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Abstract

This thesis is concerned with the problem of automatic test data genera-

tion for structural testing criteria, in particular the branch coverage ade-

quacy criterion, using search–based techniques. The primary objective of

this thesis is to advance the current state–of–the–art in automated search–

based structural testing. Despite the large body of work within the field

of search–based testing, the accompanying literature remains without con-

vincing solutions for several important problems, including: support for

pointers, dynamic data structures, and loop–assigned flag variables. Fur-

thermore, relatively little work has been done to extend search–based testing

to multi–objective problem formulations.

One of the obstacles for the wider uptake of search–based testing has been

the lack of publicly available tools, which may have contributed to the lack

of empirical studies carried out on real–world systems. This thesis presents

AUSTIN, a prototype structural test data generation tool for the C lan-

guage. The tool is built on top of the CIL framework and combines a hill

climber with a custom constraint solver for pointer type inputs. AUSTIN

has been applied to five large open source applications, as well as eight non–

trivial, machine generated C functions drawn from three real–world embed-

ded software modules from the automotive sector. Furthermore, AUSTIN

has been compared to a state–of–the–art Evolutionary Testing Framework

and a dynamic symbolic execution tool, CUTE. In all cases AUSTIN was

shown to be competitive, both in terms of branch coverage and efficiency.

To address the problem of loop–assigned flags, this thesis presents a testa-

bility transformation along with a tool that transforms programs with loop–

assigned flags into flag–free equivalents, so that existing search–based test

data generation approaches can successfully be applied.



The thesis concludes by introducing multi–objective branch coverage. It

presents results from a case study of the twin objectives of branch coverage

and dynamic memory consumption for both real and synthetic programs.
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Chapter 1

Introduction

In recent years there has been a particular rise in the growth of work on Search–Based

Software Testing (SBST) and, specifically, on techniques for generating test data that

meet structural coverage criteria such as branch– or modified condition / decision cov-

erage. The field of search–based software engineering reformulates software engineering

problems as optimization problems and uses meta–heuristic algorithms to solve them.

Meta–heuristic algorithms combine various heuristic methods in order to find solutions

to computationally hard problems where no problem specific heuristic exists. SBST

was the first software engineering problem to be attacked using optimization (MS76)

and it remains the most active area of research in the search–based software engineering

community.

Software testing can be viewed as a sequence of three fundamental steps:

1. The design of test cases that are effective at revealing faults, or which are at least

adequate according to some test adequacy criterion.

2. The execution of these test cases.

3. The determination of whether the output produced is correct.

Sadly, in current testing practice, often the only fully automated aspect of this ac-

tivity is test case execution. The problem of determining whether the output produced

by the program under test is correct cannot be automated without an oracle, which is

seldom available. Fortunately, the problem of generating test data to achieve widely
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used notions of test adequacy is an inherently automatable activity, especially when

considering structural coverage criteria as is the case in this thesis.

Such automation promises to have a significant impact on testing, because test data

generation is such a time–consuming and laborious task. A number of hurdles still

remain before automatic test data generation can be fully realized, especially for the C

programming language. This thesis aims to overcome some of these and thus concerns

itself with advancing the current state–of–the–art in automated search–based structural

testing. It only focuses on the branch coverage test adequacy criterion, a criterion

required by testing standards for many types of safety critical applications (Bri98;

Rad92).

Since the early 1970’s two widely studied schools of thought regarding how to best

automate the test data generation process have developed: dynamic symbolic execution

and search–based testing.

Dynamic symbolic execution (SMA05; GKS05; CE05) originates in the work of

Godefroid et al. on Directed Random Testing (GKS05). It formulates the test data

generation problem as one of finding a solution to a constraint satisfaction problem, the

constraints of which are produced by a combination of dynamic and symbolic (Kin76)

execution of the program under test. Concrete execution drives the symbolic explo-

ration of a program, and dynamic variable values obtained by real program execution

can be used to simplify path constraints produced by symbolic execution.

Search–based testing (McM04) formulates the test data adequacy criteria as objec-

tive functions, which can be optimized using Search–Based Software Engineering (CDH+03;

Har07). The search–space is the space of possible inputs to the program under test.

The objective function captures the particular test adequacy criterion of interest. The

approach has been applied to several types of testing, including functional (WB04) and

non–functional (WM01) testing, mutation testing (BFJT05), regression testing (YH07),

test case prioritization (WSKR06) and interaction testing (CGMC03). However, the

most studied form of search–based testing has been structural test data generation (MS76;

Kor90; RMB+95; PHP99; MMS01; WBS01; Ton04; HM09). Despite the large body of

work on structural search–based testing, the techniques proposed to date do not fully

extend to pointers and dynamic data structures. Perhaps one reason is the lack of

publicly available tools that provide researchers with facilities to perform search–based

structural testing. This thesis introduces such a tool, AUSTIN. It uses a variant of

2
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Korel’s (Kor90) alternating variable method and augments it with techniques adapted

from dynamic symbolic execution (GKS05; CE05; SMA05; TdH08) in order to handle

pointers and dynamic data structures.

The next section will discuss in detail the problems this thesis addresses. An

overview of the relevant literature for this thesis is presented in Chapter 2.

1.1 The Problem Of The Thesis: Practical Challenges For

Automated Test Data Generation

Previous work on search–based test data generation has generally considered the input

to the program under test to be a fixed–length vector of input values, making it a

well–defined and fixed–size search–space, or has been based on data–flow–analysis and

backtracking (Kor90). However, such analysis is non–trivial in the presence of pointers 1

and points–to analysis is computationally expensive.

The approach presented in this thesis incorporates elements from symbolic execu-

tion to overcome this problem. Symbolic execution is a static source code analysis

technique in which program paths are described as a constraint set involving only the

input parameters of a program (Kin76). The key idea behind the proposed approach

is to model all inputs to a program, including memory locations, as scalar symbolic

variables, and to perform a symbolic execution of a single path in parallel to a concrete

execution as part of the search–based testing process. The approach uses a custom con-

straint solver designed for constraints over pointer inputs, which can also be used to

incrementally build dynamic data structures, resulting in a variable–size search–space.

Besides pointer and dynamic data structures, boolean variables (i.e. flag vari-

ables) remain a problem for many search–based testing techniques. In particular loop–

assigned flags, a special class of flag variables whose definition occurs within the body

of a loop and whose use is outside that loop, have not been addressed by the majority

of work investigating the flag problem. This thesis therefore also considers a testability

transformation for loop–assigned flags and its effect on search–based testing.

Finally, there has been little work on multi–objective branch coverage. In many

scenarios a single–objective formulation is unrealistic; testers will want to find test sets

1Pointers are variables which can hold the address of another program variable. In particular they

can be used to manipulate specific memory locations either in a program’s stack or heap.
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that meet several objectives simultaneously in order to maximize the value obtained

from the inherently expensive process of running the test cases and examining the

output they produce. For example, the tester may wish to find test cases that are

more likely to be fault–revealing, or test cases that combine different non–subsuming

coverage based criteria. The tester might also be concerned with test cases that exercise

the usage of the stack or the heap, potentially revealing problems with the stack size

or with memory leaks and heap allocation problems. There may also be additional

domain–specific goals the tester would like to achieve, for instance, exercising the tables

of a database in a certain way, or causing certain implementation states to be reached.

In any such scenario in which the tester has additional goals over and above branch–

coverage, existing approaches represent an over simplification of the problem in hand. A

multi–objective optimization approach would be a more realistic approach. This thesis

takes a first step by considering the formulation of a multi–objective branch–coverage

test adequacy criterion.

1.2 Aims and Objectives

The aims of this thesis are the following:

1. Advance the capabilities of the current state–of–the–art search–based testing

techniques, extending them so they can handle pointers and dynamic data struc-

tures.

2. Perform a thorough empirical investigation evaluating the extended search–based

strategy against a concolic testing approach. The study will aim to provide a

concrete domain of programs for which the approach will either be adequate or

inadequate, and any insight gained will be generalisable to instances of programs

in that domain.

3. Empirically investigate the use of a testability transformation for the loop–assigned

flag problem in search–based–testing.

4. Investigate the use of search–based testing in multi–objective test data generation

problems.
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1.3 Contributions Of The Thesis

The contributions of this thesis are:

1. AUSTIN, a fully featured search–based software testing tool for C.

2. An empirical study that evaluates AUSTIN on automotive systems for branch

coverage. The results support the claim that AUSTIN is both efficient and effec-

tive when applied to machine generated code.

3. An empirical study which determines the level of code coverage that can be ob-

tained using CUTE and AUSTIN on the complete source code of five open source

programs. Perhaps surprisingly, the results show that only modest levels of cov-

erage are possible at best, and there is still much work to be done to improve test

data generators.

4. An assessment, based on the empirical study, of where CUTE and AUSTIN suc-

ceeded and failed, and a discussion and detailed analysis of some of the challenges

that remain for improving automated test data generators to achieve higher levels

of code coverage.

5. A testability transformation algorithm which can handle flags assigned in loops.

6. Two empirical studies evaluating the transformation algorithm. They show that

the approach reduces test effort and increases test effectiveness. The results also

indicate that the approach scales well as the size of the search–space increases.

7. A first formulation of test data generation as a multi–objective problem. It de-

scribes the particular goal oriented nature of the coverage criterion, showing how

it presents interesting algorithmic design challenges when combined with the non

goal oriented memory consumption criterion.

8. A case study, the result of which confirm that multi–objective search algorithms

can be used to address the problem, by applying the ‘sanity check’ that search–

based approaches outperform a simple multi–objective random search.
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1.4 Overview Of The Structure Of The Thesis

Chapter 2 surveys the literature in the field of search–based structural testing. The

chapter describes the two most commonly used algorithms in search–based testing, ge-

netic algorithms and hill climbing, before moving on to describe the fitness functions

used in search–based testing for the branch coverage adequacy criterion. Next, the

chapter addresses testing from a static analysis point of view. Symbolic execution was

one of the earliest methods used in testing. More recently researchers have investigated

ways to combine symbolic execution with dynamic analyses in a field known as dynamic

symbolic execution.

Chapter 3 presents AUSTIN, a prototype structural test data generation tool for

the C language. The tool is built on top of the CIL framework and combines a hill

climber with a custom constraint solver for pointer type inputs. An empirical study

is presented in which AUSTIN’s effectiveness and efficiency in generating test data is

compared with the state–of–the–art Evolutionary Testing Framework (ETF) structural

test component, developed within the scope of the EU–funded EvoTest project. The

study also includes a comparison with the ETF configured to perform a random search.

The test objects consisted of eight non–trivial C functions drawn from three real–world

embedded software modules from the automotive sector and implemented using two

popular code–generation tools. For the majority of the functions, AUSTIN is at least

as effective (in terms of achieved branch coverage) as the ETF and is considerably more

efficient.

Chapter 4 presents an empirical study applying a concolic testing tool, CUTE, and

AUSTIN to the source code of five large open source applications. Each tool is applied

‘out of the box’; that is without writing additional code for special handling of any of

the individual subjects, or by tuning the tools’ parameters. Perhaps surprisingly, the

results show that both tools can only obtain at best a modest level of code coverage.

Several challenges remain for improving automated test data generators in order to

achieve higher levels of code coverage, and these are summarized within the chapter.

6



1.5 Definitions

Chapter 5 introduces a testability transformation along with a tool that transforms

programs with loop–assigned flags into flag–free equivalents, so that existing search–

based test data generation approaches can successfully be applied. The chapter presents

the results of an empirical study that demonstrates the effectiveness and efficiency of

the testability transformation on programs including those made up of open source and

industrial production code, as well as test data generation problems specifically created

to denote hard optimization problems.

Chapter 6 introduces multi–objective branch coverage. The chapter presents results

from a case study of the twin objectives of branch coverage and dynamic memory con-

sumption for both real and synthetic programs. Several multi–objective evolutionary

algorithms are applied. The results show that multi–objective evolutionary algorithms

are suitable for this problem. The chapter also illustrates how a Pareto optimal search

can yield insights into the trade–offs between the two simultaneous objectives.

Chapter 7 closes the main body of the thesis with concluding comments and proposals

for future work.

1.5 Definitions

This section contains common definitions used throughout the thesis. They have been

added to make the thesis self contained.

1.5.1 Input Domain

The input domain of a program is contained by the set of all possible inputs to that

program. This thesis is only concerned with branch coverage of a function, and thus uses

the terms program and function interchangeably. For search–based algorithms the input

domain constitutes the search–space. As stated, this includes all the global variables

and formal parameters to a function containing the structure of interest, as well as

the variables in a program that are externally assigned, e.g. via the read operation.

Consider a program P with a corresponding input vector P =<x1, x2, . . . , xn>, and let

the domain of each input be <D1, D2, . . . , Dn>, such that x1 ∈ D1, x2 ∈ D2 and so forth.

7



1. INTRODUCTION

The domain D of a function can then be expressed as the cross product of the domains

of each input: D = D1 ×D2 × . . .×Dn.

1.5.2 Control and Data Dependence

Most dynamic test data generation techniques, as well as static analysis techniques such

as symbolic execution, are based on either control flow graphs, data flow information,

or both. A CFG is a directed graph G =<N,E, ns, ne>, where N is a set of nodes, E

a set of edges (E ⊆ NxN), ns ∈ N a unique start node and ne ∈ N a unique exit

node. CFG’s are used to represent the paths through a program, module or function.

Each node n ∈ N may represent a statement or a block of statements with no change

in control flow. A CFG contains a single edge for each pair of nodes, (ni, nj) where

control passes from one node, ni, to another, nj . Additionally E contains an edge

(ns, ni) from the start node to the first node representing a statement or block, and at

least one edge (ni, ne), {ni ∈ N |ni 6= ne}, to the unique exit node.

CFG’s can be used to extract control dependence information about nodes. To

understand the notion of control dependence one first needs to clarify the concept of

domination. A node ni in a CFG is said to be post–dominated by the node nj if every

directed path from ni to ne passes through nj (excluding ni and the exit node ne). A

node nj is said to be control dependent on ni if, and only if there exists a directed path

p from ni to nj and all nodes along p (excluding ni and nj) are post–dominated by nj ,

and further ni is not post–dominated by nj .

The right column in Figure 1.1 contains the CFG for the code in the left column.

Nodes 1, 2 and 3 are branching nodes; nodes which contain two or more outgoing edges

(branches). Branching nodes correspond to condition statements, such as loop condi-

tions, if and switch statements. The execution flow at these statements depends on

the evaluation of the condition. In structural testing, these conditions are referred to

as branch predicates. They provide search algorithms with the branch distance measure

(see annotation of the CFG in Figure 1.1). The branch distance indicates how close

the execution of a program comes to satisfying a branch predicate with a desired out-

come. It is computed via the variables and their relational operators appearing in the

predicates. Concrete examples of the branch distance and its use in structural testing

are provided in Section 2.1.3.
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Node Id Example start

a = = b

b = = c

c = = d

target

end

app. level = 2

app. level = 1

app. level = 0

void f(int a, int b, int c, int d){

(1) if(a==b)

(2) if(b==c)

(3) if(c==d)

(4) /*target*/

(5) exit(0);

}

Figure 1.1: Code template in the left column is used to illustrate search–based test data

generation. In the right column is the CFG of the code in the left column. The CFG is

annotated with the approach level for node 4.
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Data flow graphs express data dependencies between different parts of a program,

module or function. Typically, data flow analysis concerns itself with paths (or sub–

paths) from variable definitions to their uses. A variable is defined if it is declared or

appears on the left hand side of an assignment operator. More generally, any operation

which changes the value of a variable is classed as a definition of that variable.

The use of a variable can either be computational, e.g. the variable appearing on

the right hand side of an assignment operation or as an array index, or a predicate use,

with the variable being used in the evaluation of a condition. Data flow graphs capture

information not explicit in CFGs. Consider the example shown in Figure 1.2. Node 5

is control dependent on node 4, which in turn is not control dependent on any node

in the CFG except the start node. However, it is data dependent on node 3, because

flag is defined at node 3 and there exists a definition-clear path from node 3 to node

5. Informally, any path from the definition of a variable x to its use can be considered

a definition–clear path for x, if, and only if, the path does not alter or update the value

of x. All paths are definition–clear with respect to the variables a and b in the example

in Figure 1.2 .
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Node Id Example start

end

f lag = 0

a = = b + 1

f lag = 1

f lag != 0

target

void f(int a, int b){

(1) int flag = 0;

(2) if(a == b+1)

(3) flag=1;

(4) if(flag != 0)

(5) /*target*/

}

Figure 1.2: A code example with the corresponding CFG on the right illustrating how

data flow information is not captured explicitly in a CFG. The true branch of node 4 is

data dependent on node 3, but not control dependent on any other node except the start

node.
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Chapter 2

Literature Review

This chapter reviews work in the field of search–based automatic test data generation

and dynamic symbolic execution based techniques. It focuses on the two most com-

monly used algorithms in structural search–based testing, genetic algorithms and hill

climbing. Particular attention is paid to a local search method called ‘alternating vari-

able method’, first introduced by Korel (Kor90), that forms the basis for most of the

work in this thesis. This is followed by a discussion of techniques used for structural

testing that are derived from static analysis. The chapter again only focuses on the two

predominant techniques used in literature, symbolic execution and dynamic symbolic

execution.

2.1 Search–Based Testing

The field of search–based testing began in 1976 with the work of Miller and Spooner (MS76),

who applied numerical maximization techniques to generate floating point test data for

paths. Their approach extracted a straight-line version of a program by fixing all in-

teger inputs (in effect pruning the number of possible paths remaining) and further

replacing all conditions involving floating point comparisons with path constraints of

the form ci > 0, ci = 0 and ci ≥ 0, with i = 1, ..., n. These constraints are a measure of

how close a test case is to traversing the desired path. For example, for a conditional

i of the form if(a != b), ci corresponds to abs(a − b) > 0. Continuous real–valued

functions were then used to optimize the constraints, which are negative when a test

case ‘misses’ the target path, and positive otherwise. A test case satisfying all con-

13
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Table 2.1: Branch functions for relational predicates introduced by Korel (Kor90).

Relational Predicate Fitness Function Rel

a = b abs(a− b) = 0

a 6= b abs(a− b) < 0

a > b b− a < 0

a ≥ b b− a ≤ 0

a < b a− b < 0

a ≤ b a− b ≤ 0

straints such that 0 ≤
∑n

i=1 ci, is guaranteed to follow the path in the original program

which corresponds to the straight-line version used to generate the test data.

More than two decades later Korel (Kor90) adapted the approach taken by Miller

and Spooner to improve and automate various aspects of their work. Instead of ex-

tracting a straight–line version of a program, Korel instrumented the code under test.

He also replaced the path constraints by a measure known as branch distance. In Miller

and Spooners’ approach, the distance measure is an accumulation of all the path con-

straints. The branch distance measure introduced by Korel is more specific. First, the

program is executed with an arbitrary input vector. If execution follows the desired

path, the test case is recorded. Otherwise, at the point where execution diverged away

from the path, a branch distance is computed via a branch distance function. This

function measures how close the execution came to traversing the alternate edge of a

branching node in order to follow the target path. Different branch functions exist

for various relational operators in predicates (see Table 2.1). A search algorithm is

then used to find instantiations of the input parameters which preserve the successfully

traversed sub–path of the desired path, while at the same time minimizing the branch

distance, so execution can continue down the target path.

Shortly after the work of Korel, Xanthakis et al. (XES+92) also employed a path–

oriented strategy in their work. They used a genetic algorithm to try and cover struc-

tures which were left uncovered by a random search. Similar to the approach by Miller

and Spooner, a path is chosen and all the branch predicates are extracted along the

target path. The search process then tries to satisfy all branch predicates at once, in

order to force execution to follow the target path.

14
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Until 1992, all dynamic white–box testing methods were based around program

paths. Specifically, to cover a target branch, a path leading to that branch would

have to be selected (in case more than one path leads to the target branch). This

places an additional burden on the tester, especially for complex programs. Korel

alleviated this requirement by introducing a goal–oriented testing strategy (Kor92). In

this strategy the path leading to the target is (largely) irrelevant. The goal–oriented

approach uses a program’s control flow graph to determine critical, semi–critical and

irrelevant branching nodes with respect to a goal. It can be used to achieve statement,

branch and MC/DC coverage. When an input traverses an undesired edge of a critical

node (e.g. the false branch of node 1 in Figure 1.1), it signals that the execution has

taken a path which cannot lead to the goal. In this case a search algorithm is used

to change the input parameters, causing them to force execution down the alternative

branch at the point where execution diverged away from the goal. Execution of an

undesired branch at a semi–critical branching node does not prevent an input from

reaching a goal per se. Semi–critical nodes contain an edge (in the CFG) to the goal

node, but they also contain an edge to a loop node. While the search will try and drive

execution down the desired branch, an input may be required to iterate a number of

times through the body of a loop before being able to reach the goal. Finally, irrelevant

branching nodes do not control any edges leading to a goal. A branching node ni with

(ni, nj)/(ni, nk) is irrelevant with respect to node nm, if nm is either reachable or

unreachable from both nj and nk. For example the nodes 1, 2, 3, 4 in Figure 2.1 are

irrelevant for reaching node 6, because node 6 is only control dependent on node 5.

Ferguson and Korel later extended the goal–oriented idea to sequences of sub–

goals in the chaining approach (FK96). The chaining approach constructs sequences of

nodes, sub–goals, which need to be traversed in order to reach the goal. For example,

a predicate in a conditional might depend on an assignment statement earlier on in the

program. This data dependency is not captured by a control flow graph, and hence

the goal–oriented approach can offer no additional guidance to a search. This problem

is particularly acute when flag variables are involved. Consider the example shown in

Figure 1.2 and assume node 5 has been selected as goal. The branch distance function

will only be applied at node 4 and will produce only two values, e.g. 0 or 1. These

two values correspond to an input reaching the goal and an input missing the goal

respectively. Thus a search algorithm deteriorates to a random search. The probability
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Node Id Example

void testme(int x, int c1, int c2, int c3) {

(1) if(condition1)

(2) x--;

(3) if(condition2)

(4) x++;

(5) if(condition3)

(6) x=x;

}

Figure 2.1: Example used to demonstrate Korel’s goal oriented (Kor92) test data gener-

ation approach.

of randomly finding values for both a and b in order to execute the true branch of node

2 is however, relatively small. The chaining approach tries to overcome this limitation

by analysing the data dependence of node 4. It is clear that node 3 contains a definition

of flag, and thus node 3 is classified as a sub–goal. The search then applies the branch

distance function to the predicate in node 2 with the goal of traversing the true branch.

Once the search has found values for a and b which traverse the true branch at node

2, flag is set to 1, leading to the execution of the goal.

