
Crossover can be constructive when computing

unique input output sequences∗

Per Kristian Lehre and Xin Yao

The Centre of Excellence for Research in
Computational Intelligence and Applications (CERCIA),

School of Computer Science, The University of Birmingham,
Edgbaston, Birmingham B15 2TT, United Kingdom

{P.K.Lehre,X.Yao}@cs.bham.ac.uk

Abstract

Unique input output (UIO) sequences have important applications in
conformance testing of finite state machines (FSMs). Previous experi-
mental and theoretical research has shown that evolutionary algorithms
(EAs) can compute UIOs efficiently on many FSM instance classes, but
fail on others. However, it has been unclear how and to what degree EA
parameter settings influence the runtime on the UIO problem. This pa-
per investigates the choice of acceptance criterion in the (1+1) EA and
the use of crossover in the (µ+1) Steady State Genetic Algorithm. It is
rigorously proved that changing these parameters can reduce the runtime
from exponential to polynomial for some instance classes.

1 Introduction

Evolutionary Algorithms (EAs) are general purpose optimisation algorithms.
In principle, they can be applied with little problem domain knowledge, only
requiring the user to provide the algorithm with a set of candidate solutions
and a way of measuring the quality of each candidate solution. This generality
allows EAs to be applied in diverse problem domains, as has been documented
extensively. In practice, the application of EAs is often not straightforward as
it is often necessary to adjust the parameter settings to the problem at hand.
Due to a poor understanding in how and why genetic operators influence the
search process, this parameter tuning is often expensive.

∗This is a preprint of a paper that will appear in the Proceedings of the 7th International
Conference on Simulated Evolution and Learning (SEAL’08).

1

Theoretical research like runtime analysis will seldom provide optimal pa-
rameter settings for specific real world problems. However, it may provide
insight into how and why EAs work and sometimes fail. In particular, a theo-
retical analysis can point out simple general cases where the choice of a genetic
operator has a particularly important effect on the runtime. Equipped with an
understanding of how EAs behave in such archetypical cases, a practitioner will
be better equipped in making an informed decision as to how to choose param-
eter settings on a specific real world problem. This paper analyses rigorously
the influence of genetic operators on the problem of computing unique input
output (UIO) sequences from finite state machines (FSMs), a computationally
hard problem from the software engineering domain [1]. UIOs have important
applications in conformance testing of FSMs [2]. Similarly to other approaches
in search based software engineering [3], the UIO problem has been reformulated
as an optimisation problem and tackled with EAs [4, 5]. Experimental results
show that EAs can construct UIOs efficiently on some instances. Guo et al.
compared an evolutionary approach with a random search strategy, and found
that the two approaches have similar performance on a small FSM, while the
evolutionary approach outperforms random search on a larger FSM [5]. Derde-
rian et al. presented an alternative evolutionary approach [4], confirming Guo
et al’s results.

Theoretical results confirm that EAs can outperform random search on the
UIO problem [1]. The expected running time of (1+1) EA on a counting FSM
instance class is O(n log n), while random search needs exponential time [1].
The UIO problem is NP-hard [2], so one can expect that there exist EA-hard
instance classes. It has been proved that a combination lock FSM is hard for
the (1+1) EA [1]. To reliably apply EAs to the UIO problem, it is necessary
to distinguish easy from hard instances. Theoretical results indicate that there
is no sharp boundary between these categories in terms of runtime. For any
polynomial nk, there exist UIO instance classes where the (1+1) EA has running
time Θ(nk) [1].

Do EA settings have any significant impact on the chance of finding UIOs
efficiently? Guo et al hypothesise that crossover is helpful [6], without giving
further evidence than two example sequences that recombine into a UIO. The
theoretical results in this paper confirms this hypothesis, proving that crossover
can be essential for finding the UIO in polynomial time. The results also show
how modifying the acceptance criterion of an EA can have a similarly drastic
impact on the runtime. The remaining of this section provides preliminaries,
followed by the main results in Sections 2 and 3.

Definition 1 (Finite State Machine). A finite state machine (FSM) M is a
quintuple M = (I,O, S, δ, λ), where I is the set of input symbols, O is the set
of output symbols, S is the set of states, δ : S × I → S is the state transition
function and λ : S × I → O is the output function.

When receiving an input symbol a, the machine makes the transition from its
current state s to a next state δ(s, a) and outputs symbol λ(s, a). The functions
λ and δ are generalised to the domain of input sequences in the obvious way.

2

Definition 2 (Unique Input Output Sequence). A unique input output se-
quence (UIO) for a state s in an FSM M is a string x over the input alphabet
I such that λ(s, x) 6= λ(t, x) for all states t, t 6= s.

To compute UIOs with EAs, candidate solutions are represented as strings
over the input alphabet of the FSM, which is here restricted to I = {0, 1} [5].
Although the shortest UIOs in the general case can be exponentially long with
respect to the number of states [2], all the instances presented here have UIOs
of length n. The objective in this paper is to search for an UIO of length n for
state s1 in various FSMs, where the fitness of a input sequence is defined as a
function of the state partition tree induced by the input sequence [5, 1].

Definition 3 (UIO fitness function). For a finite state machine M with m
states, the fitness function UIOM,s : In → N is defined as UIOM,s(x) := m −
γM (s, x), where γM (s, x) := |{t ∈ S | λ(s, x) = λ(t, x)}|.

