TAIC PART 4-6 September 2009

Multi Objective Higher Order Mutation Testing with Genetic Programming

William B. Langdon, Mark Harman, Yue Jia

Department of Computer Science, CREST centre, King’s College London, Strand, London, WC2R 2LS, UK

Abstract

In academic empirical studies, mutation testing has been
demonstrated to be a powerful technique for fault find-
ing. However, it remains very expensive and the few valu-
able traditional mutants that resemble real faults are mixed
in with many others that denote unrealistic faults. These
twin problems of expense and realism have been a signif-
icant barrier to industrial uptake of mutation testing. Ge-
netic programming is used to search the space of complex
faults (higher order mutants). The space is much larger
than the traditional first order mutation space of simple
faults. However, the use of a search based approach makes
this scalable, seeking only those mutants that challenge the
tester, while the consideration of complex faults addresses
the problem of fault realism, it is known that 90% of real
faults are complex (i.e. higher order). We show that we are
able to find examples that pose challenges to testing in the
higher order space that cannot be represented in the first
order space.

1 Introduction

Mutation testing is a fault-injection technique in which
a set of mutant versions of a program is created. Usually
each mutant is created by the insertion of a single simple
fault. The faults are traditionally created by a small syn-
tactic change, such as the replacement of one arithmetic or
relational operator with another. If a test input can distin-
guish between a mutant and the original program, by caus-
ing each to produce a different output, then the test input is
said to ‘kill’ the mutant. The effectiveness of a test suite can
be assessed by measuring the percentage of mutants that are
killed by members of the test suite [9, 13} 116} i4]].

Mutation testing has also been used to simulate other test
coverage criteria, such as branch coverage and statement
coverage. Indeed, any test adequacy criterion can be sim-
ulated by mutation testing. The mutation testing approach
has also been used as a basis for test case generation.

Unfortunately, mutation testing is very costly. The num-
ber of simple syntactic changes (i.e. first order mutants) that
can be performed on a program grows with the size of the
program under test, making mutation testing an expensive,
if highly effective approach to testing. Furthermore, many
of the mutants generated by these simple syntactic fault
insertions, are readily killed by the simplest of test cases,
leading to much wasted effort killing rather trivial mutants.
Though there are a large number of first order mutants, most
are simply a waste of time from a testing point of view be-
cause they do not denote realistic faults, the vast majority of
which are known to be complex (i.e. higher order mutants)
[L5]].

At the heart of this problem lies the very nature of tra-
ditional mutation testing. That is, the approach starts with
the assumption that a simple syntactic change is typical of
a fault. This assumption is known as the competent pro-
grammer hypothesis. It states that most programmers are
‘competent’; they will produce programs that are within a
few keystrokes of being correct. Therefore, based on this
hypothesis, faults can be legitimately simulated by a few
simple syntactic changes.

However, though the competent programmer hypothesis
has been stated as an underlying assumption of mutation
testing in many papers, [2], it has not been demonstrated by
empirical evidence. Indeed, recent work by Purushothaman
and Perry [15] challenges the competent programmer hy-
pothesis. This empirical study found that 90% of post re-
lease faults are, in fact, complex faults; faults that can only
be fixed only by several changes to the syntax of the pro-
gram at several different places. This observation and the
consequent search for these ‘subtle’ or ‘complex’ faults was
the motivation for recent work on Higher Order Mutation
Testing (HOM Testing) [8].

We take a radical, perhaps even heretical stand point on
mutation testing. We assert that mutation testing should
be seeking semantic mutant programs rather than syntactic
mutant programs. That is, rather than inserting faults that
are syntactically close to the original program, we should

A higher order mutant is a program which has had multiple simple
changes (first order mutations) made to it.

http://www.cs.ucl.ac.uk/staff/W.Langdon
http://www.dcs.kcl.ac.uk/staff/mark/
http://www.dcs.kcl.ac.uk/pg/jiayue/
http://crest.dcs.kcl.ac.uk/

be inserting faults that are semantically close to the orig-
inal program. We explore the relationship between these
two notions of similarity; syntactic and semantic in three
programs, which are often used as testing benchmarks.

We use a multi objective Pareto optimal genetic pro-
gramming approach [14] to explore the relationship be-
tween mutant syntax and mutant semantics with respect to
given test sets. The industrial benchmarks include high
quality test sets. A quality test set was created for the other
benchmark by selecting test sets that achieve at least branch
coverage. The GP algorithm evolves mutant programs ac-
cording to two fitness functions: semantic difference and
syntactic difference. Syntactic distance sums the number of
changes weighted by the actual difference. (Details will be
given at the end of Section [3]) Semantic distance is mea-
sured as the number of test cases for which a mutant and
original program behave differently. However, should they
agree on all test cases, the mutant may be an equivalent mu-
tant, which is undesirable. Therefore, a semantic distance
of zero is treated as a special case. (By giving such mutants
very poor scores they are normally immediately removed
from the population).

A Pareto optimal approach means each objective is
treated separately when comparing solutions. Thus a mu-
tant which passes more of the test cases and is closer to the
original program is naturally preferred. Similarly if a mu-
tant beats another on one objective but has the same score on
the other objective, it is again preferred. Naturally one that
is worse on both objectives is not preferred. But when one
mutant is better on one objective but worse on the other the
two are both nondominant solutions. Figure [0 (towards the
end of the paper) contains several “Pareto fronts” each of
which contain several mutants. Mutants on the same Pareto
front do not dominate each other, even though they pass dif-
ferent number of tests and lie at different distances from the
original source. The whole Pareto front is kept and used to
explore for further improvements.