The field of search–based software testing continues to remain an active area of

research. McMinn (McM04) provides a detailed survey of work on SBST until approx-

imately 2004. Over time, branch coverage has emerged as the most commonly studied

test adequacy criterion (RMB+95; BJ01; LBW04; MH06; MMS01; MRZ06; PHP99;

SBW01; XXN+05) in SBST, largely due to the fact that it makes an excellent can-

didate for a fitness function (HC04). Thus many recent papers continue to consider

search–based techniques for achieving branch adequate test sets (LHM08; PW08; SA08;

WBZ+08).

In addition, structural coverage criteria such as branch coverage (and related criteria

such as MC/DC coverage) are mandatory for several safety critical software application

industries, such as avionics and automotive industries (Rad92). Furthermore, statement

and branch coverage are widely used in industry to denote minimal levels of adequacy

for testing (Bri98).

Much of the previous work considered imperative programming paradigms, but
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the search–based approach has also been applied to problems of coverage for Object

Oriented programming styles (AY08; CK06; SAY07; Ton04; Wap08).

The most popular search technique applied to structural testing problems has been

the genetic algorithm. However, other search–based algorithms have also been applied,

including parallel evolutionary algorithms (AC08), Evolution Strategies (AC05), Esti-

mation of Distribution Algorithms (SAY07), Scatter Search (BTDD07; Sag07), Particle

Swarm Optimization (LI08; WWW07) and Tabu Search (DTBD08). Korel (Kor90) was

one of the first to propose a local search technique, known as the alternating variable

method. Recent empirical and theoretical studies have shown that this search tech-

nique can be a very effective and highly efficient approach for finding branch adequate

test data (HM09).

The remainder of this section provides a brief introduction to genetic algorithms

before delving into a more detailed description of the alternating variable method.

The section concludes by discussing fitness functions for the branch coverage adequacy

criterion and their role in search–based testing.

2.1.1 Genetic Algorithms

Genetic algorithms first emerged as early as the late 1950’s and early 1960’s, primarily

as a result of evolutionary biologists looking to model natural evolution. The use of GAs

soon spread to other problem domains, leading amongst other things, to the emergence

of evolution strategies, spearheaded by Ingo Rechenberg. Evolution strategies are based

on the concept of evolution, albeit without the ‘typical’ genetic operators like crossover.

Today’s understanding of genetic algorithms is based on the concept introduced by

Holland in 1975. Holland was the first to propose the combination of two genetic

operators: crossover and mutation. The use of such genetic operators placed a great

importance on choosing a good encoding for candidate solutions to avoid destructive

operations.

Originally candidate solutions (phenotypes) were represented as binary strings,

known as chromosomes. Consider the code example from Figure 1.1 and assume that

the phenotype representation of a candidate solution is <3, 4, 8, 5>, where each element

in the vector maps to the inputs a, b, c and d respectively. The chromosome is formed

by concatenating the binary string representations for each element in the vector, i.e.
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Figure 2.2: A typical evolutionary algorithm for testing.

11 100 1000 101. The optimization, or search process, then works on the genotypes by

applying genetic operators to the chromosomes.

A binary representation may be unsuitable for many applications. Other repre-

sentation forms such as real value (Wri90), grey-code (CS89) and dynamic parameter

encoding (SB92) have been shown to be more suitable in various instances.

A standard GA cycle consists of 5 stages, depicted in Figure 2.2. First a population

is formed, usually with random guesses. Starting with randomly generated individuals

results in a spread of solutions ranging in fitness because they are scattered around

the search–space. This is equal to sampling different regions of the search–space and

provides the optimization process with a diverse set of ‘building blocks’. Next, each

individual in the population is evaluated by calculating its fitness via a fitness function

Φ. The principle idea of a GA is that fit individuals survive over time and form even

fitter individuals in future generations. This is an analogy to the ‘survival of the fittest’

concept in natural evolution where fit specimen have a greater chance of reproduction.

In a GA, the selection operator is used to pick individuals from a population for

the reproduction process. This operator is problem and solution independent, but can

have a great impact on the performance and convergence of a GA, i.e. the probability

and time taken for a population to contain a solution. Individuals are either selected on

the basis of their fitness value obtained by Φ, or, more commonly, using a probability

assigned to them, based on their fitness value. This probability is also referred to as

selection pressure. It is a measure of the probability of the best individual being selected

from a population, compared to the average probability of selection of all individuals.
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Desired String: “Hello World”

Crossover Point

Candidate String 1: “Hello Paul” Offspring 1: “Hello World”

m ⇒
Candidate String 2: “This World” Offspring 2: “This Paul”

Figure 2.3: Example illustrating how the crossover operator in a GA combines parts of

two candidate solutions, Candidate String 1 and Candidate String 2, to form an offspring

representing the desired string.

Once a pair of individuals has been selected, a crossover operator is applied during

the recombination stage of the GA cycle. The crossover operation aims to combine

good parts from each individual to form even better individuals, called offspring (see

Figure 2.3). During the initial generations of a GA cycle this operator greatly relies on

the diversity within a population.

While the crossover operator can suffice to find a solution if the initial popula-

tion contains enough diversity, in many cases crossover alone will lead to a premature

stagnation of the search. To prevent this, and have a greater chance of escaping local

optima, an additional mutation operator is required. One of the principle ideas behind

mutation is that it introduces new information into the gene–pool (population), helping

the search find a solution. Additionally, mutation maintains a certain level of diversity

within a population. The mutation operator is applied to each offspring according to

a mutation probability. This measure defines the probability of the different parts of a

chromosome being mutated. In a bit string for example, a typical mutation is to flip

a bit, i.e. convert a 0 to 1 and vice versa. The importance of a mutation operator is

best illustrated with an example. Consider the two chromosomes 0001 and 0000, and

suppose the desired solution is 1001. No crossover operation will be able to generate

the desired solution because crucial information has been lost in the two chromosomes.

The mutation operator has a chance of restoring the required information (by flipping

the first bit in a chromosome) and thus producing the solution.

Once offspring have been evaluated and assigned a fitness value, they need to be

reinserted into the population to complete the reproduction stages. The literature

distinguishes between two types of reproduction: generational and steady state (Sys89).
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In the first, there is no limit on the number of offspring produced, and hence the

entire population is replaced by a combination of offspring and parents to form a new

generation. Steady state GAs introduce at most two new offspring into the population

per generation (Sys91). Different schemes exist to control the size of the population, as

well as choosing which members are to be replaced by offspring. In an elitist strategy

for example, the worst members of a generation are replaced, ensuring fit individuals

will always be carried across to the next generation. Other strategies include replacing

a member at random or replacing members based on their inverse selection probability.

2.1.2 Hill Climb

Hill climbing is a well–known local search method, also classed as a neighbourhood

search. In search algorithms the term neighbourhood describes a set of individuals

(candidate solutions) that share certain properties. Consider an integer variable x, and

assume x = 5. One way of defining the neighbours for x is to take the integers adjacent

to x, i.e., {4, 6}.
Typically a hill climber starts off at a randomly chosen point in the search–space

(the space of all possible individuals). The search then explores the neighbourhood

of the current individual, looking for better neighbours. When a better neighbour

is found, the search moves to this new point in the search–space and continues to

explore the neighbourhood around the new individual. In this way the search moves

from neighbour to neighbour until an individual is no longer surrounded by a fitter

neighbour than itself. At this point the search has either reached a local optimum or,

indeed the global optimum.

Hill climbing comes in various flavours, such as simple ascent, steepest ascent (de-

scent for minimization functions) and stochastic hill climb. In a simple hill climb

strategy, the search moves to the first neighbour which is better than the current indi-

vidual. In a steepest ascent strategy, all neighbours are evaluated and the search moves

to the best overall neighbour. A stochastic hill climber lies somewhere in between; the

neighbour moved to is chosen at random from all the possible candidates with a higher

or equal fitness value.

The AVM alluded to in Section 2.1 works by continuously changing each numerical

element of an individual in isolation. For the purpose of branch coverage testing, each

element corresponds to an input to the function under test. First, a vector containing
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the numerical type inputs (e.g. integers, floats) to the function under test is constructed.

All variables in the vector are initialized with random values. Then so called exploratory

moves are made for each element in turn. These consist of adding and subtracting a

delta from the value of an element. For integral types the delta starts off at 1, i.e. the

smallest increment (decrement). When a change leads to an improved fitness (of the

candidate solution), the search tries to accelerate towards an optimum by increasing

the amount being added (subtracted) with every move. These are known as pattern

moves. The formula used to calculate the amount which is added or subtracted from

an element is: δ = sit ∗ dir ∗ 10−acci , where s is the repeat base (2 throughout this

thesis) and it the repeat iteration of the current move, dir either −1 or 1, and acci

the accuracy of the ith input variable. The accuracy applies to floating point variables

only (i.e. it is 0 for integral types). It denotes a scale factor for any delta added or

subtracted from an element. For example, setting the accuracy acci for an input to 1

limits the smallest possible move for that variable to adding a delta of ±0.1. Increasing

the accuracy to 2 limits the smallest possible move to a delta of ±0.01, and so forth.

When no further improvements can be found for an element, the search continues

exploring the next element in the vector. Once the entire input vector has been ex-

hausted, the search recommences with the first element if necessary. In case the search

stagnates, i.e. no move leads to an improvement, the search restarts at another ran-

domly chosen location in the search–space. This is known as a random restart strategy

and is designed to overcome local optima and enable the hill climber to explore a wider

region of the input domain for the function under test.

2.1.3 Fitness Functions

Fitness functions are a fundamental part of any search algorithm. They provide the

means to evaluate individuals, thus allowing a search to move towards better individuals

in the hope of finding a solution. In the context of coverage testing, past literature has

proposed fitness functions which can be divided into two categories: coverage and control

based. In the former, fitness functions aim to maximize coverage, while in the latter

they are designed to aid the search in covering certain control constructs. This section

provides a brief treatment of the two approaches.

Coverage oriented approaches often provide little guidance to the search. They

tend to reward (Rop97) or penalize (Wat95) test cases on the basis of what part of a
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program has been covered or left uncovered respectively. As a result, the search is often

driven towards a few long, easily executed program paths. Complex code constructs,

e.g. deeply nested conditionals, or predicates whose outcome depends on relatively few

input values from a large domain, as is often the case with flags, are likely to be only

covered by chance.

Structure oriented approaches tend to be more targeted. The search algorithm will

systematically try and cover all structures within a program required by the test ad-

equacy criterion. The information used to guide the search is either based on branch

distance (see Korel (Kor90)), control oriented (see Jones et al. (JSE96)), or a combi-

nation of both (see Tracey (Tra00) and Wegener et al. (WBS01)).

In a control oriented strategy, control flow and control dependence graphs are used

to guide the search. For example Pargas et al. (PHP99) use critical branching nodes

to evaluate individuals. The idea is that the more of these nodes a test case evaluates,

the closer it gets to the target. A target branch or statement is control dependent on

its critical branching nodes. The resulting fitness landscape for such an approach is

likely to be coarse grained and contain plateaus, because the search is unaware of how

close a test case was to traversing the desired edge of a critical branching node. Take

the example in Figure 1.1 and assume node 4 has been selected as target. Node 4 is

control dependent on node 3, which in turn is control dependent on node 2, which is

control dependent on node 1. All test cases following the false branch of node 1 will

have identical fitness values, i.e. 3. The same is true for any test case traversing the

false branch at node 2; they will all have a fitness value of 2.

A combined strategy uses both, the branch distance as well as control dependence

information. Tracey (TCMM00) was the first to introduce a combination of the two.

Whenever execution takes an undesired edge of a critical branching node, i.e. it follows

a path which cannot lead to the target, a distance is calculated, measuring how close

it came to traversing the alternate edge of the branching node. However, unlike in

Korel’s approach, the distance measure is combined with a ratio expressing how close a

test case came to traversing a target with respect to its critical branching nodes. The

template for the fitness function used by Tracey is:

executed

dependent
× branch distance
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Table 2.2: Branch distance measure introduced by Tracey (Tra00) for relational predi-

cates. The value K is a failure constant which is always added if a term is false.

Relational Predicate Branch Distance Formulae

Boolean if true then 0 else K

a = b if abs(a− b) = 0 then 0 else abs(a− b) +K

a 6= b if abs(a− b) 6= 0 then 0 else K

a > b if b− a < 0 then 0 else (b− a) +K

a ≥ b if b− a ≤ 0 then 0 else (b− a) +K

a < b if a− b < 0 then 0 else (a− b) +K

a ≤ b if a− b ≤ 0 then 0 else (a− b) +K

¬a Negation is moved inwards and propagated over a

Table 2.3: Objective functions introduced by Tracey (Tra00) for conditionals containing

logical connectives. z is one of the objective functions from Table 2.2.

Logical Connectives Value

a ∧ b z(a) + z(b)

a ∨ b min(z(a), z(b))

a⇒ b min(z(¬a), z(b))

a⇔ b min((z(a) + z(b)), (z(¬a) + z(¬b)))
a xor b min((z(a) + z(¬b)), (z(¬a) + z(b)))

dependent is the number of critical branching nodes for a target, and executed is the

number of critical branching nodes where a test case traversed its desired edge. The

formulae used for obtaining branch distance for single predicates as well as predicates

joined by logical connectives are shown in Tables 2.2 and 2.3 respectively. Combining

the distance measure with a ratio of executed critical branching nodes in effect scales

the overall fitness value. Take the example from Figure 1.1 again. Node 4 has 3 critical

branching nodes: 1, 2 and 3. Suppose the example function is executed with the input

vector <3, 6, 9, 4>. This vector will take the false branch of node 1. Using Tracey’s

fitness function shown above (assuming K = 1), will yield the following values:

branch distance 4
executed 1
dependent 3
fitness 1.33
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While in many scenarios the work of Tracey et al. can offer an improved fitness

landscape compared to the formulae used by Pargas et al., the fitness calculations may

still lead to unnecessary local optima (McM05).

Wegener et al. (WBP02; WBS01) proposed a new fitness function to eliminate this

problem, based on branch distance and approach level. The approach level records

how many of the branch’s control dependent nodes were not executed by a particular

input. The fewer control dependent nodes executed, the ‘further away’ an input is from

executing the branch in control flow terms. Thus, for executing the true branch of node

3 in Figure 1.1, the approach level is:

� 2 when an input executes the false branch of node 1;

� 1, when the true branch of node 1 is executed followed by the false branch of node

2;

� zero if node 3 is reached.

The branch distance is computed using the condition of the decision statement at

which the flow of control diverted away from the current ‘target’ branch. Taking the

true branch from node 3 as an example again, if the false branch is taken at node 1, the

branch distance is computed using |a−b|, whilst |b−c| is optimized if node 2 is reached

but executed as false, and so on. The branch distance is normalized to lie between zero

and one, and then added to the approach level.

2.2 Static Analysis Based Testing

Static analysis techniques do not require a system under test to be executed. Instead

test cases can be obtained by solving mathematical expressions or reasoning about

properties of a program or system. One of the main criticisms of static methods is the

computational cost associated with them. However, static analysis techniques can be

used to prove the absence of certain types of errors, while software testing may only be

used to prove the presence of errors. This often makes static analysis based techniques

indispensable, especially in safety critical systems.

The remainder of this section discusses symbolic execution, one of the first static

analysis techniques applied to testing, and its successor, dynamic symbolic execution.
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2.2.1 Symbolic Execution

Symbolic execution is a source code analysis technique in which program inputs are

represented as symbols and program outputs are expressed as mathematical expres-

sions involving these symbols (The91). Symbolic execution can be viewed as a mix

between testing and formal methods; a testing technique that provides the ability to

reason about its results, either formally or informally (Kin76). For example, symbolic

execution of all paths creates an execution tree for a program (also known as execution

model). It is a directed graph whose nodes represent symbolic states (CPDGP01).

This model can be used to formally reason about a program, either with the aid of

a path description language (CPDGP01), or in combination with explicit state model

checking (Cat05).

During symbolic execution, a program is executed statically using a set of symbols

instead of dynamically with instantiations of input parameters. The execution can

be based on forward or backward analysis (JM81). During backward analysis, the

execution starts at the exit node of a CFG, whereas forward analysis starts at the

start node of a CFG. Both type of analyses produce the same execution tree, however

forward analysis allows faster detection of infeasible paths.

Symbolic execution uses a path condition (pc) to describe the interdependency of

input parameters of a program along a specific path through a program. It consists of

a combination of algebraic expressions and conditional operators. Any instantiation of

input parameters that satisfies the pc will thus follow the path described by the pc. In

the absence of preconditions, pc is always initialized to true, i.e. no assumptions about

the execution flow are made.

Suppose the path leading to node 4 in Figure 1.1 is selected as target, and the inputs

to the function are represented by the symbols a0, b0, c0 and d0. During symbolic

execution the path condition describing this path would be built as follows. Initially it

is set to true as previously mentioned. After executing the true branch of node 1, it is

updated to <a0 = b0>, to capture the condition necessary for any concrete instantiations

of a0 and b0 to also traverse the true branch of node 1. At the decision node 2, the path

condition is updated to <a0 = b0∧b0 = c0>, and finally to <a0 = b0∧b0 = c0∧c0 = d0> at

node 3. Once the path condition has been constructed, it can be passed to a constraint

solver. If the constraint solver determines that no solution exists, it follows that the
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path described by the path condition is infeasible. Indeed, one of many strengths of

symbolic execution is the ability to detect infeasible paths. Otherwise, the solution

returned by a constraint solver can be used to execute the program along the path

described by the path condition.

Early implementations of symbolic execution were often interactive. For example,

they would require the user to specify which path to take at forking nodes (Kin76).

Without this interaction, symbolic execution will try and explore all program paths.

However, this is infeasible in the presence of loops and recursion, because symbolic ex-

ecution systematically unfolds both. Further, even medium sized programs often suffer

from path explosion which makes symbolic execution so computationally expensive that

it may become infeasible in practice.

Constraint solvers are the ‘Achilles heel’ of symbolic execution because they often

cannot handle non–linear constraints or constraints involving floating point variables.

Without constraint solvers being able to support all the constraints in a path condition,

symbolic execution is useless for testing. Sometimes the nature of a program inherently

prevents reasoning about a constraint, e.g. consider the code below.

int testme(int x, int y){

if(hash(x) == y)

return 1;

return 0;

}

If hash is a hash or cryptographic function, it has been mathematically designed to

make reasoning computationally infeasible (GdHN+08). Tillmann and Schulte (TS06)

proposed the use of symbolic mock objects to alleviate some limitations on constraint

solvers. However, the use of such mock objects may not always be feasible in practice.

Another problem for constraint solvers are floating point computations. Reasoning

about floating point expressions must not be based on common mathematical princi-

ples, but instead must obey the machine dependent semantics of floating point com-

putations. Take the example in Figure 2.4. A constraint solver based on real numbers

(or rational numbers) may wrongly flag the path <1, 2, 3, 4, 5> as infeasible. Yet with x

taking on any IEEE − 754 single–format floating point number of the closed interval

[1.401298464324817e− 45, 32767.9990234], the path is traversed (BGM06).
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Node Id Example

void f(float x){

(1) float y=1.0e12, z;

(2) if(x > 0.0)

(3) z = x + y;

(4) if(z == y)

(5) /*target*/

}

Figure 2.4: Example used to illustrate how machine semantics differ from mathematical

principles over reals and rational numbers. Arithmetic suggests that the path <1, 2, 3, 4, 5> is

infeasible, when in practice there exist values for x that satisfy this path.

Work has been done to address the floating point problem in symbolic execu-

tion (BGM06) though the proposed technique has not yet been adapted by popular

constraint solvers (dMB08; DdM06).

2.2.2 Dynamic Symbolic Execution

Dynamic symbolic execution (GKS05; CE05; SMA05; TdH08) builds on the ideas of

symbolic execution. For a given path through a program, symbolic execution involves

constructing a system of constraints in terms of the input variables that describe when

the path will be executed. As mentioned in the previous section, such a path condition

can easily become unsolvable if it contains expressions that cannot be handled by

constraint solvers. This is often the case with floating–point variables, or non–linear

constraints to name but a few examples. Dynamic symbolic execution alleviates some of

the problems by combining concrete execution with symbolic execution. The idea is to

simplify a path condition by substituting sub–expressions with runtime values, obtained

through dynamic executions of a program. This substitution process can remove some

of the non–linear sub–expressions in a path condition, making them amenable to a

constraint solver.

Suppose the function in Figure 2.5 is executed with the random values 536 and

156 for x and y respectively. The path taking the false branch is executed. The path

condition is <x0 ∗ y0 ≥ 100>, where x0 and y0 refer to the symbolic values of the input

variables x and y respectively. Suppose you want to execute the true branch instead, i.e.
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void testme2(int x, int y)

{

if (x * y < 100)

// ...

}

Figure 2.5: Example for demonstrating dynamic symbolic execution. The branch predi-

cate is non–linear.

find values for x and y which satisfy the following path condition: <x0∗y0 < 100>. Since

this path condition contains non–linear constraints, one strategy in dynamic symbolic

execution is to replace x0 with its concrete value, 536 (SMA05). The path condition

becomes <536∗y0 < 100>, which is now linear and can be passed to the constraint solver

to find an appropriate value for y (i.e. zero or any negative value).

In order to explore different paths through a program, dynamic symbolic execu-

tion based techniques first execute the program with an arbitrary input vector. The

corresponding path condition forms the basis for successive iterations of the test data

generation process. A path condition describes one succinct execution path through a

program, thus a different path condition, if feasible, will describe another succinct path

through the same program. Recall the example from Figure 1.1 and suppose the func-

tion is executed with the values 0, 1, 2, and 3 for a, b, c, and d respectively. The path

condition is <a0 6= b0>. One possible strategy is to invert the last constraint in a path

condition, e.g. similar to performing a depth first search. The new path condition is

<a0 = b0>, which is passed to a constraint solver. Assume the constraint solver returns

the value 0 for both a and b. Executing the function with the updated values 0, 0, 2,

and 3 for a, b, c, and d yields the path condition <a0 = b0 ∧ b0 6= c0>. Following the

same principle, the last constraint is inverted again to give <a0 = b0 ∧ b0 = c0>, which

is passed to the constraint solver. Suppose the constraint solver now returns the value

0 for a, b and c. The function is executed once more, this time with the values 0, 0,

0, and 3 for a, b, c, and d. This process continues until all feasible execution paths

through a function (or unit in the case of interprocedural testing) have been explored.

One of the first dynamic symbolic execution based tools to emerge was developed

by Godefroid et al. (GKS05) during their work on directed random testing and the

DART tool. DART does not attempt to solve constraints involving memory locations,
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i.e. pointer inputs to a program. Instead, pointer inputs are randomly initialized to

either the constant null or a new memory location. As a consequence DART is not

ideally suited to test complex data structures which may require the generation of

cycles, e.g. as part of a linked list implementation. Another limitation to DART are

non–linear constraints because they fall outside the scope of DART’s constraint solver.

