum in the initial iteration is linear with respect to the
size of the interval range, and the maximal reduction in dis-
tance to the optimum per iteration is one. By showing that
the expected number of restarts is constant, one arrives at the
expected runtime Θ(n) [42]. Θ(n) [42].

The third method is called the alternating variable which
works similar to the hill climber, but increasingly large step
sizes as long as a fitter neighbour solution is found. Hence,
this algorithm is able to overcome longer distances than HC
per iteration. The expected runtime of AVM is bounded from
below by Ω(log n) and from above by O((log n)2) [42].

� ������ �
��	�
���

5.1 Relationships between SE problems and search

heuristics

The range of software engineering (SE) problems for which
search based approaches could be considered is wide [4].
Problem characteristics can vary greatly between different
problems. Hence, a search heuristic which is suitable for one

Front. Comput. Sci. China 2009, 3(1): 64–72 69

problem may be unsuitable for another problem. A central
goal with runtime analysis of search heuristics on software
engineering problems is to develop a theoretical foundation
for understanding the relationships between software engi-
neering problems and search heuristics. Such an understand-
ing will aid in choosing an appropriate search heuristic for a
given software engineering problem. The following subsec-
tions describe directions for research that when taken would
lead the field closer to reaching this goal.

5.2 Better mathematical techniques

The recent progress in the runtime analysis of search heuris-
tics is partly due to the application of appropriate mathemat-
ical techniques [11, 12]. The exact Markov chain models of
evolutionary algorithms that were considered in early studies
often became intractable in more complex scenarios.

It is possible that further progress in the field depends
on finding and adopting mathematical techniques that have
not been previously considered in the field. In particular,
new techniques may be required to analyse search heuris-
tics that have not previously been investigated theoretically.
For example, population-based evolutionary algorithms may
behave qualitatively differently than the (1+1) EA on ex-
actly the problems for which they have an advantage over
the (1+1) EA.

New theoretical approaches may also be helpful when
considering broader instance classes. In the studies de-
scribed in Sections 3 and 4, very detailed information about
the problem structure was needed to arrive at good bounds.
Better techniques may allow good bounds to be obtained
with less detailed information about the problem structure.

5.3 Analysis of more complex search heuristics

Most runtime analyses so far have considered the (1+1) EA,
and the understanding of this algorithm has advanced quite
far. The (1+1) EA can be classified as a simple search
heuristic because it only considers a single individual that in
each step is updated by a mutation operator. More complex
search heuristics include those that consider populations and
a crossover operator (e.g., genetic algorithms), probability
distributions over the search space (estimation of distribution
algorithms), several optimisation objectives (multi-objective
EAs) and multiple populations (e.g., co-evolutionary algo-
rithms).

There exist relatively few results about the runtime of
more complex evolutionary algorithms that employ a pop-
ulation of individuals and a crossover operator. Population-
based evolutionary algorithms tend to be harder to analyse,
partly due to the complex interactions that can occur between
individuals in the population and the way the crossover op-

erator exchanges information between individuals. It is dif-
ficult to capture the stochastic behaviour of the entire popu-
lation using a simple potential function. Furthermore, such
algorithms often have more parameters, and the settings of
these may have important effects on the runtime behaviour.

Although the (1+1) EA has been shown to be surprisingly
efficient in many problem domains, there exists important
cases where this algorithm is inefficient [41] and where it is
known that the crossover operator and a population can help.
Furthermore, these complex algorithms tend to be used more
often by practitioners. It is therefore important to extend the
runtime analysis to more complex evolutionary algorithms.

Although estimation of distribution algorithms (EDAs)
have gained significant popularity in recent years, little is
known about the asymptotic runtime behaviour of these al-
gorithms. One exception is the result by Droste [43] which
shows that the expected runtime of cGA on the class of linear
functions is Θ(nK), where K = n1+ε, ε > 0 is a parame-
ter in the algorithm. Furthermore, Chen et al. [44] showed
that the incremental UMDA is efficient on the LEADINGONES

problem, and also constructed a problem for which the in-
cremental UMDA is inefficient. There exists no theoretical
result about the runtime of any EDA on any software engi-
neering problem. A useful contribution in this area would
be to identify a software engineering problem for which the
particular characteristics of EDAs make this algorithm more
efficient than traditional evolutionary algorithms. Sagarna
et al. [45] suggest that the probability distribution which
the EDA learns during the optimisation process may contain
useful information about problem characteristics.