The primary novelty and contributions are:

1. This is the first paper to explore the relationship be-
tween mutant syntax and semantics and the first to use
Pareto optimality in mutation testing (though this has
been used in other forms of testing [[17,16]). Pareto op-
timality, more normally associated with GAs [5], has
only been used a little in GP [10, Sec. 3.9]. This is
also one of the few papers (other than [3]) to tackle
mutation testing using a GP—based approach.

2. We confirm the intuition underlying the well-known
Mutation Testing Coupling Hypothesis. l.e. Monte
Carlo sampling of higher order mutants confirms the
widely held belief that adding test cases to a faulty
program tends to make it more error—prone. However,
as the result reveal, there remain a non—trivial set of
higher order mutants that are hard to kill.

3. The Pareto optimal search is able to find higher order
mutants of the TCAS aircraft Traffic alert and Colli-
sion Avoidance System program that are harder to kill
than any of the first order mutants. This is an example
where adding more faults to a program makes it less
error—prone; it is harder (though not impossible) to de-
tect the faultiness of the resulting higher order mutant.
Such very—hard-to—kill higher order mutants denote
highly subtle interactions of faulty behaviour and so
may be useful in revealing insight into problem cases
and in driving test data generators to generate better
quality test data.

4. We show how the exploration of the space of higher
order mutants may reveal insights into the structure of
the test suite. For example, we found that the differ-
ential behaviour of test cases in the presence of higher
order mutants creates a clear distinction (in two of the
three programs studied) between those test cases that
target wrong functionality compared to those that tar-
get miss—handled exceptions.

The next section outlines how our system works. Sec-
tion 3| describes the mutants, whilst Section[d]describes how
multiple changes are made to C source code. Sections
describe the three benchmarks (Triangle, schedule and tcas)
and results obtained. We conclude in Section[8]

2 How it Works. Optimising two Objectives:
Difficulty to Kill and Small Source Changes

Deb’s well known Non-dominated Sorting Genetic Al-
gorithm - IT (NSGA-II vl1.1, [1]) was down loaded. It is
a multi-objective evolutionary algorithm, which every gen-
eration, uses crossover and mutation to create a new pop-
ulation. The next generation is given by a Pareto optimal
selection from both the new offspring and their parents.
Thus it is naturally elitist. Fitness sharing is built in to en-
sure the population does not bunch together on the Pareto
front. To adapt it to our GP, nsga2r. c was split in two.
The first decides which individuals are to be parents and
the second combines the offspring and parent populations.
Crossover, mutation and fitness calculation are done exter-
nally by the strongly typed GP and the multi-objective fit-
ness passed to NSGA-II. Figure [1| shows the relationships
between GP, NSGA-II, the grammar and the existing testing
regime. (Details will be given in Table[2])

NSGA-II was given two objectives: to minimise the
number of tests failed and to minimise the syntactic dis-
tance between the mutant and the original program. (Since
the goal is not to re-engineer the original program, but to
find interesting high order mutants, programs created by
GP which behave identically to the original program are pe-
nalised by giving them infinitely poor fitness.)

BNF
source.c | L .)
\—'—A Grammar GP 10000 Ilnutdntb

gcc
|

population.exe Test Cases

1. Number of tests passed
2. Syntatic difference

Pareto
Evolution

Figure 1. High order Multi-objective mutation test-
ing. The BNF grammar tells GP where it can insert
mutations into the original program source. c. Ini-
tially GP creates a population of random muta-
tions, which are compiled and run against the
test suite providing two objectives to NSGA-II.
NSGA-II selects the mutants to retain using a non-
dominated Pareto approach and instructs the GP
which mutants to recombine or further change.
The evolutionary cycle continues for 50 or 500
generations.

3 Mutants

The Higher Order Mutation Testing Paradigm raises a
natural question: what is a higher order mutant? If one were
to form a higher order mutant from any possible combina-
tion of an arbitrary number of arbitrary first order mutations,
then one could use higher order mutation to transform any
program into any other program. Therefore, we think of
a set of higher order mutants that is generated by a cho-
sen set of first order mutants, rather than allowing arbitrary
or unspecified first order mutations. That is, a higher or-
der mutant, is a program that can be obtained by applying
several operations drawn from a set of first order mutations
operations, F', to the original program.

This allows us to explore the relationship between the
simple faults and the so—called complex faults. Simple
faults are the first order mutants. Whilst complex faults are
higher order mutants. The higher order mutants are defined
by a chosen fault model F' or with respect to a certain class
of interesting programming language constructs for which
we admit first order mutation.

We study the set of first order mutation operators that re-
place one relational operator with another. This is an inter-
esting set because its corresponding higher order mutant set
denotes the set of ways in which one might alter the flow
of control within the program. However, the higher order
mutants can only influence data flow indirectly, by altering
control flow and cannot alter computation by mutating rval-
ues. In this way, a higher order mutant denotes a ‘partially
jumbled’ computation composed of the same basic compu-
tations (arithmetic expressions) as the original.

This approach is based the suggestion that programmers

are likely to commit subtle complex faults that might re-
semble such slightly anomalous control flow. Though this
remains a conjecture, we shall see that from this first order
set, and for high quality test data and real world programs, it
is possible to construct higher order mutants that are harder
to kill than any of the first order mutants. This lends some
evidence to support the belief that the higher order mutants
are both interesting and potentially complex in the sense of
Purushothaman and Perry [15]].

