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Abstract

It is said ninety percent of faults that survive manufacturer’s testing procedures are complex. That is, the correspond-
ing bug fix contains multiple changes. Higher order mutation testing is used to study defect interactions and their
impact on software testing for fault finding. We adopt a multi-objective Pareto optimal approach using Monte Carlo
sampling, genetic algorithms and genetic programming to search for higher order mutants which are both hard-to-kill
and realistic. The space of complex faults (higher order mutants) is much larger than that of traditional first order
mutations which correspond to simple faults, nevertheless search based approaches make this scalable. The problems
of non-determinism and efficiency are overcome. Easy to detect faults may become harder to detect when they inter-
act and impossible to detect single faults may be brought to light when code contains two such faults. We use strong
typing and BNF grammars in search based mutation testing to find examples of both in ancient heavily optimised
every day C code.

Keywords: Pareto optimality, mutation testing, higher order mutation, SBSE, Monte Carlo, genetic algorithm,
genetic programming, NSGA-II, strongly typed GP, grammar based GP, non-determinism, triangle, schedule, tcas,
gzip

1. Introduction
Mutation Testing is a widely studied fault based soft-

ware testing technique, in which simulated faults are de-
liberately inserted into a program under test in order to
create a faulty version of the original called a mutant
(Jia and Harman, 2009a; Offutt and Untch, 2001). If
a test input can distinguish between a mutant and the
original program, by causing each to produce a differ-
ent output, then the test input is said to ‘kill’ the mutant.
A test suite kills a mutant if any of its constituent test
cases kill the mutant.

The effectiveness of a test suite can be assessed by
measuring the percentage of mutants that are killed by
members of the test suite (Kim et al., 2001; Ma et al.,
2005; Tuya et al., 2006; Ferrari et al., 2008). The per-
centage of mutants killed by a test suite is known as the
‘mutation score’ for the test suite.

There are two ways in which Mutation Testing can
be used. It can be used to measure the effectiveness
of a test suite using the mutation score. Of course, we
cannot expect to know all the real faults that might be
found in a program; if we did, then we would not be
testing it. This is where Mutation Testing has a role to

play: we use mutants as a way of simulating real faults.
This ‘fault simulation mode’ is the most widely studied
mode of application of Mutation Testing and it is also
our topic.

However, Mutation Testing has also been advocated
as a technique for generating test data (DeMillo and Of-
futt, 1991; Ayari et al., 2007). In test data generation
mode, test inputs are generated in order to kill the mu-
tants seeking to achieve as high a mutation score as pos-
sible. In this way, killing mutants with test data can be
seen as an attempt to meet a mutation-inspired test ad-
equacy criterion; one that seeks to cover mutants rather
than code.

Indeed, since mutants can be placed anywhere in the
code, mutation coverage can be used as surrogate for
almost any other form of structural coverage. For in-
stance, by placing mutants at suitable locations in every
branch, it is possible to simulate branch coverage us-
ing mutation coverage Offutt et al. (1996b). This makes
mutation testing a highly generic and flexible approach
to software testing.

A mutant is called a first order mutant if it results
from a single change to the program under test, while it
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is higher order if it is created by more than one change.
Unfortunately, many of the mutants created by a single
simple syntactic change (thereby creating a first order
mutant) are unrealistic; they do not simulate real faults.
Evidence to support this claim is provided by empirical
results that indicate that in the vast majority of cases,
about 90%, a modification made to fix one real fault
needs several source code changes (Purushothaman and
Perry, 2005). A single fault that is fixed by several
changes can only be denoted by a mutant that is con-
structed by the insertion of several changes. Such a mu-
tant is, by definition, a higher order mutant. We pro-
vide a more detailed critique of first order mutation test-
ing and a motivation for the move to the higher order
paradigm elsewhere (Jia and Harman, 2009b; Harman
et al., 2010).

Our aim is to explore the relationship between a mu-
tant’s syntax and its semantics. For instance are larger
syntax changes always worse than smaller ones or are
there higher order mutants which are closer to the orig-
inal program’s semantics? We answer this by using
search techniques. One objective is mutants with similar
semantics (small semantic distance). The second is in-
spired by Occam’s razor: we look for minimal syntactic
changes. The hope is that by making smaller changes to
the source code, the mutations will be more intelligible
and so more useful. A Pareto optimal approach means
each objective is treated separately when comparing so-
lutions. Thus, a mutant that passes more of the test cases
and is syntactically closer to the original program is nat-
urally preferred. Similarly, if a mutant beats another on
one objective but has the same score on the other ob-
jective, it is again preferred. Naturally, a mutant that
is worse on both objectives is not preferred. However,
when one mutant is better on one objective but worse
on the other, the two mutants are both considered to be
incomparable (or “nondominant”).

This is illustrated in Figures 1 and 10 which contain
several “Pareto fronts”, each of which contain several
mutants. Mutants on the same Pareto front do not dom-
inate one another, even though they pass different num-
bers of tests and lie at different distances from the orig-
inal source. The entire Pareto front is kept and used to
explore for further improvements.

We use a novel Multi Objective Pareto Optimal Ge-
netic Programming (GP) approach (Poli et al., 2008) to
explore the relationship between mutant syntax and mu-
tant semantics. We use several real world programs as
subjects. They are drawn from the Software-artifact In-
frastructure Repository (Hutchins et al., 1994). These
SIR benchmark programs include high quality test sets.
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Figure 1: Pareto fronts. Top row: triangle and schedule first order
mutants. Bottom row: tcas GP evolved mutants (see Figure 10) and
gzip first order mutants. Equivalent mutants are not killed by any test
cases. They are treated as special cases and given very poor scores
(indicated by “0” on the y-axis). The smallest syntactic distance for a
mutant is 7. Noise added (except tcas) to spread data.

The GP algorithm evolves mutant programs accord-
ing to two fitness functions: semantic difference and
syntactic difference. As we have extended mutation
testing to allow more than one syntactic change to
the source code, we still need to constrain the total
change to the program. We anticipate that the number
of changes will be small, but we do not know exactly
how many. By using a multi-objective approach we can
avoid imposing an arbitrary limit and give the optimi-
sation process the freedom to find interesting mutants
which tradeoff syntactic change against impact on the
program’s semantics.

Our syntactic distance sums the number of changes
weighted by the actual difference. (Details will be given
at the end of Section 2.) Semantic distance is measured
as the number of test cases for which a mutant and orig-
inal program behave differently. However, should they
agree on all test cases, the mutant may be an equivalent
mutant. For example, if i is known to be a non-negative
integer then if(i> 0) and if(i!=0) are equivalent
(since no external test can ever tell them a part). As
equivalent mutants are indistiquishable, we do not want
to burden the tester with complaints that the test suite
does not kill them. (The problem of potential equiva-
lent mutants is well known in mutation testing.) There-
fore, a semantic distance of zero is treated as a special
case. (By giving such mutants very poor scores they are
normally immediately removed from the population).

We focus on the set of relational operator mutants,
since these control the logical control structure of the
program under test. We use genetic programming, to-
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Figure 2: High order Multi-objective mutation testing. The BNF
grammar tells GP where it can insert mutations into the original pro-
gram source.c. Initially GP creates a population of random muta-
tions, which are compiled and run against the test suite providing two
objectives to NSGA-II. NSGA-II selects the mutants to retain using
a non-dominated Pareto approach and instructs the GP which mutants
to recombine or further change. The evolutionary cycle continues for
50 or 500 generations.

gether with Monte Carlo sampling, to explore the space
of higher order mutants. We are particularly interested
in cases where, within a class of first order mutants, a
higher order mutant exists that is harder to kill than ev-
ery one of the first order mutants. This is theoretically
interesting because it demonstrates that there exist situ-
ations in which a tester is forced to move to the higher
order paradigm in order to find tougher faults. It is also
practically interesting, because it highlights situations
in which known first order faults can combine in subtle
ways to create partly masked faults that may have gone
undetected.
The contributions1 are:

1. This is the first paper to simultaneously explore
the relationship between source code changes in-
troduced by mutations and corresponding changes
to the program’s behaviour. It is also the first to use
Pareto optimality in mutation testing (though this
has been used in other forms of testing (Yoo and
Harman, 2007; Lakhotia et al., 2007)). Pareto op-
timality, more normally associated with GAs (Fon-
seca and Fleming, 1993), has only been used a
little in GP (Langdon, 1998, Sec. 3.9). This is
also one of the few papers (other than Emer and
Vergilio (2003)) to tackle mutation testing using a
GP–based approach.