The instance size of fitness function UIOM,s1 is here defined as the length of
the input sequence n. The value of γM (s, x) is the number of states in the leaf
node of the state partition tree containing node s, and is in the interval from
1 to m. If the shortest UIO for state s in FSM M has length no more than n,
then UIOM,s has an optimum of m − 1. The following obvious lemma will be
useful when characterising fitness functions corresponding to FSMs.

Lemma 1. For any FSM M = (I,O, S, δ, λ) and pair of states s, t ∈ S and pair
of input sequences x, y ∈ I∗, if λ(s, xy) = λ(t, xy) then λ(s, x) = λ(t, x).

Proof. Lemma 1 If λ(s, xy) = λ(s, x) · λ(δ(s, x), y) equals λ(t, xy) = λ(t, x) ·
λ(δ(t, x), y), then λ(s, x) = λ(t, x).

The goal of analysing the runtime of a search algorithm on a problem is
to derive expressions showing how the number of iterations the algorithm uses
to find the optimum depends on the problem instance size. The time is here
measured as the number of fitness evaluations.

Definition 4 (Runtime [7, 8]). Given a class F of fitness functions fi : Si →
R, the runtime TA,F (n) of a search algorithm A is defined as TA,F (n) :=
max{TA,f | f ∈ Fn}, where Fn is the subset of functions in F with instance
size n, and TA,f is the number of times algorithm A evaluates the cost function
f until the optimal value of f is evaluated for the first time.

For a randomised search algorithm A, the runtime TA,F (n) is a random
variable. Runtime analysis of randomised search heuristics estimates properties
of the distribution of TA,F (n), including the expected runtime E [TA,F (n)] and
the success probability Pr [TA,F (n) ≤ t(n)] within time bound t(n).

2 Impact of Acceptance Criterion

The (1+1) EA is a simple single-individual algorithm, which in each iteration
replaces the current search point x by a new search point x′ if and only if f(x′) ≥

3

q1 q2 q3 q4 qn−2 qn−1 qn

sn sn−1 sn−2 s4 s3 s2 s1

1/a 1/a 1/a 1/a 1/a 1/a

0/a0/a0/a0/a0/a0/a

1/a 1/a 1/a 1/a 1/a1/a

0/a 0/a 0/a 0/a 0/a 0/a

0/b 1/c1/a

n

Figure 1: Ridge FSM instance class.

f(x). The variant (1+1)∗ EA adopts the more restrictive acceptance criterion
f(x′) > f(x). There exists an artificial pseudo-boolean function Spc where
(1+1) EA is efficient while (1+1)∗ EA fails [9]. Here, it is shown that the same
result holds on the UIO problem for the RidgeFSM instance class.

Definition 5 ((1+1) EA).

Choose x uniformly from {0, 1}n.
Repeat

x′ := x. Flip each bit of x′ with probability 1/n.
If f(x′) ≥ f(x), then x := x′.

Definition 6 (Ridge FSM). For instance sizes n, n ≥ 2, define a Ridge FSM
with input and output symbols I := {0, 1} and O := {a, b} respectively, and 2n
states S := Q ∪ R, where Q := {q1, q2, ..., qn} and R := {s1, s2, ..., sn}. For
all states qi and si, 1 ≤ i ≤ n, define the transition and output functions as
δ(qi, 0) := qi, δ(si, 1) := s1, λ(qi, 0) := a, λ(si, 1) := a, and

δ(qi, 1) :=

{
s1 if i = n,

qi+1 otherwise .
δ(si, 0) :=

{
q1 if i = n,

si+1 otherwise.

λ(qi, 1) :=

{
b if i = n,

a otherwise.
λ(si, 0) :=

{
b if i = n,

a otherwise.

The fitness function UIORidge,s1 can be expressed as a pseudo-boolean func-
tion.

Proposition 1. The fitness function UIORidge,s1 associated with the Ridge FSM
instance class of size n takes the values

Ridge(x) =

{
2n− 1 if x = 0n, and∑n
i=1 xi +

∑n
i=1

∏i
j=1(1− xi) otherwise.

4

Proof. We claim that on inputs x of length n and different from 0n, the number
of states, among the states qi, 1 ≤ i ≤ n, with different output than state s1

equals OneMax(x) :=
∑n
i=1 xi and the number of states, among the states si,

2 ≤ i ≤ n, with different output than state s1 equals Lz (x) :=
∑n
i=1

∏i
j=1(1−

xi). The first claim follows from the characterisation of the easy FSM instance
class in [1] (see Proposition 1). All states si, 1 ≤ i ≤ n, collapse to state s1

on input 1. Hence, for a state si, 2 ≤ i ≤ n, if λ(s1, 0j1z) 6= λ(si, 0j1z), then
λ(s1, 0j) 6= λ(si, 0j). To reach transition (sn, q1) from state si, it is necessary
to have at least n− i 0-bits in the input sequence. Hence, on input 0j , a state
sj has different output from s1 if and only if j > n − i. The number of states
si, 2 ≤ i ≤ n, with different output from state s1 on input 0j1z is j.

Except for 0n which is the only UIO of length n for state s1, the fitness
function is the sum of Lz and Onemax . The search points 0i1n−i, 0 ≤ i < n,
have identical fitness, forming a neutral path of length n − 1. The runtime
analysis for Ridge is similar to that of Spc in [9]. When reaching the path,
(1+1) EA will make a random walk until it hits the global optimum. (1+1)
EA∗ will get stuck on the path, only accepting the optimal search point. If the
distance to the optimum is large, then it takes long until (1+1) EA∗ mutates the
right bits. The function Spc maximises this distance by embedding an explicitly
defined trap. In contrast, Ridge does not have such an explicitly defined trap.
Even without the trap, one can prove that (1+1) EA∗ is still likely to reach the
path far from the optimum because (1+1)∗ EA optimises Onemax quicker than
Lz . The formal proof of this, and some of the following theorems have been
omitted due to space limitations. (A complete version of this paper containing
all the proofs is available as a technical report [10].)