To give a syntactic distance measure, we placed the six C
comparison operations < ,<=, ==, !=, >=, > in order. The
distance of one comparison from another is their distance
in this order plus six if they differ at all. The total distance
of a mutant is the sum of the individual distances for each
comparison it contains. The constant factor (6) ensures a
second order mutant will always have a larger distance than
a first order mutant.

Our distance measure tries to capture the idea that some
changes are bigger than others and generally more changes
make the program more different than fewer. Thus a chang-
ing < to <= implies a distance of 7, whilst changing it to
a == has a distance of 8. But changing a < to a <= and
another a < to a <= (two changes) has a distance of 14.

Notice that the distance is only based on comparing the
original program and the final mutant. This distance does
not depend upon how many intermediate changes (which
may have undone or redone) there have been.

4 Strongly Typed Grammar Based GP for
Mutation Testing

The target source code is automatically analysed to cre-
ate a BNF grammar tree which describes all its possible mu-
tants. Unlike most BNF’s, the grammar consists mostly of
terminals which regenerate the fixed portions of the source
code. However all comparisons are replaced by the rule
<compare>, which is defined thus:

<compare>::= <compare(O> | <comparel>
<compare(0>::= <compare00> | <compare(0l>
<compare(00>::= "<" | "<="
<compare(Ol>::= "==" | "I="
<comparel>::= <comparelO>
<comparelQ>::= ">=" | ">"

Notice how three levels of binary choices are needed to
cover all six possible comparisons.

Excluding <compare>, each line of the source is con-
verted into a unique rule in the grammar. For efficiency as
much of the source code is converted into as few rules as
possible. Indeed a line of C code which does not contain
any comparison operations is converted into a single rule
which has only one production which is itself a terminal

containing the whole line. Lines are grouped into a hierar-
chy by a binary chop process.

For example, in tcas lines 7 to 10 are described by rule
<1ine7-10> (cf. Figure [6) which has two productions:
<line7-8> and <1ine9-10> which each cover two
rules.

<line7-8> <1ine9-10>
<line7> <line8>
<line9> <linelO>

<line7-10> N
<line7-8> HNE
<1ine9-10> HIEES

This ensures lines of code that are close together in the
source code are close together in the grammar parse tree.

The strongly typed GP uses the name of the grammar
rules (i.e. their left hand side) as the rule’s type. This means
we have more types than is common in (non-grammar
based) strongly typed GP. Crossover chooses one crossover
point uniformly at random from the first parent’s grammar.
This gives the type of the crossover point. The crossover
point in the second parent must be of the same type. For
example, if <1ine7-10> is chosen in the first parent, then
it must also be chosen in the second. Thus, in this ex-
ample, the child will inherit lines 1-6 and 11 to the pro-
gram’s end from the first parent and lines 7-10 from the
second parent. Notice crossover automatically takes advan-
tage of any modularity the programmer explicitly coded in
her choice of how to layout the source code. Mutation sim-
ilarly chooses a rule from the BNF. Say it also chose rule
<1line7-10>. All the grammar below the chosen point is
re-created at random. (Mutation ensures at least one change
is made.) Thus a mutation at <1ine7-10> will randomly
replace the comparison operation in line 7 and in line 10.
(Lines 8 and 9 do not contain any comparisons.) Imple-
mentation details can be found in [[11}[12].

Given the rigidity of the grammars we are using to con-
struct mutants, it might be argued that we do not need the
expressive power of GP and a simpler evolutionary algo-
rithm could be used. However we automatically get genetic
operations which are tailored to the source code we are in-
vestigating.

5 The triangle Benchmark

5.1 Triangle Code and Test Suite

The triangle program is often used as an example in soft-
ware engineering studies. We used a simplified version of
DeMillo et al.’s [2] translated from Fortran into C. See Fig-
ure [2] It takes the lengths of three sides of a triangle and
classifies it as either scalene, isosceles or equilateral or it is
not a triangle. (Since the layout chosen by the programmer
influences the strength of the crossover linkage between po-
tential mutation sites, the layout in Figure[2] follows that in
triangle.c.)

int gettri(int sidel, int side2, int side3)

{
int triang ;

if(sidel <= 0 || side2 <= 0 || side3 <= 0){
return 4;

}
triang = 0;

if (sidel == side2) {
triang = triang + 1;

}

if (sidel == side3) {
triang = triang + 2;

}

if (side2 == side3) {
triang = triang + 3;

}

if (triang == 0) {
if (sidel + side2 < side3 ||
side2 + side3 < sidel || sidel + side3 < side2){
return 4;
}
else {

return 1;

}
}

if (triang > 3){
return 3;

}

else if (triang == 1 && sidel + side2 > side3d)
return 2;

}

else if (triang == 2 && sidel + side3 > side2) {
return 2;

}

else if (triang == 3 && side2 + side3 > sidel) {
return 2;

}

return 4;

}
Figure 2. triangle.c. It contains 17 mutable
comparisons: 7 ==, 4 >, 3 < and 3 <=. However
there are, initially, no >= or ! = comparisons.