2. We confirm the intuition underlying the well–
known Mutation Testing Coupling Hypothesis
(DeMillo et al. (1978)): “Complex mutants are
coupled to simple mutants in such a way that a

1Some of these contributions were first made, albeit with respect
to a smaller set of subject code, by the conference version of this pa-
per Langdon et al. (2009). However, results relating to improved test
efficiency and non–determinism are entirely novel to this extended
journal version.

test data set that detects all simple mutants in
a program will also detect a large percentage of
the complex mutants” (Offutt, 1992, p 6). Monte
Carlo sampling of higher order mutants confirms
the widely held belief that adding changes to a
faulty program tends to make it more error–prone.
However, as the results reveal, there remain a non–
trivial set of higher order mutants that are hard to
kill.

3. The Pareto optimal search is able to find higher
order mutants of the TCAS aircraft Traffic alert
and Collision Avoidance System program that are
harder to kill than any of the first order mutants.
This is an example where adding more faults to
a program makes it less error–prone; it is harder
(though not impossible) to detect the faultiness of
the resulting higher order mutant. Such very–hard–
to–kill higher order mutants denote highly subtle
interactions of faulty behaviour and so may be use-
ful in revealing insight into problem cases and in
driving test data generators to generate better qual-
ity test data.

4. Up till now the importance of non-deterministic
faults has not been recognised in mutation testing
(see Table 1). Inserting errors could lead to non-
repeatable behaviour in programs coded in any lan-
guage. For example, due to the introduction of tim-
ing problems. In C programs, the injection of faults
may lead to variables, particularly local arrays, not
being fully initialised. The program’s subsequent
behaviour may now depend on the exact values
left in the storage which can vary between program
runs.
In one case this was non-deterministic, so that
testing could detect the mutant approximately two
times in three. To reliably detect (i.e. more than
95% of the time) even such a frequent error would
entail running tests at least three times. Of course
less frequent errors would require tests to be re-
peated more times. For example, if the chance of
a test failing is 3% (rather than 67%) then the test
has to be repeated 100 times to reliably detect the
fault.

5. We show how the exploration of the space of
higher order mutants may reveal insights into the
structure of the test suite. For example, we found
that the differential behaviour of test cases in the
presence of higher order mutants creates a clear
distinction (in three of the four programs studied)
between those test cases that target wrong func-
tionality compared to those that target mishandled
exceptions.
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Table 1: Practical details for efficient mutation testing

Problems Solutions

Comparison of text (including error
messages)

Replace printf results and error messages by saving output inside test
harness and using status codes

Array indexing errors Automatic array index checking before all array accesses
Run out of memory or corrupt the heap Allocate heap memory large enough for all of the test cases
Read or write illegal memory Automatic pointer checking before it is used.
Non-terminated loops Loop counter technique to kill mutants
Harmful system calls and IO operations Record original program’s use of system calls and IO by instrumenting the

code. Intercept and check system & IO during mutation testing
Heavy disk usage Combine tests into a single file. A potential alternative might be to use

RAM disk
Non-deterministic mutants Force the initialisation of all variables

6. We include several methods for reducing ma-
chine resources during intensive testing, particu-
larly when there are many program variants and
test cases. See Figure 2 and Sections 6.1 and 8.3.

The next section describes the mutants, Section 3
outlines how our system works, whilst Section 4 de-
scribes how multiple changes are made to C source
code. Sections 5–8 describe the four benchmarks (Tri-
angle, schedule, tcas and gzip) and results obtained.
Section 9 discusses threats to validity and potential fu-
ture work. We conclude in Section 10.

2. Mutants
The Higher Order Mutation Testing Paradigm raises

a natural question: what is a higher order mutant? If
one were to form a higher order mutant from any possi-
ble combination of an arbitrary number of arbitrary first
order mutations, then one could use higher order muta-
tion to transform any program into any other program.
Therefore, we think of a set of higher order mutants that
is generated by a chosen set of first order mutants, rather
than allowing arbitrary or unspecified first order muta-
tions. That is, a higher order mutant, is a program that
can be obtained by applying several operations drawn
from a set of first order mutations operations, F, to the
original program.

This allows us to explore the relationship between the
simple faults and the complex faults. Simple faults are
the first order mutants, whilst complex faults are higher
order mutants. The higher order mutants are defined
by a chosen fault model F or with respect to a certain
class of interesting programming language constructs
for which we admit first order mutation.

We study the set of first order mutation operators that
replace one relational operator with another. This is an

interesting set because its corresponding higher order
mutant set denotes the set of ways in which one might
alter the flow of control within the program. However,
the higher order mutants can only influence data flow
indirectly, by altering control flow and cannot alter com-
putation by mutating rvalues. In this way, a higher or-
der mutant denotes a ‘partially jumbled’ computation
composed of the same basic computations (arithmetic
expressions) as the original.

This approach is based on the suggestion that pro-
grammers are likely to commit subtle complex faults
that might resemble such slightly anomalous control
flow. Though this remains a conjecture, we shall see that
from this first order set, and for high quality test data and
real world programs, it is possible to construct higher
order mutants that are harder to kill than any of the first
order mutants. This lends some evidence to support the
belief that the higher order mutants are both interesting
and potentially complex in the sense of Purushothaman
and Perry (2005).

To give a syntactic distance measure, we placed the
six C comparison operations < ,<=, ==, !=, >=, > in or-
der. The distance of one comparison from another is
their distance in this order plus six if they differ at all.
The total distance of a mutant is the sum of the indi-
vidual distances for each comparison it contains. The
constant factor (6) ensures a second order mutant will
always have a larger distance than a first order mutant.

Our distance measure tries to capture the idea that
some changes are bigger than others and generally more
changes make the program more different than fewer.
Thus a changing < to <= implies a distance of 7, whilst
changing it to a == has a distance of 8. But changing a
< to a <= and another a < to a <= (two changes) has a
distance of 14.
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Notice that the distance is only based on comparing
the original program and the final mutant. This distance
does not depend upon how many intermediate changes
(which may have undone or redone) there have been.

3. How it Works. Optimising two Objectives:
Difficulty to Kill and Small Source Changes

Deb’s well known Non-dominated Sorting Genetic
Algorithm - II (NSGA-II v1.1, Deb et al. (2002)) was
used. It is a multi-objective evolutionary algorithm,
which at every generation, uses crossover and mutation
to create a new population. The next generation is given
by a Pareto optimal selection from both the new off-
spring and their parents. Thus it is naturally elitist. Fit-
ness sharing is built in to ensure the population does
not bunch together on the Pareto front. To adapt it to
our GP, nsga2r.c was split in two. The first decides
which individuals are to be parents and the second com-
bines the offspring and parent populations. Crossover,
mutation and fitness calculation are done externally by
the strongly typed GP and the multi-objective fitness
passed to NSGA-II. Figure 2 shows the relationships
between GP, NSGA-II, the grammar and the existing
testing regime. (Details will be given in Table 4.)

NSGA-II was given two objectives: to minimise the
number of tests failed and to minimise the syntactic
distance between the mutant and the original program.
(Since the goal is not to re-engineer the original pro-
gram, but to find interesting high order mutants, pro-
grams created by GP which behave identically to the
original program are penalised by giving them infinitely
poor fitness.)

4. Strongly Typed Grammar Based GP for Muta-
tion Testing

Initially the target source code is automatically anal-
ysed to create a BNF grammar tree which describes
all its possible mutants. In the case of gzip, which is
much bigger, additional optimisations were also used
(see Section 8.3). Unlike most BNF’s, the grammar
consists mostly of terminals which regenerate the fixed
portions of the source code. However all comparisons
are replaced by the rule <compare>, which is defined
thus:

<compare> ::= <compare0> | <compare1>
<compare0> ::= <compare00> | <compare01>
<compare00> ::= "<" | "<="
<compare01> ::= "==" | "!="
<compare1> ::= <compare10>
<compare10> ::= ">=" | ">"

For simplicity of integrating the grammar into the GP
search process, BNF rules with two alternatives are sup-
ported. Thus three levels of binary choices are needed
to cover all six possible comparisons.

Excluding <compare>, each line of the source is con-
verted into a unique rule in the grammar. For efficiency
as much of the source code is converted into as few rules
as possible. Indeed a line of C code which does not con-
tain any comparison operations is converted into a sin-
gle rule which has only one production which is itself a
terminal containing the whole line. Lines are grouped
into a hierarchy by a binary chop process.

For example, in tcas lines 7 to 10 are described by
rule <line7-10> (see Figure 7) which has two produc-
tions: <line7-8> and <line9-10> which each cover
two rules.

<line7-10> ::= <line7-8> <line9-10>
<line7-8> ::= <line7> <line8>
<line9-10> ::= <line9> <line10>

This ensures lines of code that are close together in the
source code are close together in the grammar parse
tree.