To overcome this problem DART replaces non–linear expressions with their runtime

value similar to the example given at the start of this section. Unlike in the example,

DART replaces the entire sub–expression, not just a single multiplicand. Therefore

DART deteriorates to a pure random search for the example in Figure 2.5.

Cadar and Engler independently developed a method called Execution Generated

Testing (EGT) (CE05) around the same time as DART. EGT starts with pure symbolic

execution. When constraints on a programs input parameters become too complex,

symbolic execution is paused and the path condition collected thus far is instantiated

with concrete inputs. Runtime values are then used to simplify symbolic expressions so

that symbolic execution can continue with a mix of symbolic variables and constants.

Sen et al. further developed the work on DART in their tool called CUTE (SMA05).

CUTE extends DART by including a custom solver for constraints over memory lo-

cations and also offers a more refined approach to handling non–linear constraints.

Instead of replacing an entire expression, as is the case in DART, CUTE only replace

one multiplicand with its concrete value, while maintaining a symbolic state for the

other. The first path explored by the CUTE tool is the path executed where inputs

of primitive type are zero (or of a random value, depending on the settings used). If

the function involves pointer variables, these are always initially set to null. However,

further paths through the program may require pointers to point to a specific memory

location, e.g. when representing a data structure. In order to find the ‘shape’ of such

a data structure, CUTE incorporates symbolic variables for pointers in the path con-

dition. A graph–based process is used to check that the constraints over the pointer

variables are feasible, and finally, a simple procedure is used to actually build the data

structure required.

For the program of Figure 2.6(a), and the path that executes the true branch

at each decision, CUTE accumulates the path constraint <ptr0 6= NULL ∧ left0 6=
NULL∧right1 = ptr0>. CUTE keeps a map of which symbolic variable corresponds to

which point in the data structure, for example, left0 maps to ptr->left. The feasibility
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Node Id Example

void testme4(item* ptr)

{

(1) if (ptr != NULL)

(2) if (ptr->left != NULL)

(3) if (ptr->left->right == ptr)

(4) // ...

}

(a) Code snippet

(b) CUTE feasibility graph for path which executes all decisions in 2.6(a) as true

Figure 2.6: Example for demonstrating pointer handling in CUTE.

check involves the construction of an undirected graph, which is built incrementally at

the same time as the path condition is constructed from the conditions appearing in

the program. The nodes of the graph represent abstract pointer locations, with node

labels representing the set of pointers which point to those locations. A special node is

initially created to represent null. Edges between nodes represent inequalities. After

statement 1 in the example, the graph consists of a node for ptr0 with an edge leading

to the null node. When statement 2 is encountered, a new node is constructed for

left0, with an edge to null. Finally, right1 is merged into the existing ptr0 node, as

they must point to the same location (Figure 2.6(b)). Feasibility is checked as each

constraint is added for each decision statement. An equality constraint between two

pointers p and q is feasible if, and only if, there is no edge in the graph between nodes

representing the locations of p and q. An inequality constraint between p and q is

feasible if, and only if, the locations of p and q are not represented by the same node.

If the path condition is feasible, the data structure is built incrementally. Each new

branching decision adds a new constraint to the path condition, and the data structure

is created on the basis of each constraint using the rules of Table 2.4.

CREST (BS08) is a recent open source successor to CUTE. Its main difference to

30



2.2 Static Analysis Based Testing

Table 2.4: Dynamic data structure creation according to individual constraints encoun-

tered along the path condition for CUTE.

Constraint CUTE

m0 = null Assign null to m0

m0 6= null Allocate a new memory location pointed to by m0

m0 = m1 Make m1 alias m0

m0 6= m1 Allocate a new memory location pointed to by m1

CUTE is a selection of different path exploration strategies. Most dynamic symbolic ex-

ecution techniques (GKS05; CE05; SMA05) use a depth first, backtracking exploration

strategy. With CREST a user can choose between depth first, random or control flow

directed explorations. Burnim and Sen (BS08) show that a control flow directed path

exploration can lead to higher branch coverage than any of the other strategies.

Pex (TdH08) is a parametrized unit testing framework developed by Microsoft. All

dynamic symbolic execution tools for C instrument the source code of the program

under test to perform symbolic execution. This has some obvious limitations: com-

mon library functions, such as those found in stdlib.h, remain uninstrumented and

thus outside the scope of a tool’s symbolic engine. Pex on the other hand performs

its instrumentation at the .NET intermediate language level. It contains a complete

symbolic interpreter for safe .NET code, i.e. code that does not use pointer arith-

metic, and it can also reason about a limited number of unsafe features used in .NET.

Its sophisticated symbolic interpreter enables Pex to construct path conditions which

capture constraints over input variables more precisely.

Most publicly available dynamic symbolic execution tools test functions in isolation

without pre– or post–conditions, which can lead to false alarms because a function may

be executed with inputs which are infeasible in the functions ‘real’ calling context. Yet,

testing large programs with an interprocedural testing tool may yield low coverage.

Chakrabarti and Godefroid (CG06) propose to partition software into a number of

smaller units to alleviate this problem. The test objective is to achieve full coverage of

all the functions contained within a unit. This ensures functions are called only from

within a valid calling context and thus have implicit preconditions attached.

The majority of literature on dynamic symbolic execution based testing has aug-

mented static analysis techniques, primarily symbolic execution, with dynamic test data
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generation techniques, specifically random testing. Inkumsah and Xie (IX07) were the

first authors to propose a framework (EVACON) combining evolutionary testing with

dynamic symbolic execution. Their framework targets test data generation for ob-

ject oriented code written in JAVA. They use two existing tools, eToc (Ton04), an

evolutionary test data generation tool for JAVA, and jCUTE, an explicit path model

checker (SA06), based on the same principles as CUTE. The first is used to construct

method sequences to test a JAVA method, while the second is used to optimize the

coverage for the method under test. eToc uses a genetic algorithm to evolve method

sequences along with their parameters as a means to achieve unit testing. The pa-

rameters used in the sequence of method calls are randomly initialized. One drawback

of eToc is that new parameter values are only introduced into the population via the

mutation operator, which randomly changes a parameter value within given bounds.

This may make the search inefficient and even ineffective for certain branches because

genetic operators need to share their effort between evolving sequences and evolving

their parameters. However, eToc provides an interface allowing customized input pa-

rameter generation. The EVACON framework uses this feature to combine jCUTE

with eToc. Unlike eToc, jCUTE provides a systematic approach to achieving branch

coverage based on a combination of symbolic execution and random testing.

First, method call sequences (test cases) are constructed by eToc. These test cases

are then passed to jCUTE, which will try and generate parameter values to cover all

feasible branches for a particular sequence call construct. The sequences with their

modified parameter values are then returned to eToc, to further evolve the order and

number of method calls in a sequence.

Consider the example from Figure 2.7. One possible method sequence constructed

by eToc for the method m might look like:

$a=objA():a.m(int) @ 8

This sequence will not reach any of the three targets labelled in Figure 2.7. However,

jCUTE is able to optimize this call sequence by generating the parameter values 3 and

5 to cover the targets labelled /*target 1*/ and /*target 2*/ respectively. Note

that in order to cover /*target 3*/, a new method call needs to be inserted into

the sequence. jCUTE returns its test cases to eToc, which will evolve them further,

in particular inserting or deleting method calls from the sequences, or changing their
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public class objA{

private int x;

public void setX(int x)

{

this.x = x;

}

public void m(int x)

{

if(x == 3)

/*target 1*/

else if (x==5)

/*target 2*/

if(this.x == x)

/*target 3*/

}

}

Figure 2.7: Code example used to illustrate how the EVACON framework (IX07) is able

to optimize both, the method call sequences required to test the function m, as well as the

method parameters to achieve coverage of m.

order via crossover operations. Assume a new sequence, constructed by eToc, includes

a call to setX, generating

$a=objA():a.setX(int):a.m(int) @ 8 5

This new test case is again passed to jCUTE, which will find instantiations for the

primitive method parameters to cover the branch labelled /*target 3*/. The eToc –

jCUTE cycle continues until a stopping criterion has been reached.

Inkumsah and Xie (IX07) evaluated their framework on a set of benchmark pro-

grams for white–box test data generation tools. They are able to report an improved

coverage using the EVACON framework compared to the coverage achieved by the

standalone use of either eToc or jCUTE.
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Chapter 3

Augmented Search–Based

Testing

3.1 Introduction

The last chapter described how meta–heuristic algorithms can be applied to the prob-

lem of automated structural test data generation. It provided a brief overview of the

search–based software testing field, which continues to attract a lot of interest from

the academic community. Yet despite this, there still is a lack of publicly available

tools that provide researchers with facilities to perform search–based structural test-

ing. This chapter introduces such a tool, AUSTIN 1. Most previous work on SBST for

structural coverage has used genetic algorithms for test data generation and has tended

to be evaluated on relatively small scale systems, consisting of laboratory ‘toy exam-

ples’, such as the well–known triangle classification program. AUSTIN uses a variant of

Korel’s (Kor90) alternating variable method and augments it with techniques adapted

from recent work on dynamic symbolic execution (GKS05; CE05; SMA05; TdH08).

It can handle a large subset of C, though there are some limitations. Most notably

AUSTIN cannot generate meaningful inputs for strings, void and function pointers, as

well as union constructs. Variable argument length functions are also not supported.

However, AUSTIN has been applied out of the box to real industrial code from the

automotive industry (see Section 3.4) as well as a number of open source programs (see

Chapter 4).

1The name is derived from AUgmented Search–based TestINg.
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To address the need for SBST to be evaluated on real–world examples, an empir-

ical study was performed in which AUSTIN was compared against an evolutionary

testing framework, which was developed as part of the EvoTest project (GKWV09).

The framework represents a state–of–the–art evolutionary testing system and has been

applied to case studies from the automotive and communications industry. Three case

studies from the automotive industry, provided by Berner & Mattner Systemtechnik

GmbH, formed the benchmark which AUSTIN was compared against for effectiveness

and efficiency when generating branch adequate test data.

Automotive code was chosen as the benchmark for two reasons. Firstly, the use

of these systems as experimental subjects goes some way towards addressing the cur-

rent lack of previous empirical results concerning real–world examples. Secondly, the

automotive industry is subject to testing standards that mandate structural coverage

criteria and so the developers of production code for automotive systems are a nat-

ural target for automated test data generation techniques, such as those provided by

AUSTIN.

The primary contributions of this chapter are as follows:

1. A fully featured search–based software testing tool for C.

2. A description of how features adapted from several strands of research on test data

generation are incorporated into the design and implementation of the AUSTIN

tool. These extend its applicability to a subset of C (not previously covered by

any SBST tool) and also improve its effectiveness.

3. An empirical study that evaluates AUSTIN on automotive systems for branch

coverage. The results support the claim that AUSTIN is both efficient and effec-

tive.

The rest of this chapter is organised as follows: Section 3.2 introduces AUSTIN

and presents detailed descriptions of the different techniques implemented. Section 3.3

provides details about the ETF against which AUSTIN has been compared. The em-

pirical study used to evaluate AUSTIN alongside the hypotheses tested, evaluation and

threats to validity are presented in Section 3.4. Section 3.5 concludes the chapter.
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3.2 AUSTIN

AUSTIN is a structural test data generation tool which combines a simple hill climber

for integer and floating point type inputs with a set of constraint solving rules for pointer

type inputs. It has been designed as a unit testing tool for C programs. AUSTIN

considers a unit to be a function under test and all the functions reachable from within

that function. It can be used to generate a set of input data for a given function which

achieve branch coverage for that function. During the test data generation process,

AUSTIN does not attempt to execute specific paths through a function in order to

cover a target branch; the path taken up to a branch is an emergent property of the

search process. The search is guided by an objective function that was introduced by

Wegener et al. (WBS01) for the Daimler evolutionary testing system and explained in

Section 2.1.3.

Similar to dynamic symbolic execution based testing (GKS05; SMA05; TdH08),

AUSTIN also instruments the program under test to perform a pseudo–symbolic ex-

ecution of the program along the concrete path of execution for a particular input

vector. Collecting constraints over input variables via symbolic execution serves to aid

AUSTIN in solving constraints over memory locations, denoted by pointer inputs to a

function. Consider the example given in Figure 3.1 and suppose execution follows the

false branch at node 1. AUSTIN will use a custom procedure to solve the constraint

over the physical memory location denoted by the pointer variable one. On the other

hand, if the false branch is taken at node 2, an AVM is used to satisfy the condition at

node 2.

3.2.1 Floating Point Variables

Prior work based on the AVM (HM09; LMH09) required a tester to specify an accuracy

for each floating point input to the function under test. The accuracy is used as a

scale factor for any delta added or subtracted from an input. For example, setting the

accuracy for floating point variables to 1 means scaling the delta added to an element

by ±0.1. Using a fixed size accuracy has some obvious limitations. Consider the two

examples in Figure 3.3: for the function testme1, a scale factor of 0.1 does not prevent

the search from quickly finding a solution. For the second function testme2 however,

the search is likely to fail if the scale factor remains fixed at 0.1. Suppose that the input
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Node Id Example

typedef struct item {

int key;

};

void testme(item* one) {

(1) if ( one != null ) {

(2) if ( one->key == 10 )

// target

}

Figure 3.1: Example C code used for demonstrating how AUSTIN combines custom

constraint solving rules for pointer inputs with an AVM for other inputs to a function

under test. The goal is to find an input which satisfies the condition at node 2.

parameter d in testme2 from Figure 3.3 is initialized to the value 0.100000001490116.

Note that the last 7 digits are due to the inability to represent the value 0.1 accurately

with a floating point variable. With a fixed scale factor of 0.1, the search adds or

subtracts at most 0.100000001490116 from the current value of d. Thus the search has

to partly rely on rounding errors to find a value for d that lies between 1.34876 and

1.34877.

AUSTIN solves this problem by including the accuracy parameter in its optimization

process. This extension has been implemented as part of the neighbourhood explored

procedure shown in Figure 3.2. Initially each floating point variable is optimized by

scaling the amount added or subtracted to it by 0.1. Each floating point type (i.e.

float, double) has a maximum accuracy associated with it. This limit is machine

dependent, but commonly lies at 6 for single floating point types and 15 for double

types. The limit presents a lower bound for scaling a delta.

Whenever the AVM gets stuck on a local optimum, AUSTIN tries to increase the

accuracy of floating point variables before resorting to a random restart. If an increase

in accuracy results in an improvement, AUSTIN restarts its exploratory moves and will

repeat the modification to a variable’s accuracy next time a local optimum is reached.

When a change does not lead to further improvements, or the accuracy exceeds the limit

of the floating point type associated with the variable (e.g. 6 or 15), the search moves

on to the next (floating point) variable. Once all improving moves for a solution have

been exhausted (including changing the accuracy of floating point inputs), AUSTIN
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Global Inputs: input index, increased precision, precision success, precision index

neighbourhood explored (s : candidate solution)

primitives := vector of all primitive type variables in s

if input index >= primitives.length then

if precision index >= primitives.length then

return true

end if

if increased precision and not(precision success) then

v := primitives.at(precision index)

if acc(v) > 1 then

v := decrease acc of v by one

update v in primitives

s := (s with updated primitives)

end if

increment precision index

end if

precision success := false

increased precision := false

while precision index < primitives.length do

v := primitives.at(precision index)

if typeOf(v) 6= floating point type then

increment precision index

continue

else if typeOf(v) = single precision type then

limit := 6 // limit is machine dependent

else

limit := 15 // limit is machine dependent

end if

if acc(v) >= limit then

increment precision index

else

increment accuracy of v by one

update v in primitives

s := (s with updated primitives)

increased precision := true

reset exploration parameters()

return false

end if

end while

precision index := 0

return true

else

return false

end if

Figure 3.2: Pseudo code illustrating the method for checking if the search is stuck at

a local optimum. Part of this method also includes the steps for varying the accuracy of

floating point variables as described in Section 3.2.1.
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void testme1(float d) void testme2(float d)

{ {

if( d > 1.34876 ) if( d > 1.34876 && d < 1.34877 )

//target //target

} }

Figure 3.3: Example for demonstrating how AUSTIN optimizes floating point type in-

puts. Previous work (MH06; LMH09) commonly fixed the accuracy for floating point

variables in the AVM to 1 or 2 decimal places. Such a strategy suffices to generate in-

puts to satisfy the branch predicate in the left column, but is unlikely to succeed for the

branch predicate in the right column. AUSTIN is able to automatically satisfy the branch

predicates in both the left and right columns.

performs a random restart. At every restart, the accuracy for each floating point

variable is reset to 1.

Recall the example function testme2 in Figure 3.3, and assume the formal pa-

rameter d is initially assigned 0. AUSTIN starts adding the values ±0.1 to d. Note

that due to the imprecision of floating point numbers, it will actually add a value

similar to ±0.100000001490116 because 0.1 cannot be represented accurately. Since

+0.100000001490116 is closer to the desired value for d, i.e. closer to the interval

]1.34876, 1.34877[, than −0.100000001490116, AUSTIN will continue to add an ever in-

creasing amount to d. Eventually d will be greater than the upper bound of the desired

interval (i.e. 1.34877) and AUSTIN has to backtrack until it ‘gets stuck’, i.e. adding

±0.100000001490116 does not lead to further improvements. At this point AUSTIN

refines the scale factor for a given variable, e.g. by changing it from 0.1 to 0.01. Using

this new scale factor, AUSTIN is able to get the value of d even closer to the desired

interval. Next time AUSTIN ‘gets stuck’, it reduces the scale factor further from 0.01

to 0.001, and so forth. By continuing to adjust the scale factor, AUSTIN is able to find

a value for d which lies within the desired interval.

3.2.2 Example

The previous section explained how the AVM has been extended to automatically

optimize floating point variables without requiring human assistance. The basic AVM

described in Section 2.1.2 has also been extended to add automatic support for pointers
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and dynamic data structures. This extension is grounded in dynamic symbolic execu-

tion and is best explained with an example before proceeding with a more detailed

description.

AUSTIN works by modelling each global and formal parameter of a function under

test as a scalar symbolic variable. In the case of pointers, the target of a pointer (i.e.

the memory pointed to by the pointer) is also represented through a scalar symbolic

variable. Suppose the true branch of node 2 in Figure 3.1 is selected as the target. Let

one0 denote the symbolic variable for the the formal parameter of testme. Initially

every pointer input to the function is assigned the constant null. The path condition

describing the execution of testme with this input is <one0 = null>. To bring the

search closer to the target branch, the constraint of the last critical branching node

where execution diverged away from the target (node 1) is inverted. AUSTIN solves

the constraint by assigning a new memory location (via malloc) large enough to hold

an object of type item to the input one. Intuitively the effect of this operation is that

of extending the list of formal parameters for testme with the members of the data

structure item. Let the additional input parameter key be denoted by the symbol

one key0. In its default mode, AUSTIN sets one->key to 0. The program is exe-

cuted with the updated inputs, and the new path constraint describing the execution

is <one0 6= null ∧ one key0 6= 10>. This time the critical branching node does not

contain constraints over physical memory locations, and instead involves a comparison

between two integer types. AUSTIN thus uses the AVM described in Section 2.1.2 to

find values for one->key that satisfy the condition at node 2. It will start by trying

the values −1,+1, before continuing to increase one->key to 3, 7 and finally 15. At

this point the minimum (one->key == 10) has been overshot, so the AVM repeats the

exploratory–pattern move cycle for as long as necessary until the minimum is reached.

When one->key == 10, the target branch of node 2 is executed.

3.2.3 Code Preparation

AUSTIN makes extensive use of the CIL (NMRW02) framework and its API for tasks

ranging from code instrumentation and control dependence analysis to the symbolic

evaluation described in Section 3.2.4. CIL is also used to transform and simplify source

code prior to the test data generation process. The following CIL and custom trans-

formations are used:
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1. Prepare Control Flow Graph: This CIL option (--domakeCFG) converts all

break, switch, default and continue statements and labels into equivalent if

and goto constructs. This simplifies AUSTIN’s control dependence analysis and

also ensures all branching nodes in the CFG denote an if statement.

2. Three–Address Code: This CIL option (--dosimplify) transforms the source

code into a simpler three–address code. This transformation introduces well typed

temporary variables, ensuring all statements are side effect free and also that

branching nodes only contain constraints over equal type variables.

3. One Instruction Per Statement: This custom transformation splits a list

of instructions, i.e. a sequence of statements where flow of control implicitly

falls through, into a sequence of block statements. This ensures that AUSTIN

can insert its instrumentation of the source code in the correct place for every

instruction.

4. Remove Storage: This custom transformation removes all register storage

specifiers. Variables stored in a register do not have an address and hence cannot

be handled during AUSTIN’s instrumentation process. No guarantee is given by

the compiler that variables will indeed be stored in a register, thus this storage

specifier can be safely removed for most applications for the purpose of test data

generation. Note that bit fields, where an address–of operation is also invalid, are

handled as a special case by AUSTIN’s source code instrumenter.

5. Balance Branching Nodes: This custom transformation ensures all state-

ments of the form if(variable) or if(!variable) are explicitly turned into

if(variable != 0) and if(variable == 0) respectively.

In addition to the above transformations, CIL also transforms compound predicates

in the source code1. As a consequence, AUSTIN generates test data which satisfies the

MC/DC test adequacy criterion instead of branch coverage. Figure 3.4 contains two

examples showing the CIL output for code containing logical operators.

1One can force CIL not to perform this transformation, however AUSTIN uses CIL in its default

mode, in which the logical ‘and’ and logical ‘or’ operators are disabled.
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void testme(int a, int b) void foo(int a, int b)

{ {

if(a && b) if(a)

//target if(b)

} //target

}

original source code (a) CIL transformed source code(a)

void testme(int a, int b) void foo(int a, int b)

{ {

int c = a && b; int c, tmp;

} if(a)

if(b)

tmp = 1;

else

tmp = 0;

else

tmp = 0;

c = tmp;

}

original source code (b) CIL transformed source code (b)

Figure 3.4: Two examples illustrating how CIL transforms compound predicates into

single predicate equivalents. The transformation works for both, predicates in conditional

statements (see (a)) and in–line predicates (see (b)).
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3.2.4 Symbolic Rewriting

In dynamic test data generation the function under test is repeatedly executed to op-

timize input parameters in order to reach a given goal (target node). AUSTIN instru-

ments the source code of the unit under test to perform a pseudo–symbolic execution in

parallel to the concrete execution of the unit. Since AUSTIN does not evaluate expres-

sions symbolically it is not a classic symbolic execution. It simply re–writes operations

over local variables as operations over input parameters (including globals). This often

suffices for the purpose of solving pointer constraints and enables AUSTIN to use a very

light–weight ‘symbolic engine’ that only performs symbolic assignments. Constraints

over input parameters can still be collected to form a path condition describing the

execution path taken by a concrete input.