The test set used by DeMillo et al.’s [2] achieved only
statement coverage. Therefore we generated test cases cov-
ering all the possible branches. (Since we are going to mod-
ify the program it is important to cover all branches, includ-
ing branches containing statements that are unreachable in
the original program). However, using this branch cover-
age test set, in earlier experiments, we found many mutants
related to conditional statements were not detected. This
was because the test set did not cover some of the Boolean
sub-expressions of the conditional statements. Therefore,
we extended our test set with the test cases covering all of

11487500 4th order
85000 3rd order

+ - -270 order 4 kil]ed by 0
371 mutants killed by 1
56 order 3 killed by O

* i 3400 2nd order
189 mutants killed by 1]
0+ 28 order 2 killed by 0 851storder +
o 55 mutants killed by 1 .
8 first order mutants are killed by no test cases
° + 7 first order mutant killed by 1 test case
B 21 T
©
% 35 —
> 8F g
21 —
14 [0 g E
R +
7k ﬁﬁﬁ@ﬁf{ tﬁtﬂ}* 3: 5o+ i

1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45
Number test cases with different output

Figure 3. Fitness of all low order triangle.c mu-
tants. (Noise added to spread data.) Remember
even though equivalent mutants pass all the test
case they are given an infinitely bad score and
hence are plotted at the top left.

those Boolean sub-expressions. The final test set contains
60 tests.

5.2 Triangle Mutants

triangle.c contains 17 comparison operators. (All
of them comparing int with int.) Therefore there are:
17 x 5 = 85 programs with one change, % X dbh =
3400 with two changes, 21515 x 55 5 = 85000 with
three changes and so on. The total search space is 6!7 =
16.9267 1012,

In Figure [3] we plot the fitness of all the 1.5 million mu-
tants up to order 4. Notice the number of mutants grows
exponentially with order and that the fraction of both equiv-
alent mutant and the hardest to detec fall rapidly with
number of changes made, cf. Tablem The GP was also able
to find these low order and hard to detect mutants but since
there are only 85 first order mutants, it is easier to enumer-
ate them.

Ten of our 60 triangle test cases are extremely effec-
tive against random mutants. They each individually de-
tect more than 99% of the high order mutants. This causes
the vertical concentration of points in the fitness scatter plot
in Figure [d] These ten tests are all those that check for
normal operation. Whereas the other 50 tests check that
triangle.c detects “not a triangle”. It looks like high
order mutants are easily detected by tests for correct oper-
ation because correct operation requires more of the code

2 Equivalent mutants are those that make no detectable difference and
so pass all the test cases.
3LLe. fail just one test.

Table 1. Number of low order triangle.c mu-
tants. Third row (Equiv) is those that pass all test
cases. Last row (1 test) gives those that fail just
one test. (Fraction 10~% of mutants of the same
order is given in brackets.)

Order 15t(107%) 274106 37410-%) 4*(1079)
Number 85 3400 85000 1487500
Equiv 8(94118) 28 (8235) 56 (659) 70 (47)
Itest 7(82353) 55(16177) 189(2223) 371 (249)
160 T T T T T
140 + g
120 —
& 100 | .
s
3 80 | |
8
%
0 7—<=— 8 first order mutants killed by no test case —
7 first order mutant killed by 1 test case
21 i
- dom high ord R
1;* Jséw% e e e ooy et

0 10 20 30 40 50 60
Number test cases with different output

Figure 4. 10000 random triangle.c mutants
(from GP’s initial population). Noise added to
spread data. 61% fail the same ten tests.

to be executed and so there is more chance of striking the
mutated code before one of the return statements in Fig-

ure2]
6 The schedule Benchmark

6.1 Code and Test Suite, Robustness Im-
provements

schedule. c (SIR version 2.0) was down loaded from
the Software-artifact Infrastructure Repository [7]. It con-
sists of 412 lines of code, split into 18 procedures and 2650
test cases. Each test case provides up to five inputs from the
command line and reads up to 289 integers from one of the
2650 input files. It produces an ordered list of the sched-
uled processes. The output consists of up to 45 integers and
possibly an error message.

To ease automatic testing, print fs were replaced by
code to direct the scheduled process identifiers (ints) to
a buffer and to replace the two textual error messages by
two status codes. The outputs generated by the unmodi-

fied version of the schedule program (as created by SIR’s
runall.sh script) were converted to the new format.
During mutation testing a mutant is said to have failed a
test if any of its outputs do not match that of the original
program or if its status does not match the original error
message (if any).

Unlike triangle.c, schedule.c accesses arrays,
dynamically creates and deletes data structures, uses point-
ers to them, and runs for loops. Thus we are faced with
the likelihood that mutants will cause: array indexing er-
rors, run out of memory, corrupt the heap, read or write il-
legal memory (with unknown consequences) and loops will
not terminate. If a mutant does one of these then we say it
has failed that test. However we must ensure that a single
mutant does not affect the testing of other mutants or itself
when running a different test.

Initial experiments showed it would not be feasible to
use the normal isolation and protection provided by the op-
erating system. This is because the overhead of creating and
starting a separate process per mutant and per test case is too
large. Instead all the mutants for a generation are compiled
together and run on each test case. In this way it is feasible
to test hundreds of thousands of mutants on all 2650 test
cases. To allow us to do this additional checks were added
to the source code:

e Heap memory large enough for all of the test cases is
allocated before testing is started. The original calls
to allocate and free memory are replaced by using this
area. It is cleared between each test and checks added
that it is not exceeded.

e Before any pointer is used, it is checked. ILe. has a
legal value consistent with its type.

e Index checks are made before all array accesses.

e Code is added to terminate each for loop if the to-
tal number of loop iterations for an individual test ex-
ceeds ten times the maximum required by the unmod-
ified program.

If any of these checks fail the test is safely aborted and
the mutant is said to have failed that test. The next is started
knowing it is safe to do so and it will not be affected by the
previous failure.