The strongly typed GP uses the name of the grammar
rules (i.e. their left hand side) as the rule’s type. This
means we have more types than is common in (non-
grammar based) strongly typed GP. Crossover chooses
one crossover point uniformly at random from the first
parent’s grammar. This gives the type of the crossover
point. The crossover point in the second parent must
be of the same type. For example, if <line7-10> is
chosen in the first parent, then it must also be chosen
in the second. Thus, in this example, the child will in-
herit lines 1–6 and 11 to the program’s end from the first
parent and lines 7–10 from the second parent. Notice
crossover automatically takes advantage of any mod-
ularity the programmer explicitly coded in her choice
of how to layout the source code. Mutation similarly
chooses a rule from the BNF. Say it also chose rule
<line7-10>. All the grammar below the chosen point
is re-created at random. (Mutation ensures at least one
change is made.) Thus a mutation at <line7-10> will
randomly replace the comparison operation in line 7 and
in line 10. (Lines 8 and 9 do not contain any compar-
isons.) Implementation details can be found in Langdon
and Harrison (2008, 2009).

Given the rigidity of the grammars we are using to
construct mutants, it might be argued that we do not
need the expressive power of GP and a simpler evolu-
tionary algorithm could be used. However we automat-
ically get genetic operations which are tailored to the
source code we are investigating.

2420



Table 2: The 14 test cases for triangle.c.

Inputs Expected Output
0 0 0 4 not a triangle
1 0 0 4 not a triangle
1 1 0 4 not a triangle
1 1 1 3 Equilateral
2 2 1 2 Isosceles
1 1 2 4 not a triangle
2 1 2 2 Isosceles
1 2 1 4 not a triangle
2 1 1 4 not a triangle
3 2 2 2 Isosceles
3 2 1 4 not a triangle
4 3 2 1 Scalene
2 3 1 4 not a triangle
2 1 3 4 not a triangle

5. The triangle Benchmark

5.1. Triangle Code and Test Suite
The triangle program is often used as an example in

software engineering studies. We used a simplified ver-
sion of DeMillo et al. (1978) translated from Fortran
into C. See Figure 3. It takes the lengths of three sides
of a triangle and classifies it as either scalene, isosce-
les or equilateral or it is not a triangle. (Since the layout
chosen by the programmer influences the strength of the
crossover linkage between potential mutation sites, the
layout in Figure 3. follows that in triangle.c.)

The test set used by DeMillo et al. (1978) achieved
only statement coverage. Therefore we generated test
cases covering all the possible branches. (Since we are
going to modify the program it is important to cover
all branches). However, using this branch coverage test
set, in earlier experiments, we found many mutants re-
lated to conditional statements were not detected. This
was because the test set did not cover some of the
Boolean sub-expressions of the conditional statements.
Therefore, we used CUTE (Sen et al., 2005) to ensure
1) all branches are covered 2) the test set reaches every
Boolean sub-expression in the if statements. The final
test set is given in Table 2.

5.2. Triangle Mutants
triangle.c contains 17 comparison operators. (All

of them comparing int with int.) Therefore there are:
17 × 5 = 85 programs with one change, 17 16

2 × 5 5 =
3400 with two changes, 17 16 15

2 3 × 5 5 5 = 85 000 with
three changes and so on. The total search space is 617 =

16.9267 1012.

int gettri(int side1, int side2, int side3)

{

int triang ;

if( side1 <= 0 || side2 <= 0 || side3 <= 0){

return 4;

}

triang = 0;

if(side1 == side2){

triang = triang + 1;

}

if(side1 == side3){

triang = triang + 2;

}

if(side2 == side3){

triang = triang + 3;

}

if(triang == 0){

if(side1 + side2 <= side3 ||

side2 + side3 <= side1 || side1 + side3 <= side2){

return 4;

}

else {

return 1;

}

}

if(triang > 3){

return 3;

}

else if ( triang == 1 && side1 + side2 > side3) {

return 2;

}

else if (triang == 2 && side1 + side3 > side2){

return 2;

}

else if (triang == 3 && side2 + side3 > side1){

return 2;

}

return 4;

}

Figure 3: triangle.c. It contains 17 mutable comparisons: 7 ==, 4 >
and 6 <=. However there are, initially, no <, >= or != comparisons.

Table 3: Equivalent and hardest to kill first and higher order
triangle.c mutants. Third row (Equiv) is those that pass all test
cases. Last row (1 test) gives those that fail just one test (i.e. hardest
to detect). Data are the numbers and the percentage of mutants of the
same order.
Order 1st 2nd 3rd 4th

No. 85 3400 85 000 1 487 500
Equiv 14 16% 89 3% 340 0.4% 870 0.06%
1 test 18 21% 325 10% 2615 3.1% 12363 0.83%
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    870 order 4 mutants killed by 0
12363 order 4 mutants killed by 1
    340 order 3 mutants killed by 0
  2615 order 3 mutants killed by 1
      89 order 2 mutants killed by 0
    325 order 2 mutants killed by 1
   14 first order mutants are killed by no test cases
   18 first order mutant killed by 1 test case
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85000 3rd order
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Figure 4: Fitness of all low order triangle.c mutants. (Noise added
to spread data.) Remember even though potential equivalent mutants
pass all the test cases they are given an infinitely bad score and hence
are plotted at the top left.

In Figure 4 we plot the fitness of all the 1.5 million
mutants up to order 4. Notice 1) the number of mutants
grows exponentially with order. 2) The fraction of both
potential equivalent mutants2 and the hardest to detect
mutants3 falls rapidly with number of changes made,
see Table 3. The GP was also able to find these low
order and hard to detect mutants but since there are only
85 first order mutants, it is easier to enumerate them.

Five of our 14 triangle test cases are extremely ef-
fective against random mutants. They each individually
detect more than 99% of the high order mutants. This
causes the vertical concentration of points in the fitness
scatter plot in Figure 5. These five tests are all those
that check for normal operation. Whereas the other nine
tests check that triangle.c detects “not a triangle”. It
looks like high order mutants are easily detected by tests
for correct operation because correct operation requires
more of the code to be executed and so there is more
chance of striking the mutated code before one of the
return statements in Figure 3.

2 Potential equivalent mutants are those where the mutation made
no detected difference. They always pass all the test cases but we
cannot be certain they are exactly equivalent to the original program.

3I.e. fail just one test.
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Figure 5: 100 000 random triangle.c mutants (from GP’s initial
population). Noise added to spread data.

6. The schedule Benchmark

6.1. Code and Test Suite, Robustness Improvements
schedule.c (SIR version 2.0) was down loaded

from the Software-artifact Infrastructure Repository
(Hutchins et al., 1994). It consists of 412 lines of code,
split into 18 procedures and 2650 test cases. Each test
case provides up to five inputs from the command line
and reads up to 289 integers from one of the 2650 in-
put files. It produces an ordered list of the scheduled
processes. The output consists of up to 45 integers and
possibly an error message.

To ease automatic testing, printfs were replaced by
code to direct the scheduled process identifiers (ints)
to a buffer and to replace the two textual error messages
by two status codes. The outputs generated by the un-
modified version of the schedule program (as created
by SIR’s runall.sh script) were converted to the new
format. During mutation testing a mutant is said to have
failed a test if any of its outputs do not match that of
the original program or if its status does not match the
original error message (if any).

Unlike triangle.c, schedule.c accesses arrays,
dynamically creates and deletes data structures, uses
pointers to them, and runs for loops. Thus we are faced
with the likelihood that mutants will cause: array index-
ing errors, run out of memory, corrupt the heap, read or
write illegal memory (with unknown consequences) and
loops will not terminate. If a mutant does one of these
then we say it has failed that test. However we must
ensure that a single mutant does not affect the testing of
other mutants or itself when running a different test.

Initial experiments showed it would not be feasible
to use the normal isolation and protection provided by
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the operating system. This is because the overhead of
creating and starting a separate process per mutant and
per test case is too large. (Checkpointing, perhaps in-
conjunction with the super mutant approach described
in Section 8.3, might be another alternative.) Instead all
the mutants for a generation are compiled together and
run on each test case. In this way it is feasible to test
hundreds of thousands of mutants on all 2650 test cases.
To allow us to do this additional checks were added to
the source code:

• Heap memory large enough for all of the test cases
is allocated before testing is started. The original
calls to allocate and free memory are replaced by
using this area. It is cleared between each test and
checks added that it is not exceeded.

• Before any pointer is used, it is checked to ensure
it has a legal value consistent with its type.

• Index checks are made before all array accesses.

• Code is added to terminate each for loop if the
total number of loop iterations for an individ-
ual test exceeds ten times the maximum required
by the unmodified program. (gzip, Section 8,
takes longer and therefore the limit was reduced
to 200 + 10%.)

If any of these checks fail the test is safely aborted
and the mutant is said to have failed that test. The next
is started knowing it is safe to do so and it will not be
affected by the previous failure.

The detection of infinite loops is in general undecid-
able. In practice it is often approached by applying an
arbitrary timeout. (E.g. Weimer et al. (2009) abort their
randomly created programs after five seconds and give
them a zero score.) This has a number of problems.