Many software engineering problems involve multiple
conflicting objectives, and in such cases it is inadequate to
optimise the solution considering a single objective only. Ex-
amples include problems where it is necessary to balance the
cost and the value of a solution. Multi-objective optimisa-
tion problems can be tackled using techniques from evolu-
tionary multi-objective optimisation [46] which have proved
successful in finding sets of Pareto optimal solutions.

The multi-objective point of viewing optimisation is gain-
ing popularity within search based software engineering.
Applications include the testing-resource allocation problem
[47], test data generation [48], test case selection [49] and
requirements engineering [50].

The runtime of some multi-objective evolutionary algo-
rithms (MOEA) have been analysed on simple functions [20,
51, 52], and some multi-objective combinatorial optimisa-
tion problems [53]. However, so far, there has been no the-
oretical analysis of evolutionary multi-objective algorithms
in the software engineering domain. Although difficult, it is
likely that such an analysis would be beneficial. In partic-

70 Per Kristian LEHRE, et al. Runtime analysis of search heuristics on software engineering problems

ular, a rigorous mathematical analysis may provide insight
into the structure and connectivity of the Pareto set of vari-
ous software engineering problems.

Interestingly, co-evolutionary techniques have been used
to to co-evolve programs and tests [54]. Although it has
been shown that it is possible to analyse the runtime of co-
evolutionary algorithms [55], it may not be feasible to anal-
yse the runtime in this particular application. However, in
the more general case, theoretical runtime analysis could po-
tentially provide insight into some of the challenges that oc-
cur in the application of co-evolution, including disengage-
ment, cycling, mediocre stable states and forgetting.

5.4 Analysis of broader problem classes

The existing theoretical analyses in SBSE described in Sec-
tions 3 and 4 consider restricted instance classes of software
engineering problems. It would be a valuable contribution
to generalise these results to broader instance classes. One
possible approach is to seek easily computable problem in-
stance characteristics with which instances that are hard for
a given search heuristic can be identified. Such results could
allow practitioners to quickly rule out a given search heuris-
tic when it can be proved that it is unsuitable for the problem
at hand.

Many software engineering problems are special cases of
classical combinatorial optimisation problems. A line of
research could be to investigate whether the real world in-
stances of a given software engineering problem share some
special properties. If all the real world instances belong to a
particular subclass of the instances, then it would be useful to
analyse the runtime of a search heuristic with respect to this
class of instances. For some NP-hard problems that occur
in software engineering, one can hope that the real world in-
stances of the problem form tractable subclasses of the prob-
lem.

Much of the theoretical research in SBSE is related to
software testing problems. However, SBSE approaches have
been applied to a much wider range of software engineering
problems. Many of these problems are special cases of clas-
sical combinatorial optimisation problems for which there
exists an extensive body of theoretical research. Runtime
analysis of search heuristics could potentially benefit from
this research, and provide useful hints about problem struc-
ture. An example where existing knowledge about prob-
lem structure has been used occurs in Giel and Wegener’s
analysis of (1+1) EA for the maximum matching problem,
where the idea of augmenting paths helps to understand the
behaviour of the algorithm on the problem [29].

† Softhare engineering by automated search (SEBASE) project web site. http://www.cercia.ac.uk/projects/research/SEBASE/

5.5 Approximation quality of search heuristics

In some cases, it is not required that the solution to a soft-
ware engineering problem is the globally best solution, as
long as it is sufficiently good according to some criteria. In
such cases, it is desirable to acquire knowledge about the
approximation quality that can be obtained by the search
heuristic within polynomial time. If one can prove that for
any problem instance, the solution found by a search heuris-
tic is always within a certain bound of the optimal solution,
then this would in some cases be a sufficient certificate that
a search heuristic is useful on the problem. Results on the
approximation quality of search heuristics also provide valu-
able information for choosing between two heuristics. There
exist currently no results about the approximation quality of
search heuristics in the software engineering domain.