Every input to the function under test (e.g. formal parameters, global variables

and (finite) memory graphs) is modelled as a scalar symbolic variable. These variables

are referred to, interchangeably, as symbolic lvalue or symbol. Symbols represent a

CIL lval (an expression that can appear at the left of an assignment or as operand

to the address–of operator) and every symbolic lvalue is mapped to a symbolic term.

A symbolic term consists of a CIL expression, the name of the function in which it

is used, and a unique identifier. Symbolic terms are unique, though multiple symbols

can be mapped to the same symbolic term. CIL’s Expcompare module can be used to

check if two (CIL) expressions are equal. If they are equal and are used within the

same function, then they must be represented through the same symbolic term. The

equality check of expressions does not extend to their runtime value. For example, given

a two dimensional array a[2][2], the expressions * (* (a + 1) + 1)) and a[1][1]

are represented by two different symbolic terms, even though they reference the same

memory location.

Figure 3.5 contains the Ocaml definitions for both a symbolic term and a symbolic

lvalue. Symbolic lvalues contain a flag isInput which indicates whether the symbol

represents an input to the function under test, a flag global to indicate if the symbol

denotes a global variable, and length specifying the number of bits for symbols rep-

resenting a bit field. Symbolic terms contain a flag to indicate if a CIL expression is

‘uninterpreted’. For example, an expression denoting the return value of a black–box

function call produces an uninterpreted symbolic term.
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type symbolicLval = {

lv : lval;

funcName : string;

isInput : bool;

global : bool;

length : int;

}

type symbolicTerm = {

symbolId : int;

funcName: string;

mutable symbolExpr : exp;

mutable uninterpreted : bool;

}

Figure 3.5: Ocaml type declarations in AUSTIN used to denote symbolic lvalues and

symbolic terms. A symbolic lvalue is used to represent an input variable to the function

under test, while symbolic terms provide a wrapper for CIL expressions. Symbolic terms

only consist of operations involving constants or input variables to the function under test.

A symbolic store is used to maintain a state for each symbolic lvalue during the

execution of the function under test. Take the example from Figure 3.1. At the start of

the testing process, the symbolic store would contain the symbolic lvalue one0 mapped

to the symbolic term Tone0 , where the symbolId = 1, symbolExpr = Lval (one0),

funcName = testme and uninterpreted = false.

Symbolic lvalues are updated (via symbolic terms) as required during the actual

execution of the function under test. An isPointer operator can be applied to every

symbolic lvalue. It returns true if the symbol represents a pointer variable and false

otherwise. The operator is an extension of CIL’s built–in family of typeOf operators,

which can be used to obtain the type of expressions or lvalues. Furthermore, every

symbolic lvalue is mapped to a memory address; the address which stores the content

of the lvalue represented by the symbol. Let this map be denoted by mA. One cannot

take the address of bit fields and thus AUSTIN maps symbols representing a bit field

to a ‘fake’ memory location. The fake bit field addresses are composed of the address

of the host structure containing the bit field, plus the offset of the bit field from the

start of the storage of the structure. The register storage specifier is also removed

from variables as mentioned in Section 3.2.3.

Physical memory locations change over successive executions of a function, thus

the map mA needs to be updated before and during every execution of the function

under test. This update is performed during the input initialization process described

in Section 3.2.7 and whenever execution enters the body of a function to allow for a

correct mapping of formals and locals of a function. In addition to the address map,
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AUSTIN also maintains a map mC , that maps each symbolic term to its concrete

value. This map is updated at every assignment, conditional statement, function call

and return statement, as well as the start of each function entered during the execution.

The latter is to initialize (update) mC with local variables and formal parameters of

the function if necessary.

As mentioned, AUSTIN does not evaluate symbolic expressions and instead uses

concrete runtime values to approximate them when necessary. At every assignment

statement, AUSTIN checks whether the right hand side of the assignment corresponds

to one of the symbolic lvalues in its symbolic store. This is done by comparing the value

of the right hand side expression with the addresses stored in mA. When a match, s′,

is found, AUSTIN uses the symbolic term for s′ to perform the assignment. Different

symbols may be mapped to the same physical memory location in mA due to aliasing of

lvalues (expressions). When confronted with multiple matches, AUSTIN picks the first

symbol found in mA. The problem of aliases and how they are handled in AUSTIN is

detailed in Section 3.2.5. When no match is found AUSTIN attempts to re–write the

expression on the right hand side of the assignment in terms of input variables. This

is done by providing a custom implementation of CIL’s visitor interface to traverse

the right hand side expression. Figure 3.6 shows a code snippet of the visitor class

used for rewriting expressions. The visitor traverses an expression until it either finds

a CIL lvalue which is represented by a symbolic lvalue in AUSTIN’s symbolic store,

encounters a constant expression, or finds an expression which cannot be re–written.

An example of when AUSTIN applies its rewriting rules is shown in Figure 3.7(a), while

the example in Figure 3.7(b) demonstrates a case when AUSTIN uses mA to obtain a

symbolic term for a given expression.

AUSTIN’s symbolic rewriting of variables is interprocedural. Whenever the exe-

cution encounters a function call to an instrumented function, AUSTIN re–writes the

arguments of the function call in terms of input parameters. Next it adds a symbolic

assignment for each argument of the function call to its corresponding formal param-

eter in the called function. Equally if the called function contains a return value, the

code is instrumented such that it performs a symbolic assignment from the return value

of the function to the lvalue being assigned in the caller function. In this way opera-

tions within a called function can be expressed in terms of the input parameters of the

function under test.
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class rewriteExpClass = object(self)

inherit nopCilVisitor

method private handleLval (l:lval) = begin

let termo = findSymbol l in

match termo with

| None -> DoChildren

| Some(term) -> ChangeTo term.symbolExpr

end

method vexpr (e:exp) = begin

match e with

| StartOf (l) | Lval (l) -> self#handleLval l

| SizeOfE _ | AddrOf _ | AlignOfE _ -> SkipChildren

| _ -> DoChildren

end

end

Figure 3.6: Code snippet illustrating the Ocaml class for rewriting CIL expressions in

terms of input variables. The class extends CIL’s default visitor, which traverses a CIL

tree without modifying anything. The method vexpr is invoked on each occuring (CIL) ex-

pression. The subtrees are the sub–expressions, the types (for a cast or sizeof expression)

or the variable use.
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Address Map: Symbolic Store:

a0 → &a, b0 → &b, x0 → &x, y0 → &y a = a0, b = b0, x = x0, y = y0

void testme(int a, int b) {

int x, y;

x = 2*a; x0 ← 2 ∗ a0
y = 4*x; y0 ← 4 ∗ (2 ∗ a0)

...

}

(a) Example of when a visitor pattern can be used to re–write expressions

Address Map: Symbolic Store:

one0 → &one, one next0 → &one->next, one = one0, one next = one next0,

tmp10 → &tmp1, tmp20 → &tmp2 tmp1 = tmp10, tmp2 = tmp20

typedef struct item {

int v;

struct item* next;

}

//assume(one != (void*)0);

void testme(item* one) {

unsigned long tmp1, tmp2;

tmp1 = (unsigned long )one; tmp10 ← (unsigned long)one0

tmp2 = ((struct item **)(tmp1 + 8)); tmp20 ← one next0

... because

&one->next == ((struct item **)(tmp1 + 8))

}

(b) Example of when concrete values are used to approximate symbolic expressions

Figure 3.7: The example in the top half demonstrates how symbols are updated in a

symbolic store using the visitor class from Figure 3.6. The bottom row shows how AUSTIN

approximates symbolic expressions with the help of concrete runtime values instead of

performing symbolic pointer arithmetic. The expression ((struct item **)(tmp1 + 8))

is replaced by the expression denoting the address of one->next, i.e. &one->next, instead

of rewriting the expression as ((struct item **)(((unsigned long)one) + 8)) using

the visitor class from Figure 3.6.
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If the call is to an uninstrumented function, AUSTIN marks any symbol that repre-

sents the lvalue assigned by a return statement of that function, as well as any pointer

type argument to that function as uninterpreted by setting the uninterpreted flag.

Black–box functions may change the value of their pointer type arguments.

3.2.5 Pointer Inputs

During the search process, a branch distance calculation may be required for a condition

that involves a pointer comparison. However, branch distances over physical pointer

addresses do not usually give rise to useful information for test data generation; for

example it is difficult to infer the shape of a dynamic data structure. Therefore, instead

of computing a branch distance, AUSTIN uses symbolic variables to express constraints

over memory locations in a path condition, and then uses a custom solver to construct

a memory graph which satisfies the constraints.

The rules that govern how the memory graph reachable from the function under test

should be initialized can only be applied to constraints of the form x = y and x 6= y,

where both x or y may be the constant null or a scalar symbolic variable denoting a

pointer input. To ensure that any code meets these requirements, AUSTIN relies on

the code preparation steps described in Section 3.2.3. After the code simplification,

every branching node in a control flow graph contains an expression e, consisting of

a binary operation in the form of left ./ right, where left and right are valid CIL

expressions, and ./ ∈ {<,>,≤,≥,=, 6=}.
Whenever the execution traverses a branching node, AUSTIN re–writes both ex-

pressions, left and right, in terms of input variables, applying the rules outlined in

Section 3.2.4. It then adds an updated expression e′ (= left′ ./ right′) to the path

condition. Care is taken to ensure e′ describes the actual flow of execution, i.e. if

the CFG edge denoting the false branch of the node is traversed, ./ is inverted before

adding e′ to the path condition. Finally, AUSTIN updates its concrete value map mC

for left′ (right′), adding a mapping if left′ (right′) does not exist. If the symbolic term

describing left′ (right′) denotes a symbolic lvalue whose address (or ‘fake’ address in

the case of bit fields) can be taken, AUSTIN also adds a mapping from left′ (right′)

to its address in mA if it does not already exist.

A symbolic path condition pc is built up from aforementioned constraints in the

order that they are observed during the execution of the function under test. At
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this stage pc contains constraints over both primitive type inputs as well as pointer

type inputs, and does not address the question of aliasing. When the search requires

a constraint over physical memory locations to be met in order to avoid taking an

infeasible path (in the CFG) with respect to the target node, AUSTIN constructs a

sub–path condition, pc′. This trimmed path condition consists of constraints leading

up to the critical branching node and is further simplified by removing all constraints

which do not represent constraints over memory locations. For example, a constraint

in which a pointer to a primitive type is dereferenced, would be removed, as would

constraints over arithmetic types. Take the example in Figure 3.8 and assume node 5

is selected as target. Initially the function is executed with the input vector <null,0>,

producing the path condition <key0 6= −1 ∧ one0 = null ∧ key0 6= 10>. The last critical

branching node in pc for node 5 is represented by the constraint one0 = null. Thus

key0 6= 10 is dropped from pc to form pc′. Next pc′ is further reduced to only contain

constraints over memory locations, leaving the single constraint <one0 = null>. Finally,

the last constraint in pc′ (representing the constraint of the last critical branching node)

is inverted, yielding <one0 6= null>.

From pc′, AUSTIN builds an undirected equivalence graph of symbolic terms. This

graph forms the basis of the pointer solving rules in AUSTIN, the idea of which has been

adapted from the concolic testing tool CUTE (SMA05). The equivalence relationship

between symbolic terms is defined by the ‘=’ operators in pc′, as well as aliases of

symbolic terms. Figures 3.10 and 3.11 show how AUSTIN solves pointer constraints

using pseudo code. Figure 3.10 deals with constructing the equivalence graph while

Figure 3.11 shows how the graph is used to assign concrete values to inputs of the

function under test. The remainder of this section describes the different steps in

detail.

The graph is always initialized with a node denoting the symbolic term for the

constant null, and its state is maintained across successive executions of the function

under test. For each constraint c in pc′, AUSTIN obtains the symbolic terms for

the left (Tleft) and right (Tright) hand sides of the binary operator in c. Continuing

with the running example, these are Tleft = one0 and Tright = null. Next, AUSTIN

collects all aliases for Tleft and Tright from the maps mA and mC as follows. Let t

denote the concrete value of Tleft (Tright) in mC , e.g. null for the running example.

Find all symbolic lvalues of pointer type in mC that are mapped to the same value
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Node Id Example

typedef struct item {

int key;

struct item* next;

};

int testme(item* one, int key)

{

(1) if(key == -1)

(2) return 0;

(3) if(one != (void*)0)

{

(4) if(one->key == key)

(5) //target

}

(6) if(key == 10)

(7) ...

}

Figure 3.8: Code snippet used as a running example to explain AUSTIN’s pointer solving

rules.
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t, provided that t 6= null (i.e. the pointer points to a valid memory location). Let

this set be denoted by sCleft
(sCright

). Then, find all symbolic lvalues in the address

map mA that are of pointer type and whose address–of matches the value t. Let this

set be denoted by sAleft
(sAright

). Now retrieve the symbolic term (from AUSTIN’s

symbolic store) for each symbolic lvalue in sAleft
(sAright

) to form the set sTleft
(sTright

).

Further add the symbolic terms from sCleft
(sCright

) to sTleft
(sTright

) by forming the

union sTleft
= sCleft

∪ sTleft
(sTright

= sCright
∪ sTright

). Finally check if the term

Tleft (Tright) is either a symbolic expression denoting a single symbolic lvalue (e.g.

one0) or a constant. If it is, update sTleft
(sTright

) such that sTleft
= sTleft

∪ {Tleft}

(sTright
= sTright

∪ {Tright}). Otherwise leave sTleft
(sTright

) unchanged.

The set sTleft
(sTright

) now contains all aliases for Tleft (Tright). Next, AUSTIN

checks if a new node (containing the terms in sTleft
or sTright

) needs adding to the

equivalence graph by checking every symbolic term in every existing node in the graph

and comparing it with the elements in sTleft
(sTright

). If a match is found, AUSTIN

updates the node with the union of the terms in sTleft
(sTright

) and the existing node.

If no match is found, AUSTIN adds a new node with the terms from sTleft
(sTright

)

to the graph. Let nleft denote the equivalence node for Tleft and nright denote the

equivalence node for Tright. Further, let b denote the binary operator in the constraint

representing the last critical branching node in pc′ (i.e. the last constraint in pc′). If b is

an inequality operator (6=), and nleft and nright are the same node, then the constraint

is infeasible and AUSTIN raises an exception. Otherwise it adds an edge between nleft

and nright. Likewise, when b is an equality operator (=) and nleft and nright are two

different nodes, AUSTIN also raises an infeasible constraint exception. The evolution

of the graph with a more elaborate example is shown in Figure 3.9.

Note, before adding a new node to the equivalence graph, AUSTIN checks that the

node does not denote an empty set. This could occur when a constraint still contains

pointer arithmetic that cannot be replaced by a symbolic lvalue because the resulting

memory location is unavailable to AUSTIN. When this happens, AUSTIN forces a

random restart, removing all existing nodes from the equivalence graph, with the hope

of traversing a different path, leading to a new set of more amenable constraints.

Once the equivalence graph has been built, AUSTIN needs to assign concrete values

to the lvalues denoted by the symbolic terms in the graph. The rules for doing this are

52



3.2 AUSTIN

Node Id Example

void testme(item* one, item* two, item* three, item* four) {

(1) if(one != (void*)0)

(2) if(one == two)

(3) if(three == four)

(4) if(one == three)

(5) //target

}

{ o n e _ 0 } { n u l l }

Equivalence graph used to generate inputs for the path which executes the

decision node 1 as true

{one_0, two_0} { n u l l }

{ three_0, four_0}

Equivalence graph used to generate inputs for the path which executes the

decision nodes 1, 2, 3 as true

{one_0,two_0,
three_0,four_0}

{ n u l l }

Equivalence graph used to generate inputs for the path which executes all

decision nodes as true

Figure 3.9: An example illustrating how AUSTIN builds up an equivalence graph of

symbolic terms over successive executions. The graph is used to instantiate the concrete

pointer type inputs to the function under test. The example shows the evolution of the

graph when node 5 has been selected as target.
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implemented in the procedure apply_rules which is shown in Figure 3.11. The nodes

nleft and nright as well the binary operator b form the inputs to that procedure.

If b denotes the arithmetic comparison operator ‘ 6=’, then nleft and nright must

be two separate nodes. Further, at most one node may contain a constant, otherwise

AUSTIN cannot solve the constraint and forces the search to perform a random restart1.

Assuming this property holds, AUSTIN selects a symbolic term at random from the

node which does not contain a constant. If neither node contains a constant, a symbolic

term from nleft is chosen. For the running example this would be the term one0. A

new memory location (via malloc) is then assigned to the lvalue denoted by the chosen

term. All lvalues represented by symbolic terms in the same node are also pointed to

that location. Finally the equivalence graph needs updating by adding an edge between

the node containing the updated terms, and the node containing the symbolic term null

if it does not already exist.

If b denotes the arithmetic comparison operator ‘=’, then nleft and nright must be

the same node and AUSTIN proceeds as follows. If the node nleft contains a constant,

all lvalues denoted by the symbolic terms in nleft are assigned that constant. This

applies to compile time constants as well as runtime constants (e.g. expressions taking

the address of a global variable). Else if nleft contains an edge to the node containing

null, AUSTIN chooses a symbolic term from nleft and assigns a new memory location

to the lvalue denoted by that term. All lvalues represented by the terms in nleft are

assigned the same location. Otherwise AUSTIN assigns the constant null to all lvalues

denoted by the symbolic terms in nleft.

Finally, AUSTIN iterates over all remaining nodes in the graph that contain an

edge to the node denoting the constant null. From each of these nodes it chooses one

symbolic term T and assigns malloc to the lvalue denoted by T . Then all lvalues

denoted by the remaining terms in that node are pointed to the same memory address.

3.2.5.1 Limitations of Pointer Rules

The proposed approach has a few limitations which are set out in the remainder of this

section. Consider the code fragment shown below:

1Note the case where constant1 6= constant2 holds does not apply because it would not invoke a

constraint solving move in AUSTIN.
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Global inputs: force random restart; EG =<N,E>: equivalence graph of symbolic terms; N :

nodes; E ⊆ N × N : edges; mC : map of symbolic terms to their concrete value; mA: map of

symbolic lvalues to their address

solve constraint (s : candidate solution)

pc := path condition describing execution path taken by s

pc′ := sub–path condition extracted from pc; remove all constraints that appear after the last

occurrence of a branching node and remove all constraints which do not specify a constraint over

memory locations

invert last constraint in pc′

add a node containing the symbolic term for null to EG if it does not exist

for each constraint c in pc′ do //c is of the form Tleft ./ Tright

sCleft := collect all concrete aliases of Tleft from mC

sCright := collect all concrete aliases of Tright from mC

sAleft := collect all concrete aliases of Tleft from mA

sAright := collect all concrete aliases of Tright from mA

sTleft := union of set of symbolic terms for the symbolic lvalues in SAleft and sCleft

sTright := union of set of symbolic terms for the symbolic lvalues in SAright and sCright

if isSymbolicLvalue(Tleft) or isConstant(Tleft) then

sTleft := sTleft ∪ Tleft

end if

if isSymbolicLvalue(Tright) or isConstant(Tright) then

sTright := sTright ∪ Tright

end if

n′ := find or create (and add) EG node that contains one of the symbolic terms in sTleft

nleft := n′ ∪ sTleft

n′ := find or create (and add) EG node that contains one of the symbolic terms in sTright

nright := n′ ∪ sTright

if (nleft = ∅ and nright = ∅) or

(nleft 6= nright and containsConstant(nleft) and containsConstant(nright)) then

force random restart := true; return s

else if (nleft = nright and op = ‘6=’) or

(nleft 6= nright and op = ‘=’) then

raise exception “Infeasible constraint”

else if op = ‘=’ then

update EG with nleft ∪ nright

else if op = ‘6=’ then

update nleft and nright in EG

add edge between nleft and nright

end if

if c = p′ then

s′ := apply rules(nleft, nright, ./)

perform evaluation

if requires constraint move(s′) and evaluations < max evaluations then

s′ := solve constraint(s′)

end if

return s′

end if

end for each

Figure 3.10: Pseudo code illustrating the algorithm for constructing an equivalence graph.

The graph forms the basis for deriving values assigned to pointer inputs of a function under

test. 55
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Global inputs: EG =<N,E>: undirected equivalence graph of symbolic terms; N : nodes;

E ⊆ N ×N : edges

apply rules (nleft : set of symbolic terms, nright : set of symbolic terms, op :

binary operator)

if op = “6=” then

if containsConstant(nleft) then

item := choose element from nright

value := malloc(sizeof(item))

assign value to all lvalues denoted by elements in nright

add edge in EG from EG node nright to node containing null

else

item := choose element from Sleft

value := malloc(sizeof(item))

assign value to all lvalues denoted by elements in Sleft

add edge in EG from EG node nleft to node containing null

end if

else if op = “=” then

SU := Sleft ∪ Sright

if containsConstant(SU ) then

item := choose constant from SU

assign item to all lvalues denoted by elements in SU

else

n := node ∈ N containing terms in SU

if hasEdgeToNull(n) then

item := choose element from SU

value := malloc(sizeof(item))

assign value to all lvalues denoted by elements in SU

else

assign null to all lvalues denoted by elements in SU

end if

end if

for each EG node n ∈ N do

if not(containsTerms(n, Sleft)) && not(containsTerms(n, Sright)) then

if hasEdgeToNull(n) then

item := choose symbolic term from n

value := malloc(sizeof(item))

assign value to all lvalues denoted by symbolic terms in n

end if

end if

end for each

Figure 3.11: Pseudo code illustrating the algorithm for assigning concrete values to point-

ers. The manner in which new or existing memory locations are assigned to a function’s

pointer inputs depends on the structure of the equivalence graph.
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void foo(int* ip1, int* ip2) {

if(ip2 - ip1 == 3)

//target

}

AUSTIN is not able to generate inputs to the function that would satisfy the condition

of the if statement, i.e. allocate an array of at least 3 elements, then point ip1 and

ip2 somewhere within the array, 3 elements apart (or ip2 just beyond the end of the

array).