Choosing an appropriate limit may not be straight-
forward. If the limit is too high, a single test case
which causes a program to loop, may gobble excessive
resources adversely affecting the whole testing process
and possibly other uses of the computing system. If too
short, a slow test case may be inadvertently marked as
a failing a test case whereas it would have eventually
passed the test.

If some test cases are very much longer than others
(e.g. gzip, Section 8) a single time limit is not appro-
priate. Setting it long enough for the worst case means
wasting too many resources should an indefinite loop
form on any of the other cases. Choosing a timeout spe-
cific to each test cases runs the risks of a single timeout
amplified n times.
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Figure 6: Fitness of all first order (+) and 10 000 random schedule.c

mutants. Note log scale. More than 90% of high order mutants fail
more than 90% of the test cases. On the other hand 10 of 70 first order
mutants are not killed.

Elapsed time is notoriously variable. Even on a ded-
icated computer there are variations in run time. Hence
a test suite which takes 4.99 seconds on average may
sometimes pass 100% of its tests but appear to fail the
last one every so often. This causes testing to be non-
deterministic.

In our approach we don’t seek to identify indefinite
loops. We aim to tightly limit the resources used when
testing mutants and report when a test causes a mutant to
deflect from the original program behaviour. By instru-
menting every potential loop (for, while, goto) during
correct operation abberent behaviour of a mutant can be
quickly spotted and the test efficiently aborted in a de-
terministic fashion.

6.2. Schedule Mutants

schedule.c contains 14 comparison operators. (All
of them comparing int with int.) Therefore there are
70 first order mutants. The number of tests which detect
them is plotted in Figure 6. Ten of the 70 make no vis-
ible difference but one first order mutant fails a single
test.

Figure 6 shows random high order schedule.c mu-
tants are easily detected. Most of the tests are good at
finding them. Even the worst test detects most high or-
der mutants. schedule.c is much more complicated
than the triangle program. Perhaps this is why multiple
mutations scattered at random are more easily detected
than in triangle.c. The GP was also able to solve the
problem, but since there are only 70 first order mutants,
it is easy to enumerate them.
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7. The tcas (aircraft Traffic alert and Collision
Avoidance System) Benchmark

7.1. tcas Benchmark, Robustness Improvements, Creat-
ing and Testing Mutants

tcas (SIR version 2.0) was down loaded from the
Software-artifact Infrastructure Repository (Hutchins
et al., 1994). It consists of 135 lines of C code (ex-
cluding comments and blank lines) with 40 branches
(Zhong et al., 2008, Table 2) and 1608 test cases with
up to 12 input parameters and one output. The supplied
main() was modified to return tcas’ answer to the GP
rather than printing it. Similarly when tcas detects an er-
ror, instead of it printing an error message and exiting,
it returns a unique error code to the GP.
tcas.c contains an array but no array index check-

ing. This leads to array bound errors, which we have
reported. A check was added. This ensures mutants
cannot crash the GP and they cannot affect the execu-
tion of each other. This check cannot be mutated by the
GP. Similarly the existing array index check (on argv
in tcas’ main) cannot by mutated.

There are 14 comparison operations non-uniformly
scattered through the 8 mutable functions. (They all
compare int with int.) A BNF grammar (Figure 7)
describing the mutable functions was automatically cre-
ated. Each generation our strongly typed GP system
used the grammar to generate up to 10 000 mutations of
tcas. These were compiled together by gcc into a sin-
gle executable. Each mutant was run on all 1608 tests
and the number of times it produced a different answer
was recorded. (A small efficiency improvement could
have been made by not running those tests which are
trapped by immutable tests. Since these are the array in-
dex changes, which GP cannot change, the mutant must
pass these tests.)

As is usual in GP, the initial population was con-
structed from random individuals. (Randomly created
individuals are very high order mutants, in which almost
all comparisons are changed.) We anticipate finding in-
teresting mutants which are good at passing tcas’s test
cases and not too dissimilar from it. As we have al-
ready seen in the triangle and schedule programs (Fig-
ures 5 and 6) and confirmed by Figure 8, random high
order mutants are naturally some distance away from
the goal. An alternative would be to start the evolving
population nearer the anticipated solutions by seeding
it with low order mutants. This would undoubtably in-
troduce a bias, which might be beneficial. However, if
successful, seeding would tend to confirm our initial as-
sumptions, rather than challenge them. Therefore we
chose to avoid this particular bias and allow evolution

Table 4: Strongly Typed Grammar GP to find hard to kill tcas mutants

Primitives: The function and terminal sets are de-
fined by the BNF grammar (Figure 7).
BNF rules with two options corre-
spond to binary GP functions. The rest
of the BNF grammar correspond to GP
terminals.

Fitness: Two objectives. 1) minimise the num-
ber of tcas test cases failed 2) min-
imise the syntactic difference (Sec-
tion 2) from tcas.c. However pro-
grams which pass all test cases are
treated as if they failed INT MAX tests.

Selection: NSGA-II. I.e. Pareto multi-objective
rank based binary tournament selec-
tion on combined current and offspring
populations.

Population size = 100 or 10000
Initial pop: Ramped half-and-half 3:7 (Poli et al.,

2008)
Parameters: 90% subtree crossover. 10% subtree

mutation. Max tree depth 17 (no tree
size limit)

Termination: 500 or 50 generations

to move the population. We tried two strategies to allow
the population to move some distance: a large popula-
tion (10 000) for 50 generations and a small population
(100) for 500 generations, see Table 4. Both worked and
came to different solutions.

7.2. tcas Mutants

Since for each comparison there are five possible mu-
tations, there are 70 (5 × 14) first order mutations. The
fitness (i.e. semantic and syntactic differences from tcas
itself) are plotted in Figure 8. About a third (24) of the
1st order mutants are not discovered by any of the 1608
test cases. Many of the rest are fairly easy to find and
fail many tests. However there is one first order mutant
which fails only three tests.

Monte Carlo sampling (dots in Figure 8) shows there
are 264 tcas tests which defeat 98.3% of random pro-
grams but 428 (Figure 9) which are passed by all 10 000
high order mutants.

Figure 9 plots the expected output from tcas for each
test case. The three groups identified in the previous
paragraph (see also Figure 8) are high lighted by sorting
the tests by their effectiveness against random high or-
der mutants. As with triangle and schedule, the most
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<line1>::= "bool Non_Crossing_Biased_ClimbXXX()\n"

<line2>::= "{\n"

<line3>::= "int upward_preferred;\n"

<line4>::= "int upward_crossing_situation;\n"

<line5>::= "bool result;\n"

<line6>::= "\n"

<line7>::= "upward_preferred = Inhibit_Biased_Climb()"

<compare> "Down_Separation;\n"

<line8>::= "if (upward_preferred)\n"

<line9>::= "{\n"

<line10>::= "result = !(Own_Below_ThreatXXX()) ||

((Own_Below_ThreatXXX()) && (!(Down_Separation"

<compare> "ALIM())));\n"

<line11>::= "}\n"

<line12>::= "else\n"

<line13>::= "{\n"

<line14>::= <line14A> <line14B>

<line14A>::= "result = Own_Above_ThreatXXX() &&

(Cur_Vertical_Sep" <compare> "MINSEP) &&

(Up_Separation"

<line14B>::= <compare> "ALIM());\n"

<line15>::= "}\n"

<line16>::= "return result;\n"

.

.

.

<start>::= <line1> <line2> <line3> <line4> <line5>

<line6> <line7-30> <line31-54> <line55>

<line56> <line57> <line58> <line59> <line60>

<line61> <line62> <line63> <line64> <line65>

<line66> <line67> <line68> <line69> <line70>

<line71> <line72> <line73>

<line7-30>::= <line7-17> <line18-28> <line29> <line30>

<line7-17>::= <line7-10> <line11-14> <line15>

<line16> <line17>

<line7-10>::= <line7-8> <line9-10>

<line7-8>::= <line7> <line8>

<line9-10>::= <line9> <line10>

<line11-14>::= <line11> <line12> <line13> <line14>

<line18-28>::= <line18> <line19> <line20> <line21>

<line22> <line23> <line24> <line25-26> <line27-28>

<line25-26>::= <line25> <line26>

<line27-28>::= <line27> <line28>

<line31-54>::= <line31> <line32-43> <line44-54>

<line32-43>::= <line32-35> <line36-39> <line40>

<line41> <line42> <line43>

<line32-35>::= <line32> <line33> <line34> <line35>

<line36-39>::= <line36> <line37> <line38> <line39>

<line44-54>::= <line44-49> <line50-54>

<line44-49>::= <line44> <line45> <line46> <line47>

<line48> <line49>

<line50-54>::= <line50> <line51> <line52-53> <line54>

<line52-53>::= <line52> <line53>

Figure 7: Fragments of Backus-Naur form grammar used to spec-
ify tcas mutants. In total it contains 104 rules. (Common code
which is not mutable is excluded. This gives a minor efficiency gain.)
<compare> is defined in Section 4. XXX is replaced by the individual
mutant’s identification before it is compiled.
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check for threat of collision. They are failed by almost all high order
mutants.

effective tests are those that check for more than de-
fault operation. For tcas this means all the tests which
expect either UPWARD RA or DOWNWARD RA (i.e.
aircraft collision threat identified) are highly effective.
A few of the 428 tests which are always ineffective are
due to tests which check for Bad Alt Layer Value or
Not enough inputs errors (lower two set of points
in Figure 9). These are checked by outer level non-
mutable code and so are unaffected by any mutations
and consequently cannot detect any.