� ���	���
��

Search based software engineering is a promising approach
to automating certain software engineering tasks. In this pa-
per, we have pointed out some methodological challenges
that are involved in the experimental evaluation of search
heuristics on software engineering problems and suggest that
empirical methodologies should be complemented with a
theoretical foundation. We describe some of the progress
that has been made in runtime analysis of search heuristics
applied in other problem domains and suggest that this type
of theoretical analysis is also applicable in search based soft-
ware engineering. We then describe recent results on the
runtime of search heuristics in conformance testing of finite
state machines, and in structural testing of software. Finally,
we propose several avenues for further research on runtime
analyses in the area of search based software engineering.

Acknowledgements The authors would like to thank Pietro Oliveto, Ra-
mon Sagarna, Andrea Arcuri and the other members of the SEBASE
project† for useful comments. This work was partially supported by EP-
SRC (EP/C520696/1) and by the Royal Society under a grant in its UK-
China Science Network programme.

�������	��

1. Harman M. The current state and future of search based software engi-

neering. In: Proceedings of International Conference on Software En-

gineering / Future of Software Engineering 2007 (ICSE/FOSE 2007),

IEEE Computer Society, 2007, 342–357

2. Sarker R, Mohammadian M, Yao X, eds. Evolutionary Optimization.

Kluwer Academic Publishers, 2002

Front. Comput. Sci. China 2009, 3(1): 64–72 71

3. McMinn P. Search-based software test data generation: A survey.

Software Testing, Verification and Reliability, 2004, 14(2): 105–156

4. Clark J A, Dolado J J, Harman M, Hierons R M, Jones B, Lumkin M,

Mitchell B, Mancoridis S, Rees K, Roper M, Shepperd M. Reformu-

lating software engineering as a search problem. IEEE Proceedings-

Software, 2003, 150(3): 161–175

5. Poulding S, Emberson P, Bate I, Clark J A. An efficient experimen-

tal methodology for configuring search-based design algorithms. In:

Proceedings of 10th IEEE High Assurance System Engineering Sym-

posium (HASE’2007), 2007, 53–62

6. Wolpert D H, Macready W G. No free lunch theorems for optimiza-

tion. IEEE Transactions on Evolutionary Computation, 1997, 1(1):

67–82

7. Harman M, McMinn P. A theoretical & empirical analysis of evolu-

tionary testing and hill climbing for structural test data generation. In:

Proceedings of the ISSTA 2007 Symposium, 2007, 73–84

8. Rudolph G. Finite markov chain results in evolutionary computation:

A tour d’horizon. Fundamenta Informaticae, 1998, 35(1): 67–89

9. Droste S, Jansen T, Wegener I. Upper and lower bounds for random-

ized search heuristics in black-box optimization. Theory of Comput-

ing Systems, 2006, 39(4): 525–544

10. Droste S, Jansen T, Wegener I. On the analysis of the (1+1) Evolution-

ary Algorithm. Theoretical Computer Science, 2002, 276: 51–81

11. He J, Yao X. A study of drift analysis for estimating computation time

of evolutionary algorithms. Natural Computing, 2004, 3(1): 21–35

12. Wegener I. Methods for the analysis of evolutionary algorithms on

pseudo-boolean functions. In: Sarker R, Mohammadian M, Yao X,

eds. Evolutionary Optimization. Dordrecht: Kluwer, 2002, 349–369

13. Oliveto P, Witt C. Simplified drift analysis for proving lower bounds in

evolutionary computation. In: Proceedings of Parallel Problem Solv-

ing from Nature (PPSN’X). Berlin: Springer, LNCS, 2008, 5199: 82–

91

14. Motwani R, Raghavan P. Randomized Algorithms. Cambridge: Cam-

bridge University Press, 1995

15. Droste S, Jansen T, Wegener I. On the optimization of unimodal func-

tions with the (1+1) evolutionary algorithm. In: Proceedings of the

5th International Conference on Parallel Problem Solving from Na-

ture (PPSN’V). London: Springer-Verlag, 1998, 13–22

16. Wegener I, Witt C. On the analysis of a simple evolutionary algo-

rithm on quadratic pseudo-boolean functions. Journal of Discrete Al-

gorithms, 2005, 3(1): 61–78

17. Jansen T, Wegener I. Real royal road functions–where crossover prov-

ably is essential. Discrete Applied Mathematics, 2005, 149(1-3): 111–

125

18. Storch T, Wegener I. Real royal road functions for constant population

size. Theoretical Computer Science, 2004, 320(1): 123–134

19. Witt C. Population size versus runtime of a simple evolutionary algo-

rithm. Theoretical Computer Science, 2008, 403(1): 104–120

20. Giel O, Lehre P K. On the effect of populations in evolutionary multi-

objective optimization. In: Proceedings of the 8th annual conference

on Genetic and evolutionary computation (GECCO’06). New York:

ACM, 2006, 651–658

21. Friedrich T, Oliveto P S, Sudholt D, Witt C. Theoretical analysis

of diversity mechanisms for global exploration. In: Proceedings of

the 10th annual conference on Genetic and evolutionary computation

(GECCO’08). New York: ACM, 2008, 945–952

22. Friedrich T, Hebbinghaus N, Neumann F. Rigorous analyses of simple

diversity mechanisms. In: Proceedings of the 9th annual conference

on Genetic and evolutionary computation (GECCO’07), 2007, 1219–

1225

23. Neumann F, Witt C. Runtime analysis of a simple ant colony optimiza-

tion algorithm. In: Proceedings of the 17th International Symposium

on Algorithms and Computation (ISAAC’2006). Berlin: Springer,

LNCS, 2006, 4288: 618–627

24. Sudholt D, Witt C. Runtime analysis of binary pso. In: Proceedings of

the 10th annual conference on Genetic and evolutionary computation

(GECCO’08). New York: ACM, 2008, 135–142

25. Giel O. Zur Analyse von randomisierten Suchheuristiken und Online-

Heuristiken. PhD thesis. Dortmund: Universität Dortmund, 2005

26. Neumann F. Combinatorial Optimization and the Analysis of Ran-

domized Search Heuristics. PhD thesis. Kiel: Christian-Albrechts-

Universität zu Kiel, 2006

27. Jägersküpper J. Probabilistic Analysis of Evolution Strategies Using

Isotropic Mutations. PhD thesis. Dortmund: Universität Dortmund,

2006

28. Oliveto P S, He J, Yao X. Time complexity of evolutionary algorithms

for combinatorial optimization: A decade of results. International

Journal of Automation and Computing, 2007, 4(1): 100–106

29. Giel O, Wegener I. Evolutionary algorithms and the maximum match-

ing problem. In: Proceedings of the 20th Annual Symposium on The-

oretical Aspects of Computer Science (STACS 2003), 2003, 415–426

30. Scharnow J, Tinnefeld K, Wegener I. Fitness landscapes based on sort-

ing and shortest paths problems. In: Proceedings of 7th Conference on

Parallel Problem Solving from Nature (PPSN–VII). Berlin: Springer,

LNCS, 2002, 2439: 54–63

31. Neumann F, Wegener I. Randomized local search, evolutionary algo-

rithms, and the minimum spanning tree problem. Theoretical Com-

puter Science, 2007, 378(1): 32–40

32. Doerr B, Klein C, Storch T. Faster evolutionary algorithms by superior

graph representation. In: Proceedings of the 1st IEEE Symposium on

Foundations of Computational Intelligence (FOCI’2007), 2007, 245–

250

33. Oliveto P, He J, Yao X. Analysis of population-based evolutionary al-

gorithms for the vertex cover problem. In: Proceedings of IEEE World

Congress on Computational Intelligence (WCCI’08), 2008, 1563–

1570

34. Witt C. Worst-case and average-case approximations by simple ran-

domized search heuristics. In: Proceedings of the 22nd Annual Sym-

posium on Theoretical Aspects of Computer Science (STACS’05),

LNCS, 2005, 3404: 44–56

35. Friedrich T, Hebbinghaus N, Neumann F, He J, Witt C. Approximat-

ing covering problems by randomized search heuristics using multi-

objective models. In: Proceedings of the 9th annual conference on Ge-

netic and evolutionary computation (GECCO’07). New York: ACM

Press, 2007, 797–804

36. Lee D, Yannakakis M. Principles and methods of testing finite state

machines-a survey. In: Proceedings of the IEEE, 1996, 84(8): 1090–

1123

37. Lee D, Yannakakis M. Testing finite-state machines: state identifica-

tion and verification. IEEE Transactions on Computers, 1994, 43(3):