Theorem 1. The expected time until (1+1) EA finds an UIO of length n for
state s1 in Ridge FSM using fitness function UIORidge,s1 is bounded from above
by O(n3).

Proof. Theorem 1 Non-optimal search points are on the form 0i1z, where i is
an integer 0 ≤ i < n and z is some bitstring of length n− 1− i. We divide the
search process into two phases. The process is in Phase 1 if the suffix z contains
at least one 0-bit, and the process is in Phase 2 when z does not contain any
0-bit. By Proposition 1, the process will never return to Phase 1 once Phase 2
has been entered.

Let j denote the number of 0-bits in the tail. By Lemma 4, the value of j
will never increase. The probability of decreasing the value of j in an iteration
is at least j/en. So the expected time to remove the at most n − 1 0-bits and
end Phase 1 is O(n lnn).

In Phase 2, only search points on the form 0i1n−i will be accepted. Hence,
the changing value of i can be considered as a random walk on the integer
interval between 0 and n. The optimum is found when the random walk hits
the value i = n. This process has been analysed by Jansen and Wegener [9],
showing an upper bound of O(n3) iterations.

5

Theorem 2. The probability that (1+1)* EA has found an UIO of length n for
state s1 in Ridge FSM using fitness function UIORidge,s1 in less than nn/24

steps, is bounded from above by e−Ω(n).

Proof. Theorem 2 The search process is divided into two phases in the same way
as in the proof of Theorem 1. We claim that with probability 1− e−Ω(n), when
the process enters Phase 2, the first 1-bit will occur before position 11n/12. This
can be proved by adapting an argument in Droste et al [7] for lower bounding
the runtime of (1+1) EA on Lo (leading ones) . In order to reduce the number
1-bits, it is necessary, but in our case not always sufficient, to flip the leftmost
1-bit. Following the terminology in [7], a step in which the left-most 1-bit flips
is called essential. An essential step can decrease the number of 1-bits by more
than one if the 1-bit is followed by one or more 0-bits. Such consecutive blocks
of 0-bits are called free riders.

We consider a time interval of n2/12 iterations and define four types of fail-
ures. Failure 1 occurs when the process is still in Phase 1 after n2/12 iterations.
Failure 2 occurs when there have been more than n/6 essential steps in Phase 1.
Failure 3 occurs when there are more than 2n/3 free-riders during n/6 essential
steps. Failure 4 occurs when more than n/4 leftmost 1-bits are flipped during
n/6 essential steps.

Failure 1: By Lemma 4, the number of 0-bits in the tail will not increase.
The probability of flipping a given 0-bit is at least 1/en, so the probability
that a given 0-bit has not been flipped after n2/12 iterations is no more than
(1 − 1/en)n

2/12 ≤ e−n/12e. Hence, the probability that at least one of the at
most n − 1 0-bits in the tail has not been flipped after n2/12 iterations is no
more than (n− 1) · e−n/12e = e−Ω(n).

Failure 2: The probability of having an essential step in a given iteration
is less than 1/n, so the expected number of essentials steps in n2/12 iterations
is less than n/12. So the probability of having at least n/6 essential steps is
bounded (using a Chernoff bound) from above by e−n/36 = e−Ω(n).

Failure 3: The total number of free-riders in Phase 1 cannot be larger than
the number of 0-bits in the suffix. The initial search search point is a uniformly
sampled bitstring, and Lemma 4 guarantees that the number of 0-bits in the tail
will not increase. Hence, the probability that the tail contains more than 2n/3
free-riders is bounded from above by the probability that the initial bitstring
contains more than 2n/3 0-bits, which by a Chernoff bound is e−Ω(n).

Failure 4: An essential step can reduce the number of left-most 1-bits by flip-
ping more than one 1-bit simultaneously. Let random variablesXt ∈ {0, .., n}, t ≥
0 denote the number of initial 1-bits which are flipped in the t′th essential step.
The probability of flipping the 1 + i leftmost 1-bits in any essential step is less
than n−i, hence we can bound the expectation of each variable Xt with

E [Xt] ≤ 1 +
n∑
i=0

i · n−i ≤ 1 +
∞∑
i=0

i · n−i = 1 +
1

n− 2 + 1/n
≤ 1 +

1
n− 2

.

In m := n/6 essential steps, we now have less than X :=
∑n/6
t=1Xt left-

most 1-bit flips. For instance sizes n > 7, the expectation of X is E [X] =

6

∑n/6
t=1 E [Xt] ≤ n/6 · (1 + 1/(n− 2)) ≤ n/5. Hence, by Theorem 5, the probabil-

ity that more than n/5 + n/20 = n/4 1-bits are flipped in n/6 essential steps
is less than Pr [X ≥ E [X] + n/20] ≤ exp

(
−2mn2/400n2

)
= e−Ω(n). The total

failure probability is bounded from above by e−Ω(n).
If there are no failures in Phase 1, the number of leading 0-bits when Phase

1 ends is less than n/4 + 2n/3 < 11n/12, and Phase 2 starts with a search point
on the form 0i1n−i, with i < 11n/12. From this point, the selection operator
will only accept the optimum, which is the only search point with higher fitness.
To reach optimum 0n from search point 0i1n−i, it is necessary to flip at least
n/12 1-bits in an iteration, an event which occurs with probability less than
1/nn/12. So in runs without failures, the probability that the optimum is found
within nn/24 iterations is less than 1/nn/24 = e−Ω(n).