Most of the tcas test suite checks for UNRESOLVED.
Of these tests, most are fairly poor against random mu-
tations and find only about 1.67% of them, whereas the
rest are totally ineffective and detect none.

7.3. Running the Pareto GP on tcas

Figure 10 shows NSGA-II progressively improved
the initial random high order mutants. It both reduced
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the number of test cases able to find them and their syn-
tactic distance from tcas. In generation 13 a 7th order
mutant was found which is killed by only one test. In
generation 44 a 5th order mutant was found which is
defeated by only one test. Although the 5th order mu-
tant is a subset of the 7th, i.e. the 7th has two additional
changes, they behave differently and fail on different
tests. No mutant which failed on two tests was found in
this run but the second run (Appendix A.3) found sev-
eral.

7.4. Hard to Detect tcas Mutants
At the left hand side of Figure 10 there are two points

(“Gen 14-44” and “Gen 45-50”) above x = 1. They
represent two high order tcas mutants which pass all but
one test.

Appendix A describes in detail three of the high order
mutants discovered by genetic programming. In par-
ticular, it explains how the constituent first order tcas
mutants knit together to form hard to detect high order
mutants.

8. gzip

8.1. Robustness Improvements, Creating and Testing
Mutants

The GNU compression program gzip and its test suite
was down loaded from SIR (version 1.4).4 SIR’s version

4We reported an error in the test suite to SIR which causes gzip to
fail a test. SIR amended the test (SIR version 1.5) so that gzip passed
it. However since the action of gzip is correct (it rejects the test’s bad
command line) and detecting incorrect usage is an important part of
gzip’s functionality we continue to use version 1.4.

of gzip is 5680 lines of C spread over 104 functions. As
well as being a real world program in daily use around
the world, this makes it more than eight times the size
of the earlier three benchmarks combined.

8.2. Mutation Testing Test Harness

8.2.1. Intercepting System Calls and I/O
triangle.c and tcas do not make use of files and

even though the schedule test suite does contain several
thousand files they are primarily a way of passing natu-
ral numbers. However files are fundamental to the nor-
mal operation of gzip. In fact gzip also makes extensive
use of the file system, including recursively scanning
directories and is in principle able to access any file.
Fearful of losing our home directory, we placed gzip in a
sandbox.5 gzip was instrumented and the whole SIR test
suite was run. Each test case’s use of the file system was
recorded. This included which files were opened and
keeping the output generated. Including error messages
(if any) and gzip’s final status code. During mutation
testing, each mutant is run on 211 test cases. (It proved
impractical to run three, 38, 39 and 52, of the 214 test
cases supplied by SIR. E.g. test 52 is not determinis-
tic since results depend upon exact timings in an unpre-
dictable fashion.) During mutation testing all file I/O
and system calls are intercepted. When a mutant tries
to open a file, the file name and mode of opening are
compared with those used by the unmodified version of
gzip. If they are different the mutant is deemed to have
failed the test. Similarly its use of open files is com-
pared. (This includes stdin, stdout and stderr, which are
open by default.) When gzip tries to read from a file, its
request is intercepted and data from an internal copy of
the file is passed to it. When it tries to write, data is com-
pared to a copy of the original output file. If any byte
is different, the mutant has failed that test. In principle,
system calls (such as changing file protection and read-
ing shell environment variable POSIXLY CORRECT)
could also be checked however for simplicity they are
simply discarded.

Notice as well as being secure, this can greatly speed
up testing for several reasons. Often testing gzip is
dominated by its access to the disk system. Typically
each test cases uses two files, one for input and one
for output. Nevertheless it is quite feasible for a mod-
est personal computer to store the whole of SIR’s gzip
test suite in RAM. Using our approach files need only
be read when the test harness starts. This overhead is

5There are tales of mutation testing causing the loss of complete
servers.
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shared between all mutants being tested and the whole
test suite. Since output files are not generated, there is
1) no disk I/O overhead for them 2) no disk space is
required 3) there is no separate overhead of comparing
output files generated by mutants with the correct out-
put files 4) failing tests can be stopped immediately er-
roneous output is generated rather than having to run to
completion. Despite additional overheads (described in
Section 8.2.3) testing mutants within our framework is
about twenty times faster than running the original SIR
test script.

While not strictly necessary, the I/O interception code
was enhanced to trap and treat as a test failing any mu-
tant which repeatedly (i.e. more than 16 times) tries to
read past the end of file. This is not an error as far as the
C I/O system is concerned and will be trapped eventu-
ally by the limit on looping (described in Section 6.1).
However, since the unmodified version of gzip stops
reading files the first time it encounters EOF, detecting
repeated attempts to read past the EOF gives an addi-
tional way of detecting mutants and has the benefit of
reducing the time taken to test such mutants.

8.2.2. Memory Initialisation and Checks
To ensure mutants cannot interfere with each other

before every test every variable is initialised. This is ob-
viously required for global variables. However it turns
out to be necessary for some local variables.

gzip is well coded and does not use uninitialised vari-
ables. But of course a mutant can fail to initialise a vari-
able. Initially we thought this would simply be another
source of error and the mutant would be be appropri-
ately penalised. However in C the contents of unini-
tialised local variables is not defined and we found in
practice it can vary between different runs, even when
only one test is run for one mutant. (When using the
gcc compiler, the option -finit-local-zero may be
an effective workaround for this specific case of random
runtime behaviour.) It appears the problem of nonde-
terminism in mutation testing has not been fully recog-
nised. Of course it is well known that poor C code can
misbehave in surprising ways.

One way to cope with nondeterministic mutants
would be to run them multiple times and compare their
results. But this raises several practical and philosophic
problems. What is an acceptably low probability of
a mutant failing before it can be assumed the error is
unimportant? The more we demand that an error should
occur at a low rate and the more confidence we demand
of our estimate of the error rate, the larger will be the
number of times we will have to test the mutant. This

can easily lead to an explosion in run time. This ap-
pears to be an important area for further analysis. How-
ever, for the time being, we decided to take the option
of forcing the mutants to be deterministic by forcing the
initialisation of all variables even though this could be
considered as treating mutants too leniently.

As described in Section 6.1 all calls to create or free
heap memory were intercepted and directed to a prede-
fined memory area. This is large enough for any test
in the test suite. Again a mutant which tries to allocate
more heap than allowed for is trapped and treated as
failing that test case.

8.2.3. Array Index and Pointer Checking
Due to the size and complexity of gzip, it was not

feasible to deal with every possible memory violation
individually, instead we use the gcc -fbounds-checking
patch.

The GNU compiler’s distribution gcc 4.0.4 was ob-
tained. (Version 4.0.4 was used because it is the most
recent version for which there is a -fbounds-checking
patch.) The patch was down loaded from SourceForge
and applied to gcc.

-fbounds-checking is used in the normal way so that it
signals an exception when it detects a mutant misusing
data structures. The signal is intercepted by the test har-
ness framework. The current mutant is judged to have
failed the current test and the next test is started. Oc-
casionally there is an unfortunate interaction between
-fbounds-checking and the compiler optimisation -O3
switch which causes an internal error in the -fbounds-
checking code. A mutant which triggers this has un-
doubtably failed. Unfortunately there is no mechanism
to enable -fbounds-checking to reset its own data struc-
tures and so it is not possible for the process to continue
testing. Therefore mutants are compiled without opti-
misation. This increases run time by about 40%.

For efficiency, in the test harness code which in-
serts mutants at run time, the run time bounds checks
were disabled using BOUNDS CHECKING OFF IN
EXPR. See also Section 8.3.

Two obscure cases where mutant misbehaviour was
not spotted by -fbounds-checking were dealt with auto-
matically as special cases.

8.2.4. System Traps
In addition to errors reported by -fbounds-checking,

gzip mutants may encounter other errors which cause it
to raise exceptions. Also it may detect errors which it
handles gracefully by trying to shut gzip down. These
are all intercepted by the test harness (via SIGABRT
and SIGSEGV signal handlers). If any of these happen
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the mutant is said to have failed the current test and the
next started.

