
1

Runtime Analysis of (1+1) EA on Computing
Unique Input Output Sequences

Per Kristian Lehre and Xin Yao

Abstract— Computing unique input output (UIO) sequences is
a fundamental and hard problem in conformance testing of finite
state machines (FSM). Previous experimental research has shown
that evolutionary algorithms (EAs) can be applied successfully
to find UIOs on some instances. However, before EAs can be
recommended as a practical technique for computing UIOs, it is
necessary to better understand the potential and limitations of
these algorithms on this problem. In particular, more research
is needed in determining for what instances of the problem EAs
are feasible.

This paper presents a rigorous runtime analysis of the (1+1)
EA on three classes of instances of this problem. First, it is
shown that there are instances where the EA is efficient, while
random testing fails completely. Secondly, an instance class that is
difficult for both random testing and the EA is presented. Finally,
a parametrised instance class with tunable difficulty is presented.
Together, these results provide a first theoretical characterisation
of the potential and limitations of the (1+1) EA on the problem
of computing UIOs.

I. INTRODUCTION

As modern software systems grow larger and more complex,
there is an increasing need to support the software engineer
with better techniques. The field of search based software
engineering (SBSE) approaches this challenge in a novel way
by reformulating software engineering problems into optimi-
sation problems. Such a reformulation allows the problems to
be tackled with evolutionary algorithms and other randomised
search heuristics [1].

One domain in which this approach has been taken is in
conformance testing of finite state machines. This problem
consists of checking whether an implementation machine
is equivalent with a specification machine. While one has
full information about the specification machine, the imple-
mentation machine is given as a black box. To check the
implementation machine for faults, one is restricted to input
a sequence of symbols and observe the outputs the machine
produces. A fundamental problem which one will be faced
with when trying to come up with such checking sequences is
the state verification problem, which is to assess whether the
implementation machine starts in a given state [10]. One way
of solving the state verification problem is by finding a unique
input output sequence (UIO) for that state. A UIO for a state
is an input sequence which, when started in this state, causes
the FSM to produce an output sequence which is unique for
that state.

Computing UIOs is hard. All known algorithms for this
problem have exponential runtime with respect to the number

Per Kristian Lehre and Xin Yao are with The Centre of Excellence for
Research in Computational Intelligence and Applications (CERCIA), School
of Computer Science, The University of Birmingham, Edgbaston, Birmingham
B15 2TT, UK Email: {pkl,xin}@cs.bham.ac.uk.

of states. Lee and Yannakakis proved that the decision problem
of determining whether a given state has a UIO or not is
PSPACE-complete, and hence also NP-hard [9]. In the general
case, it is therefore unlikely that there will ever be an efficient
method for constructing UIOs and one cannot hope to do much
better than random search or exhaustive enumeration. The
application of evolutionary algorithms or any other randomised
search heuristic cannot change this situation. However, the
existence of hard instances does not rule out the possibility
that there are many interesting instances that can be solved
efficiently with the right choice of algorithm. On such “easy”
instances, EAs can potentially be more efficient than exhaus-
tive enumeration and random search.

Guo et al. reformulated the problem of computing UIOs
into an optimisation problem to which he applied an EA
[7]. When comparing this approach with random search for
UIOs, it was found that the two approaches have similar
performance on a small FSM, while the evolutionary approach
outperforms random search on a larger FSM. Derderian et
al. presented an alternative evolutionary approach which also
allows the specification machine to be partially specified [3].
Their approach was compared with random search on a set
of real-world FSMs and on a set of randomly generated
FSMs. Again, it was found that the evolutionary approach
outperformed random search on large FSMs. Furthermore, the
difference in performance increased with the size of the FSM.

Although previous experimental research have show that
there are instances of the problem where the evolutionary
approach is preferable over a simple random search strategy,
more research is needed to get a deeper understanding of
the potential of EAs for computing UIOs. Such a deeper
insight can only be obtained if the experimental research
is complemented with theoretical investigations. However,
rigorous theoretical investigations of search heuristics have
been lacking, not only on the problem of computing UIOs, but
in the field of search based software engineering in general.
An example of another area within SBSE in which theoretical
characterisation of problem difficulty is needed is in test data
generation. This paper responds to the need for theoretical
research in SBSE. Using rigorous runtime analysis, the paper
gives a first characterisation of some types of FSMs where
computing UIOs is provably easy for an EA, and some types
of FSMs where computing UIOs is hard for an EA.

Runtime analysis of EAs is difficult. When initiating the
analysis in a new problem domain, it is an important first
step to analyse a simple algorithm like the (1+1) EA. Without
understanding the behaviour of such a simple algorithm in
the new domain, it is difficult to understand the behaviour of
more complex EAs. Furthermore, it is necessary to understand
the behaviour of a single individual-based EA to understand

2

s3

s4

s2 s1

1/a

0/b 0/b

1/b

0/b

0/a

1/b1/b

{s1, s2, s3, s4}

{s1} {s2, s3, s4}

{s4} {s2, s3}

{s2} {s3}

0

01

011

a b

ba bb

bba bbb

Fig. 1. FSM with corresponding state partition tree for input sequence 011.

the role of populations. We therefore focus on the single-
individual based (1+1) EA in this paper.

II. PRELIMINARIES

A. Notation

Symbol ε denotes the empty string. The length of a string x
is denoted `(x). Concatenation of strings x and y is denoted
x · y, and xi denotes i concatenations of x. Standard notation
(e.g., O, Ω and Θ) for asymptotic growth of functions (see,
e. g., [2]) is used in the analysis.