Hence, the probability that a failure has not occurred and the optimum
has not been found after nn/24 steps is at least (1 − e−Ω(n)) · (1 − e−Ω(n)) =
1− e−Ω(n).

3 Impact of Crossover

Although (1+1) EA is efficient on several instance classes, one can hypothe-
sise that there exist FSMs for which this EA is too simplistic. In particular,
when is it necessary to use crossover and a population in computing UIOs?
There exists theoretical evidence that crossover is essential on at least some
problems, including several artificial pseudo-boolean functions [11, 12]. For the
Ising model, a small runtime gap was proven for rings [13], and an exponential
runtime gap was proven for trees [14]. Recently, crossover was proven essential
on a vertex cover instance [15], but this result depends on an artificially low
crossover probability. We present an instance class of the UIO problem and
a steady state genetic algorithm where crossover is provably essential. When
reducing the crossover probability from any positive constant (pc > 0) to no
crossover (pc = 0), the runtime increases exponentially. The proof idea is to
construct a fitness function where the individuals in the population can follow
two different paths, each leading to a separate local optimum. The local op-
tima are separated by the maximal Hamming distance. The global optimum
is positioned in the middle between these local optima and can be efficiently
reached with an appropriate one-point crossover between the local optima. The
paths are constructed to make it unlikely that mutation alone will produce the
global optimum. It is worth noting that our analysis is based on specific types
of crossover and mutation.

Definition 7. For instance sizes n, n ≥ 2 and a constant ε, 0 < ε < 1, define a
TwoPaths FSM with input and output symbols I := {0, 1} and O := {a, b, c}
respectively, and 2(n + 1) states S = Q ∪ R, where R := {s1, s2, ..., sn+1} and

7

q1 qn+1

sn+1 s1

0/a 0/a 0/a 0/a 0/a 0/a 0/a 0/a

1/a1/a1/a1/a1/a1/a1/a1/a

0/a 0/a 0/a 0/a 0/a 0/a 0/a

1/a1/a1/a1/a1/a1/a1/a1/a

0/a1/b 0/c1/a
0/a

(1− ε) · n+ 1 ε · n

ε · n (1− ε) · n+ 1

Figure 2: TwoPaths FSM instance class.

Q := {q1, q2, ..., qn+1}. The output and transition functions are defined as

λ(qi, x) :=

{
b if i = n+ 1 and x = 0,
a otherwise

λ(si, x) :=

{
b if i = n+ 1 and x = 1,
a otherwise,

δ(si, 0) :=

{
q(1−ε)·n+3 if i = ε · n+ 1,
s1 otherwise.

δ(si, 1) :=

{
q1 if i = n+ 1,
si+1 otherwise.

δ(qi, 1) :=q1, and, δ(qi, 0) :=

{
s1 if i = n+ 1, and
qi+1 otherwise.

Proposition 2. Let ε be any constant 0 < ε < 1. On input sequences of
length n, the fitness function UIOTwoPaths ,s1 takes the following values, where
A = {1i0εnα | α ∈ {0, 1}(1−ε)n−i},

TwoPaths (x) =

8>>>>>><>>>>>>:

2n+ 1 if x = x∗

Lo (x) + 1 if x ∈ A \ {x∗}
Lo (x) if x1 = 1 and x 6∈ A
Lz (x) + 1 if x1 = 0 and Lz (x) ≥ εn,
Lz (x) if x1 = 0 and Lz (x) < εn,

Lo(x) :=

nX
i=1

iY
j=1

xj ,

Lz(x) :=

nX
i=1

iY
j=1

(1− xj)

x∗ := 1(1−ε)·n0ε·n.

Proof. The states sn+1 and qn+1 are called distinguishing because they have
unique input/output behaviours, whereas all other states output a on any input
symbol. Clearly, for any two states s and t and input sequence x, if neither
state s nor state t reach any distinguishing state on input sequence x, then
λ(s, x) = λ(t, x) = a`(x).

On input sequences x of length n, we first claim that any state si ∈ R reaches
the distinguishing transition (qn+1, s1) if and only if the input sequence is on
the form x = 1(1−ε)·n+1−i0ε·nα. Consider first input sequences of length n on
the form x = 1j0α where j 6= (1 − ε) · n + 1 − i. If 0 ≤ j < (1 − ε) · n + 1 − i,
then δ(si, 1j0) = s1, and from state s1, it is impossible to reach state qn+1

with the remaining bits α which by assumption must be shorter than n. On
the other hand, if j > (1 − ε) · n + 1 − i, then on input 1j , we reach a state

8

beyond s(1−ε)·n+1 from which the shortest distance to state qn+1 is longer than
n. Consider next input sequences of length n on the form x = 1(1−ε)·n+1−i0j1α
with 0 ≤ j < ε · n, then δ(si, 1(1−ε)·n−i0j1) = q1, and it is impossible to reach
state qn+1 from state q1 with the remaining substring α which is shorter than
n. Our first claim holds, and hence, on input sequence x∗ = 1(1−ε)·n0ε·n, only
state s1 among states R reaches the distinguishing transition, and none of the
states in Q reaches the distinguishing transition. This implies that this input
sequence is a UIO and TwoPaths (1(1−ε)·n0ε·n) = 2n+ 1.