8.3. Speeding up Mutation Testing
gzip comprises 4795 lines of C code. This is eight

times bigger than the three earlier benchmarks put to-
gether. However we use only 211 test cases (i.e. less
than a 10th the number used to test schedule.c). This
much lower density of testing changes the balance of
computational testing effort. Where in the three previ-
ous cases the time taken to create and compile the mu-
tants was negligible it now took approximately half the
CPU time. Therefore we adopted the mutant schema
generation approach proposed by Untch et al. (1993).

Instead of compiling each C mutant, a super mutant
was created. The super mutant contains every muta-
tion plus code to selectively enable them. The NSGA II
multi-objective Pareto approach (Sections 2 and 3 and
Figure 2) is retained. However instead of manipulating
C source code each generation, the population of high
order mutants becomes a population of simple instruc-
tions to the super mutant. Each high order mutant now
tells the super mutant which of the six possible com-
parisons to use at each of the possible mutation sites.
Manipulating these fixed length individuals is straight
forward and the super mutant need only be compiled
once.

8.4. gzip Mutant Sites
gzip makes heavy use of include .h files and uses

conditional compilation. To avoid mutants trying to
do things like creating a SunOS version for our Linux
computer, we fixed conditional compilation to the de-
fault Linux configuration. For simplicity duplicate and
nested include files were removed so that all include
statements appear only at the start of SIR’s allfile.c
source file.

gzip also makes heavy use of C macros. Several of
these in allfile.c and gzip.h contain conditionals. Our
mutation operator acts on macros and so a single change
in a #define statement can be effective in many places in
gzip. This is similar to what happens when a mutation
is made to a function. The change could affect the pro-
gram each time the function is called.

We use the gcc -E switch to process include files,
perform the conditional compilation and remove com-
ments. This reduces the source file and gzip include files
from 8900 to 4795 lines containing 496 mutation sites.
Fifteen occur between 2 and 47 times due to macro ex-
pansion.

In contrast to schedule and tcas where there are about
ten times as many tests as lines of code, SIR’s test suite
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Figure 11: Number of times SIR gzip test suite uses each first order
mutation site. Plotted by code location (horizontal axis).

provides on average only one test per 35 lines of code.
Figure 11 shows the resulting very uneven distribution
of number of times comparisons (i.e. potential muta-
tion sites) are exercised. The maximum is more than
42 million times but the median is only 24 and there are
132 first order mutants which are not used by any of the
tests.

8.5. gzip First Order Mutants

There are 496 comparisons each of which can be mu-
tated to any of the six C comparison operations leading
to a total of 5 × 496 = 2480 first order mutants. 660
of these are in code which is never executed by the 211
SIR test cases. Naturally these pass all the tests. Of the
1820 mutants which are exercised at least once 544 pass
all the tests, 251 pass all but one, 129 pass all but two
and so on. All the first order mutants are plotted in Fig-
ure 12. They also correspond to lines parallel to the left
edge of Figure 13, with most of these mutant lying at
the frontmost corner. As Figure 13 makes clear, there is
a strong relationship between the number of tests which
execute a potential mutation site and how hard it is to
kill the corresponding first order mutations. Obviously
a mutant can only fail a test case which exercises it, so
every mutant lies on the same side of the diagonal. Fig-
ure 13 shows that first order mutants tend to lie on verti-
cal and horizontal lines, which correspond to particular
groups of test cases. Further, where these lines intersect
on the diagonal is particularly popular. Points on the
diagonal indicate that such first order gzip mutants fail
every test that actually causes them to be exercised.

In general, how many times (provided its at least one)
a mutation site is actually used during a test does not ap-
pear to be particularly important to whether a first order
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mutant is detected or not. This suggests, at least for
gzip’s test suite, repeated execution does not gain the
tester much new information.

8.6. Subtle Interactions Between gzip Mutants in Heav-
ily Tested Code

Since mutation testing is typically used after other
less expensive forms of testing we decided to restrict
ourselves to those parts of the gzip code which are more
intensively tested by the SIR test suite. To be precise,
those parts of gzip which are exercised at least once by
at least half the test suite.

The last experiments use gzip as a test bed to inves-
tigate interactions between single mutations. That is, to
investigate higher order mutations in well tested parts
of gzip. In particular we look for interactions that show
simple easy to detect faults can interact in subtle ways
to yield hard to kill high order mutants.

We define an easy to detect first order mutant as one
that fails more than half the test SIR suite (i.e. more
than 106 test cases). These occupy 84 mutable locations
in gzip. For completeness, we include all five possible
mutations at each site, giving 5 × 84 = 420. These are
shown in Figure 14. (These 420 first order mutations
include 78 potential equivalent mutants, the remaining
342 fail more than 106 test cases.)
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8.6.1. Second Order Interactions of “Easy” Mutants
We investigated all possible second order mutants

formed by combining pairs of the 420 “easy” to kill first
order mutations (including the potential equivalent mu-
tants). Figure 15 shows the two components of our mul-
tiobjective fitness measure for all 87 150 of these second
order mutants in well tested code.

There are four cases where a second order mutant is
a lot more difficult to detect than its components (i.e.
the difference is more than two test cases). In three
of these two previously undetected mutants combine to
create a second order mutant which fails almost all the
tests. (Two fail 185 test cases and the other fails 188.
All three are shown with stars in Figure 15.) The fourth
example is arrowed in Figure 15. Let us first consider
the two second order mutants which both fail 185 test
cases.

Two Pairs of Equivalent Mutants Fail 185 Tests.
These two 2nd order mutants are both mutations of the
same two sites in the outer loop in longest_match().
longest_match() is responsible for compressing
files. The two comparisons are in heavily opti-
mised C code which is conditionally compiled without
-DUNALIGNED_OK.

The 2nd order mutants are identical except in one case
the != at the start of the outer loop is replaced by < and
in the other != is replaced by >.

The other component occurs 8 lines later. If the
only change is if (len > best_len) is replaced by
if (len >= best_len) then the first order mutant is
equivalent. By itself, the change means that rather than
using the first occurrence of the longest match the last
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Figure 13: Difficulty of killing gzip first order mutants versus test cases. Height is number of such mutants (note non-linear vertical scale). Mutants
can only be killed when they are run, hence all points lie in the upper triangle. (See Section 8.5.)
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second order gzip comparison mutants. Unit noise used to spread dots.
Highlighted higher order mutant is harder to kill than its components.
(*) Three non equivalent mutants 2nd order mutants formed from two
1st order potential equivalent mutants.

occurrence of it is used. Although the comments sug-
gest this is an error, since the two strings are identical,
it does not change the output of the SIR test cases.

Returning to the top of the outer loop, the != is
the first of four conditions which are designed to skip
quickly to the next iteration of the loop if there is noth-
ing to be done with this one. Most of the effects of re-
placing != by < or > are masked by the following three
conditions. So the mutation changes flow of control in
only 7% of cases. However all of these are nullified by
the if (len > best_len) statement eight lines later.
Meaning both < and > first order mutants are equiva-
lent. However, if it is also mutated most of the 7% of
changes have an impact and cause incorrect matching
and so gzip’s output is wrong.

A Pair of Equivalent Mutants Fails 188 Tests.
The first mutation site is in the while condition
of service routine bi_reverse(). The first or-
der mutation is to replace while (--len > 0) by
while (--len != 0). This is clearly equivalent as
long as len is initially positive (as it is intended to be).

The second mutation site is in the second
for loop in void procedure gen_codes(). The
mutation site if (len == 0) continue is in-
tended to skip around empty tree nodes (when
fc.code == 0). A first order mutation which re-
places it with if (len < 0) continue will cause
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tree[n].fc.code to be updated even when len is
zero. An unmutated version of bi_reverse() will
return and may change tree[n].fc.code. However
fc.code is only used elsewhere by send_bits()
and send_bits() effectively does nothing if dl.len
is zero. Although next_code[0] is incremented
next_code[0] is only used because of this mutation
and so again has no external effect.

Thus we have two equivalent first order mutants.
However if both errors are injected, the erroneous call
of bi_reverse() with a length parameter of zero is
no longer benign. If bi_reverse() returned, it would
have no effect on the operation of gen_codes() but it
does not. Instead it falls into an infinite loop, which is
eventually trapped by our mutation testing framework.

2nd Order Mutant Harder to Kill.
The previous three second order mutations show cases

where simple hidden errors are revealed by injecting a
second error. The final example (arrowed in Figure 15)
shows a case where two very easy to detect errors tend
to conceal each other, making the combined second or-
der mutation more difficult to detect than either compo-
nent by itself. Both mutation sites are in the for loop of
scan_tree().

In the first mutation if (count < min_count) be-
comes if (count <= min_count). This causes 89%
of tests where the condition is executed to fail. The sec-
ond site is 13 lines later.

In the second mutation if (curlen == nextlen)
is replaced by if (curlen != nextlen). This
causes max_count = 6, min_count = 3 to be re-
placed by max_count = 7, min_count = 4 and vice-
versa. Which in turn causes more than 99% of tests
where it is used to fail.