306–320

38. Guo Q, Hierons R M, Harman M, Derderian K A. Computing unique

input/output sequences using genetic algorithms. In: Proceedings of

the 3rd International Workshop on Formal Approaches to Testing of

72 Per Kristian LEHRE, et al. Runtime analysis of search heuristics on software engineering problems

Software (FATES’2003), LNCS, 2004, 2931: 164–177

39. Derderian K A, Hierons R M, Harman M, Guo Q. Automated unique

input output sequence generation for conformance testing of fsms. The

Computer Journal, 2006, 49(3): 331–344

40. Lehre P K, Yao X. Runtime analysis of (1+1) EA on computing unique

input output sequences. In: Proceedings of 2007 IEEE Congress on

Evolutionary Computation (CEC’07). IEEE Press, 2007, 1882–1889

41. Lehre P K, Yao X. Crossover can be constructive when computing

unique input output sequences. In: Proceedings of the 7th Interna-

tional Conference on Simulated Evolution and Learning (SEAL’08),

LNCS, 2008, 5361: 595–604

42. Arcuri A, Lehre P K, Yao X. Theoretical runtime analyses of search al-

gorithms on the test data generation for the triangle classification prob-

lem. In: Proceedings of the 1st International Workshop on Search-

Based Software Testing, 2008, 161–169

43. Droste S. A rigorous analysis of the compact genetic algorithm for

linear functions. Natural Computing, 2006, 5(3): 257–283

44. Chen T, Tang K, Chen G, Yao X. On the analysis of average time com-

plexity of estimation of distribution algorithms. In: Proceedings of

2007 IEEE Congress on Evolutionary Computation (CEC’07). IEEE

Press, 2007, 453–460

45. Sagarna R, Arcuri A, Yao X. Estimation of distribution algorithms

for testing object oriented software. In: Proceedings of 2007 IEEE

Congress on Evolutionary Computation (CEC’07). 2007, 438–444

46. Deb K. Multi-Objective Optimization Using Evolutionary Algorithms.

Wiley, 2001

47. Wang Z, Tang K, Yao X. A multi-objective approach to testing re-

source allocation in modular software systems. In: Proceedings of the

2008 IEEE Congress on Evolutionary Computation (CEC’08). IEEE

Press, 2008, 1148–1153

48. Harman M, Lakhotia K, McMinn P. A multi-objective approach to

search-based test data generation. In: Proceedings of the 9th annual

Conference on Genetic and Evolutionary Computation (GECCO’07).

ACM, 2007, 1098–1105

49. Yoo S, Harman M. Pareto efficient multi-objective test case selection.

In: Proceedings of the 2007 International Symposium on Software

Testing and Analysis (ISSTA ’07). ACM, 2007, 140–150

50. Zhang Y, Harman M, Mansouri S A. The multi-objective next release

problem. In: Proceedings of the 9th annual Conference on Genetic and

Evolutionary Computation (GECCO ’07). ACM, 2007, 1129–1137

51. Laumanns M, Thiele L, Zitzler E. Running time analysis of multiob-

jective evolutionary algorithms on pseudo-boolean functions. IEEE

Transactions on Evolutionary Computation, 2004, 8(2): 170–182

52. Giel O. Expected runtimes of a simple multi-objective evolutionary al-

gorithm. In: Proceedings of the 2003 IEEE Congress on Evolutionary

Computation (CEC’03). IEEE Press, 2003, 3: 1918–1925

53. Neumann F. Expected runtimes of a simple evolutionary algorithm for

the multi-objective minimum spanning tree problem. In: Proceedings

of Parallel Problem Solving from Nature (PPSN’VIII), 2004, 81–90

54. Arcuri A, Yao X. Coevolving programs and unit tests from their spec-

ification. In: Proceedings of IEEE International Conference on Auto-

mated Software Engineering (ASE), 2007, 397–400

55. Jansen T, Wiegand R P. The cooperative coevolutionary (1+1) EA.

Evolutionary Computation, 2004, 12(4): 405–434

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