We secondly claim that λ(s1, 0j1z) = λ(qi, 0j1z) if and only if λ(s1, 0j) =
λ(qi, 0j) for any state qi ∈ Q, and `(z) = n− j−1 and 1 ≤ j ≤ n−1. (=⇒) The
assumption λ(s1, 0j1z) = λ(qi, 0j1z) implies λ(s1, 0j) = λ(qi, 0j) by Lemma 1.
(⇐=) The assumption λ(qi, 0j) = λ(s1, 0j) = aj implies that δ(qi, 0j1) = q1.
Neither state q1 nor state δ(s1, 0j1) = s2 reach any of the distinguishing states
on input z, hence λ(s2, z) = λ(q1, z), and λ(s1, 0j1z) = λ(qi, 0j1z).

On input 0j , a state qi ∈ Q has different output from state s1 if and only if
j > n+ 1− i. Hence, on input sequences 0j1z, the number of states in Q with
different output than state s1 equals j = Lz (0j1z). Furthermore, by the first
claim, the number of states in R with different output than state s1 on input
0j1z is at most 1. Therefore Lz (0z) ≤ TwoPaths (0z) ≤ Lz (0z) + 1. On
input symbol 1, all states q ∈ Q collapse into state q1, therefore none of these
states will reach a distinguishing state on any input sequence 1z 6= x∗ of length
n. Hence, using a similar argument as for input sequences 0z above, we have
Lo (1z) ≤ TwoPaths (1z) ≤ Lo (1z) + 1, which completes the proof.

If all individuals reach the same local optimum, then the crossover operator
will not be helpful. An essential challenge with the idea behind TwoPaths is
to ensure that both local optima are reached. In addition to a large population
size, some sort of diversity mechanism might be helpful. Here, we will consider
a steady state GA where population diversity is ensured through the acceptance
criteria.

Definition 8 ((µ+1) SSGA).
Sample a population P of µ points u.a.r. from {0, 1}n.
repeat

with probability pc(n),
Sample x and y u.a.r. from P .
(x′, y′) := one point crossover(x, y).
if max{f(x′), f(y′)} ≥ max{f(x), f(y)}

then x := x′ and y := y′.
otherwise

Sample x u.a.r. from P .
x′ := Mutate(x).
if f(x′) ≥ f(x)

then x := x′.

(µ+1) SSGA with crossover probability pc = 0 degenerates into µ parallel

9

runs of the (1 + 1) EA. The algorithm (µ+ 1) SSGA is similar to (µ+ 1) RLS
introduced in [15], but has a different acceptance criterion. The (µ + 1) RLS
accepts both offspring if the best offspring is at least as good as the worst parent,
hence allowing the best individual in the population to be replaced with a less
fit individual. The (µ+1) SSGA adopts a more restrictive acceptance criterion,
only accepting the offspring if the best offspring is at least as good as the best
parent. Each individual in a (µ+1) SSGA population can be associated with a
lineage which interacts little with other lineages, thus facilitating the runtime
analysis.

Definition 9 (SSGA Lineage). If x was added to the population by mutating
y, then y is the parent of x. If z = α1 · β2 was added to the population via
crossover between x = α1 · α2 and y = β1 · β2, then y is the parent of z if
α1 = β1, otherwise x is the parent of z. The lineage of an individual in the
population, is the sequence of search point associated with the parent relations.

Definition 10 (TwoPaths suffix). If a search point x = x1 · · ·xixi+1 · · ·xn
satisfies x1 = x2 = · · · = xi and xi 6= xi+1, then the substring xi+1 · · ·xn is
called the suffix of search point x.

Proposition 3. The probability that any of the initial ecn generations of (µ+1)
SSGA on TwoPaths contain a non-optimal individual with the bitstring 0εn in
its suffix is exponentially small e−Ω(n).

Proof. Proposition 3 Denote by Pt the probability that there exists an individual
in generation t with 0εnin its suffix, conditional on the event that none of the
previous t− 1 generations contained such an individual. Then by Lemma 6, the
probability that any block of bits of length εn in the suffix contains only 0-bits
is 2−εn. There are at most O(µn) such suffix-blocks in the population, hence
the probability Pt is bounded by Pt ≤ O(µn) ·2−εn = e−Ω(n) if µ = poly(n). By
union bound, the probability that within ecn generations, there exists such an
individual is less than

∑ecn

t=0 Pt ≤ ecn · e−Ω(n) = e−Ω(n) for a sufficiently small
constant c.

Lemma 2. As long as no individual in the population has a suffix containing
substring 0εn, the fitness along any lineage of SSGA on TwoPaths is mono-
tonically increasing.

Proof. Lemma 2 Suppose otherwise, that there are parents x and y, and off-
spring x′ and y′ on the form

x = α1 · α2, x′ =α1 · β2

y = β1 · β2, y′ =β1 · α2,

such that the offspring are accepted, i.e. one of the offspring x′ has fitness

TwoPaths (x′) ≥ TwoPaths (x), and (1)
TwoPaths (x′) ≥ TwoPaths (y). (2)

10

Without loss of generality, we assume that prefix β1 begins with a 1-bit. If the
fitness along the lineage decreases, we must have

TwoPaths (y′) < TwoPaths (y) (3)
Lo (β1 · α2) < Lo (β1 · β2), (4)

which is only possible if prefix β1 contains 1-bits only, and

Lo (α2) < Lo (β2). (5)

Hence, prefix α1 contains only 0-bits, otherwise TwoPaths (x′) < TwoPaths (y′).
But, by Ineq. (5), suffix β2 must have at least one leading 1-bit, which implies
the following contradiction with Ineq. (2)

TwoPaths (x′) = Lz (α1 · β2) = Lz (α1) = Lo (β1)
≤ TwoPaths (y′) < TwoPaths (y).