The first three lines within the scan_tree() for
loop search for identical values of tree.Len and so
in almost all cases the second mutation site is only
executed when curlen is not equal to nextlen. So
without either mutation the second comparison typ-
ically sets min_count to four. Therefore in the
following iterations of the for loop the first muta-
tion site, if (count < min_count), is equivalent to
if (count < 4). Now if both mutations are applied,
the second one has the effect of setting min_count
to three. Thus the first one now has the effect of
if (count <= 3). Which is clearly equivalent to
the case when neither fault is injected. Given a for-
tuitous sequence of tree.Len the two mutations can
mask each other. This means the second order muta-
tion passes slightly more than half of the SIR test suite,
whereas its components cause many tests to fail.
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Figure 16: Fitness distributions produced by Monte Carlo sampling
of high order mutants produced by combining easy to kill gzip com-
parison mutants. Unit noise used to spread dots. (Syntactic distance
of 70th order mutants rescaled, see right hand scale.)

Table 5: Equivalent first and higher order gzip mutants. Last row
(Equiv) gives percentage of well tested gzip mutants that pass all test
cases. (None fail just one test.)
Order 1st 2nd 3rd 4th 70th

No. 420 87 150 1.2 106 1.2 109 2.6 1064

Equiv 19% 3% 0.5% 0.1% 0

8.6.2. Higher Order Interactions of “Easy” Mutants

Figure 16 shows the distribution of fitnesses of higher
order mutants created by combinations of the well tested
first order gzip mutants selected in Section 8.6. We see
similar behaviour to the other example programs. The
fraction of equivalent mutants falls rapidly with muta-
tion order (see Table 5) and the test suite is highly effec-
tive against random high order mutants.

90% of the SIR test cases kill all 10 000 70th order
mutants. 4% kill more than 90% and the remaining
7 kill at least 50%. These seven test gzip’s ability to
produce help text and similar messages. The routines
responsible for these messages are called directly from
the main() routine or each other and do not contain any
comparisons and so will never be mutated themselves.
They could only be disrupted by the three potential mu-
tation locations in main() before them. Hence their
comparative ineffectiveness against random injection of
multiple errors. However they are cheap to use and ef-
fective against about half of all high order mutants.
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8.6.3. Searching for Second Order Interactions of
“Easy” Mutants

In terms of a search problem, the second order mu-
tant (described in Section 8.6.1) is very hard to find. If
we look at the complete search neighbourhood formed
by third order mutants which share one or more com-
ponents with it, they either all fail at least 167 tests or
they have identical fitness. This is important because it
means that there is no sign of a gradient in the fitness
landscape leading to hard to kill third order mutants.
Unfortunately even with a population as large as 1000,
GA runs seldom found non-equivalent high order com-
binations of easy to kill first order gzip mutants which
failed less than 188 test cases (best 133).

9. Threats to Validity

Four experiments were conducted on higher order
mutation testing using multi-objective search. Although
these experiments were carefully designed to be as fair
as possible, there are a number of threats to the valid-
ity. These include: the choice of mutation operators, the
choice of test sets and the mutant killing condition.

The choice of mutation operators is the first threat.
To reduce the enormous number of mutants generated,
a common mutation cost reduction technique, Selective
Mutation (Offutt et al. (1996a)) was used. Our experi-
ments were based on the suggestion that complex faults
are likely to involve an element of anomalous control
flow. The relational replacement operator was there-
fore chosen to generate mutants because it directly al-
ters the control flow in the mutants and because it alters
their data flow indirectly. In the future this threat can be
reduced by applying more operators from Offutt et al.
(1996a)’s five selective mutation operators.

The quality of the test sets is another potential threat.
Since the semantic distance is computed based on the
number of failed test data, low quality test sets might
affect the result. To avoid this threat, all test sets
in our experiments (except gzip) are branch coverage
adequate. While gzip’s tests were supplied by SIR
(Hutchins et al., 1994). However with a different branch
coverage adequate test set, the distribution of results
might be affected a little. This threat might be overcome
by combining higher order mutation testing with the co-
evolutionary mutation testing approach of Adamopou-
los et al. (2004). This might allow us to co-evolve test
sets able to kill the co-evolving mutants dynamically.
(We shall discuss co-evolution more fully shortly).

The last threat is the mutation killing condition. To
successfully apply mutation testing to these real world

programs, a number of new weak mutation techniques
(see Table 1) were introduced. These approaches can
detect changes to either the internal or the external be-
haviour of mutants. However, as with other weak mu-
tant approaches (Offutt and Lee (1994)), a few mutants
killed by by our approach might have survived strong
mutation testing (where only external changes in be-
haviour kill a mutant). As with the first threat, this
can only increase (or leave unchanged) the number of
“interesting” hard to kill mutants found. So our results
can be considered to be a lower bound on the number
hard to kill higher order mutants to be found.

Mutation testing is widely regarded as expensive.
This is in part true, however we hope we have explained
how search based optimisation methods make it prac-
tical. There are many more high order mutants than
first order ones. This has lead to the misimpression that
(as ordinary mutation testing is expensive) higher order
mutation testing is impossible. The purpose of many
modern optimisation techniques is to avoid enumeration
of all possibilities and instead to concentrate search on
the most fruitful areas. We have considered high or-
der mutants of four programs of increasing complexity
and hopefully convinced you that search heuristics can
make higher order mutation testing feasible. Neverthe-
less there are “No Free Lunch” theorems which suggest
that we cannot always guarantee modern (or indeed any)
search heuristics will always be successful. However
we have been able to carry out high order mutation test-
ing on real programs code in C on an everyday office
personal computer.

One idea for the future is to integrate mutation test-
ing with test case generation. There have already been
thoughts in this direction (DeMillo and Offutt, 1991;
Ayari et al., 2007). However a co-evolutionary frame-
work, such as that proposed in Bongard and Lipson
(2005) could put this on an automated basis. This might
take the form of a population of test cases and a popu-
lation of high order mutants of the software under test.
The two populations compete against each other. The
genetic fitness of a high order mutants being given by
how well it conceals itself from a test suite drawn from
the population of tests. Whereas the fitness of a test is
given by how many mutants it kills. The fitter mem-
bers of each populations are retained and the less suc-
cessful ones discarded. The selected individuals (both
test cases and higher order mutants) are subject to ran-
dom changes and recombination to create new variants.
The fitnesses of the new variants in the two new pop-
ulations are measured in the same way that their par-
ents were. The idea is that by using computer resources
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the two populations will continuously improve against
each other, leading to very high quality test suites and
so very high quality software. In practice such virtu-
ous circles of co-evolutionary improvement have proved
tricky, which is why approaches such as Bongard and
Lipson (2005) are attractive.

In Section 8.2.2 we talked about nondeterminism
caused by uninitialised data values, etc. We have en-
sured that data values are initialised, either to the value
given in the original (unmutated) source or to zero. An
interesting test possibility which might be considered in
future would be to introduce setting variables to less be-
nign values initially. For example, in C, int values could
be set to 0, -1, INT MAX, -INT MAX, -2147483648, as
well as randomly chosen values. floats could be set to 0,
-1, FLT MAX, -FLT MAX, inf, -inf, -0, NaN, as well
as randomly chosen values. Obviously in well written
code which does not rely on initialised variables, this
would not be as useful as an isolated first order muta-
tion however it may be an additional tool particularly
with higher order mutations.

10. Conclusions

We have reformulated mutation testing as a multi-
objective search problem in which the goal is to seek
higher order mutants that are hard to kill and syntacti-
cally similar to the original program under test. The ap-
proach uses higher order mutation testing, but subsumes
traditional mutation testing since a first order mutant
is merely a special case of a higher order mutant (for
which the order is simply one). We have shown how
such a multi-objective approach can be used to investi-
gate the relationship between the syntax of a mutant and
its impact on the host program’s semantics. In real an-
cient heavily optimised C code, not only have we found
combinations of simple faults (first order mutants) that
are harder to kill than the first order mutants but also the
reverse; combinations of simple faults which to some
extent actually mask each other.

We have implemented this approach using a com-
bination of genetic programming (GP), Genetic Algo-
rithms and Monte Carlo sampling. Through several ef-
ficiency improvements, reported above, the results were
obtained using a standard office personal computer. On
the 2.66GHz 2Gbyte Linux PC, the smaller GP tcas runs
take a few minutes but it took more than 5 days to collect
the data behind Figure 15. The results demonstrate that
the higher order GP mutation testing approach is able to
find complex faults denoted by (non-equivalent) higher
order mutants of real programs that cannot be denoted

by any first order mutant and which are harder to kill
than any first order mutant.