6.2 Schedule Mutants

schedule. c contains 14 comparison operators. (All
of them comparing int with int.) Therefore there are
70 first order mutants. The number of tests which detect
them is plotted in Figure[5] Ten of the 70 make no visible
difference but one first order mutant fails a single test.

1 T T T T T T T
30% high order mutants are killed by all test cases —

01 + =— 10 first order mutants are killed by no test cases

+ +

+ + ot +

o A HE T

4 +
0.01 j\
1 first order mutant killed by 1 test case

Fraction

0.001 H
10000 Random high order mutants
70 First order mutants ~ +
0.0001 H
. . . N
0 500 1000 1500 2000 2650

Number test cases with different output

Figure 5. Fitness of all first order (+) and 10000
random schedule.c mutants. Note log scale.
More than 90% of high order mutants fail more
than 90% of the test cases.

Figure [5] shows random high order schedule.c mu-
tants are easily detected. Most of the tests are good at
finding them. Even the worst test detects most high order
mutants. schedule.c is much more complicated than
the triangle program. Perhaps this is why multiple muta-
tions scattered at random are more easily detected than in
triangle.c. The GP was also able to solve the problem,
but since there are only 70 first order mutants, it is easy to
enumerate them.

7 The tcas (aircraft Traffic alert and Colli-
sion Avoidance System) Benchmark

7.1 tcas Benchmark, Robustness Im-
provements, Creating and Testing
Mutants

tcas (SIR version 2.0) was down loaded from the
Software-artifact Infrastructure Repository [7]. It consists
of 135 lines of C code (excluding comments and blank
lines) with 40 branches [[18, Table 2] and 1608 test cases
with up to 12 input parameters and one output. The sup-
plied main () was recoded to return tcas’ answer to the GP
rather than printing it. Similarly when tcas detects an er-
ror, instead of it printing an error message and exiting, it
returns a unique error code to the GP.

tcas.c contains an array but no array index checking.
This leads to array bound errors, which we have reported.
A check was added. This ensures mutants cannot crash the
GP and they cannot affect the execution of each other. This
check cannot be mutated by the GP. Similarly the exist-
ing array index check (on argv in tcas’ main) cannot by
mutated.

There are 14 comparison operations non-uniformly scat-
tered through the 8 mutable functions. A BNF grammar
(cf. Figure [6) describing the mutable functions was auto-
matically created. Each generation our strongly typed GP
system used the grammar to generate up to 10000 muta-
tions of tcas. These were compiled together by gcc into a
single executable. Each mutant was run on all 1608 tests
and the number of times it produced a different answer
was recorded. (A small efficiency improvement could have
been made by not running those tests which are trapped by
immutable tests. Since these are the array index changes,
which GP cannot change, the mutant must pass these tests.)

As is usual in GP, the initial population was constructed
from random individuals. (I.e. very high order mutants, in
which almost all comparisons are changed.) We anticipate
finding interesting mutants which are good at passing tcas’s
test cases and not too dissimilar from it. As we have already
seen in the triangle and schedule programs (Figures[]and|[3))
and confirmed by Figure [/} random high order mutants are
naturally some distance away from the goal. An alternative
would be to start the evolving population nearer the antici-
pated solutions by seeding it with low order mutants. This
would undoubtably introduce a bias, which might be benefi-
cial. However, if successful, seeding would tend to confirm
our initial assumptions, rather than challenge them. There-
fore we chose to avoid this particular bias and allow evo-
lution to move the population. We tried two strategies to
allow the population to move some distance: a large pop-
ulation (10 000) for 50 generations and a small population
(100) for 500 generations, cf. Table 2] Both worked and
came to different solutions.

7.2 tcas Mutants

Since for each comparison there are five possible muta-
tions, there are 70 (5 x 14) first order mutations. The fitness
(i.e. semantic and syntactic differences from tcas itself) are
plotted in Figure About a third (24) of the 1°¢ order mu-
tants are not discovered by any of the 1608 test cases. Many
of the rest are fairly easy to find and fail many tests. How-
ever there is one first order mutant which fails only three
tests.

Monte Carlo sampling (cf. dots in Figure[7) shows there
are 264 tcas tests which defeat 98.33% of random programs
but 428 (Figure[8) which are passed by all 10 000 high order
mutants.

Figure[§]plots the expected output from tcas for each test
case. The three groups identified in the previous paragraph
(cf. also Figure [7)) are high lighted by sorting the tests by
their effectiveness against random high order mutants. As
with triangle and schedule, the most effective tests are those
that check for more than default operation. For tcas this
means all the tests which expect either UPWARD_RA or

<linel>::= "bool Non_Crossing_Biased_ClimbXXX ()\n"

<line2>::= "{\n"

<line3>::= "int upward_preferred;\n"

<lined>::= "int upward_crossing_situation;\n"

<lineb5>::= "bool result;\n"

<line6>::= "\n"

<line7>::= "upward_preferred = Inhibit_Biased_Climb ()"
<compare> "Down_Separation; \n"

<line8>::= "if (upward_preferred)\n"

<line9>::= "{\n"

<linel0>::= "result = ! (Own_Below_ThreatXXX()) ||
((Own_Below_ThreatXXX()) && (! (Down_Separation"
<compare> "ALIM())));\n"

<linell>::= "}\n"

<linel2>::= "else\n"

<linel3>::= "{\n"

<linel4d>::= <linel4A> <linel4B>

<lineldA>::= "result = Own_Above_ThreatXXX () &&

(Cur_Vertical_Sep" <compare> "MINSEP) &&
(Up_Separation"

<linel4B>::= <compare> "ALIM()); \n"

<linel5>::= "}\n"