To show that the population will be relatively evenly distributed between
the two local optima, it is sufficient to prove that there is a constant probability
that a lineage will always stay one the same path as it started.

Lemma 3. For n ≥ 4, and any lineage x, let t be the generation at which x
reaches a local optimum. If no individual until generation t has 0εn in its suffix,
then the probability that lineage x reached the local optimum without accepting
a search point in which the first bit has been flipped, is bounded from below by
1/12.

Proof. Lemma 3 Denote by b ∈ {0, 1} the leading bit in the lineage in the first
iteration. Let pi, 1 ≤ i ≤ n be the probability that the lineage acquires at least
i leading b-bits without accepting a search point where the initial bit has been
flipped. We prove by induction on i that probability pi is bounded from below
by

pi ≥
1

4(1 + ei/n)
, (6)

which suffices for proving the lemma because i ≤ n.
Inequality (6) clearly holds for i = 3, because the probability of getting three

identical leading bits in the initial generation is 1/4. Suppose the inequality
also holds for i = k, 3 ≤ k < n. We show that the inequality must also hold for
i = k + 1. The probability of reaching k + 1 leading b-bits without flipping the
first bit, equals the probability of the event that the lineage acquires k leading
b-bits, and then the number of leading b-bits is increased before k leading b-bits
are flipped simultaneously.

pk+1 ≥ pk ·
1/en

1/en+ 1/nk
. ≥ 1

4
· 1

(1 + ek/n)(1 + e/nk−1)
≥ 1

4
· 1

(1 + e(k + 1)/n)
,

when n ≥ 4 > e + 1 and k ≥ 3. By induction, Inequality (6) now holds for all
1 ≤ k ≤ n− 1.

11

Theorem 3. The expected runtime of (µ+1) SSGA with a constant crossover
probability pc > 0 on TwoPaths is O(n2µ logµ+ exp(n lnn− µ/96)).

Proof. The process is divided into two phases. Phase 1 begins with the initial
population and ends when all individuals have reached either 0n or 1n. Phase
2 lasts until the optimum is found. Phase 1 : We consider a failure in phase 1
to occur if at any time during phase 1, there exists an individual with a suffix
containing the string 0εn. Assume that a failure does not occur. Let ` be the
lowest fitness in the population, and i the number of individuals with fitness `.
In order to decrease the number of individuals with fitness `, it suffices to make a
mutation step, select one among i individuals with fitness `, and flip none but the
left-most 1-bit (or 0-bit), an event which happens with probability at least (1−
pc)·(i/µ)·(1/n)·(1−1/n)n−1 ≥ (1−pc)i/eµn. By Lemma 2, the fitness does not
decrease along any lineage. Hence, the expected time until the entire population
has reached either 0n or 1n is bounded from above by

∑n−1
`=1

∑µ
i=1 eµn/i(1 −

pc) = O(n2µ logµ/(1 − pc)). By Proposition 3, the failure probability during
phase 1 is e−Ω(n). If a failure occurs, then the number of leading 1-bits can
potentially be reduced. Assume pessimistically that Lo (x) + Lo (x) = 1 in
any lineage x, i.e. the phase restarts. The expected duration of phase 1, then
becomes O(n2µ logµ/(1− pc))/(1− e−Ω(n)) = O(n2µ logµ/(1− pc)). Phase 2:
We consider a failure to occur in phase 2, if the phase starts with less than
µ/64 individuals on the local optimum with fewest individuals. By Lemma 3,
the probability that any lineage has a leading 1-bit (or 0-bit) and never changes
path before reaching a local optimum is at least 1/12. Hence, by Chernoff
bounds, the probability that the population contains less than µ/24 individuals
which starts with a 1-bit (or 0-bit) and does not change path is bounded from
above by e−µ/96. Assuming no failure, the probability of making a crossover
step, select two parent individuals 1n and 0n, and then making a crossover at
point εn in any generation in Phase 2 is at least pc(1/24)(23/24)/n. Hence, the
expected duration of Phase 2, assuming no failure is O(n/pc). If a failure occurs
in Phase 2, the optimum can be generated from any search point by mutating at
most n bits in any individual, an event which happens in less than nn expected
time.

The unconditional expected duration of Phase 1 and Phase 2 is therefore
bounded by O(n2µ logµ/(1−pc)+n/pc+e−µ/96 ·nn/(1−pc)) = O(n2µ logµ/(1−
pc) + n/pc + exp(n ln(n/(1− pc))− µ/96)).

Finally, we state the runtime with crossover probability pc = 0. The proof
idea is to focus on a single lineage, since the lineages are independent, and
distinguish between two conditions. If the lineage has at least εn leading 0-bits,
then all these must be flipped into 1-bits. If there is at least one 1-bit among
the first εn bits, then with high probability, a large number of 1-bits must be
flipped in the tail of the search point.

Theorem 4. The probability that (µ+1) SSGA with crossover probability pc = 0
and population size µ = poly(n) finds the optimum of TwoPaths within 2cn

generations is bounded from above by e−Ω(n), where c is a constant.

12

Proof. Theorem 4 With crossover probability pc = 0, the population is only
updated by mutations and the algorithm is essentially µ parallel runs of (1+1)
EA. Consider any lineage, and divide the current search point x into an εn bits
long prefix, and an (1 − ε)n bits long suffix v, such that x = u · v. The global
optimum has prefix 1εn and suffix 0(1−ε)n.