B. Finite State Machines

Definition 1 (Finite State Machine): A finite state machine
(FSM) M is a quintuple M = (I,O, S, δ, λ), where I is the
set of input symbols, O is the set of output symbols, S is the
set of states, δ : S× I → S is the state transition function and
λ : S × I → O is the output function.
At any point in time, an FSM M is in exactly one state
s in S. When receiving an input a from I , the machine
outputs symbol λ(s, a) and goes to state δ(s, a). The domain
of the state transition function δ and the output function
λ is generalised to non-empty strings over the input alpha-
bet, i. e. δ(s, a1a2 · · · an) := δ(δ(s, a1a2 · · · an−1), an) and
λ(s, a1a2 · · · an) := λ(s, a1) · λ(δ(s, a1), a2 · · · an).

Definition 2 (Unique Input Output Sequence): A unique
input output sequence (UIO) for a state s in an FSM
M is a string x over the input alphabet of M such that
λ(s, x) 6= λ(t, x) for all states t, t 6= s.

Def. 1 and 2 are illustrated in Fig. 1. An edge (si, sj)
labelled i/o defines the transition δ(si, i) = sj and the output
λ(si, i) = o. The sequence 011 is a UIO for state s3, because
only from state s3 will the FSM output the sequence bbb. The
single input symbol 1 is also a UIO for state s3, because only
state s3 has output a on input 1.

III. UIO GENERATION AS AN OPTIMISATION PROBLEM

A. Representation and Fitness Function

Following [7], candidate solutions are represented as strings
over the input alphabet of the FSM. To allow a straightforward
application of the (1+1) EA, we consider only instances
with the binary input alphabet I = {0, 1}. Although the
shortest UIOs in the general case can be exponentially long

with respect to the number of states n [9], all the instances
presented here have UIOs of length n. In the interest of
simplifying the theoretical analysis, we therefore restrict the
search to input sequences of a fixed length n. As the length
of the UIO is not an objective, we do not consider “no care
symbols” which have been applied in previous experimental
work [7]. Because search points represent input sequences,
these two terms will be used interchangeably in the rest of the
paper.

The objective in this paper is to search for an UIO for
a specified state. Minimising the length of the UIO is not
considered an objective in this work. As in [7], the fitness of
an input sequence is defined as a function of the state partition
tree induced by the input sequence. Intuitively, the state
partition tree of an input sequence represents how increasingly
long prefixes of the input sequence partitions the set of states
according to the output they produce.

Fig. 1 (right) gives an example of a state partition tree for
input sequence 011 on the FSM in Fig. 1 (left). The root node
is the set of all nodes. On the first input symbol 0, state s1

outputs symbol a, while states s2, s3 and s4 output symbol
b. The two partitions {s1} and {s2, s3, s4} are divided into
three partitions on the following input symbol 1. On input 01,
state s1 outputs ab, state s4 outputs ba, while states s2 and s3

output bb. Each singleton {si} in a state partition tree indicates
that the corresponding input sequence is a UIO for that state
si. Because we are only looking for UIOs for one particular
state s1, we will use the cardinality of the leaf node containing
state s1 when defining the fitness of an input sequence. This
approach is a variant of the approach taken in [7] where one
searches for UIOs for several states in single runs.

Definition 3 (Fitness function): For a finite state machine
M with n states, a fitness function fM,s : In → R can now
be defined as follows :

fM,s(x) := n− γM (s, x), where
γM (s, x) := |{t ∈ S | λ(s, x) = λ(t, x)}| .

The instance size of a fitness function fM,s is defined as
the number of states n in FSM M . The value of γM (s, x) is
the number of states in the leaf node of the state partition tree
containing node s, and is in the interval from 1 to n. If the
shortest UIO for state s in FSM M has length no more than
n, then fM,s has an optimum of n−1. As an example of Def.
3, consider the FSM in Fig. 1, for which the fitness function
takes the values fM,s1(0111) = 3 and fM,s1(1111) = 2. In all
the instances presented here, the objective is to find a UIO for
state s1. To simplify notation, the notation fM will therefore
be used instead of fM,s, and the notation γ(x) will be used
instead of γM (s, x), where the FSM M is given by the context.

B. Evolutionary Algorithms

This paper analyses a simple EA called (1+1) EA.
Definition 4 ((1+1) EA):

Choose x uniformly from {0, 1}n.
Repeat

x′ := x. Flip each bit of x′ with probability 1/n.
If f(x′) ≥ f(x), then x := x′.

3

We say that one step of the (1+1) EA is one iteration of
the Repeat-loop in the algorithm. In each step of (1+1) EA,
the fitness value f(x′) must be evaluated. We can assume
that the fitness value f(x) of the current search point x is
stored in a local variable. Hence, after step t of the algorithm,
the fitness function has been evaluated t times. In the black
box scenario, the runtime complexity of a randomised search
heuristic is measured in terms of the number of evaluations of
the fitness function, and not in terms of the number of internal
operations in the algorithm [5].

Definition 5 (Runtime [4], [8]): Given a function fn :
{0, 1}n → R, the runtime Tn of the (1+1) EA on fn is defined
as the number of evaluations of function fn until the search
point x attains the maximal value of fn for the first time.

A function is considered easy for the (1+1) EA if the
expected value of runtime Tn is bounded from above by a
polynomial in n. Conversely, a function is considered hard for
the (1+1) EA if the expected value of runtime Tn is bounded
from below by an exponential function in n.