The second limitation occurs in the presence of loops. Consider the two slightly

different code fragments shown below:

typedef struct item { typedef struct item {

int val; int val;

struct item* next; struct item* next;

}; };

void foo(item* p) { void foo(item* p) {

int counter = 0;

while(p != null) { while(p != null) {

counter = counter + 1;

if(p->val == 2) { if(counter == 5) {

//target //target

} }

p = p->next; p = p->next;

} }

} }

While AUSTIN can generate an input to traverse the true branch of the if statement

in the left column within 5 fitness evaluations, it fails to find an input to do the same

for the code in the right column. A previous version of AUSTIN allowed loops to be

unrolled infinitely many times. Thus, with every execution of the function, AUSTIN

increased the length of the list denoted by the input parameter p by one item. As a

consequence, the number of primitive type inputs also grew by one in every iteration,

leading to an increase in the size of the input domain for the AVM. An increased input

domain makes it more difficult for a search to find a solution, although for the particular

example shown in the right column, AUSTIN was able to find a desired input (i.e. a

list of length 5) ‘by chance’. The new version of AUSTIN no longer ‘blindly’ unrolls
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loops and thus does not unnecessarily increase the size of the input domain. Instead

it generates an input which enters the body of the loop just once. Then it gets stuck

trying different values for the input parameter p->val until its fitness budget has been

exhausted. This behaviour will be corrected in future versions of AUSTIN. Before

attempting a random restart, AUSTIN will include a check if a loop condition is a

critical branching node for the current target. If it is, AUSTIN will attempt to increase

the number of loop iterations, e.g. by extending the list in the above example. If this

does not result in an improved fitness value, AUSTIN will continue with a random

restart. Otherwise it will continue with its loop unfolding.

Another limitation is that every constraint needs to be specified in the code in the

form of if statements. For example, AUSTIN cannot infer preconditions to functions.

One common precondition observed while evaluating AUSTIN is that pointers must

point to a valid memory location in order to prevent segmentation faults, and thus a

premature conclusion of the test data generation process. This will be discussed in

more detail in Chapter 4.

3.2.6 The Algorithm

The top level algorithm implemented in AUSTIN is shown as pseudo code in Fig-

ure 3.12. Search algorithms commonly require a user to set an upper bound of fitness

evaluations (i.e. how many times the function under test may be executed) in case the

search fails to find a solution. The default fitness allowance used in AUSTIN is 10, 000

evaluations per branch. This limit can be adjusted by a user. The phrase ‘perform

evaluation’, used throughout the pseudo code describing the different algorithms im-

plemented by AUSTIN, groups together the following actions: execution of a candidate

solution, recording of the execution trace produced by the solution and incrementing

the evaluation count.

The method obj used as part of the pseudo code in Figures 3.12, 3.14 and 3.15

denotes the objective function used in AUSTIN. It returns a value, based on branch

distance and approach level, two common metrics used in search–based testing. The

objective (or fitness) value is used to determine if a neighbour is better than the current

individual. The remainder of this section summarizes the various steps of AUSTIN’s

algorithm.
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Global Inputs: evaluations, max evaluations, input index, force random restart,

increased precision, precision success

Initialize: evaluations := 0, input index := 0, force random restart := false,

increased precision := false, precision success := false

hill climb

s := random

perform evaluation

while obj(s) > 0 and evaluations < max evaluations do

if requires constraint move(s) and not(force random restart) then

s′ := solve constraint(s)

if obj(s′) < obj(s) then

s := s′

else

force random restart := true

end if

reset exploration parameters()

else if neighbourhood explored(s) or force random restart then

s := random

reset exploration parameters()

force random restart := false

perform evaluation

else

primitives := vector of all primitive type variables in s

v := primitives.at(input index)

if typeOf(v) = enum type then

s := make enum move(s)

else

s′ := explore(s)

if obj(s′) < obj(s) then

s := s′

if obj(s) > 0 and evaluations < max evaluations and

not(requires constraint move(s)) then

if increased precision then

precision success := true

end if

repeat iteration := 1

s := pattern move(s, repeat iteration)

end if

end if

end if

end while

Figure 3.12: Pseudo code showing the top level search algorithm implemented in

AUSTIN. It extends a hill climber to include constraint solving rules for pointer inputs

to a function under test. The steps for handling numerical type inputs to a function under

test are based on the alternating variable method introduced by Korel (Kor90).
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First a candidate solution is generated by assigning zero to all primitive type input

parameters and null to all pointer inputs of a function under test. AUSTIN keeps a

separate vector of all primitive type variables (e.g. int, float etc.) in a candidate

solution. During the test data generation process, a series of exploratory and pattern

moves, described in Section 2.1.2, is performed on this vector. The size of the vector

only changes when AUSTIN changes the size of the input domain for the function under

test, e.g. by assigning null or a non–null value to a pointer variable. The pseudo code

of the methods implementing the exploratory and pattern moves in AUSTIN can be

found in Figures 3.13 and 3.14 respectively.

Experiments have shown that exploratory moves are ineffective for n–valued enu-

meration type variables, variables that can only take on n discrete values. AUSTIN

therefore exhaustively explores all n values of an enumeration type. The pseudo code

is shown in Figure 3.15. When a particular value from an enumeration list leads to

a better neighbour, AUSTIN adapts it as the current individual and continues with

exploratory moves for the other elements in its input vector. This approach seems to

scale well in practice.

After every concrete execution of a candidate solution AUSTIN checks if it needs to

apply its pointer solving procedure described in Section 3.2.5, or the hill climb search

laid out in Section 2.1.2 in order to move closer to the target node. The decision (shown

as pseudo code in Figure 3.16) depends on the constraints contained within the last

critical branching node where execution diverged away from the target. The targetOf

operation in Figure 3.16 returns the symbolic term which represents the target of a

pointer. The function isPointerDereference decomposes a symbolic term into its

CIL lvalue (if any), and checks if that lvalue denotes a pointer dereference. By default

this procedure returns true, e.g. when a symbolic term does not contain a CIL lvalue.

Finally, the procedure neighbourhood_explored shown as pseudo code in Fig-

ure 3.2 is used to determine if AUSTIN is stuck on a local optimum and requires a

random restart. If no change in value of any of the primitive type variables leads to

an improvement in fitness, and no constraints over physical memory location remain

to be solved, AUSTIN will seek to generate a new random solution1, thereby sampling

different regions of the search–space. However, before restarting, AUSTIN checks if the

best candidate solution found thus far contains any floating point variables. If it does,

1Pointers are always initialized to null.
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Global Inputs: input index, direction, last direction, last input index

explore (s : candidate solution)

last direction := direction

last input index := input index

primitives := vector of all primitive type variables in s

v := primitives.at(input index)

v := v + (direction ∗ 10−acc(v))

update v in primitives

s′ := (s with updated primitives)

if direction < 0 then

direction := 1

else

direction := −1

increment input index

end if

perform evaluation

return s′

Figure 3.13: Pseudo code illustrating the algorithm for performing exploratory moves

which are part of the alternating variable method.
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Global Inputs: evaluations, max evaluations, direction, last direction,

input index, last input index

pattern move (s : candidate solution, iteration : int)

primitives := vector of all primitive type variables in s

v := primitives.at(last input index)

v := v + (last direction ∗ 10−acc(v) ∗ 2iteration)

update v in primitives

s′ := (s with updated primitives)

perform evaluation

if obj(s′) < obj(s) then

s := s′

if requires constraint move(s) then

return s

else if obj(s) > 0 and evaluations < max evaluations then

s := pattern move(s, iteration+ 1)

end if

end if

reset exploration parameters()

return s

Figure 3.14: Pseudo code illustrating the algorithm for performing pattern moves in

the alternating variable method. Pattern moves are designed to speed up the search by

accelerating towards an optimum.
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Global Inputs: input index, evaluations,max evaluations

make enum move (s : candidate solution)

primitives := vector of all primitive type variables in s

v := primitives.at(input index)

items := get number of items in enum list for v

increment input index

for i := 0 to i < items and evaluations < max evaluations do

set v to the ith item in enum list for v

update v in primitives

s′ := (s with updated primitives)

perform evaluation

if obj(s′) < obj(s) then

reset exploration parameters()

return s′

end if

increment i

end for

return s

Figure 3.15: Pseudo code illustrating the algorithm for optimising n–valued enumeration

type variables, variables that can only take on n discrete values. Whenever an enumeration

type variable is to be optimized, the algorithm iterates over all n values (in the order they

have been declared in the source code).
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Global Inputs: CFG =<N,E>: control flow graph of function F ; N : nodes; E ⊆
N ×N : edges; target ∈ N : current target node; PC: path condition

requires constraint move (s : candidate solution)

t := execution trace produced by s

if target appears in t then

return false

end if

nid := CFG node id which is the last critical branching node in t with respect to

target

p := predicate associated with nid in PC of the form: Tleft ./ Tright

if ./ ∈ {=, 6=} then

if ( isPointerDereference(Tleft) and

isPointer(targetOf(Tleft)) = false ) or

( isPointerDereference(Tright) and

isPointer(targetOf(Tright)) = false ) then

return false

else if isPointer(Tleft) = true and

isPointer(Tright) = true then

return true

else

return false

end if

else

return false

end if

Figure 3.16: Pseudo code illustrating the method for checking if AUSTIN should use its

custom constraint solving rules for pointers, or the alternating variable method to satisfy

the constraint in a branching node.
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Global Inputs: EG =<N,E>: undirected equivalence graph of symbolic terms; N :

nodes; E ⊆ N ×N : edges; input index, direction

reset exploration parameters ()

direction := −1

input index := 0

remove all nodes from EG

Figure 3.17: Pseudo code illustrating the reset operation performed by AUSTIN at every

random restart.

AUSTIN will try and increase the accuracy with which floats are optimized to see if an

increased accuracy is sufficient to escape from the local optimum. Whenever the accu-

racy of a float is increased, AUSTIN restarts its exploratory moves for the current indi-

vidual. If a change in accuracy has no positive effect on the fitness value of an individual,

the change is reverted, and AUSTIN tries to increase the accuracy of the next floating

point variable. Once the accuracy of each floating point input has been increased but

without yielding a better neighbour, AUSTIN proceeds with the random restart. After

every restart, AUSTIN uses the procedure reset_exploration_parameters shown in

Figure 3.17 to reset its search parameters.

3.2.7 Input Initialization

Inputs to the function under test are initialized recursively from within the instru-

mented source code. AUSTIN examines global variables in the source file and all

formal parameters of the function under test. Based on the two lists of variables,

it automatically constructs a test driver which serves as an entry point to the unit

under test. All inputs (globals and formals) are initialized through that function. Fig-

ure 3.18 shows the pseudo code for the top–level input initialization used in AUSTIN.

Its input is a candidate solution consisting of all global and formal parameters for the

function under test, as well as variables denoting different regions of the input mem-

ory graph. The CIL function unrollType returns the type of a variable, resolving

named user defined types. For example, the type of MYCHAR in the following declara-

tion typedef char MYCHAR would be resolved to char. The addrOrStartOf function

is a wrapper for CIL’s mkAddrOrStartOf, which constructs an expression denoting the
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initialize solution(s : candidate solution)

foreach v in s do

t := unrollType(typeOf(v))

if t = data structure or union then

generate struct or union input(t, addrOrStartOf(v))

else

v := initialize input(t, v)

end if

update input map(v)

end foreach

Figure 3.18: Pseudo code illustrating the entry point for initializing a candidate solution

(i.e. the inputs to the function under test) with concrete values.

start of the storage denoted by a variable. The wrapper implements the ‘fake address’

handling for bit fields.

Figure 3.19 shows the procedure initialize_input which uses the type of a vari-

able to generate a concrete value for it. First it checks if the variable has already

been initialized. If it has, its current value is returned by one of the sub–procedures

shown in Figure 3.20. Otherwise the variable is initialized according to AUSTIN’s

current configuration: for example, a user may specify that primitive inputs should

be initialized with random values. Structure (and union) types are initialized by

passing each field of the structure (or union) to initialize_input, or the function

generate_struct_or_union_input in case of nested structures and union types. Fi-

nally, every time an input is assigned a concrete value, the concrete map mC and

address map mA are updated as shown in Figure 3.21.

3.2.7.1 Limitations of Input Types

AUSTIN currently has some limitations when generating input values for the function

under test. Firstly, void pointers are always non–randomly assigned null, and AUSTIN

has no way of changing their value. Secondly, function pointers are also assigned the

constant null. AUSTIN does not attempt to assign the address of functions from

the source code that would form potential matches. Users may edit the test driver

generated by AUSTIN to provide their own implementation of how to instantiate such
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initialize input(t : data type, v : variable)

if not(initialized(v)) then

initialize := true

else

initialize := false

end if

if t = enum type then

return generate enum input(v, t, initialize)

else if t = primitive type then

return generate primitive input(v, t, initialize)

else if t = pointer type then

v := generate pointer input(v, initialize)

update input map(v)

if v 6= null then

if unrollType(typeOf(targetOf(v))) = data structure or union then

generate struct or union input(v)

else

∗v := initialize input(unrollType(typeOf(∗v)), ∗v)

update input map(∗v)

end if

end if

return v

else

failwith “unrecognised input type”

end if

Figure 3.19: Pseudo code illustrating the method assigning concrete values to an input

variable of the function under test.
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Global Inputs: init to zero

generate primitive input(v : variable, t : data type, initialize : boolean)

if initialize = true then

if init to zero = true then

return 0

else

return random number(min(t), max(t))

end if

else

return v

end if

generate enum input(v : variable, t : data type, initialize : boolean)

if initialize = true then

items := list of items with names and values from t. This list

should be non-empty. The item values must be compile–time constants

return items.at(0)

else

return v

end if

generate struct or union input(v : pointer to variable)

foreach member m in ∗v do

t := unrollType(typeOf(v → m)

if t = data structure or union then

generate struct or union input(t, addrOrStartOf(v → m)))

else

v → m := initialize input(t, v → m))

end if

update input map(∗v)

end foreach

generate pointer input(v : pointer variable, initialize : boolean)

if initialize = true then

return null

else

return v

end if

Figure 3.20: This group of methods shows the pseudo code for assigning values to inputs

of the function under test, based on their type declaration.
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Global Inputs: mC : map from symbolic terms to their concrete values; mA: map

from symbolic lvalues to the start of the storage denoted by the symbolic lvalue

(‘fake’ address for bit fields)

update input map(v : variable)

sl := find or create symbolic lvalue for v

st := find or create symbolic term from sl

mark v as initialized

add mapping from sl to addrOrStartOf(v) to mA

add mapping from st to v to mC

Figure 3.21: Pseudo code illustrating how AUSTIN instantiates its map of concrete values

mC and address map mA at the start of every execution of the function under test. The

maps are also updated during the dynamic execution of the function under test.

inputs. Another shortcoming of AUSTIN occurs in the presence of union constructs.

Currently, AUSTIN can only generate input values for the last declaration appearing

in a union because it does not differentiate between structures and unions (see the

procedure generate_struct_or_union_input in Figure 3.20). In order to generate

meaningful values for a union type AUSTIN would require an analysis to determine

which member of a union is being used for a given execution path. This analysis has

not yet been implemented.

A further limitation concerns arrays (such as strings), which are denoted by a

pointer, because AUSTIN can only handle fixed–length arrays. Thus for functions

which contain an array as formal parameter, a tester may need to change the functions

declaration from a pointer notation to an array notation in order for AUSTIN to know

the size of the array. Furthermore, in the case of strings, a tester also has to edit the

test driver in order to manually append a terminating null character to a string.

3.2.8 Usage

AUSTIN has been implemented as a command line tool for Linux and is available

at http://www.dcs.kcl.ac.uk/pg/kiran/software/index.php. One can specify a

target branch, fitness budget and how to initialize primitive type inputs. AUSTIN can

also merge multiple source files into a single file using CIL’s Mergecil module. AUSTIN

is run in two stages: first, a (merged) source file is instrumented and information about
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the function under test is saved in binary data files. Then the instrumented file needs

to be compiled by a user into a shared library, after which AUSTIN is ready to start

the test data generation process.

AUSTIN loads the unit under test, e.g. a set of functions or even a complete

application, as a shared library. As a result both AUSTIN and the unit under test run

in the same address space. This can often lead to problems, e.g. when the function

under test crashes due to an exception such as a segmentation fault. Future versions

of AUSTIN will use separate processes for AUSTIN and the unit under test. This will

avoid AUSTIN being affected by exceptions raised while executing the unit under test.

Furthermore, it enables AUSTIN to use certain exceptions, e.g. segmentation faults,

to guide its input generation.

3.3 Evolutionary Testing Framework

The evolutionary testing framework was developed as part of the EvoTest project (GKWV09)

(IST–33472), applying evolutionary algorithms to the problem of testing software sys-

tems. The ETF supports both black–box and white–box testing and represents the

state–of–the–art for automated evolutionary structural testing. The framework is

specifically targeted for use within industry, with much effort spent on scalability, us-

ability and interface design. It is provided as an Eclipse plugin, and its white–box

testing component is capable of generating test cases for single ANSI C functions. A

full description of the system is beyond the scope of this thesis and the interested reader

is directed towards the EvoTest web page located at www.evotest.eu.

At its core, the ETF contains a user configurable evolutionary engine, which has

been integrated from the GUIDE (CS09) project. The framework also implements a

subset of the approach introduced by Prutkina and Windisch (PW08) to handle pointers

and data structures. It maintains different pools of variables, which are used as the

target of pointers and whose value is optimized by the evolutionary search. Each pool

contains the subset of global variables and formal parameters of the function under

test that are of the same data type. In addition, for parameters denoting a pointer to

a primitive type or data structure, the ETF creates a temporary variable whose type

matches the target type of the pointer. These temporary variables are also added to

the pools.
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Each variable in the pools is assigned an index in the range 0, ..., n − 1, where n

is the size of their pool (i.e. the number of variables in the pool). The individual

(chromosome) describing a pointer input to the function under test contains two fields;

one denoting an index and the other a value. The index is used to select a variable

from the (correct) pool whose address is used as the target for the pointer input. Note

that an index may be negative to denote the constant null. Take the code snippet from

Figure 3.22, and assume that the part of the chromosome describing the formal inputs

to testme is of the form <(0, 5), (1, 6)>, forming a (index, value) pair for each pointer

input1. To test this function the ETF only requires one pool of variables, those of type

int. The pool contains the global variable x (at index 0) and two temporary variables,

var_p (at index 1) and var_q (at index 2). The above chromosome is interpreted by

the ETF as follows. The index of the first pair (0) tells the ETF to use the address

of the variable x as target for the formal parameter p. The value part of the pair is

assigned to the temporary variable var_p. The index of the second pair (1) informs the

ETF to use the address of the variable var_p as target for the pointer q. Its value part

is assigned to the temporary variable val_q, which remains unused in this example. In

this way the ETF is able to generate pointers initialized to null, the same value and

different values. An important difference to AUSTIN is the fact that the ETF cannot

handle pointers to recursive types such as lists and graphs.

3.4 Empirical Study

The empirical study consisted of 8 C functions, selected from three case studies. The

case studies had been selected by Berner & Mattner Systemtechnik GmbH to form part

of the evaluation of the ETF within the EvoTest (GKWV09) project. Each case study

consists of an embedded software module from the automotive area generated using one

of two popular code–generation tools as described in Table 3.1. The eight functions had

been selected to provide a representative sample of their respective case studies, with

particular attention paid to the number of branches and nesting level. Table 3.2 gives

a breakdown of relevant metrics for the selected functions. These functions formed a

benchmark to compare AUSTIN against.

1Chromosomes are passed in XML format to and from the evolutionary algorithm.
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Example Function:

int x;

void testme(int* p, int* q) {
...

}
Concrete input instantiation: Example chromosome:

int val_p = 5; (0, 5), (1, 6)

int val_q = 6;

p = &x; //x is at index 0

q = &val_p; //val_p is at index 1

Figure 3.22: Example showing how the ETF initializes pointers to primitive types. The

chromosome only shows the parts which relate to the two pointer inputs p and q. The

first component of each pair denotes an index (of a variable in a pool) while the second

component denotes a value.

Table 3.1: Case studies. LOC refers to the total preprocessed lines of C source code con-

tained within the case studies. The LOC have been calculated using the CCCC tool (Lit01)

in its default setting. Table 3.2 shows the individual per–function LOC metric.

Case Study LOC Functions Tested Code Generation Tool Software Module

B 18, 200 02, 03, 06 dSpace TargetLink (dT) Adaptive headlight control

C 7, 449 07, 08, 11 ETAS ASCET (ASC) Door lock control

D 8, 811 12, 15 ETAS ASCET Electric window control

Total 34, 460
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In order to extend the applicability of the study, a number of publicly available dy-

namic symbolic execution based testing tools for C, CREST (BS08) and CUTE (SMA05)

were investigated. The goal was to establish whether they could be applied to test sub-

jects in Table 3.1. Unfortunately neither CREST nor CUTE could be applied because

their instrumentation produced uncompilable code.

All functions from the case studies make extensive use of bit fields within data

structures. Bit fields can only be declared inside a data structure or union, and can

be used to specify small objects of a given number of bits in length. They do not have

addresses and you cannot have pointers to them or arrays of them, thus one cannot

apply the address–of operator (&) to a bit field.

Both CREST and CUTE instrument the source code to take the address of variables,

including the addresses of members of a data structure. CREST uses the addresses of

variables as identifiers, maintaining a map from addresses to symbolic expressions. The

precise use of an address of a variable in CUTE is not known. Nevertheless, both CUTE

and CREST cannot be applied to source code containing the use of bit fields. CUTE is

no longer maintained, however this issue has been reported to the developers of CREST

via the Google code website (issue ID 2). In response, the developers of CREST stated

that this bug may be fixed in a future version, but that it remains unresolved for the

time being. However, as a consequence of the bug report they have updated CREST’s

documentation to note the problem with bit fields.

Having restricted the scope of the empirical study to AUSTIN and the ETF, the

purpose of the study was twofold. The first aim was to check whether AUSTIN could be

applied ‘out of the box’ to real industrial code. AUSTIN requires a tester to manually

compile the source code under test into a shared library. Employees at Berner &

Mattner Systemtechnik GmbH raised the concern that not everybody may be familiar

with compiling source code from the command line. In contrast, the ETF contains a

cross–platform Eclipse–based ETF structural test component which is much more user–

friendly and applicable to industrial use. It should be acknowledged that, in contrast

to AUSTIN, whose primary motivation was to provide a research prototype, industrial

applicability was a prime driver of the ETF project. One area in which both tools

could be improved, is the output of the test data. Neither tool currently outputs the

generated test cases in a manner that can easily be integrated into an existing testing

framework.
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Table 3.2: Test subjects. The LOC have been calculated using the CCCC tool (Lit01)

in its default setting. The number of input variables counts the number of independent

input variables to the function, i.e. the member variables of data structures are all counted

individually.

Obfuscated

Function

Name

LOC Branches Nesting Level Nr. Inputs Has Pointer Input

02 919 420 14 80 no

03 259 142 12 38 no

06 58 36 6 14 no

07 85 110 11 27 yes

08 99 76 7 29 yes

11 199 129 4 15 yes

12 67 32 9 3 no

15 272 216 4 28 yes

Total 1, 958 1, 161

Once AUSTIN was setup, the second objective of the study was to investigate the

effectiveness and efficiency of AUSTIN when compared to the ETF.