<linel6>::= "return result;\n"

<start>::= <linel> <line2> <line3> <lined4> <lineb5>

<line6> <1line7-30> <line31-54> <lineb55>
<lineb6> <1line57> <1lineb8> <1ine59> <1lineb60>
<line6l> <1line62> <line63> <line64> <line65>
<line66> <line67> <1line68> <1line69> <line70>
<line71> <1line72> <1line73>

<1line7-30>::= <1line7-17> <1inel8-28> <1ine29> <1ine30>

<line7-17>::= <1line7-10> <linell-14> <linel5>
<linel6> <linel7>

<line7-10>::= <1line7-8> <1ine9-10>

<line7-8>::= <line7> <line8>

<1ine9-10>::= <1ine9%> <linelO>

<linell-14>::= <linell> <linel2> <linel3> <linel4>

<linel8-28>::= <1inel8> <linel9> <1ine20> <line2l1>

<line22> <1ine23> <line24> <1ine25-26> <1ine27-28>

<1line25-26>::= <line25> <line26>

<1line27-28>::= <line27> <line28>

<line31-54>::= <line31> <line32-43> <line44-54>

<line32-43>::= <1ine32-35> <1ine36-39> <1line40>
<line4l> <line42> <line43>

<line32-35>::= <1ine32> <line33> <line34> <line35>

<1ine36-39>::= <1line36> <line37> <1ine38> <1ine39>

<lined44-54>::= <line44-49> <1ine50-54>

<1lined4-49>::= <line44> <line45> <lined6> <lined7>
<lined48> <1ine49>

<1ine50-54>::= <1ine50> <lineb51> <1ine52-53> <line54>

<lineb52-53>::= <line52> <1lineb53>

Figure 6. Fragments of Backus-Naur form gram-
mar used to specify tcas mutants. In total it con-
tains 104 rules. (Common code which is not mu-
table is excluded. This gives a minor efficiency
gain.) <compare> is defined in Section [4] xxX is
replaced by the individual mutant’s identification
before it is compiled.

Table 2. Strongly Typed Grammar GP to find hard
to detect tcas mutants

The function and terminal sets are defined
by the BNF grammar (cf. Figure [6). BNF
rules with two options correspond to binary
GP functions. The rest of the BNF grammar
correspond to GP terminals.

Two objectives. 1) minimise the number of
tcas test cases failed 2) minimise the syn-
tactic difference (Section [3) from tcas.c.
However programs which pass all test cases
are treated as if they failed INT_MAX tests.
NSGA-II. Ie. Pareto multi-objective rank
based binary tournament selection on com-
bined current and offspring populations.
size = 100 or 10000

Ramped half-and-half 3:7

90% subtree crossover. 10% subtree muta-
tion. Max tree depth 17 (no tree size limit)
500 or 50 generations

Primitives:

Fitness:

Selection:

Population
Initial pop:
Parameters:

Termination:

DOWNWARD _RA (i.e. aircraft collision threat identified)
are highly effective. A few of the 428 tests which are always
ineffective are due to non-mutable error detection (lower
two set of points in Figure [8). Most of the tcas test suite
checks for UNRESOLVED. Some of these are totally in-
effective against random mutations but most are fairly poor
and find only about 1.67% of them.

7.3 Running the Pareto GP on tcas

Figure[9|shows NSGA-II progressively improved the ini-
tial random high order mutants. It both reduced the number
of test cases able to find them and their syntactic distance
from tcas. In generation 13 a 7*" order mutant was found
which is killed by only one test. In generation 44 a 5! order
mutant was found which is defeated by only one test. Al-
though the 5*" order mutant is a subset of the 7", i.e. the 7"
has two additional changes, they behave differently and fail
on different tests. No mutant which failed on two tests was
found in this run but the second run (Section found
several.

7.4 Hard to Detect tcas Mutants

At the left hand side of Figure 9] there are two points
(“Gen 14-44” and “Gen 45-50”) above z = 1. They rep-
resent two high order tcas mutants which pass all but one
test.

160 T T T T T T T

140 —

120 —

100 —

80 | E

Syntax distance

60 - -

0 F=— 24 first order tcas mutants killed by no test cases —
1 first order tcas mutant killed by 3 test cases
%«i

21
14
7

10000 High order mutants
* First order mutant -+

T thy T
1 1 1 1

0 100

200 264 400 500 600 700 800
Number test cases with different output

Figure 7. Fitness 70 first order tcas mutants (+)
and 10000 random high order tcas mutants (dots).

7.4.1 Seventh Order tough tcas Mutant

The mutant changes lines 87 in function Non_Crossing.
Biased Climb () (twice), 101 in Non_Crossing_
Biased. Descend () (twice), 112 in Own_Below_
Threat () 117 in Own_Above_Threat () and line 127
inalt_sep_test ().

line 127 comparing input 10 to NO_INTENT =
In normal operation this change would have no impact since
it tests one of the twelve inputs directly, and NO_INTENT is
the smallest of its legal values. (Input 10 is not used else-
where by tcas.) The tcas test cases include 18 illegal values
for input 10, seven of which are less than NO_INTENT (0).
This would suggest that as a first order mutant, it would be
easier to detect than average. However its effect is totally
masked by the rest of tcas. L.e. as an isolated first order mu-
tant this change to line 127 is not detected by the test suite.

~ <

lines 112 & 117, Comparing inputs 4 & 6, < ~ <
These two mutants can be thought of as a pair. They
occur in paired routines Own_Below_Threat () and
Own_Above_Threat () and both compare inputs 4 and 6.
Further the two routines are used together.