IV. RUNTIME ANALYSIS

This section presents three classes of finite state machines.
The objective in all classes is to find a UIO for state s1. The
runtime analyses are carried out in two steps. In the first step,
the values of the fitness function fM are derived from the finite
state machine M according to Def. 3. In the second step, the
runtime of the algorithms are analysed on function fM .

A. Easy instances

Our aim is to construct a class of instances which is hard
for random search, while being easy for the (1+1) EA. In
order to be hard for random search, the length of the shortest
UIO for state s1 must be at least linear in n, and there must
be few UIOs of this length. To keep the instance class easy
for the (1+1) EA, the idea is to ensure that the resulting
fitness function has few interactions among the variables. It
is well known that the (1+1) EA optimises all linear functions
efficiently [8], [4].

Definition 6 (Easy instance class): For instance sizes n,
n ≥ 2, define an FSM E with input and output symbols
I := {0, 1} and O := {a, b} respectively, and n states
S := {s1, s2, ..., sn}. For all states si, define the output
function λ as

λ(si, 0) := b, and, λ(si, 1) :=

{
b if i = n, and
a otherwise,

and for all states si, define the state transition function δ as

δ(si, 0) := si, and, δ(si, 1) :=

{
s1 if i = n, and
si+1 otherwise.

The objective is to find an UIO of length n for state s1.
The instances in Def. 6 are illustrated in Fig. 2. This FSM
resembles a classical counter, which counts the number of 1-
symbols, and outputs the special symbol b after n inputs of
symbol 1. Note that (sn, s1, 1/b) is the only state transition
with a distinguishing input/output behaviour. Furthermore, the

s1 s2 s3 sn−1 sn

0/b 0/b 0/b 0/b

1/a 1/a 1/a 1/a

1/b

Fig. 2. Finding UIOs for state s1 is easy with the (1+1) EA.

states will never collapse, i. e. δ(si, x) 6= δ(sj , x) for any input
sequence x and any pair of different states si and sj . It is easy
to see that any sequence of length n containing at most one
0 is a UIO for state s1. We show that the easy instance class
leads to a fitness function which is very similar to the well
known fitness function ONEMAX [12].

Proposition 1: The fitness function fE corresponding to
the instance class in Def. 6 takes the following values

fE(x) =

{
n− 1 if x = 1n, and∑n

i=1 xi otherwise.
Proof: The case where

∑n
i=1 xi ≥ n−1 is easy. State s1

is the only state which outputs a on each of the first n−1 inputs
of symbol 1. Hence, for such input sequences, γ(x) = 1.

Before showing that the proposition also holds for the
remaining input sequences, we first show that for any input
sequence x with γ(x) > 1, and any single input symbol p,

γ(x) = γ(x · p) + p. (1)

Eq. (1) obviously holds when symbol p is 0 because all states
output symbol b on input symbol 0, so it remains to show that
the equation also holds when symbol p is 1.

By the definition of the transition function, there must be a
state t such that δ(t, x) = sn. Furthermore, we can show that
state s1 and state t produce the same output on input sequence
x. Suppose not, that λ(s1, x) 6= λ(t, x). This would imply that
on input x, state t must have reached the only distinguishing
transition from state sn to state s1, i. e. sequence x can be
expressed on the form x = y1z with δ(t, y) = sn. Since both
δ(t, y) and δ(t, y1z) equal state sn, we must have

∑`(z)
i=1 zi ≥

n−1. However, this is a contradiction, because the assumption
γ(x) > 1 implies that

∑n
i=1 xi < n − 1. It is thus clear that

λ(s1, x) = λ(t, x), and furthermore λ(s1, x · 1) 6= λ(t, x · 1).
For all other states si different than state t, λ(δ(si, x), 1) =
λ(δ(s1, x), 1) = a. So to conclude, if γ(x) > 1 then γ(x) =
γ(x · 1) + 1.

We can now show that the proposition also holds for input
sequences where

∑n
i=1 xi < n− 1. On such input sequences,

state s2 cannot reach the distinguishing state transition from
sn to s1. So state s1 and s2 are indistinguishable and γ(x) >
1. Obviously, the same also holds for all prefixes of input
sequence x. Eq. (1) can now be applied recursively, and by not-
ing the special case of γ(ε) = n on the empty string, we obtain
the desired result. γ(x1 · · ·xn) = γ(x1 · · ·xn−2xn−1)−xn =
γ(x1 · · ·xn−2)− xn−1 − xn = n−

∑n
i=1 xi.

Theorem 1: Using fitness function fE , the probability that
random search will find a UIO for state s1 in less than ec·n

iterations is exponentially small e−Ω(n), where c is a small
constant.

4

Proof: An optimal solution has at most one 0-bit. Hence,
the probability that a uniformly sampled sequence is optimal
is (n + 1) · 2−n, which is less than e−n/4 for n larger than 4.

The probability that random search finds an optimal solution
within ec·n, n ≥ 4, steps is thus no more than

exp(c·n)∑
i=1

(
1− (n + 1) · 2−n

)i · (n + 1) · 2−n

≤
exp(c·n)∑

i=1

(n + 1) · 2−n ≤ ec·n · e−n/4 = e−Ω(n),

when c < 1/4.
The runtime analysis of (1+1) EA on the problem of

computing a UIO for state s1 follows the well-known analysis
of the (1+1) EA on the ONEMAX problem [12]. It is included
here for completeness.

Theorem 2: Using fitness function fE , (1+1) EA will find
a UIO for state s1 in expected time O(n lnn).