Effectiveness of AUSTIN

Previous work has compared the AVM with a GA in the context of branch coverage

testing (HM09). However, this is the first study to compare two search–based tech-

niques that use different ways of automatically handling pointer inputs. To the best

of the author’s knowledge this is also the first study which compares two search–based

testing tools on machine generated code. Thus, based on previous work by Harman and

McMinn (HM09) which had found the AVM to be more effective than an evolutionary

search, the goal was to verify their findings which led to the following null and alternate

hypotheses:

H0 : AUSTIN is as effective as the ETF in achieving branch coverage.
HA : AUSTIN is more effective than the ETF in achieving branch coverage.

Efficiency of AUSTIN

Alongside coverage, efficiency is also of paramount importance especially in an indus-
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trial setting. As with coverage, Harman and McMinn (HM09) found an AVM to be

statistically significantly more efficient than a GA for branches which could be covered

by either technique. Often one does not know a priori how successful one technique

is going to be in achieving coverage. For example if a (search–based) technique is in-

effective it will also be inefficient because it will run until its fitness budget has been

exhausted. The goal therefore was to compare the efficiency of AUSTIN and the ETF in

an industrial setting, which led to the formulation of the following null and alternative

hypotheses:

H0 : AUSTIN is equally as efficient as the ETF in achieving branch coverage of a
function.
HA : AUSTIN is more efficient than the ETF in achieving branch coverage of a
function.

3.4.1 Experimental Setup

The data for the experiments with the ETF on the functions listed in Table 3.2 had

already been collected for the evaluation phase of the EvoTest project (GKWV09).

This section serves to describe how the ETF had been configured and how AUSTIN

was adapted to ensure as fair a comparison as possible between AUSTIN and the ETF.

Every branch in the function under test was treated as a goal for both the ETF and

AUSTIN. The order in which branches are attempted differs between the two tools.

AUSTIN attempts to cover branches in the function under test in the reverse breadth

first order they appear in the CFG, while the ETF attempts branches in a depth first

order from the start of the function under test. In both tools branches that are covered

serendipitously while attempting a goal are removed from the list of goals. The fitness

budget, i.e. the maximum number of times the function under test may be executed,

was set to 10, 000 evaluations per branch.

The ETF contains a set of default parameters for its evolutionary engine. A user

may edit this configuration to adapt the evolutionary engine to a particular problem.

For the purpose of this study, the ETF was configured to use a GA whose parameters

were manually tuned to provide a good set which was used for all eight functions. The

GA was set up to use a population size of 200, deploy strong elitism as its selection

strategy, use a mutation rate of 1%, and a crossover rate of 100%.
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In addition to allowing a user to configure the parameters of the evolutionary search,

the ETF also provides the option to reduce the input domain size by narrowing the

bounds of the input variables, or completely excluding them from the search. The

resulting smaller input domain leads to quicker searches, assuming that the bounds

have been set such that all branches can still be feasibly covered. Bounds reduction

can be exploited to harness testers’ knowledge of the semantic properties of input

variables – for example a particular input variable may represent the state of a finite

state machine, in which case for example only the values 0 to 7 of an unsigned 16–

bit integer are necessary to cover all branches in the function. By setting appropriate

bounds for this single variable alone, the input domain size can be reduced by a factor

of 8, 192.

Despite the fact that little semantic knowledge of the input variables was available

(since the functions came from operational systems unfamiliar to the tester), it was

possible to use bounds reduction to substantially reduce the size of the input domain

as detailed in the following paragraphs.

Having selected a function to generate test cases for, the ETF performs a pseudo

variable dependence analysis for the function with respect to global variables. More

precisely, it conducts a syntactic check on global variables appearing in predicates. If

a global variable does not appear in any predicate it is removed from the list of inputs.

This dependence analysis does not include a dataflow or alias analysis, and thus is

unreliable. However, this behaviour of the ETF is built in and unchangeable. It is

worth mentioning that the developers of the ETF are working on a correct variable

dependence analysis for global variables.

After the automatic variable elimination, the ETF displays the remaining input

variables for the function in a bounds reduction window. The following heuristics were

used to reduce the input domain of the remaining variables even further.

Elimination of input variables: Since the automatic parameter reduction performed

by the ETF operates only at the whole variable level there were many situations

where a complete structure is included in the search by default, even though only

a minority of its members are relevant for branching decisions. By manual in-

spection of the code, where practical, it was possible to determine which member
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variables were not relevant to the control flow. Variables that the tester deter-

mined with certainty were not relevant for branching decisions (by means of this

manual data flow analysis), were removed from the input domain.

Bounds reduction of ‘boolean’ variables: Since C does not contain a boolean

type 1, such variables are often implemented as integers. Through inspection of

the code it is possible to identify these variables and set their bounds to [0, 1].

The following indicators for boolean–type integers were used:

� typedef definitions such as typedef int Bool

� variable name prefixes indicating that the variable is used as a boolean, e.g.

short blVariable

� manual analysis of the function body, which showed that only boolean op-

erations were performed on certain variables.

Bounds reduction of other variables: It was sometimes possible to deduce suit-

able bounds for other integer–type variables through code inspection. An example

is where a particular variable is only used as the input to a switch statement. In

this case the variable bounds can be set according to the minimum and maximum

values matched by the case statements, ensuring that the default statement will

also be matched.

By default, AUSTIN does not include any form of input domain reduction. To

ensure the comparison between the ETF and AUSTIN was as fair as possible, AUSTIN

was extended to apply the same input domain reduction as the ETF which has been

described above. AUSTIN’s test driver was modified to ignore the same global variables

as were discarded by the ETF as unused, despite the limitations of the underlying tech-

nique used in the ETF to perform such analysis. User–based input domain reductions

performed in the ETF were saved in an XML file. AUSTIN was adapted to parse this

file and apply the same configuration to its inputs. The modifications to AUSTIN were

performed for this study only and are not part of the downloadable tool.

1C99 does contain a bool type.
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Table 3.3: Summary of functions with a statistically significant difference in the branch

coverage achieved by AUSTIN and the ETF. The columns StdDev indicate the standard

deviation from the mean for ETF and AUSTIN. The t value column shows the degrees

of freedom (value in brackets) and the result of the t–test. A p value of less than 0.05

means there is a statistically significant difference in the mean coverage between ETF and

AUSTIN.

Function Coverage StdDev (%) Coverage StdDev (%) t value p

ETF (%) AUSTIN (%)

02 91.15 0.09 91.81 0.42 t(58) = 7.15 1.6 · 10−9

08 85.53 0.00 82.89 0.00 t(58) = Inf 0

12 98.48 1.76 100.0 0.00 t(63) = 4.93 6.3 · 10−6

3.4.2 Evaluation

Effectiveness of AUSTIN. Figure 3.23 shows the level of coverage achieved by both,

the ETF and AUSTIN, with error bars in each column indicating the standard error

of the mean. The results provide evidence to support the claim that AUSTIN can be

equally effective in achieving branch coverage than the more complex search algorithm

used as part of the ETF. In order to test the hypothesis that AUSTIN is more effective

than ETF in terms of branch coverage, a test for statistical significance was performed

to compare the coverage achieved by each tool for each function. A two–tailed test was

chosen such that reductions in the branch coverage achieved by AUSTIN compared with

the ETF could also be tested. Since the samples were often distinctly un–normally

distributed and possessed heterogeneous variances and skew, the samples were first

rank–transformed as recommended by Ruxton (Rux06). Then a two–tailed t–test for

unequal variances with (p ≤ 0.05) was carried out on the ranked samples. The two–

tailed t–test was used instead of the Wilcoxon–Mann–Whitney test because the latter

is sensitive to differences in the shape and variance of the distributions.

As shown in Figure 3.23 and detailed in Table 3.3, AUSTIN delivered a statisti-

cally significant increase in coverage for functions 02 and 12. For function 08 AUSTIN

achieved a statistically significant lower branch coverage than the ETF (82.9% vs.

85.5%, t(58) = Inf). For all other functions, the null–hypothesis that the coverage

achieved by the two tools comes from the same population was not rejected. Over-

all, these findings support and extend the previous independently obtained results by

Harman and McMinn (HM09) to machine generated code.

78



3.4 Empirical Study

Figure 3.23: Average branch coverage of the ETF versus AUSTIN (N ≥ 30). The y−axis
shows the coverage achieved by each tool in percent, for each of the functions shown on

the x − axis. The error bars show the standard error of the mean. Bars with a ∗ on top

denote a statistically significant difference in the mean coverage (p ≤ 0.05).
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Function 08 is interesting because it is the only function for which AUSTIN performs

significantly worse than the ETF. Therefore the results were analysed in more detail.

The first point of interest was the constant number of fitness evaluations AUSTIN used

during the 30 runs of this function. Recall that AUSTIN starts with all primitive type

inputs initialized to zero and all pointers set to null. Thus, in all 30 runs, the search

starts from the same point in the search–space. Further, manual inspection of the code

determined that the behaviour of function 08 is to all intents and purposes deterministic,

though one cannot prove this property (without solving the halting problem). For

a given solution, provided the behaviour of the program is deterministic, AUSTIN

will also be deterministic, i.e. choose the same neighbours, up until either a random

restart is required, or it has found a solution. Therefore a constant number of fitness

evaluations only occurs in one of two cases: 1) AUSTIN is able to find a solution

for each target branch from its initial starting point; 2) for all targets which require

AUSTIN to perform a random restart, it fails to find a solution, i.e. the random restart

has no effect on the success of AUSTIN. In this case it will continue until its fixed limit

of fitness evaluations has been reached.

The second interesting result for function 08 was the significant reduction in cover-

age between AUSTIN and ETF. AUSTIN was unable to cover thirteen branches, which

were guarded by a ‘hard to cover’ condition. Manual analysis of the function showed

that the difficult condition becomes feasible when traversing only 2 of the 63 branches

prior to it. The other 61 branches lead to a ‘killing’ assignment of the input variable,

whose value is checked in the difficult guarding condition. The paths which contain one

of the two branches, which make the difficult condition feasible, are themselves hard to

cover. To see if AUSTIN’s failure was due to the difficulty of the problem or, because

not enough resources had been allocated, 30 runs for AUSTIN were repeated for func-

tion 08. This time no input domain reduction was used and AUSTIN was allocated

a fitness budget of 100, 000 evaluations per branch. The results show that, given this

larger fitness budget, AUSTIN is on average able to cover 97.60% of the branches. This

is a marked increase from the average coverage of 82.89% that AUSTIN achieved with

a fitness budget of only 10, 000 evaluations. The experiments could not be repeated for

the ETF with the extended fitness budget of 100, 000 evaluations per branch, because

the fitness budget of 10, 000 evaluations per branch is currently hard coded in the ETF.
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Figure 3.24: Average branch coverage of random search versus AUSTIN (N ≥ 29). The

y − axis shows the coverage achieved by each tool in percent, for each of the functions

shown on the x− axis. The error bars show the standard error of the mean. Bars with a

∗ on top denote a statistically significant difference in the mean coverage (p ≤ 0.05).

Therefore it is not possible to say how the ETF would have performed given a larger

fitness budget.

Efficiency of AUSTIN. Figure 3.25 shows the average number of fitness evaluations

used by both ETF and AUSTIN when trying to achieve coverage of each function.

In order to test the hypothesis that AUSTIN is more efficient than ETF in terms of

branch coverage, a two–tailed test for statistical significance was performed to compare

the mean number of fitness evaluations used by each tool to cover each function. Since

the difference in achieved coverage between the two tools was generally very small, it

was neglected when comparing their efficiency. A two–tailed test was carried out to

also test for functions in which AUSTIN’s efficiency was worse than that of the ETF.

The distributions of the samples were sufficiently normal (as determined by bootstrap

re–sampling each sample–pair over 1000 iterations and visual inspection of the resulting

distribution of mean values) to proceed with a two–tailed t–test for unequal variances

on the raw unranked samples (p ≤ 0.05).
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Figure 3.25: Average number of fitness evaluations (normalized) for ETF versus AUSTIN

(N ≥ 30). The y − axis shows the normalized average number of fitness evaluations for

each tool relative to the ETF (shown as 100%) for each of the functions shown on the

x−axis. The error bars show the standard error of the mean. Bars with a ∗ on top denote

a statistically significant difference in the mean number of fitness evaluations (p ≤ 0.05).

82



3.4 Empirical Study

Table 3.4: Summary of functions with statistically significant differences in the number

of fitness evaluations used. The columns StdDev indicate the standard deviation from the

mean for ETF and AUSTIN. The t value column shows the degrees of freedom (value

in brackets) and the result of the t–test. A p value of less than 0.05 means there is a

statistically significant difference in the mean number of fitness evaluations between ETF

and AUSTIN.

Function Evals StdDev (%) Evals StdDev (%) t value p

ETF (%) AUSTIN (%)

02 100 1.90 108.78 0.08 t(58) = 7.67 2.20 · 10−10

03 100 11.14 84.23 6.18 t(58) = 7.00 2.00 · 10−9

06 100 24.76 86.94 23.42 t(58) = 2.10 0.04

07 100 52.40 54.09 6.04 t(63) = 4.79 1.00 · 10−5

08 100 5.97 113.10 0.00 t(58) = 9.11 8.70 · 10−13

11 100 6.90 85.58 15.79 t(58) = 4.41 4.49 · 10−5

12 100 78.33 25.25 19.48 t(63) = 5.13 3.02 · 10−6

15 100 3.03 93.55 0.90 t(58) = 9.22 5.80 · 10−13

As shown in Figure 3.25, AUSTIN delivered a statistically significant increase in

efficiency compared with the ETF for functions 03, 06, 07, 11, 12, 15. For functions 02

and 08, AUSTIN used a statistically significant larger number of evaluations to achieve

its respective level of branch coverage. The results are summarised in Table 3.4.

Comparison with random search. As a sanity check, the efficiency and effec-

tiveness of AUSTIN was compared with a random search. Since the random search

was performed using the ETF, the same pointer handling technique and input do-

main reduction were applied as described in Sections 3.3 and 3.4.1 respectively. The

ETF repeatedly generated and evaluated the initial random population of a standard

evolutionary search. The coverage data is presented in Figure 3.24 and efficiency in

Figure 3.26. Results show that, using the same tests for statistical significance as

described in the previous paragraphs, AUSTIN covers statistically significantly more

branches than random for functions 02, 03, 07, 11 and 12. For functions 06 and 15

there is no statistically significant difference in coverage, while for function 08, AUSTIN

performs statistically significantly worse than random. However, given a larger fitness

budget, as already described, AUSTIN is able to achieve a higher coverage for function

08 than the one shown in Figures 3.23 and 3.24.

Comparing AUSTIN’s efficiency with that of a random search, AUSTIN is statisti-
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Figure 3.26: Average number of fitness evaluations (normalized) for random versus

AUSTIN (N ≥ 29). The y − axis shows the normalized average number of fitness evalua-

tions for each tool relative to the random search (shown as 100%) for each of the functions

shown on the x−axis. The error bars show the standard error of the mean. Bars with a ∗
on top denote a statistically significant difference in the mean number of fitness evaluations

(p ≤ 0.05).

cally significantly more efficient than random for functions 02, 03, 07, 11, 12, and 15.

For function 06 one cannot say that either random or AUSTIN is more efficient, while

for function 08 random is statistically significantly more efficient than AUSTIN.

3.4.3 Threats to Validity

Naturally there are threats to validity in any empirical study such as this. This section

provides a brief overview of the threats to validity and how they have been addressed.

This chapter studied two hypotheses; 1) that AUSTIN is more effective than the ETF

in achieving branch coverage of the functions under test and 2) that AUSTIN is more

efficient than the ETF. Whenever comparing two different techniques, it is important

to ensure that the comparison is as reliable as possible. Any bias in the experimental

design that could affect the obtained results poses a threat to the internal validity of the
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experiments. One potential source of bias comes from the settings used for each tool

in the experiments, and the possibility that the setup could have favoured or harmed

the performance of one or both tools.

The experiments with the ETF had already been completed as part of the EvoTest

project, thus it was not possible to influence the ETF’s setup. It had been manually

tuned to provide the best consistent performance across the eight functions. Therefore

care was taken to ensure that AUSTIN was adjusted as best as possible to use the same

settings as the ETF. AUSTIN was adapted to parse ETF’s XML bounds file in order to

capture the input domain reduction performed by the tester during ETF’s evaluation.

To ensure AUSTIN discarded the same global input variables as the ETF, AUSTIN’s

test driver was manually adapted through analysis of the instrumented source code

produced by the ETF. As can be seen from the results for function 08, the setup used

may have had an adverse effect on the performance of AUSTIN. This was proven by

repeating the experiments for that function with a larger fitness budget and without the

input domain reduction. Those experiments showed that AUSTIN was able to achieve

a much higher coverage than with its original setup.

Another potential source of bias comes from the inherent stochastic behaviour of

the meta–heuristic search algorithms used in AUSTIN and the ETF. The most reliable

(and widely used) technique for overcoming this source of variability is to perform tests

using a sufficiently large sample of result data. In order to ensure a large sample size,

experiments were repeated at least 30 times. To check if one technique is superior to

the other a test for a statistically significant difference in the mean of the samples was

performed. Care was taken to examine the distribution of the data first, in order to

ensure the most robust statistical test was chosen to analyse the data.

A further source of bias includes the selection of the functions used in the empirical

study, which could potentially affect its external validity, i.e., the extent to which it

is possible to generalise from the results obtained. The functions used in the study

had been selected by Berner & Mattner Systemtechnik GmbH on the basis that they

provided interesting and worthwhile candidates for automated test data generation.

Particular attention was paid to the number of branches each function contained, as

well as the maximum nesting level of if statements within a function. Finally, all

the functions from the study contain machine generated code only. While the overall

number of branches provides a large pool of results from which to make observations,
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the number of functions itself is relatively small. Therefore, the results reported in the

empirical study should not be viewed in isolation, but rather as an extension of pre-

vious work by Harman and McMinn (HM09), independently replicating their findings.

Nevertheless, caution is required before making any claims as to whether these results

would be observed on other functions, in particular hand written code. This concern

will be addressed in Chapter 4.

3.5 Conclusion

This chapter has introduced and evaluated the AUSTIN tool for search–based software

testing. AUSTIN is a fully featured, free, publicly available tool for search–based test

data generation. It uses an alternating variable method, augmented with a set of sim-

ple constraint solving rules for pointer inputs to a function. Test data is generated by

AUSTIN to achieve branch coverage for large C functions. In a comparison with the

ETF, a state–of–the–art evolutionary testing framework, AUSTIN performed as effec-

tively and considerably more efficiently than the ETF for eight non–trivial C functions,

which were implemented using code–generation tools.

As mentioned in the Section 3.4.3, further experiments are required in order to

gain a better understanding of how well AUSTIN and search–based testing in general

perform on real–world code, especially hand written code. This is the subject of the

next chapter.
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Chapter 4

An Empirical Investigation

Comparing AUSTIN and CUTE

4.1 Introduction

The previous chapter described how search–based testing has been extended to generate

input values for pointers and dynamic data structures. It draws on ideas first introduced

in dynamic symbolic execution, another strand of research in software testing that has

seen a sustained growth of interest over recent years (GKS05; CE05; SMA05; TdH08).

The majority of publicly available testing tools are also based on dynamic symbolic

execution techniques. This chapter aims to evaluate the extended version of search–

based testing introduced in Chapter 3 against a dynamic symbolic execution based

tool, CUTE. Dynamic symbolic execution combines concrete execution with symbolic

execution and is thus sometimes referred to as concolic testing. The term concolic was

coined by Sen et al. (SMA05) in their work introducing the CUTE tool. It stands for

combining concrete execution with symbolic execution. The remainder of this chapter

will use the term concolic in place of dynamic symbolic execution.

Whilst many papers argue that both concolic and search–based techniques are bet-

ter than random testing (SMA05; WBS01; HM09), there has been little work investigat-

ing and comparing their effectiveness with real–world software applications. Previous

work has tended to be small–scale, considering only a couple of programs, or considering

only parts of individual applications to which the test generation technique is known

in advance to be applicable. Furthermore, the test data generators themselves have
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tended not to apply test data generation tools ‘out of the box’; i.e. without customiza-

tion, special handling for different test subjects, or parameter tuning. This leaves the

literature without convincing answers to several important questions, including:

1. How effective are concolic and search–based tools when applied to real–world

software applications?

2. To what types of program are the concolic and search–based approaches best

suited?

3. How long does it take for concolic and search–based tools to achieve certain levels

of coverage?

The aim of this chapter is to provide answers to these questions. In order for

automated test data generation approaches to achieve their full potential it is necessary

for them to be evaluated using realistic non–trivial programs without any ‘special’ (i.e.

human) intervention to smooth over the difficult ‘real–world’ challenges that might

be encountered. An empirical study is performed which compares a concolic tool,

CUTE (SMA05), and AUSTIN. The test adequacy criterion under investigation is

branch coverage. The primary contributions of this chapter are the following:

1. An empirical study which determines the level of code coverage that can be ob-

tained using CUTE and AUSTIN on the complete source code of five open source

programs. Perhaps surprisingly, the results show that only modest levels of cov-

erage are possible at best, and there is still much work to be done to improve test

data generators.

2. An empirical study investigating the wall clock time required for each tool to

obtain the coverage that it does, and thus an indication of the efficiency of each

individual approach.

3. An assessment, based on the empirical study, of where CUTE and AUSTIN suc-

ceeded and failed, and a discussion and detailed analysis of some of the challenges

that remain for improving automated test data generators to achieve higher levels

of code coverage.
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The rest of the chapter is organized as follows. Section 4.2 provides the background

information to the concolic tool CUTE, which the empirical study presented in this

chapter uses. Section 4.3 outlines the motivation for this work, the research questions

addressed, and the gap in the current literature this chapter is trying to close. The

empirical study, results and answers to the research questions are presented in Sec-

tion 4.4, whilst threats to validity are addressed in Section 4.5. Section 4.6 discusses

remaining open problems in automated test data generation as a result of the empirical

work carried out in this chapter. Section 4.7 presents related work before Section 4.8

concludes the chapter.

4.2 CUTE

As described in Chapter 2, concolic testing builds on the ideas of symbolic execution.

For a given path through a program, symbolic execution involves constructing a path

condition; a system of constraints in terms of the input variables that describe when

the path will be executed. CUTE attempts to execute all feasible program paths,

using a depth first strategy. The first path executed is the one, which is traversed

with all zero or random inputs. The next path to be attempted is the previous path,

but taking the alternative branch at the last decision statement executed in the path.

The new path condition is therefore the same as the previous path condition, but

with the last constraint negated, allowing for substitution of sub–expressions in the

new path condition with sensible concrete values (as in the examples in Section 2.2.2).

For programs with unbounded loops, CUTE may keep unfolding the body of the loop

infinitely many times, as there may be an infinite number of paths. The CUTE tool

is therefore equipped with a parameter which places a limit on the depth first path

exploration strategy. A more detailed description of how CUTE handles input variables

of both primitive and pointer type, has been presented as part of the literature review

in Chapter 2.