Replacing < by < clearly can only change behaviour
when inputs 4 and 6 are equal. (Again neither input 4 nor 6
are modified by tcas.) There are 23 such test cases. There-
fore either mutation by itself could in principle fail up to
23 tests. However 22 of these are masked by the combined
effects of tcas itself and the other six changes.

Oddly, the first order mutation on line 112 (input 4 <
input 6 ~ input 4 < input 6) is masked by the rest of tcas in
11 of the 23 test cases. However the very similar mutation
on line 117 (input 6 < input 4 ~» input 6 < input 4) is
always masked and so is equivalent.

8 DOWNWARD_RA F— 48100848
£

g UPWARD_RA - -
5 ineffective mostly ineffective very
£ UNRESOLVED " ffectivg
o

° .

19} Not enough inputs - - .
g

g5 Bad Alt_Layer_Value & IETTES I I I 1 1

0 200 400 600 800 1000 1200 1400 1600
Test case sorted by number of random mutants they kill

Figure 8. Expected value returned by tcas v. ef-
fectiveness of test against random mutants. The
effectiveness of tcas tests falls into three main
groups (highlighted by vertical lines) with little dif-
ference between members of the same group. On
the right are 264 tests which check for threat of
collision. They are failed by almost all high order
mutants.

0 -§<—|24 first order mu{ants killed by noltest 1storder + —
E Other Pareto X

7 Gen 0 geno TR

Gen 4-8 X enl &
70 - " Gen4 ——— T
Gen6 --m- |

. 3 Gen9 - - -
e 56 |- Genll —e— 4

& Gen 1 Gen13 - -
< 49 Gen14 —e— 7|
x 42 Gen 15 ------- .

g o Gen20 -4
c Gen 45 -

@ Gen4 Gon47 —-am
28 “®--m Gen50 - |
21 -) ».: N -
14 BN i

+
7F + + R+ o+ Wﬁwﬁéﬁ E
1 1 1

1 10 100
Number test cases with different output

Figure 9. Evolution of tcas NSGA-Il Pareto front

lines 101 and 87, checking inputs 1 and 8 There are two
mutations on each line. We group these four mutations to-
gether since they appear in the same location in two comple-
mentary routines, Non_Crossing_Biased_Climb ()
and Non_Crossing.Biased.-Descend (). Again the
pair of routines are used together. In line 87 input 1 >
300 && input 8 > ALIM() is mutated to input 1 < 300
&& input 8 < ALIM () (Again neither input is modified by
tcas.) Line 101 has been mutated in somewhat similar way
input 1 > 300 && input 8 > ALIM () becomes input 1 #
300 && input 8 < ALIM().

As isolated first order mutants all four pass all the tests.
This may be because they are nested within routines which
themselves are nested in the logic of tcas so that the com-
parisons are seldom made when tcas is run. However they
appear to interact with the three other mutations to make the
combination very tough to test against.

7.4.2 Fifth Order tough tcas Mutant

Referring back to the left hand side of Figure 9] we see evo-
lution continues after generation 14 so that in generation 45
a fifth order mutant is discovered which also passes a sin-
gle test. Since it syntactically closer to tcas, it replaces the
seventh order mutant on the Pareto front.

While not an immediate descendent of the 7** order mu-
tation it is similar and was probably found through an inter-
mediate cousin.

The 5" order mutation contains the same last 5 changes
as the 7" order one. Le. it is the same except for line 87.
However, while the two high order mutations both fail just
one test, it is a different test. In fact its a different one of
the 23 tests where inputs 4 and 6 are equal. Note, removal
of two equivalent mutations has actually changed the be-
haviour of tcas.

7.4.3 Third Order tough tcas Mutant

A separate GP run with a small population (100) but more
generations found two more high order mutants which are
defeated by a single test case. In generation 90 a fourth
order mutant was found. This was replaced in generation
105 by a third order mutant. Again they are similar. The
third order mutant is identical to the fourth except it does
not include the mutation to line 117. For brevity we shall
just described the third order mutant.

The mutant changes lines 101 in Non_Crossing.-
Biased. Descend () (once), 112 in Own_Below_
Threat () and 117 in Own_Above_Threat () in the
same way as described in Section[7.4.1]

Although this mutant only contains three of the
seven mutations described in Section it fails the
same test (test 1400). (Which is different from that
failed by the 5t order, which differs by two of the
same four changes.) Test 1400 (like all the other tcas
tests) was taken from the runall.sh script provided
by SIR. It runs tcas with 12 command line arguments:
tcas 601 1 0 502 200 502 0 599 400 0 0 1
The third order mutant yields 2 (DOWNWARD_RA)
whereas the original program prints 0 (UNRESOLVED).

These results tend to suggest that if further testing ef-
fort were available it might be concentrated around lines
87, 101, 112, 117 and possibly 127. Note all twenty first
order mutations to lines 87 and 101 are equivalent.

8 Conclusions

We have introduced a new form of mutation testing, re-
formulating traditional mutation testing as a multi objective
search problem in which the goal is to seek higher order
mutants that are hard to kill and syntactically similar to the
original program under test. The approach uses higher order
mutation testing, but subsumes traditional mutation testing
since a first order mutant is also a special case of a higher
order mutant (for which the order is simply 1).