Proof: By the values of fitness function fE , in non-
optimal search points x and y, fE(x) ≥ fE(y) if and only
if search point x has at least as many 1-bits as search point
y. So in a given step of (1+1) EA, the mutated search point
x′ will only be accepted if it has at least as many 1-bits as
search point x. If x′ has more 1-bits than x, we say that the
step is successful. When x has i 0-bits, the probability of a
successful step is at least i/n · (1− 1/n)n−1 ≥ i/en.

Search points with at least n−1 1-bits are optimal, hence it
suffices to wait for n−1 successful steps to find the optimum.
The expected runtime of (1+1) EA is therefore bounded above
by

∑n
i=2 en/i = O(n · lnn)

B. Hard instances

The idea behind the hard instance class is to make the
resulting fitness function a large plateau. This can be achieved
by constructing a finite state machine where the state partition
tree gives little information about the UIO.

Definition 7 (Hard instance class): For instance sizes n ≥
2, define an FSM H with input and output symbols I := {0, 1}
and O := {a, b}, and states S := {s1, s2, ..., sn}. Furthermore,
for all states si, define the output function λ as

λ(si, 1) := a and λ(si, 0) :=

{
b if i = n, and
a otherwise.

For all states si, define the state transition function δ as

δ(si, 0) := s1 and δ(si, 1) :=

{
s1 if i = n, and
si+1 otherwise.

The objective is to find an UIO of length n for state s1.
The instances in Def. 7 are illustrated in Fig. 3, and resemble
an implementation of a combination lock, outputting the spe-
cial symbol b only when given the “secret” code consisting of
n 1-symbols. Note that (sn, s1, 0/b) is the only state transition
with distinguishing input/output behaviour. It is easy to see that
the only UIO of length n for state s1 is the input sequence
1n−10.

s1 s2 s3 sn−1 sn0/a

0/a 0/a 0/b

1/a 1/a 1/a 1/a

1/a

Fig. 3. Finding a UIO for state s1 is hard for (1+1) EA.

Proposition 2 shows that this instance class leads to a fitness
function that takes the same low value on all, except two input
sequences. Hence, the fitness landscape is essentially a “needle
in the haystack” which is hard for all EAs [5].

Proposition 2: The fitness function fH corresponding to
the instance class in Def. 7 takes the value fH(x) = 1 for all
input sequences x, except on input sequences 1n and 1n−10 on
which it takes the values fH(1n) = 0 and fH(1n−10) = n−1.

Proof: The two special cases 1n and 1n−10 are simple.
By the definition of the output function, λ(si, 1n) = an for

any state si. Hence, γ(1n) = n so the value of the fitness
function on the first special case is fH(1n) = 0.

On input sequence 1n−10, the output function gives
λ(s1, 1n−10) = an−1b, and for states si different than s1,
the output function gives λ(si, 1n−10) = an. Hence, the
value of the fitness function on the second special case is
fH(1n−10) = 1.

The remaining input sequences to consider are those that
contain at least one 0-bit, but which are different from se-
quence 1n−10. Such strings are of the form 1k0z where k is
an integer, 0 ≤ k < n − 1, and z can be any sequence of
length `(z) = n− k − 1.

We claim that for any state si and such sequences, if
λ(s1, 1k0) = λ(si, 1k0), then λ(s1, 1k0z) = λ(si, 1k0z).
Suppose otherwise, that λ(s1, 1k0) = λ(si, 1k0) but
λ(s1, 1k0z) 6= λ(si, 1k0z). But then we must have
λ(δ(s1, 1k0), z) 6= λ(δ(si, 1k0), z), which implies the con-
tradiction that λ(s1, z) 6= λ(s1, z).

We now show that for the sequences on the form 1k0z,
there is exactly one state si for which λ(s1, 1k0z) 6=
λ(si, 1k0z). We have just proved that this inequality requires
that λ(s1, 1k0) 6= λ(si, 1k0). Because all states have the
same output on input 1, it is necessary that λ(δ(s1, 1k), 0) 6=
λ(δ(si, 1k), 0), which implies that λ(s1+k, 0) 6= λ(si+k, 0).
The only way to satisfy this inequality is to let i + k = n.
Hence, state sn−k is the only state that produces different
output than state s1 on input sequences containing at least
one 0-bit, and that are different from 1n−10.

By noting that the shortest UIO for state s1 has length n,
the following theorem can be proved similarly to Theorem 1.

Theorem 3: The probability that random search will find
a UIO for state s1 in less than ec·n iterations is exponentially
small e−Ω(n), where c is a small constant.
The drift theorem is a general technique for proving exponen-
tial lower bounds on first hitting-time in Markov processes
and is an important technique in the theory of evolutionary
computation [8]. The following variant of the drift theorem is
taken from [6].

5

Lemma 1 (Drift Theorem): Let X0, X1, X2, ... be a
Markov process over a set of states S, and g : S → R+

0

a function that assigns to every state a non-negative real
number. Pick two real numbers a(n) and b(n) which depend
on a parameter n ∈ R+ such that 0 < a(n) < b(n) holds and
let random variable T denote the earliest point in time t ≥ 0
where g(Xt) ≤ a(n) holds.

If there are constants λ > 0 and D ≥ 1 and a polynomial
p(n) taking only positive values, for which the following four
conditions hold

1) g(X0) ≥ b(n)
2) b(n)− a(n) = Ω(n)
3) E

[
e−λ(g(Xt+1)−g(Xt)) | Xt, a(n) < g(Xt) < b(n)

]
≤

1− 1/p(n), for all t ≥ 0, and
4) E

[
e−λ(g(Xt+1)−b(n)) | Xt, b(n) ≤ g(Xt)

]
≤ D, for all

t ≥ 0,

then for all time bounds B ≥ 0, the following upper bound
on probability holds for random variable T

Pr [T ≤ B] ≤ eλ(a(n)−b(n)) ·B ·D · p(n).
Theorem 4: The probability that (1+1) EA will find the

optimal solution on fH within ec·n steps is exponentially small
e−Ω(n), where c is a small constant.