4.3 Motivation and Research Questions

One of the first tests for any automatic test data generation technique is whether

it outperforms random testing. Many authors have demonstrated that both concolic
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Table 4.1: Details of the test subjects used in the empirical study. In the ‘Functions’

column, ‘Non–trivial’ refers to functions that contain branching statements. ‘Top–level’

is the number of non–trivial, public functions that a test driver was written for, whilst

‘tested’ is the number of functions that were testable by the tools (i.e. top–level functions

and those that could be reached interprocedurally). In the ‘Branches’ column, ‘tested’ is

the number of branches contained within the tested functions.

Test Lines Functions Branches

Subject of Code Total Non–Trivial Top Level Tested Total Tested

libogg 2, 552 68 33 32 33 290 284

plot2d 6, 062 35 35 35 35 1, 524 1, 522

time 5, 503 12 10 8 10 202 198

vi 81, 572 474 399 383 405 8, 950 8, 372

zile 73, 472 446 339 312 340 3, 630 3, 348

Total 169, 161 1, 035 816 770 823 14, 596 14, 084

based and search–based techniques can outperform purely random test data generation.

However, there are fewer studies that have attempted to evaluate concolic and search–

based approaches on real–world programs.

Previous studies have tended to be small–scale (Kor90; WBS01) or, at least in the

case of search–based approaches, concentrated on small ‘laboratory’ programs. Where

production code has been considered, work has concentrated solely on libraries (Ton04)

or individual units of applications (HM09); usually with the intention of demonstrating

improvements or differences between variants of the techniques themselves.

Studies involving concolic approaches have also tended to focus on illustrative ex-

amples (SMA05; WMMR05; CTS08; CE05), with relatively little work considering

large scale real–world programs such as the vim text editor (BS08; MS07), network

protocols (God07a) or windows applications (God07b). Furthermore, no studies have

compared the performance of concolic and search–based testing on real–world applica-

tions.

The research questions to be answered by the empirical study are therefore as

follows:

RQ 1: How effective are concolic and search–based test data generation for

real–world programs? Given a set of real–world programs, how good are concolic

and search–based test data generators at achieving structural coverage?
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RQ 2: What is the relative efficiency of each individual approach? If it turns

out that both approaches are more or less equally effective at generating test data,

efficiency will be the next issue of importance as far as a practitioner is concerned. If

one approach is more effective but less efficient than the other, what is the trade off

that the practitioner has to consider?

RQ 3: Which types of program structure did each technique fail to cover?

Which functions could the tools not handle, and for the functions which could be

handled, what types of branches remained stubborn to the test generation process?

Thus, what are the challenges that remain for automatic test data generation tools?

4.4 Empirical Study

The empirical study was performed on a total of 87, 589 preprocessed lines of C code

contained within four open source programs. This is the largest study of search–based

testing by an order of magnitude and is similar in size to the largest previous study of

any form of concolic testing.

4.4.1 Test Subjects

Details of the subjects of the empirical study are recorded in Table 4.1. A total of

770 functions were tested. Since the study is concerned with branch coverage, trivial

functions not containing any branches were ignored. In addition, further functions had

to be omitted from the study, because they could not be handled by either CUTE or

AUSTIN. These included functions whose inputs were files, data structures involving

function or void pointers, or had variable argument lists. These problems are discussed

further in Section 4.4.3 in the answer to RQ 3.

The programs chosen are not trivial for automated test data generation. libogg is a

library used by various multimedia tools and contains functions to convert to and from

the Ogg multimedia container format, taking a bitstream as input. plot2d is a relatively

small program which produces scatter plots directly to a compressed image file. The

core of the program is written in ANSI C, however the entire application includes C++

code. Only the C part of the program was considered during testing because the tools

handle only C. time is a GNU command line utility which takes, as input, another
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process (a program) with its corresponding arguments and returns information about

the resources used by a specific program, including wall–clock and CPU times. vi is a

common text editor in Unix, and makes heavy use of string operations; as does zile,

another GNU program, designed to be a more lightweight version of Emacs.

4.4.2 Experimental Setup

Each function of each test subject was taken in turn (hereinafter referred to as the

‘FUT’ – Function Under Test), with the aim of recording the level of coverage that

could be achieved by each respective tool.

Since CUTE and AUSTIN take different approaches to test data generation, care

had to be taken in setting up the experiments so that the results were not inadvertently

biased in favour of one of the tools. The main challenge was identifying suitable stopping

criteria that were ‘fair’ to both tools. Both tools place limits on the number of times

the function under test can be called, yet this is set on a per–function basis for CUTE

and a per–branch basis for AUSTIN. Furthermore, one would expect CUTE to call the

function under test less often than AUSTIN because it carries out symbolic evaluation.

Thus, setting a limit that was ‘equal’ for both tools was infeasible. Therefore it was

decided that each limit would be set to a high value, with a time limit of 2 minutes

of wall clock time per FUT as an additional means of deciding when a tool’s test data

generation process should be terminated.

CUTE’s limit was set to the number of branches in the FUT multiplied by 10, 000.

CUTE can reach this limit in only two cases; firstly if it keeps unfolding a loop structure,

in which case it will not cover any new branches; or secondly if the limit is less than

the number of interprocedural branches (which was not the case for any of the test

subjects considered). AUSTIN’s limit was set to 10, 000 FUT executions per branch.

Often AUSTIN did not exhaust this limit but was terminated by the overall time limit

instead.

Thirty ‘trials’ were performed for each tool and each function of each test subject.

AUSTIN is stochastic in nature, using random points to restart the search strategy

once the initial search, starting with all primitives as zero, fails. Thus, several runs

need to be performed to sample its behaviour. CUTE was also executed thirty times

for each function, so that AUSTIN did not benefit unfairly from multiple executions.
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Coverage was measured in two ways. The first is respective to the branches cov-

ered in the FUT only. A branch is counted as covered if it is part of the FUT, and is

executed at least once during the thirty trials. The second measure takes an interpro-

cedural view: a branch is counted as covered if it is part of the FUT or any function

reachable through the FUT. Interprocedural coverage is important for CUTE, since

path conditions are computed in an interprocedural fashion. Any branches covered

interprocedurally by AUSTIN, however, are done so serendipitously as the tool only

explicitly targets branches in the FUT.

Apart from the settings necessary for a fair comparison, as discussed above, both

tools were applied ‘out of the box’, i.e. with default parameters and without the writing

of special test drivers for any of the test subjects. As mentioned in Section 4.2, CUTE

has an option to limit the level of its depth first search, thus preventing an infinite

unfolding of certain loops. However, as it is not generally known, a priori, what a

reasonable restriction is, CUTE was used in its default mode with no specified limit,

i.e. an unbounded search.

The test driver for both tools is not only responsible for initializing input pa-

rameters, but also the place to specify any preconditions for the function under test.

AUSTIN generates a test driver automatically by examining the signature of the FUT.

The test drivers for CUTE had to be written manually but were constructed using the

same algorithm as AUSTIN. Writing preconditions for functions without access to any

specifications is non–trivial. For the study only the source code was available with no

other documentation. Therefore it was decided the only precondition to use was to

require top level pointers (i.e. formal parameters or global variables of pointer type)

to be non–null.

4.4.3 Answers to Research Questions

RQ 1: How effective are concolic and search–based test data generation for

real–world programs? Figure 4.1 plots three different ‘views’ of the coverage levels

obtained by CUTE and AUSTIN with the test subjects. The first view, Figure 4.1(a),

presents coverage of branches in the FUT only. However, CUTE places an emphasis

on branches covered in functions called by the FUT, building up path conditions in-

terprocedurally. For AUSTIN interprocedural branch coverage is incidental, with test
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(a) Branches covered only as part of the function under test

(b) Branches covered in the function under test and interprocedurally

(c) Branches covered in functions that CUTE can handle only

Figure 4.1: Branch coverage for the test subjects with CUTE and AUSTIN. CUTE ex-

plicitly explores functions called by the function under test, whereas AUSTIN does not.

Therefore the graph 4.1(a) counts only branches covered in each function tested individu-

ally. Graph 4.1(b) counts branches covered in the function under test and branches covered

in any functions called. Graph 4.1(c) is graph 4.1(b) but with certain functions that CUTE

cannot handle excluded.
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Table 4.2: Test subjects used for comparing wall clock time and interprocedural branch

coverage.

Test Subject Function Branches

Function

Under Test

(Interprocedural)

libogg ogg stream clear 8 (8)

oggpack read 14 (14)

plot2d CPLOT BYTE MTX Fill 4 (8)

CPLOT DrawDashedLine 56 (56)

CPLOT DrawPoint 16 (16)

time resuse end 6 (6)

vi compile 348 (348)

exitex 4 (4)

main old 152 (174)

plod 174 (174)

pofix 4 (4)

vappend 134 (426)

vgetline 220 (228)

vmain 404 (480)

vmove 30 (30)

vnpins 6 (108)

vputchar 148 (212)

zile astr rfind cstr 6 (6)

check case 6 (6)

expand path 82 (84)

find window 20 (20)

line beginning position 8 (8)

setcase word 40 (74)

Total 1, 890 2, 494
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Table 4.3: Interprocedural branch coverage for the sample branches from Table 4.2 and

the wall clock time taken to achieve the respective levels of coverage.

Function CUTE AUSTIN

Time Branches covered Time Branches covered

(s) Function (Inter- (s) Function (Inter-

procedural) procedural)

libogg

ogg stream clear 0.84 7 (10) 134.75 5 (7)

oggpack read 0.24 2 (2) 0.18 2 (2)

plot2d

CPLOT BYTE MTX Fill 131.25 4 (4) 130.05 1 (1)

CPLOT DrawDashedLine 130.43 13 (13) 130.4 37 (37)

CPLOT DrawPoint 0.51 13 (13) 131.82 13 (13)

time

resuse end 0.42 4 (4) 131.84 5 (5)

vi

compile 2.11 26 (26) 34.14 24 (24)

exitex 146.47 1 (1) 0.22 1 (1)

main old 0.45 0 (0) 0.31 0 (0)

plod 1.58 18 (18) 137.17 18 (18)

pofix 0.41 1 (1) 135.08 1 (1)

vappend 0.53 6 (6) 0.26 6 (6)

vgetline 0.81 3 (3) 0.26 3 (3)

vmain 0.27 3 (3) 0.3 3 (3)

vmove 0.79 3 (3) 0.24 3 (3)

vnpins 0.22 2 (2) 0.25 2 (2)

vputchar 0.2 4 (4) 0.25 4 (4)

zile

astr rfind cstr 0.45 2 (2) 0.17 2 (2)

check case 0.38 1 (1) 130.49 6 (6)

expand path 0.37 0 (1) 0.16 0 (1)

find window 0.4 1 (1) 131.4 1 (1)

line beginning position 0.27 0 (0) 0.18 0 (0)

setcase word 0.31 0 (0) 0.18 0 (0)
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generation directed only at the FUT. Therefore, Figure 4.1(b) plots interprocedural cov-

erage data which, in theory, should be favourable to CUTE. Finally, CUTE could not

attempt 138 functions, containing 1, 740 branches. Some of these functions involved

void pointers, which cannot be handled by CUTE. However, a number of functions

could not be tested by CUTE because the test subject did not compile after CUTE’s

instrumentation. For certain functions of the zile test subject, the instrumentation

casts a data structure to an unsigned integer, and subsequently tries to dereference a

member of the data structure, which results in an error. Since CUTE’s exploration be-

haviour is interprocedural, all functions within this source file became untestable. Thus,

Figure 4.1(c) plots interprocedural branch coverage, but removing these branches from

consideration.

Strikingly, all three views of the coverage data show that in most cases, the majority

of branches for an application were not covered by either tool. The only exception is

the plot2d test subject. Here, AUSTIN managed 77% coverage taking interprocedural

branches into account, compared to CUTE’s 50%. Code inspection revealed that 13

functions in plot2d contained unbounded loops. CUTE therefore never attempted to

cover any more branches preceding the body of the loop (both intraprocedural and

interprocedural) and instead kept increasing the number of loop iterations by one until

its timeout or iteration limit was reached. For all other subjects, coverage for either

tool does not exceed 50% whatever ‘view’ of the data is considered. It has to be noted,

however, that AUSTIN does seem to cover a higher number of the branches. When a

modified path condition falls outside the supported theory of CUTE’s constraint solver,

unlike AUSTIN, CUTE does not try a fixed number of random ‘guesses’ in order to

find test data. AUSTIN on the other hand will spend 10, 000 attempts at covering the

branch. In the worst–case this is equal to performing a random search. Nevertheless,

it has a higher chance of finding test data than CUTE simply because it spends more

effort per branch.

To conclude, these data suggest that the concolic and search–based approaches are

not as effective for real–world programs as researchers may have previously been led to

believe by previous smaller–scale studies. RQ 3 aims to identify where the problems

were and where the challenges remain. Before this, the efficiency of each of the tools is

examined with respect to a subset of the branches.

97



4. AN EMPIRICAL INVESTIGATION COMPARING AUSTIN AND
CUTE

void testme(int upb, ...) {

...

while(upb > 0) {

upb = upb - 1;

...

}

...

}

Figure 4.2: An example used to illustrate how a random restart in AUSTIN can affect

the runtime of a function under test, and thus the test data generation process. Very

large values of upb may have a significant impact on the wall clock time of the test data

generation process.

RQ 2: What is the relative efficiency of both approaches? In order to answer

this research question, a random sample of 23 functions was taken and the performance

of each individual tool analysed further. These functions are listed in Table 4.3 and

comprise 1, 890 branches, with a further 604 reachable interprocedurally.

CUTE times out (reaching the 120 second limit) on three occasions. This is because

CUTE gets stuck unfolding loops in functions called interprocedurally. AUSTIN times

out on eight occasions. For example, the function ogg_stream_clear from libogg

takes as input a pointer to a data structure containing 18 members, one of which is

an array of 282 unsigned characters, while 3 more are pointers to primitive types.

Since AUSTIN does not use any input domain reduction, it has to continuously cycle

through a large input vector in order to establish a direction for the search so it can start

applying its pattern moves. Secondly, unbounded loops cause problems for AUSTIN

with respect to the imposed timeout. Whenever AUSTIN performs a random restart,

it has a high chance of increasing the number of loop iterations by assigning a large

value to the termination criterion, thus slowing down execution time of the function

under test. An example is shown in Figure 4.2. Depending on the value of upb, the

function will take varying amounts of time to execute.

The table does not reveal a prevailing pattern that would allow us to simply conclude

that ‘CUTE is more efficient’ or vice versa. The results are very much dependent on

the function under consideration. However, unless the tool gets ‘trapped’ (e.g. CUTE
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Table 4.4: Errors encountered for test data generation for the sample of branches listed

in Table 4.3.

CUTE AUSTIN

Timeout 91 277

Aborted 0 113

Segmentation fault 419 180

Floating point error 60 90

Failed to take predicted path 30 n/a

continually unfolding a loop), each tool can be expected to terminate within a second,

which is an entirely practical duration.

RQ 3: Which types of program structure did each technique fail to cover?

Table 4.4 logs common reasons why either tool terminated abnormally for the sam-

ple of 23 functions recorded Table 4.3.

Segmentation faults. CUTE terminated prematurely 419 times, and AUSTIN 180 times

because of segmentation faults. These faults are the result of implicit constraints on

pointers (i.e. missing guarding statements) and a consequence of assigning ‘bad’ values

to input parameters. Consider the example below (taken from libogg). The variable

vals is an indication of the number of elements in the array b. If this relationship

is not observed during testing, e.g. by assigning null to b and setting vals > 0, the

program will crash with a segmentation fault.

void

cliptest(unsigned long *b,int vals,...){ ...

for(i=0;i<vals;i++)

oggpack_write(&o,b[i],bits?bits:ilog(b[i]));

... }

Floating point exceptions. Another cause of system crashes for both tools were floating

point exceptions. The IEEE 754 standard classifies 5 different types of exceptions:

invalid operation; division by zero; overflow; underflow; inexact calculation.

During the sample study CUTE raised 60 floating point exceptions and AUSTIN 90.

The signal received for both tools was SIGFPE, which terminates the running process.

Code inspection revealed that in all cases the cause of the exception was a division by
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zero error. This is not surprising since all primitive inputs are initialized to zero by

both tools.

Unhandleable functions. Out of all functions considered during the main study, 46 could

not be tested by both tools and an additional 138 not by CUTE because of unhandled

input types. AUSTIN, for example, initializes void pointers to null and does not

attempt to assign any other value to them. CUTE cannot handle such pointers at all,

and generates an undefined _cu__unhandledInputType call. It is not clear what would

be a good strategy for setting such pointers. Source code analysis may be required to

determine the possible data types.

A similar problem to void pointers can be observed with the va_list type, allowing

variable length argument functions in C. This type is essentially a linked list container,

and the data types of the data items cannot always be established a priori. An imple-

mentation issue is also related to variable argument lists. A call to __builtin_va_arg

in the version of the glibc library, takes the data type:

__builtin_va_arg(marker, mytype)

as its second parameter. CIL transforms such calls into an internal representation

of

__builtin_va_arg(marker, sizeof(mytype), &x);

where x is a variable of mytype. When printing the source code from CIL, the printer

will try to print the original code. Due to the code simplification transformations used,

the internal CIL form is printed instead, causing a compilation error.

Out of all available functions in the preprocessed C code, 19 had a function pointer

as one of their formal parameters. This is another input type that causes problems for

both CUTE and AUSTIN. Currently the tools lack the infrastructure to either select

a matching function from the source code, or, to generate a stub which matches the

function signature. One way to address the problem would be to manually supply the

address of a function, but then the test data generation process would not be fully

automated. As mentioned in Chapter 3, AUSTIN assigns null to all function pointers,

which will of course crash the program as soon as the application attempts to use the

function pointer.
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Many real–world programs contain some form of file I/O operation. Yet neither

tool fully supports functions whose parameter list contains a pointer to a file structure.

During this study, the FILE data structure contained incomplete type information in the

accessible source code, and thus neither tool had the information required to instantiate

such inputs. Even if all the type information had been available, the tools would not

have been able to generate ‘valid’ inputs. This is because each member of the data

structure has a semantic meaning. Therefore it would not make sense to populate it

with random values. The same applies to any _IO_FILE data structure (e.g. as used by

stderr or stdout). Populating these with arbitrary values will likely result in nothing

more than program crashes, or extensive testing of error handling procedures.

4.4.3.1 CUTE–specific issues

During the study, CUTE failed to cover branches for the following reasons. As explained

in the experimental setup, only the source file containing the current function under

test was instrumented. Any other source files of the program remained untouched, and

thus formed a ‘black box’ library as far as CUTE was concerned. Black box functions

(system or application specific) influence CUTE’s effectiveness in two ways.

Return values from black box functions cannot be represented symbolically, and

are thus treated as constants in a path condition where applicable. The underlying

assumption is that their value remains unchanged over successive iterations with similar

inputs. If this is not the case, successive executions may not follow the sub–path

predicted by CUTE (which results in CUTE aborting its current search, reporting ‘...

CUTE failed to take the predicted path’, and restarting afresh).

Worse still, formal parameters of the function under test may be passed by reference

to a black box function which, in turn, modifies their value. Since CUTE cannot be

aware of how these inputs may change, it is likely that solutions generated by CUTE do

not satisfy the real path conditions and thus also result in prediction errors by CUTE.

An illustrative example can be found in the time program, involving the function

gettimeofday, which populates a data structure supplied as input parameter to the

function. While CUTE attempts to set members of this structure in order to evaluate

the predicate shown below with a true outcome, any values of the data structure are

overridden before reaching the predicate. A weakness of CUTE is that it fails to recog-

nize the indirect assignment to the input data structure via the function gettimeofday.
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A better approach would be to assume any pointer passed to an uninstrumented piece

of code may be used to update blocks of memory reachable through that pointer.

resuse_end (pid_t pid, RESUSE *resp){...

gettimeofday (&resp->elapsed,(struct timezone *) 0);

...

if (resp->elapsed.tv_usec < resp->start.tv_usec)

//target }

One of the acclaimed strengths of concolic testing is its ability to overcome weaknesses

in constraint solvers by simplifying symbolic expressions so they can be handled through

existing theories. The light–weight solver used by CUTE requires many such simplifica-

tions. In fact CUTE only handles additions, subtractions, (side effect free) assignments

an linear multiplication statements symbolically. Non–linear expressions are approxi-

mated as described in Section 4.2, while all other statements (e.g. divisions) are simply

ignored (in symbolic terms). Inspection of the source code for the different programs

revealed that path conditions become very quickly dominated by ‘constant’ values due

to the nature of operations used in the code. The lack of symbolic information means

inverted constraints quickly become infeasible within the given path condition. Thus

CUTE is restricted in the number of execution paths it can explore.

Another implementation related drawback for CUTE is its inability to test code

containing bitfields in data structures. As part of its instrumentation, CUTE attempt

to take the address of a bitfield whenever it is used. This is, of course, not possible and

results in the gcc compilation error ‘cannot take address of bit-field ...’, as described

in Section 3.4.

Finally CUTE failed to cover certain branches because of an unbounded depth first

path exploration strategy (CUTE’s default mode), which resulted in CUTE unfolding

unbounded loops, without ever attempting to cover any alternative branches in the

code. Consider the example below, taken from the plot2d program. The first predicate

if( to_x - x == 0 ) is satisfied by default (all primitive inputs are instantiated with

equal values). The unbounded loop contained within the if statement ensures CUTE

has an unlimited number of paths to explore before returning. Any code following the

if statement is never explored, even though it makes up the bulk of the function.
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BOOL CPLOT_DrawDashedLine(...,const int x, ...

const int to_x,

const int to_y, ...) {...

if( to_x - x == 0 ) {

for( row=y; row<=to_y; row++ ){ ... }

return TRUE; }

//CODE NEVER EXECUTED BY CUTE

}

The function exitex highlighted an interesting behaviour in CUTE. Its input space

consists of two integer variables, one a global parameter and the other a formal param-

eter. The body of the function is shown below.

int exitex(int i){

if (failed != 0 && i == 0)

i = failed;

_exit(i);

return 0;

}

In the first iteration, both i and failed will be 0. This means the function _exit is

called with a value of 0, indicating successful termination of the program. The _exit

function terminates the running process and exits with the supplied status code. Since

it indicates no error, it would not get caught by any registered signal handlers. CUTE

however terminates before it can save its branch history (of what has been covered) to

a file for subsequent iterations. CUTE’s constraint solver can easily find a solution to

the constraint failed != 0 && i == 0 and thus CUTE is left with an infinite amount

of feasible branches and continues to run until its iteration limit is reached.