Section 8.2.2 reported the problem of non-
determinism in mutation testing for the first time.
In Section 8.2.2 the problems associated with a
mutant behaving differently between different runs
were discussed in the context of the mutant causing a
local variable not to be initialised and hence to take
essentially random values on different runs. This in
turn could cause the mutant to pass tests on some runs
and fail the same tests (i.e. be killed) on other runs.
There are other possible reasons why (mutated) code
may behave differently on different runs. For example,
interactions with the operating system, the file system
and the environment. As we said on page 2427, trying
to detect random faults, even when they are probable,
by repeatedly running tests, quickly leads to a large
increase in testing effort.

Although very high order mutants are easy to de-
tect they give information about the test suite. If a test
kills almost all high order mutants this tends to suggest
the test covers normal operation of the program. Con-
versely those tests which pass some high order mutants
may be covering more peripheral areas of the program
under test, such as: exceptional cases or even erroneous
inputs, command line verification or generation of help
messages.

While the number of possible mutations is bound to
rise rapidly with their order, triangle.c shows that (at
least up to fourth order) the number that are hard to kill
also rises as more first order mutations are combined.
However as a fraction of the total they fall. This sug-
gests (all other things being equal) search for interesting
high order mutants is harder as higher orders are consid-
ered.

Although DeMillo et al. (1978, p 39) suggested “well
under 1 percent” of mutants are equivalent, the prob-
lem of potential equivalent mutants is now recognised.
Indeed we find 16%, 14%, 34% and 49% (for triangle,
schedule, tcas and gzip, respectively) of first order mu-
tants are potential equivalent mutants. Admittedly the
fraction is swollen for gzip by the large number of mu-
tants not even executed by the SIR test suite. Even if
we include these, the proportion is still 30%. Detailed
analysis of these hundreds of first order mutants to show
which are truly equivalent and which are equivalent only
as far as we are able to test the code, is not feasible.
This confirms the expectation that for practical purposes
the fraction of equivalent mutants is considerably higher
than originally suggested.

We have provided additional support for the coupling
hypothesis. Remember it says if a test suite is good
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Figure 17: Demonstration of the coupling hypothesis. 16 383 test
suites were generated by selectively including parts of the triangle
test suite given in Table 2. Test suites that kill more first order mu-
tants tend to kill more second order mutants (red) and third order mu-
tants (blue). There is a near linear relationship, but most test suites are
proportionately more effective against higher order triangle mutants.
However test suites where all tests have an expected output of “not a
triangle” (×) are closer to the proportionate response. The third row
of Table 3 gives the number of potential equivalent mutants.

enough to detect all first order mutants, it will detect
“a large percentage” of higher order mutants. In all
four cases we saw the test suite was better at killing
higher order mutants than first order mutants. Indeed
their effectiveness increased with increasing complex-
ity of the mutants. (See also Figure 17). This is even
true of gzip, where we know SIR’s test suite does not
kill all first order mutants. Nevertheless there remains
a significant number (albeit a small fraction) of inter-
esting higher order mutants which show non-linear in-
teractions between their first order component. Pu-
rushothaman and Perry (2005)’s empirical evidence that
most bugs require multiple changes to correct, suggests
that in many cases the “competent programmer hypoth-
esis” (DeMillo et al., 1978) only holds for a small frac-
tion of errors. Perhaps the simpler ones. Perhaps errors
cause by poor specification or initially omitted require-
ments or incomplete data structures designs, tend to re-
quire multiple changes to the source code to rectify.

As would be expected, mutation testing highlights
problems with testing. For example, in gzip it shows
large amounts of the code are not being covered at all
but others are exercised repeatedly. While these are in
core areas of the code, it is doubtful that testing the same
components millions of times gives more confidence in
the program and perhaps the effort could be better be
used elsewhere. (The idea of using mutation testing in
combination with test generation tools was discussed in

the previous section.) In the case of tcas, several areas of
convoluted logic were highlighted by higher order mu-
tation as being potentially worthy of further validation
effort.

The SIR test suite for gzip is much smaller than those
available for the other programs studied. Nevertheless,
several fault pairs were found, which, although indi-
vidually easy to detect, combine to partially mask each
other, thereby producing a high order mutant which is
harder to kill than either of its components. Search also
revealed cases where two first order equivalent mutants
interact to produce a serious fault. These are examples
where faults, which cannot be detected by testing, are
benign until the two of them are brought together.
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Appendix A. Tough High Order tcas Mutants

Appendix A.1. Seventh Order tough tcas Mutant

The mutant changes line 87 in function Non
Crossing Biased Climb() (twice), line 101 in
Non Crossing Biased Descend() (twice), line 112
in Own Below Threat(), line 117 in Own Above
Threat() and line 127 in alt sep test().

line 127, input 10 v. NO INTENT = ; ≤.
In normal operation this change would have no im-
pact since it tests one of the twelve inputs directly, and
NO INTENT is the smallest of its legal values. (Input 10
is not used elsewhere by tcas.) The tcas test cases in-
clude 18 illegal values for input 10, seven of which are
less than NO INTENT (0). This would suggest that as
a first order mutant, it would be relatively easy to de-
tect. However its effect is totally masked by the rest of
tcas. This means that as an isolated first order mutant
this change to line 127 is not detected by the test suite.

lines 112 & 117, Comparing inputs 4 & 6, <; ≤.
These two mutants can be thought of as a pair.
They occur in paired routines Own Below Threat()
and Own Above Threat() and both compare inputs 4
and 6. Further the two routines are used together.

Replacing < by ≤ clearly can only change behaviour
when inputs 4 and 6 are equal. (Again neither input 4
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nor 6 are modified by tcas.) There are 23 such test cases.
Therefore either mutation by itself could in principle fail
up to 23 tests. However 22 of these are masked by the
combined effects of tcas itself and the other six changes.

Oddly, the first order mutation on line 112 (input 4 <
input 6 ; input 4 ≤ input 6) is masked by the rest of
tcas in 11 of the 23 test cases. However the very similar
mutation on line 117 (input 6 < input 4 ; input 6 ≤
input 4) is always masked and so is equivalent.

lines 101 and 87, checking inputs 1 and 8.
There are two mutations on each line. We group
these four mutations together since they ap-
pear in the same location in two complementary
routines, Non Crossing Biased Climb() and
Non Crossing Biased Descend(). Again the pair
of routines are used together. In line 87 input 1 ≥ 300
&& input 8 ≥ ALIM() is mutated to input 1 < 300 &&
input 8 ≤ ALIM() (Again neither input is modified by
tcas.) Line 101 has been mutated in somewhat similar
way input 1 ≥ 300 && input 8 ≥ ALIM() becomes
input 1 , 300 && input 8 ≤ ALIM().

As isolated first order mutants all four pass all the
tests. This may be because they are nested within rou-
tines which themselves are nested in the logic of tcas
so that the comparisons are seldom made when tcas is
run. However they appear to interact with the three other
mutations to make the combination very tough to test
against.

Appendix A.2. Fifth Order tough tcas Mutant

Referring back to the left hand side of Figure 10 we
see evolution continues after generation 14 so that in
generation 45 a fifth order mutant is discovered which
also passes a single test. Since it syntactically closer to
tcas, it replaces the seventh order mutant (described in
Appendix A.1) on the Pareto front.

While not an immediate descendent of the 7th order
mutation it is similar and was probably found through
an intermediate cousin.

The 5th order mutation contains the same last 5
changes as the 7th order one. That is, it is the same
except for line 87. However, while the two high order
mutations both fail just one test, it is a different test. In
fact its a different one of the 23 tests where inputs 4 and
6 are equal. Note, removal of two equivalent mutations
has actually changed the behaviour of tcas.

Appendix A.3. Third Order tough tcas Mutant

A separate GP run with a small population (100) but
more generations found two more high order mutants
which are defeated by a single test case. In generation
90 a fourth order mutant was found. This was replaced
in generation 105 by a third order mutant. Again they
are similar. The third order mutant is identical to the
fourth except it does not include the mutation to line
117. For brevity we shall just described the third order
mutant.

The mutant changes line 101 in Non Crossing
Biased Descend() (once), line 112 in Own Below
Threat() and line 117 in Own Above Threat() in the
same way as described in Appendix A.1.

Although this mutant only contains three of the
seven mutations described in Appendix A.1 it fails the
same test (test 1400). (Which is different from that
failed by the 5th order, which differs by two of the
same four changes.) Test 1400 (like all the other tcas
tests) was taken from the runall.sh script provided
by SIR. It runs tcas with 12 command line arguments:
tcas 601 1 0 502 200 502 0 599 400 0 0 1
The third order mutant yields 2 (DOWNWARD RA)
whereas the original program prints 0 (UNRE-
SOLVED).

These results tend to suggest that if further testing ef-
fort were available it might be concentrated around lines
87, 101, 112, 117 and possibly 127. Note all twenty first
order mutations to lines 87 and 101 are equivalent.
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