Proof: We lower bound the time it takes until the current
search point of (1+1) EA has at least n− 1 1-bits for the first
time. This time is clearly shorter than the time the algorithm
needs to find the optimal search point 1n−10.

Let random variables Y0, Y1, Y2, ... represent the stochastic
behaviour of (1+1) EA on fitness function fH , where each
variable Yt denotes the number of zeros in the search point in
step t. Then Y0, Y1, Y2, ... is a Markov process.

To simplify this Markov process, we introduce another
Markov process X0, X1, X2, ..., defined for all t ≥ 0 as
X0 := Y0, and

Xt+1 :=

{
Xt + 1 when Yt+1 ≥ Yt + 2, and
Xt + Yt+1 − Yt otherwise .

Let random variable T denote the first point in time t where
Xt ≤ 1. Intuitively, the simplified process corresponds to an
“improved” algorithm which never looses more than one 0-bit
in each step, but otherwise behaves as the (1+1) EA. Clearly,
the expected optimisation time E [T] of the modified process
is no more than the expected optimisation time of the original
process.

The drift theorem is now applied to derive an exponential
lower bound on random variable T . Define g(x) := x and
parameters a(n) := 1 and b(n) := cn, where c is a constant
that will be determined later. With this setting of a(n) and
b(n), the second condition of the drift theorem is satisfied.

The following notation will be used

pj := Pr [g(Xt+1)− g(Xt) = j | Xt, 1 < g(Xt) < cn]
rj := Pr [g(Xt+1)− g(Xt) = j | Xt, cn ≤ g(Xt)]

The terms in the equation

E
[
e−λ(g(Xt+1)−g(Xt)) | Xt, 1 < g(Xt) < cn

]
=

n−cn∑
j=−cn

pj · e−λj (2)

can be divided into four parts according to the value of the
index variable j. The term where j = 1 simplifies to p1 ·e−λ ≤
e−λ, the term where j = 0 simplifies to p0·e0 = (1− 1/n)n ≤
1/e, the term where j = −1 simplifies to

p−1 · eλ ≤ eλ

(
1− 1

n

)n−1 1
n
·Xt ≤ eλc,

and the remaining terms where j ≤ −2 can be simplified as
follows:

cn∑
j=2

ejλ · p−j =
cn∑

j=2

ejλ 1
nj

(
1− 1

n

)n−j (
Xt

j

)

≤
cn∑

j=2

ejλ 1
nj

(cn)j

j!
=

cn∑
j=2

(eλc)j

j!

≤ −1− eλc +
∞∑

j=0

(eλc)j

j!

= −1− eλc + exp
(
eλc

)
.

The sum in Eq. (2) can now be bounded from above as

E
[
e−λ(g(Xt+1)−g(Xt)) | Xt, 1 < g(Xt) < cn

]
≤ e−λ + 1/e + eλc− 1− eλc− exp

(
eλc

)
= e−λ + 1/e− 1 + exp

(
eλc

)
.

For appropriate values of λ and c (eg. λ = ln 2 and c = 1/32),
the value of this expression is less than 1−δ for a constant δ >
0. Hence, the third condition in the drift theorem is satisfied.
It is straightforward to see that the fourth condition holds now
that condition three holds.

E
[
e−λ(g(Xt+1)−cn) | Xt, cn ≤ g(Xt)

]
≤ E

[
e−λ(g(Xt+1)−g(Xt)) | Xt, cn ≤ g(Xt)

]
= r1 · e−λ +

n∑
j=0

r−j · ejλ.

Using the same ideas as above, the expectation can be bounded
from above by

E
[
e−λ(g(Xt+1)−cn) | Xt, cn ≤ g(Xt)

]
≤ e−λ + exp(eλ).

When parameter c = 1/32, using Chernoff bounds [11],
the probability that first search point has less than cn zeros is
e−Ω(n). Hence we can assume with high probability that the
first condition is satisfied as well.

All four conditions of the Drift theorem now hold. By
setting B = ec′·n for some small constant c′, one obtains
the exponential lower bound Pr

[
T ≤ ec′·n

]
= e−Ω(n).

6

C. Instances with tunable difficulty

The previous two subsections presented classes of FSMs
for which it is either easy or hard to compute a UIO with
the (1+1) EA. To complement these results, this subsection
presents an instance class with tunable difficulty. The instance
class is defined with respect to a parameter k. It will be shown
that the instance class is easy when the value of parameter k
is low, and the problem becomes harder when parameter k is
increased.

Definition 8 (k-gap instances): For instance sizes n ≥ 7,
let k be a constant integer, 2 ≤ k ≤ (n − 3)/2 and define
m := n− k − 1. Define an FSM G(k) with input and output
symbols I := {0, 1} and O := {a, b} respectively, and n states
S := {s1} ∪ {r1, r2, ..., rk} ∪ {q1, q2, ..., qm}. For all states t
in S, define the output function λ as

λ(t, 0) := b and λ(t, 1) :=

{
b if t = qm, and
a otherwise.

For state s1, define the state transition function δ as

δ(s1, 0) := s1 and δ(s1, 1) := r1.

For states ri, 1 ≤ i ≤ k, define the state transition function δ
as

δ(ri, 1) := s1 and δ(ri, 0) :=

{
qk+2 if i = k, and
ri+1 otherwise.