If the run at some point reaches a search point with prefix u = 0εn, then
subsequent search points are only accepted if they have prefix 0εn or 1εn. The
probability of reaching the optimum in any such iteration is therefore bounded
above by n−εn, and the success probability within ecn iterations is bounded
above by n−εn · ecn = e−Ω(n).

For runs where the current search point has at least one 1-bit in the prefix,
we will use the simplified drift theorem (Theorem 2 in [16]) to bound the time
until the suffix contains only 0-bits. Let the state i ∈ {0, ..., N} be the number
of 1-bits in the suffix, with N := (1 − ε)n. Furthermore, define a := 0 and
b := (1−ε)n/10. To derive a lower bound, we optimistically assume that any bit-
flip from 1 to 0 in the suffix is accepted, an assumption which can only speed up
the process. The remaining part of the analysis is now practically identical to the
analysis of (1+1) EA on Needle in [16]. Assuming a < i < b, the expected drift
in the process is E [∆(i)] = ((1−ε)n− i)/n− i/n ≥ (4/5)(1−ε), and condition 1
of the drift theorem holds with β = (4/5)(1−ε). In order to decrease the number
of 1-bits in the suffix by j, it is necessary to flip j 1-bits simultaneously, an event
which happens with probability

(
(1−ε)n
j

)
n−j ≤ 1/j! ≤ 2−j+1, so condition 2 of

the theorem holds with δ = r = 1. Hence, the probability that a given lineage
reaches the optimum within 2cn iterations, is bounded from above by e−Ω(n), for
some constant c. Finally, the probability that any lineage reaches the optimum
within 2cn generations, is bounded from above by µ · e−Ω(n).

4 Conclusion

This paper has investigated the impact of the acceptance criterion in (1+1) EA
and the crossover operator in (µ+1) SSGA when computing UIOs from FSMs.
The objective is to identify simple, archetypical cases where these EA parameter
settings have a particularly strong effect on the runtime of the algorithm. The
first part describes the Ridge FSM instance class which induces a search space
with a neutral path of equally fit search points. Runtime analysis shows that
the variant of (1+1) EA which only accepts strictly better search points will
get stuck on the path, while the standard (1+1) EA which also accepts equally
fit search points will find the UIO in polynomial time. This result shows that
apparently minor modification of an algorithm can have an exponentially large
runtime impact when computing UIOs. The second part considers the impact of
crossover when computing UIOs with the (µ+1) SSGA. The result shows that
on the TwoPaths FSM instance class, the SSGA finds the UIO in polynomial
time as long as the crossover probability is a non-zero constant and the popu-
lation is sufficiently large. However, with crossover probability 0, the runtime
of (µ+1) SSGA increases exponentially. This result means that when comput-

13

ing UIOs, the crossover operator can be essential, and simple EAs including
the (1+1) EA can be inefficient. This result is important because although the
crossover operator is often thought to be important for GAs, there exist very
few theoretical results in non-artificial problem domains confirming that this is
the case.

Acknowledgements

The authors would like to thank Pietro Oliveto for useful comments. This work was

supported by EPSRC under grant no. EP/C520696/1.

References

[1] Lehre, P.K., Yao, X.: Runtime analysis of (1+1) EA on computing unique
input output sequences. In: Proceedings of 2007 IEEE Congress on Evo-
lutionary Computation (CEC’07). (2007) 1882–1889

[2] Lee, D., Yannakakis, M.: Principles and methods of testing finite state
machines-a survey. Proceedings of the IEEE 84(8) (1996) 1090–1123

[3] Clark, J.A., Dolado, J.J., Harman, M., Hierons, R.M., Jones, B., Lumkin,
M., Mitchell, B., Mancoridis, S., Rees, K., Roper, M., Shepperd, M.: Re-
formulating software engineering as a search problem. IEE Proceedings-
Software 150(3) (2003) 161–175

[4] Derderian, K.A., Hierons, R.M., Harman, M., Guo, Q.: Automated unique
input output sequence generation for conformance testing of fsms. The
Computer Journal 49(3) (2006) 331–344

[5] Guo, Q., Hierons, R.M., Harman, M., Derderian, K.A.: Computing unique
input/output sequences using genetic algorithms. In: Proceedings of the
3rd International Workshop on Formal Approaches to Testing of Software
(FATES’2003). Volume 2931 of LNCS. (2004) 164–177

[6] Guo, Q., Hierons, R.M., Harman, M., Derderian, K.A.: Constructing
multiple unique input/output sequences using metaheuristic optimisation
techniques. IEE Proceedings Software 152(3) (2005) 127–140

[7] Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolu-
tionary algorithm. Theoretical Computer Science 276 (2002) 51–81

[8] He, J., Yao, X.: A study of drift analysis for estimating computation time
of evolutionary algorithms. Natural Computing 3(1) (2004) 21–35

[9] Jansen, T., Wegener, I.: Evolutionary algorithms - how to cope with
plateaus of constant fitness and when to reject strings of the same fitness.
IEEE Transactions on Evolutionary Computation 5(6) (2001) 589–599

14

[10] Lehre, P.K., Yao, X.: Crossover can be constructive when computing
unique input output sequences. Technical Report (forthcoming), University
of Birmingham, School of Computer Science (2008)

[11] Jansen, T., Wegener, I.: The analysis of evolutionary algorithms - a proof
that crossover really can help. Algorithmica 34(1) (2002) 47–66