Using the search based approach, we are able to specif-
ically seek the mutants that denote more realistic complex
faults that are also hard problems for testing. We have im-
plemented this approach using genetic programming (GP)
on a normal office personal computer running Linux and re-
port results on three cases studies including two real world
programs together with the Triangle ‘benchmark’ exam-
ple. The results demonstrate stl44that in a few minutes
the Higher Order GP Mutation testing approach is able to
find complex faults denoted by (non—equivalent) higher or-
der mutants of real programs that cannot be denoted by any
first order mutant and which are harder to kill than any first
order mutant.

Acknowledgment

We would like to thank the Software-artifact
Infrastructure Repository sir.unl.eduland the authors
of NSGA http://www.iitk.ac.in/kangal/.

References

[1] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast
and elitist multiobjective genetic algorithm: NSGA-II. /[EEE
Transactions on Evolutionary Computation, 6(2):182-197,
Apr 2002.

R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test
data selection: Help for the practicing programmer. Com-
puter, 11(4):34-41, April 1978.

M. C. F. P. Emer and S. R. Vergilio.| Selection and evaluation
of test data based on genetic programming. Software Quality
Journal, 11(2):167-186, June 2003.

F. C. Ferrari, J. C. Maldonado, and A. Rashid. Mutation test-
ing for aspect-oriented programs. In ICST '08: Proceedings
of the 2008 International Conference on Software Testing,
Verification, and Validation, pages 52-61, 2008.

C. M. Fonseca and P. J. Fleming. Genetic algorithms for
multiobjective optimization: Formulation, discussion and
generalization. In S. Forrest, editor, Proceedings of the 5th
International Conference on Genetic Algorithms, ICGA-93,
pages 416423, University of Illinois at Urbana-Champaign,
17-21 July 1993. Morgan Kaufmann.

[2

—

(3]

(4]

(5]

10

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

M. Harman, K. Lakhotia, and P. McMinn. A multi-objective
approach to search-based test data generation. In Proceed-
ings of the 9th annual Conference on Genetic and Evolution-
ary Computation (GECCO ’07), 2007.

M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Exper-
iments on the effectiveness of dataflow- and control-flow-
based test adequacy criteria. In Proceedings of 16th Interna-
tional Conference on Software Engineering, ICSE-16, pages
191-200, May 1994.

Yue Jia and M. Harman. Constructing subtle faults using
higher order mutation testing. In SCAM’08, 8th International
Working Conference on Source Code Analysis and Manipu-
lation, 2008.

S. Kim, J. A. Clark, and J. A. Mcdermid. Investigating the
effectiveness of object-oriented testing strategies using the
mutation method. In Mutation Testing for the New Century,
volume 11, pages 207-225, 2001.

W. B. Langdon.| Genetic Programming and Data Structures.
Kluwer, Boston, 1998.

W. B. Langdon and A. P. Harrison. Evolving regular expres-
sions for GeneChip probe performance prediction. Techni-
cal Report CES-483, University of Essex, UK, 2008.

W. B. Langdon and A. P. Harrison. Evolving DNA motifs to
predict GeneChip probe performance. Algorithms in Molec-
ular Biology, 4(6), 20009.

Yu-Seung Ma, Jeft Offutt, and Yong Rae Kwon. MuJava: an
automated class mutation system. Software Testing, Verifi-
cation & Reliability, 15(2):97-133, June 2005.

R. Poli, W. B. Langdon, and N. F. McPhee. A
field guide to genetic programming. Published
via |http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008.
(With contributions by J. R. Koza).

R. Purushothaman and D. E. Perry. Toward understanding
the rhetoric of small source code changes. IEEE Transac-
tions on Software Engineering, 31:511-526, 2005.

J. Tuya, M. J. Suarez-Cabal, and C. de la Riva. SQLMuta-
tion: A tool to generate mutants of SQL database queries.
In Proceedings of the Second Workshop on Mutation Analy-
sis, page 1, Raleigh, North Carolina, USA, November 2006.
IEEE Computer Society.

Shin Yoo and M. Harman. Pareto efficient multi-objective
test case selection. In Proceedings of the 2007 International
Symposium on Software Testing and Analysis (ISSTA ’07).
Hao Zhong, Lu Zhang, and Hong Meil An experimental
study of four typical test suite reduction techniques. Infor-
mation and Software Technology, 50(6):534 — 546, 2008.

http://sir.unl.edu
http://www.iitk.ac.in/kangal/
http://dx.doi.org/10.1023/A:1023772729494
http://www.cs.ucl.ac.uk/staff/W.Langdon/gpdata
http://www.essex.ac.uk/dces/research/publications/technicalreports/2008/CES-483.pdf
http://dx.doi.org/doi:10.1186/1748-7188-4-6
http://dx.doi.org/doi:10.1002/stvr.308
http://www.gp-field-guide.org.uk
http://lulu.com
http://www.gp-field-guide.org.uk
http://dx.doi.org/doi:10.1016/j.infsof.2007.06.003

	Introduction
	How it Works. Optimising two Objectives: Difficulty to Kill and Small Source Changes
	Mutants
	Strongly Typed Grammar Based GP for Mutation Testing
	The triangle Benchmark
	Triangle Code and Test Suite
	Triangle Mutants

	The schedule Benchmark
	Code and Test Suite, Robustness Improvements
	Schedule Mutants

	The tcas (aircraft Traffic alert and Collision Avoidance System) Benchmark
	tcas Benchmark, Robustness Improvements, Creating and Testing Mutants
	tcas Mutants
	Running the Pareto GP on tcas
	Hard to Detect tcas Mutants
	Seventh Order tough tcas Mutant
	Fifth Order tough tcas Mutant
	Third Order tough tcas Mutant

	Conclusions