And finally, for states qi, 1 ≤ i ≤ m, define the state transition
function δ as

δ(qi, 0) := s1 and δ(qi, 1) :=

{
q1 if i = m, and
qi+1 otherwise.

The objective is to find an UIO of length n for state s1.
One way of creating a problem with tunable difficulty is

to make sure that the fitness function contains a “trap” which
easily leads the EA into a local optimum at distance k from
the global optimum. By increasing the distance k between the
local and global optimum, the problem gets harder [4]. The
“trap” in the FSM defined in Def. 8 are the m states q1, ..., qm.
By producing an input sequence with many leading 1-bits, the
(1+1) EA easily makes the output from these states different
from state s1. However, as can be seen from Fig. 4, the UIO
for state s1 must contain k 0-bits somewhere in the beginning
of the input sequence.

Proposition 3: Let z be any string with length `(z) = k+1.

fG(k)(10k1n−2k−2z) = n− 1. (3)

In other words, any search point on the form 10k1n−2k−2z is
a UIO for state s1. Let i be any integer 0 ≤ i < n, and z
any string of length n− i− 1. If string z does not contain the
substring 1n−2k−2, then

fG(k)(1i0z) = min(i, n− k − 1), and (4)

γ(1i) = γ(1i0z). (5)
Proof: We first prove Eq. (3). On input sequence 10k,

only δ(s1, 10k) = qk+2 and for all other states t, δ(t, 10k) =
s1. Hence, state s1 goes through the distinguishing transition
on input 10k1n−2k−2 while all other states are in transition

between states s1 and r1, showing that state s1 has a unique
output. Therefore, search points on the form 10k1n−2k−2z are
optimal. (There are other optimal search points, but knowing
the structure of a few optimal search points will be sufficient
in the analysis.)

We now show that γ(1i0) = n − min(i,m). Note that
(qm, q1, 1/b) is the only distinguishing state transition. For i no
larger than m, the i states qm−i+1, ..., qm reach this transition
on input sequence 1i and therefore produce different outputs
than state s1. For i at least m, all m states q1, ..., qm reach the
distinguishing transition. State s1 and the k states r1, ..., rk do
not reach the distinguishing transition on input sequence 1i0.
Therefore, the number of states that produce different outputs
than state s1 on input sequence 1i0 is min(i,m).

Finally, we prove Eq. (4) and Eq. (5) under the assumption
that z does not contain the substring 1n−2k−2. For all states
s, either δ(s, 1i0) = s1 or δ(s, 1i0) = r2. All state transition
paths from either state s1 or state r2 to the distinguishing state
transition from state qm must go through the n− 2k− 2 state
transitions between qk+2 and qm. Transitions along this path
require an input sequence with n− 2k− 2 consecutive 1-bits,
which is not possible with sequence z. Therefore, we have
γ(1i0z) = γ(1i0) = n−min(i,m). This also proves Eq. (5)
because γ(1i) = γ(1i0) = n−min(i,m).

Proposition 4: Let i be any integer 0 ≤ i ≤ 2k + 2, and
z any sequence of length `(z) = n − i − 1 containing the
sequence 1n−2k−2. If the sequence 1i0z is not optimal, then
fG(k)(1i0z) ≤ 2k + 2.

Proof: Assume first that i = 0, i. e. the search point
begins with a 0-bit. In this case, all states q1, ..., qm collapse
with state s1, and the suffix z can at most distinguish s1 from
the k states r1, ..., rk. Hence, in this case γ(0z) ≥ n− k.

Assume now that 1 ≤ i ≤ k + 2. After input 1i0, all states
have moved to either state s1 or state r2. If i is even, then
state s1 has collapsed with states q1, ..., qm. Hence, the suffix
z can at most distinguish the k states r1, ..., rk from state s1,
i. e. γ(1i0z) ≥ n− i− k ≥ n− (k + 2)− k. If i is odd, then
states r1, ..., rk have collapsed with states q1, ..., qm. So if x
is not optimal, then γ(1i0z) = n− i ≥ n− k − 2.

Finally, assume that k + 2 < i ≤ 2k + 2. After input 1i0,
no more states can reach the distinguishing transition because
moving from state s1 or state r2 to the distinguishing transition
requires at least the subsequence 0k−11n−2k−2 which is longer
than subsequence z. So in this case, we have γ(1i0z) = n−i ≥
n− (2k − 2).

Analysing the (1+1) EA on the problem is easy if we can
assume that the sequence 1n−2k−2 never occurs in the suffix.
Proposition 5 shows that this assumption holds in most cases.

Definition 9 (Typical run): A typical run of (1+1) EA on
fG(k) is a run where the current search point x is never on the
form 1i0z, 0 ≤ i < 2k + 2, where z is a sequence of length
`(z) = n− i− 1 containing the sequence 1n−2k−2. A run of
(1+1) EA on fG(k) is divided into the following three phases:

Phase 1 is defined as the time interval in which the search
point has less than 2k + 2 leading 1-bits. If the current
search point during this phase has a suffix containing sequence
1n−2k−2, then we say that we have a failure. The event of
failure will be denoted F . Phase 2 is defined as the time

7

s1

q1 q2 q3 qk qk+1 qk+2 qm−1 qm

r1 r2 rk−1 rk0/b

1/b

0/b0/b0/b0/b0/b0/b
1/a 1/a 1/a 1/a 1/a 1/a 1/a

0/b 0/b 0/b 0/b1/a

1/a1/a1/a

Fig. 4. Finding a UIO for state s1 with (1+1) EA becomes harder when increasing parameter k.

interval when the search point has between 2k+2 and n−k−1
leading 1-bits. Phase 3 is defined as the time interval when
the search point has at least n− k− 1 leading 1-bits, and this
phase lasts until the search point is optimal for the first time.