[12] Storch, T., Wegener, I.: Real royal road functions for constant population
size. Theoretical Computer Science 320(1) (2004) 123–134

[13] Fischer, S., Wegener, I.: The one-dimensional ising model: Mutation versus
recombination. Theoretical Computer Science 344(2-3) (2005) 208–225

[14] Sudholt, D.: Crossover is provably essential for the ising model on trees.
In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2005). (2005) 1161–1167

[15] Oliveto, P., He, J., Yao, X.: Analysis of population-based evolutionary
algorithms for the vertex cover problem. In: Proceedings of the IEEE
World Congress on Computational Intelligence (WCCI’08), Hong Kong,
June 1-6, 2008. (2008)

[16] Oliveto, P., Witt, C.: Simplified drift analysis for proving lower bounds
in evolutionary computation. Technical Report Reihe CI, No. CI-247/08,
SFB 531, Technische Universität Dortmund, Germany (2008)

[17] Hoeffding, W.: Probability inequalities for sums of bounded random vari-
ables. Journal of the American Statistical Association 58(301) (1963) 13–30

15

Lemma 4. Let x = 0i1α and y = 0j1β be two bitstrings of length n, with
i, j ≥ 0. If there are more 0-bits in substring β than in substring α, then
Ridge(x) > Ridge(y).

Proof. Let bitstrings x and y be on the form x = 0i1α, and y = 0j1β, where
i, j ≥ 0. Assume substring α contains less 0-bits than substring β. Then

n− i− 1−OneMax(α) < n− j − 1−OneMax(β)
OneMax(α) > OneMax(β) + j − i.

So the fitness of search point x is

Ridge(x) = i+ 1 + OneMax(α)
> i+ 1 + OneMax(β) + j − i = Ridge(y).

Lemma 5. Let x and y be two search points that do not contain 0εnin their
suffices, and that bit xi is in the suffix of x, and bit yi is in the prefix y. If
a crossover product {x′, y′} between x and y is accepted on TwoPaths , then
xi = x′i.

Proof. The lemma trivially holds if the crossover point was higher than i. Let
x = α1α2 and y = β1β2 and x′ = α1β2 and y′ = β1α2 and. The lemma obviously
holds for α1 = β1, so assume that α1 6= beta1. Since bit yi is in the prefix of
y, we have y1 = y2 = · · · = yi, and f(y) ≥ i > f(x). Assume by contradiction
that xi 6= yi, then f(y′) < i and if the crossover product was accepted, it is
necessary that f(x′) ≥ i, which implies that x′1 = x′2 = · · · = yi. However, this
contradicts with the assumption that α1 6= β1.

Lemma 6. For any t ≥ 0, if bit xi(t) belongs to the suffix of individual x(t) in
generation t of (µ+1) SSGA on TwoPaths , and the suffix of individual x(t)
does not contain 0εn, then Pr [xi(t) = 1] = Pr [xi(t) = 0] = 1/2.

Proof. The proof is by induction on generation number t. The lemma obvi-
ously holds for generation t = 0, hence assume that the lemma also holds for
generation t = k. If a mutation occurs in generation k, then

Pr [xi(k + 1) = 1] =Pr [bit xi mutated] ·Pr [xi(k) = 0] +
(1−Pr [xi mutated]) ·Pr [xi(k) = 1] = Pr [xi(k) = 1] .

Assume a crossover between individuals x(k) and y(k) occurs in generation k.
If the crossover point was higher than i, then clearly Pr [xi(k + 1)] = Pr [xi(k)].
If the crossover point was equal or less than position i, and the corresponding
bit yi(k) was in the suffix of bitstring y(k), then by the induction hypothesis
Pr [xi(k + 1) = 1] = Pr [yi(k)] = 1/2. Finally, if the bit yi(k) occurs in the

16

prefix of bitstring y(k), then by Lemma 5, the crossover occurs only if xi(k) =
yi(k). Hence,

Pr [xi(k + 1) = 1] = Pr [(xi(k) = 1 ∩ yi(k) = 1) ∪ (xi(k) = 1 ∩ yi(k) = 0)]
= Pr [xi(k) = 1] .

The lemma now holds for all generations t by induction.

5 Additional results

This appendix describes results obtained elsewhere which were used and cited
in runtime analysis of EAs in this paper.

Theorem 5 (Hoeffding [17]). If X =
∑n
i=1Xi where X1, ..., Xn are independent

random variables with ai ≤ Xi ≤ bi for 1 ≤ i ≤ n, then for t > 0

Pr [X ≥ E [X] + t] ≤ exp
(
− 2n2t2∑n

i=1(bi − ai)2

)
.

Theorem 6 (Simplified Drift Theorem [16]). Let Xt, t ≥ 0, be the random
variables describing a Markov process over the state space S := {0, 1, ..., N},
and denote ∆(i) := (Xt+1 − Xt | Xt = i) for i ∈ S and t ≥ 0. Suppose there
exists an interval [a, b] of the state space and three constants β, δ, r > 0 such
that for all t ≥ 0

1. E [∆(i)] ≥ β for a < i < b, and

2. Pr [∆(i) = −j] ≤ 1/(1 + δ)j−r for i > a and j ≥ 1,

then there is a constant c∗ > 0 such that for T ∗ := min{t ≥ 0 : Xt ≤ a | X0 ≥ b}
it holds Pr

[
T ∗ ≤ 2c

∗(b−a)
]

= 2−Ω(b−a).

17