Proposition 5: The probability of a failure during Phase 1
is bounded from above by e−Ω(n).

Proof: The current search point x of (1+1) EA in Phase
1 is on the form x = 1i0z for some i, 0 ≤ i < 2k + 2 and
z a string of length `(z) = n − i − 1. We call this substring
z occurring after the first 0-bit the suffix of the current search
point.

We first show that as long as the run for the first t steps
has been typical, then the suffix z in step t + 1 is a random
string. The initial search point is a random string, so the suffix
is also a random string. Assume that the run has been typical
until step t and the suffix z is a random string. By Eq. (5)
in Proposition 3, any bitflip of the suffix will be accepted.
Randomly mutating a random string, will clearly produce a
new random string. The suffix in step t + 1 will therefore be
a random string. The suffix z of the new search point in step
t + 1 can contain 1n−2k−2, i. e. we may have a failure in step
t + 1. However, we show that this is unlikely. The probability
that the string 1n−2k−2 occurs in a random string shorter than
n is no more than (2k + 2) · 2−n+2k+2, which for large n is
less than e−n/16. One way of increasing the number of leading
1-bits without having a failure is by flipping the first 0-bit and
flip no other bits. So the probability of increasing the number
of leading 1-bits without having a failure in the following step
is at least (1/n) · (1− 1/n)n−1 ≥ 1/en.

Hence, for large n, the probability that the number of
leading 1-bits increases before we have a failure is at least

1/en

1/en + 1/en/16
≥ 1− ne · e−n/16 ≥ 1− e−n/32.

A failure must occur before the number of leading 1-bits
has been increased more than 2k + 2 times. So the failure
probability Pr [F] is no more than

2k+2∑
i=0

(
1− e−n/32

)i

· e−n/32 ≤ (2k + 2) · e−n/32 = e−Ω(n).

Theorem 5: Let k be any constant integer k ≥ 2. The
expected runtime of (1+1) EA on fG(k) is asymptotically
Θ(nk).

Proof: Given the probability of the failure event F , the
expected runtime of (1+1) EA can be calculated as

E [T] = (1− Pr [F]) · E
[
T | F

]
+ Pr [F] · E [T | F] . (6)

To estimate an upper bound on the the expected runtime,
we use that E [T] ≤ E

[
T | F

]
+ Pr [F] · E [T | F] . We

will first find an upper bound on the runtime conditional on
a typical run E

[
T | F

]
and pessimistically assume that the

optimal search point will not be found during Phase 1 or 2
of the run. We first upper bound the duration of Phase 1 and
2. Let i, 0 ≤ i ≤ n − k − 1, be the number of leading 1-bits
in the current search point. A step of the algorithm is called
successful if the mutated search point x′ has more leading 1-
bits than the current search point x. In typical runs, Proposition
3 guarantees that x′ will be accepted in a successful step. To
reach the end of Phase 2, we have to wait at most for n−k−1
successful steps. The probability of a successful step is at least
1/n · (1−1/n)n−1 ≥ 1/en, so the expected duration of Phase
1 and Phase 2 is O(n2). By Proposition 3, for Phase 3 to end,
it is sufficient to flip k consecutive 1-bits starting at position 2.
The probability that this will happen in any step of Phase 3 is
at least (1/n)k ·(1−1/n)n−k ≥ 1/(nke). Hence, the expected
duration of Phase 3 is bounded from above by O(nk). An
upper bound on the expected runtime conditional on the event
that the run is typical is therefore E

[
T | F

]
= O(nk).

We now give an upper bound on the expected time E [T | F]
conditional on a failure. To keep the analysis simple, we
give a pessimistic upper bound. At some time in such a run,
the current search point has a suffix containing the sequence
1n−2k−2. We assume that this search point is not the optimal
search point, and furthermore, we assume that in this situation,
we will never accept an optimal search point during Phase 1.
Clearly, this will only slow down the optimisation process. By
Proposition 4, this search point has fitness at most 2k + 2. To
end Phase 1, Proposition 3 shows that it is sufficient to wait
for a step in which all the 0-bits in the 2k + 3 long prefix of
the search point is flipped into 1-bits. The probability of such
a mutation is at least (1/n)2k+3(1−1/n)n−2k−3 ≥ 1/en2k+3.
So if a failure occurs, the duration of Phase 1 will be no longer
than O(n2k+3). Failures do not occur in Phase 2 or Phase 3,
we therefore reuse the upper bounds of O(n2) and O(nk) that
were calculated for the typical runs, yielding an upper bound
of O(n2k+3) for the duration of runs with failures. Due to
the exponentially small failure probability, the unconditional
expected runtime of (1+1) EA is therefore E [T] = O(nk).

8

A lower bound on the expected runtime is estimated using
the inequality E [T] ≥ (1 − Pr [F]) · E

[
T | F

]
. We need to

estimate the expected runtime conditional on a typical run.
Optimal search points contain the suffix 1n−2k−2, hence the
optimal search point will not be found during Phase 1 of
typical runs. By Proposition 3 and Proposition 4, only search
points with at least 2k +2 leading 1-bits or an optimal search
point will be accepted during Phase 2. Optimal search points
must contain 10k1n−2k−2. Hence, in order to find the optimum
in the second phase, it is necessary to flip k consecutive 1-
bits into 0-bits, starting somewhere in the interval between
position 2 and k+2. The probability of this event in any given
step is no more than k/nk. Hence, the expected duration of
Phase 2 and Phase 3 is at least nk/k steps. The unconditional
expected runtime can now be bounded from below by E [T] ≥
(1− e−Ω(n)) · nk/k = Ω(nk).

V. DISCUSSION

Three classes of finite state machines have been constructed
and studied in this paper. These classes of FSMs are not based
on any real world system, but have been constructed in a way
which allows us to make use of the current knowledge about
the runtime behaviour of the (1+1) EA. Most of the existing re-
sults on the runtime behaviour of the (1+1) EA are on artificial
problems, like the ONEMAX, NEEDLE, LEADINGONES and
JUMP [4]. This paper shows that the results and techniques
obtained from theoretical investigations of such constructed
“toy” problems can be useful for understanding the behaviour
of EAs on real-world problems, like the problem of computing
UIOs.

Although the instance classes studied in this paper are not
real-world systems in themselves, they may very well occur as
sub-modules within more complex systems. For example, the
easy instance class in Def. 6 resembles a classical counter,
and the hard instance class in Def. 7 resembles an FSM
implementation of a digital combination lock. Alternatively,
one can envisage the FSM in Def. 7 as a part of a larger FSM
used for parsing. The FSM could be used to accept strings
which contain exactly n repetitions of a particular symbol.

The notions of easy and hard instances depend on both
the EA used and on the way the problem of finding UIOs
has been defined. This paper uses the terms hard and easy
relative to the (1+1) EA, as described in Section III-B. These
terms should not be confused with the terms EA-hard and EA-
easy which are sometimes used in evolutionary computation
to mean problems that are thought to be generally hard,
respectively easy for all EAs. There are certainly functions
that are hard in the sense of Section III-B for (1+1) EA, but
which are easy for other EAs. Furthermore, the hardness of
finding UIOs is relative to the way the fitness function for this
problem has been defined. We believe the formulation in Def.
3 is quite natural, however one could envisage other fitness
function definitions which could potentially lead to different
runtimes for the (1+1) EA.

VI. CONCLUSION

This paper has analysed the runtime of (1+1) EA on the
problem of computing unique input output sequences in finite

state machines. It is shown that there are instances of the
problem where the (1+1) EA is highly efficient, whereas
random search fails completely. This result indicates that a
(1+1) EA can be preferable over the sometimes proposed
strategy of randomly searching for UIOs. Furthermore, it is
shown that there are instances of this problem where the
(1+1) EA is unsuccessful. On this particular instance class,
the state partition tree gives little information about the UIO.
The existence of such hard instances for the (1+1) EA is to
be expected since the general problem of finding UIOs is NP-
hard. Although such hard instances can be constructed, it is
hoped that the (1+1) EA will be successful on wide range of
natural instances of the problem. Finally, an instance class with
tunable difficulty for the (1+1) EA is presented. This instance
class highlights how specific, small changes to the FSM can
make the problem of computing UIOs increasingly hard.

Runtime analysis of EAs is still in an early stage. Most
previous research has been concerned with relatively simple
toy problems and other artificially constructed classes of
fitness functions. This paper shows that it is possible to analyse
the runtime of EAs on real world problems.

ACKNOWLEDGEMENTS

The authors would like to thank Mark Harman, Rob Hi-
erons, Pietro Oliveto, Ramón Sagarna and Andrea Arcuri for
their useful comments. This work was supported by EPSRC
under grant no. EP/D052785/1.

REFERENCES

[1] J. Clarke, J. J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin,
B. Mitchell, S. Mancoridis, K. Rees, M. Roper, and M. Shepperd. Refor-
mulating software engineering as a search problem. IEE Proceedings-
Software, 150(3):161–175, 2003.

[2] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to
Algorithms. McGraw Hill, New York, NY, 2nd edition, 2001.

[3] Karnig Derderian, Robert M. Hierons, Mark Harman, and Qiang Guo.
Automated unique input output sequence generation for conformance
testing of fsms. The Computer Journal, 49(3):331–344, 2006.

[4] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the
(1+1) evolutionary algorithm. Theoretical Computer Science, 276:51–
81, 2002.

[5] Stefan Droste, Thomas Jansen, and Ingo Wegener. Upper and lower
bounds for randomized search heuristics in black-box optimization.
Theory of Computing Systems, 39(4):525–544, 2006.

[6] Oliver Giel. Zur Analyse von randomisierten Suchheuristiken und
Online-Heuristiken. PhD thesis, Universität Dortmund, 2005.

[7] Q. Guo, R. M. Hierons, M. Harman, and K. Derderian. Computing
unique input/output sequences using genetic algorithms. In Proceedings
of the 3rd International Workshop on Formal Approaches to Testing of
Software (FATES’2003), volume 2931 of LNCS, pages 164–177, 2004.

[8] Jun He and Xin Yao. A study of drift analysis for estimating computation
time of evolutionary algorithms. Natural Computing, 3(1):21–35, 2004.

[9] D. Lee and M. Yannakakis. Testing finite-state machines: state identifica-
tion and verification. IEEE Transactions on Computers, 43(3):306–320,
1994.

[10] David Lee and Mihalis Yannakakis. Principles and methods of testing
finite state machines-a survey. Proceedings of the IEEE, 84(8):1090–
1123, 1996.

[11] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

[12] Heinz Mühlenbein. How genetic algorithms really work I. Mutation
and Hillclimbing. In Proceedings of the Parallel Problem Solving from
Nature 2, (PPSN-II), pages 15–26. Elsevier, 1992.