4.4.3.2 AUSTIN–specific issues

Search–based testing is most effective when the fitness landscape used by an algorithm

provides ubiquitous guidance towards the global (maximum) minimum. When a land-

scape contains plateaus, a guided search is often reduced to a random search in an

attempt to leave a flat fitness region. The ‘shape’ of the fitness landscape primarily

depends on the fitness function used to evaluate candidate solutions (test cases).

Data dependencies between variables are a major contributor to plateaus in a fitness

landscape, best illustrated by the flag problem (HHH+04). While work has been done
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to tackle this problem, no standardized approach exists for including such information

in the fitness computation. The fitness function used by AUSTIN does not explicitly

consider any data dependencies either.

The test subjects used during the empirical study contained many predicates ex-

hibiting flag like properties, introducing spikes and plateaus into the fitness landscape.

Consider the example shown below (taken from plot2d), where the predicate depends

on a function returned flag. When a flag only has relatively few input values which make

it adopt one of its two possible values, it will be hard to find such a value (WBW07).

BOOL

CPLOT_BYTE_MTX_isNull(CPLOT_structByteMatrix *M)

{

if( !M )

return (1);

if( M->data == ((void *)0) )

return (1);

return (0);

}

BOOL

CPLOT_BYTE_MTX_Fill(CPLOT_structByteMatrix *dst,

{

...

if( CPLOT_BYTE_MTX_isNull( dst ) )

return 0;

//TARGET BRANCHES NEVER EXECUTED BY AUSTIN

}

For the above example, a random strategy of setting the input (and its mem-

bers) to null or non–null will have a good chance of reaching the bulk of the body

from CPLOT_BYTE_MTX_Fill. The code snippet was chosen not to illustrate the prob-

lem of function assigned flags, but to highlight another problem in AUSTIN’s strat-

egy. While symbolic information is collected across function calls, AUSTIN only com-

putes intraprocedural control flow information. In order to take the false branch of

the first if statement in CPLOT_BYTE_MTX_Fill, execution needs to follow the false

branches of both conditionals in CPLOT_BYTE_MTX_isNull. The false branch shown in

CPLOT_BYTE_MTX_Fill is not control dependent on the predicates in CPLOT_BYTE_MTX_isNull,
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and thus AUSTIN will not attempt to modify dst. AUSTIN’s pointer rules can only

be applied to critical branching nodes.

During the sample study, AUSTIN reached its runtime limit 10 times while at-

tempting coverage of a function. No input domain reduction was used, and thus at

times AUSTIN had to optimize large input vectors. In the worst–case, it has to exe-

cute a function at least 2 ∗ n+ 1 times to cover a target branch, where n is the size of

the input vector. Previous work (HHL+07) has shown that reducing the search–space

for an AVM can statistically significantly improve the efficiency of the search. When

efficiency and a runtime limit are linked, it impacts the effectiveness of the search.

AUSTIN reported an abnormal termination of the program in 113 runs during the

sample study. This does not mean having executed the abort function, but rather that

the program under test returned an unrecognised error code. 23 of these were caused

by passing an unrecognised status code to an exit function, propagated through by

inputs from the function under test. The remainder were triggered by longjmperror,

which aborts a program. An execution environment is saved into a buffer by a call

to setjmp. The longjmp command enables a program to return to a previously saved

environment. The longjmperror is raised if the environment has been corrupted or

already returned.

4.5 Threats to Validity

Attempting to compare two different approaches faces a number of challenges, thus it

is important to ensure that the comparison is as fair as possible. The study presented

here compares two widely studied approaches to test data generation, and also seeks to

explore their applicability to real–world code. As was the case with the study presented

in Chapter 3, this study also faces a number of threats to the validity of the findings.

The first issue to re–address is that of the internal validity of the experiments. As

with the previous empirical study, a potential source of bias comes from the settings

used for each tool in the experiments, and the possibility that the setup could favour

or harm the performance of either tool. In order to address this, default settings were

used where possible. Where there was no obvious default (e.g. termination criteria),

care was taken to ensure that reasonable values were used, and that they allowed a
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sensible comparison between performance of both tools. To address any bias from the

stochastic behaviour of AUSTIN, experiments in this study were also repeated 30 times.

A further source of bias includes the selection of the programs used in the empirical

study, because these potentially affect external validity. The rich and diverse nature of

programs makes it impossible to cover all possible characteristics of programs. However,

where possible, a variety of programming styles and sources have been used. The study

draws upon code from real–world open source programs. It should also be noted that the

empirical study drew on over 700 functions comprising over 14, 000 branches, providing

a large pool of results from which to make observations.

The data were collected and analysed in three different ways: taking into account

coverage in the function under test only, interprocedural coverage and removing func-

tions that CUTE could not handle from the sample. No matter which analysis was

conducted, the results always showed a consistently poor level of coverage. Neverthe-

less, caution is required before making any claims as to whether these results would be

observed on other programs, possibly from different sources and in different program-

ming languages. As with all empirical experiments in software engineering, further

experiments are required in order to replicate the results here.

4.6 Discussion: Open Problems in Automated Test Data

Generation

This section serves to highlight some of the open issues in automated test data gener-

ation techniques that were revealed by the empirical study.

A general concern with search–based structural testing methods is that the majority

only consider control flow information as part of their fitness function. This often leads

to unfortunate fitness landscapes with plateau–like features and thus to a deterioration

in the search. Previous work (FK96; MH06) has addressed this problem to an extent,

however no study has yet been carried out to examine the scalability of these methods

in practice.

A more pressing problem for any symbolic execution based approach is the absence

of explicit constraints in the source code. Constraints on input parameters often only

exist as implicit preconditions to functions. While this was a serious problem for CUTE

and AUSTIN during the empirical study (due to the level of segmentation faults), other
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tools such as Pex (TdH08) are able to infer such conditions to an extent (and in certain

cases even suggest code improvements) to avoid exceptions preventing further code

exploration.

Another practical issue, mainly for CUTE, is that real programs are spread over

multiple source files. While it is possible to merge source files into one file for instru-

mentation, this may be infeasible for very large files. Had the source files been merged

for this study, it is possible that some of the ‘failed to take the predicted path’ errors

could have been avoided. Of course many real–world applications contain a mix of

programming languages and make extensive use of libraries for which the source code

may not always be available. Hence, even when merging all C files, there are likely to

remain uninstrumented files, causing the same problems for source code based tools as

previously described.

Finally, the challenge on how to test programs like time or valgrind, which essen-

tially take other programs as their input, remains as yet unsolved. Looking at the main

function of either of these, it simply takes an integer (argc) and a pointer to a charac-

ter array (argv* []) as inputs. Ideally one would like to describe the semantics of the

inputs in some way such that it aids automated test data generation. This would also

increase the likelihood of the generated test data being ‘useful’ rather than producing

an invalid test case, e.g. with respect to the operational profile of a system. This is

somewhat similar to the problem of generating a correct _IO_FILE structure, or any

file type for that matter, e.g. valid mp3 files etc.

4.7 Related Work

This section briefly reviews the relevant literature for the work presented in this chap-

ter. It concentrates on empirical studies performed in the area of dynamic symbolic

execution and search–based testing.

Jacob et al. (BS08) considered different search strategies to explore program paths

in concolic testing and evaluated their findings on large open source applications includ-

ing the Siemens benchmark suite (HR), grep (gre), a search utility based on regular ex-

pressions, and vim (VIM), a common text editor. An extended version of CUTE (MS07)

has also been applied to the vim editor. Since its introduction, DART has been fur-

ther developed and used in conjunction with other techniques to test functions from
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real–world programs in an order of magnitude of 10, 500 LOC (CG06; God07a). Con-

colic testing has also been used to search for security vulnerabilities in large Microsoft

applications as part of the SAGE tool (God07b). As mentioned, studies in search–

based software testing have largely involved small laboratory programs, with experi-

ments designed to show that search–based testing is more effective than random testing

(MMS01; WBS01).

This chapter complements and extends previous work. It is the first to compare

both approaches on the same set of unadulterated, non–trivial, real–world test subjects.

It is also the largest study of search–based testing by an order of magnitude.

4.8 Conclusion

This chapter investigated the performance of two approaches to automated structural

test data generation: the concolic approach embodied in the CUTE tool, and the

search–based approach implemented in the AUSTIN tool. The empirical study centred

on five complete open source applications. The results show that there are many

challenges remaining in making automatic test data generation tools robust and to

a standard that could be considered ‘industrial–strength’. This is because with the

exception of one of the test subjects chosen, neither tool managed to generate test data

for over 50% of the branches in each application’s code.

One of the problems that emerged from the previous two chapters for AUSTIN (and

search–based testing in general) is the lack of data flow information captured in the

fitness functions for the branch coverage adequacy criterion. As a result, the fitness

landscape is often flat, i.e. contains plateaus, with little or no guidance for the search.

Flag variables, variables that hold one of two discrete values, true or false, represent

the worst–case scenario in terms of the fitness landscape. A special type of flag variables

are loop–assigned flags: flag variables that are assigned inside the body of a loop and

whose use is outside the loop. These flags are the focus of the next chapter.
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Chapter 5

Testability Transformation

5.1 Introduction

Although search–based testing works well in many situations, provided a tester has

created adequate test drivers to prevent segmentation faults and other problems high-

lighted in the previous chapter, it is hampered by the presence of flag variables: vari-

ables that hold one of two discrete values. Flags were one of the major contributors to

the poor performance of AUSTIN as discussed in Section 4.6. Flag variables are com-

mon in embedded systems such as engine controllers, which typically make extensive

use of flag variables to record state information concerning devices. Embedded systems

can therefore present problems for automated test data generation. This is important,

because generating such test data manually is prohibitively expensive, but the test data

is required by many testing standards (Bri98; Rad92).

The flag problem is best understood in terms of the fitness landscape. A fitness

landscape is a metaphor for the ‘shape’ of the hyper–surface produced by the fitness

function. In the 2d case, the position of a point along the horizontal axis is determined

by a candidate solution (i.e. an input to the program) and the height of a point along

the vertical axis is determined by the computed fitness value for this input. Using the

fitness landscape metaphor, it becomes possible to speak of landscape characteristics

such as plateaus and gradients.

As illustrated on the right side of Figure 5.1, the use of flag variables leads to a

degenerate fitness landscape with a single, often narrow, super–fit plateau and a single

super–unfit plateau. These correspond to the two possible values of the flag variable.
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Best case Acceptable case Worst case

Smooth landscape with Rugged landscape with Dual plateau landscape with

ubiquitous guidance toward some guidance toward no guidance toward

global optimum. global optimum. global optimum.

Figure 5.1: This figure uses three fitness landscapes to illustrate the effect flag variables

have on a fitness landscape, and the resulting ‘needle in a haystack’ problem. The figure

has been taken from the paper by Binkley et al. (BHLar).

This landscape is well–known to be a problem for many search–based techniques; the

search essentially becomes a random search for the ‘needle in a haystack’ (BS03; Bot02;

FK96; HHH+04).

This chapter presents an algorithm for transforming programs containing loop–

assigned flag variables, which cannot be handled by previous approaches. The result of

the transformation is a tailored version of a program that allows existing approaches

to compute representative fitness values for candidate solutions at a particular flag–

controlled branch. It uses a testability transformation (HHH+04): a form of transfor-

mation in which functional equivalence need not be preserved, but in which test set

adequacy is preserved. The primary contributions of this chapter are as follows:

1. A testability transformation algorithm that can handle flags assigned in loops is

described.

2. Results of two empirical studies evaluating the algorithm are reported. They

show that the approach reduces test effort and increases test effectiveness. The

results also indicate that the approach scales well as the size of the search–space

increases.

The rest of this chapter is organised as follows. Section 5.2 provides an overview

of background information on the flag problem and testability transformation. Section

5.3 introduces the flag replacement algorithm and Section 5.4 outlines how it has been

implemented. Section 5.5 presents an empirical study which demonstrates that the
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approach improves both test generation effort and coverage achieved and explores the

performance of the approach as the size of the search–space increases. Section 5.6 delves

into the relevant literature for the flag problem and Section 5.7 concludes the chapter.

5.2 Background

This section briefly explains the flag problem and the general characteristics of the

testability transformation solution proposed. In this chapter, a flag variable will be

deemed to be any variable that takes on one of two discrete values. Boolean variables

are used in the examples.

5.2.1 The Flag Problem

The flag problem deals with the situation where there are relatively few input values

(from some set S) that make the flag adopt one of its two possible values. This problem

typically occurs with internal flag variables, where the input state space is reduced, with

relatively few ‘special values’ from S being mapped to one of the two possible outcomes

and all others being mapped to the other of the two possible flag values. As explained

below, the flag problem is the hardest of what is commonly known as the internal

variable problem in automated test data generation.

Consider a predicate that tests a single flag variable (e.g. if( flag )). The fitness

function for such a predicate yields one of two values: either maximal fitness (for

‘special values’) or minimal fitness (for any other value). As illustrated in the right of

Figure 5.1, the landscape induced by such a fitness function provides the search with

no guidance.

A similar problem is observed with any n–valued enumeration type, whose fitness

landscape is determined by n discrete values. The boolean type (where n = 2) is the

worst–case. As n becomes larger the program becomes increasingly more testable: pro-

vided there is an ordering on the set of n elements, the landscape becomes progressively

smoother as the value of n increases.

The problem of flag variables is particularly acute where a flag is assigned a value

inside a loop and is subsequently tested outside the loop. In this situation, the fitness

function computed at the test outside the loop may depend upon values of ‘partial

fitness’ computed at each and every iteration of the loop. Previous approaches to
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handling flags break down in the presence of such loop–assigned flags (BS03; Bot02;

HHH+04).

5.2.2 Testability Transformation

A testability transformation (HHH+04) is a source–to–source program transformation

that seeks to improve the performance of a previously chosen test data generation

technique by increasing a program’s ‘testability’. A definition of the term testability

has been attempted by several authors. Friedman and Voas (FV95) define it as “a

software metric that refers to the ease with which some formal or informal testing

criteria can be satisfied”. In (VM95) the authors consider testability to be defined by

the question “what is the probability that a code will fail if it is faulty”.

This thesis follows the definition of Friedman and Voas. It considers a program’s

testability to be a metric describing the ease with which automated search–based test

data generation techniques can successfully be applied. Empirical studies have shown

that poor testability of a program is, amongst others, caused by certain programming

styles (MHH01; BHLar). Identifying such programming styles in a code might then

provide some information about whether a program’s testability can be improved. Ap-

plying a transformation that removes problem code from a program seems a logical

solution to the problem.

In traditional program transformations, the transformed program is used to replace

the original program, thus one has to address issues related to functional equivalence,

a demanding task since functional equivalence is undecidable. By contrast, testabil-

ity transformations are only used to generate test data. Once test cases have been

generated, the transformed program is of no further use. This means the burden on

testability transformations is much less. For example, in order to cover a chosen branch,

it is only required that the transformation preserves the set of test–adequate inputs.

That is, the transformed program must be guaranteed to execute the desired branch

under the same initial conditions as the untransformed program.

5.3 The Flag Replacement Algorithm

The aim of the replacement algorithm is to substitute the use of a flag variable with a

condition that provides a smoother landscape. Prior work with flag variables requires

112



5.3 The Flag Replacement Algorithm

that assignments reaching a use do not occur within a loop (BS03; Bot02; HHH+04).

By contrast, the algorithm presented in this paper handles flags assigned inside a loop.

It does this by introducing two new real valued variables, fitness and counter. These

variables replace the predicate use of a flag with an expression that supports a distance

based calculation (e.g. if(counter == fitness)) to be used.

The addition of these variables is a form of instrumentation. The variable counter

is an induction variable added to count the number of assignments to a flag in all loop

iterations. The variable fitness collects a cumulative fitness score from a local fitness

function for the flag assignments during loop execution.

Before the formal presentation of the algorithm, the transformation is illustrated

to provide some initial intuition. To begin with, Figure 5.2(a) shows an untransformed

program, which contains a single flag variable. In addition to serving as an illustration

of the transformation, this program will be used in the empirical study because it

denotes the worst possible case for structured code: as the size of the array a increases,

the difficultly of the search problem increases. Metaphorically speaking, the needle (all

array entries equal to zero) is sought in an increasingly larger haystack.

For illustration, suppose the goal is to execute the branch at node 6 in Figure 5.2(a).

To realize this goal requires finding array values that avoid traversing the true branch

of node 3 because if an input causes the program to pass through node 4, the target

branch will be missed. The program in Figure 5.2(a) produces the landscape shown at

the right of Figure 5.1. Transforming this program to count the number of times the

predicate at node 3 is false, produces the landscape shown at the middle of Figure 5.1.

The transformed program in shown in Figure 5.2(b). In essence, the counting drives the

search away from executing node 4 because fitness receives a value closer to counter

the more times node 4 is missed.

However, this coarsely transformed version does not provide the search with any

guidance on finding inputs that make a particular array element zero. It only favours

such inputs once found (thus the stair–step landscape in the middle of Figure 5.1). The

fine–grained transformed version, shown in Figure 5.2(c) calls a local fitness function in

the true branch of node 3 that helps guide the search towards individual array values

being zero. In this case, the local fitness measures how close the input was at this point

to avoiding node 4.
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Node Id Example

void f(char a[SIZE]){

(1) int i, flag = 1;

(2) for(i=0;i<SIZE;i++){

(3) if(a[i]!=0)

(4) flag=0;

}

(5) if(flag)

(6) /*target*/

}

void f(char a[SIZE]){

int i, flag = 1;

double fitness, counter = 0.0;

fitness = (-1) + (flag != 0);

for(i=0;i<SIZE;i++){

if (a[i] != 0){

counter++;

flag = 0;

}else{

fitness++;

counter++;

}

}

if(fitness == counter)

/*target*/

}

(a) No transformation (b) Coarse–grained transformation

void f(char a[SIZE]){

int i, flag = 1;

double fitness, counter, f;

char __cil_tmp1, __cil_tmp2;

counter = 0.0;

fitness = (-1) + (flag != 0);

for(i=0;i<SIZE;i++){

if (a[i] != 0){

__cil_tmp1 = a[i];

__cil_tmp2 = 0;

counter++;

flag = 0;

f =

local(__cil_tmp1, "!=",

__cil_tmp2);

fitness += normalize(f);

} else {

counter++;

fitness++;

}

}

if(fitness == counter)

/*target*/

}

double normalize(double dist){

return 1 - pow(1.001, -dist);

}

double

local(char arg1, char* op,){

char arg2){

double dist;

if(strcmp(op, "!=") == 0){

dist = abs(arg1 - arg2);

if (dist == 0)

return 0;

else

return (dist + 1);

}

else if(strcmp(op, "==") == 0){

...

}

}

(c) Fine–grained transformation (d) Local fitness function

Figure 5.2: An example program before and after applying the coarse and fine–grain

transformations. The figures also shows part of the function for computing local fitness.
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Local fitness is computed by negating the predicate condition at node 3 and cal-

culating a distance d for the negated predicate, based on a set of rules described by

Bottaci (Bot02). In the example, d is equal to the ith value of a, indicating how

close a[i] was to being 0 and thus traversing the false (desired) branch of node 3.

Figure 5.2(d) presents a portion of the local fitness function used in the case of the

example function. This portion is for the arithmetic comparison operator ‘!=’.

The formal transformation algorithm is presented in Figure 5.3. It assumes that

flag is initially assigned true and might subsequently be assigned false. Clearly

there is a complementary version of the algorithm which can be applied when the

initial assignment to flag is false.

The rest of this section explains the algorithm’s steps in detail. Step 1 ensures that

all assignments to the variable flag are of the form flag = true or flag = false.

This is achieved by replacing any assignment of the form flag = C for some boolean

expression C with if(C) then flag = true else flag = false. Step 2 adds an

empty else block to all if statements as a place holder for later code insertions. Steps

3 and 4 simply insert the fitness accumulation variable, fitness, and the assignment

counter, counter, both initialized to 0 prior to the start of the loop.

Step 5 introduces the update of the fitness accumulation variable, fitness, and the

loop counter, counter. It has three cases: the first, Case 5.1, checks for the special

situation when the loop degenerates into a simple assignment. In Cases 5.2 and 5.3 the

value added to fitness depends upon the value assigned to flag along the associated

path. If flag is assigned true (Case 5.2) then, in essence, assignments in previous loop

iterations are irrelevant. To account for this, fitness is assigned the current value of

counter (after it has been incremented). This assignment overwrites any previously

accumulated fitness.

Case 5.3 addresses an ‘undesired’ assignment to flag. In this case flag is assigned

false. The CFG is used to identify the set of critical branching nodes for the flag

assignment in Step 5.3.1. Critical branching nodes are those decision nodes in a CFG

where the flow of control may traverse a branch which is part of a path that can

never lead to the flag assignment. Note that the transformation ignores those critical

branching nodes, which are also critical for the loop statement itself, as well as branching

nodes which denote a loop exit condition. Step 5.3.2 iterates over all critical branching

nodes and checks if they contain a branch CFG edge which is not post–dominated by
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Step 1 Convert all flag assignments to assignments of constants by replacing flag = C with

if(C) then flag = true else flag = false for some (side effect free) boolean expression C.

Step 2 Convert any if - then statements that contain a (nested) assignment of flag into

if - then - else statements. The added empty branch is filled by Case 5.3 of Step 5 with

‘bookkeeping’ code.

Step 3 Add variable counter = 0 as an initialization prior to the loop.

Step 4 Add an assignment fitness = 0 as an initialization prior to the loop.

Step 5 There are three cases for assignments to flag based on the paths through the loop body.

Case 5.1: If all leaves of the AST contain the assignment flag = false (i.e. entering the loop

means certain falseness), then the entire loop is treated as flag = !C assuming the original

loop is while(C). Otherwise, do the following for each leaf in the loop’s AST that assigns

to flag.

Case 5.2: flag is assigned true. Increment counter and assign value of counter to fitness

immediately after the assignment to flag.

Case 5.3: flag is assigned false.

Step 5.3.1 Create a set, sf , containing the critical branching nodes with respect to the flag

assignment, and a set sl containing the critical branching nodes with respect to the

loop statement. Let π be the set difference between sf and sl, with all loop exit

conditions removed from π.

Step 5.3.2 For every critical branching node in π, insert an increment for both counter and

fitness as the first instructions in the then or else branches of the node that leads

away from the flag assignment (i.e. the target of the branch CFG edge is not post–

dominated by the flag assignment), if and only if, the target of the branch CFG edge

is not post–dominated by another node in π, or by another assignment to flag. Do

not add increments for counter and fitness otherwise.

Step 5.3.3 Collect the set of conditions sc in π at which the assignment of false to flag can

be avoided, i.e. the conditions of those nodes in π that contain a branch CFG edge

whose target is post–dominated by the flag assignment. Step 5.3.1 ensures that such

a condition exists.

Step 5.3.4 For each condition c in sc do the following.

Step 5.3.4.1 Save the values of the variables used in c in well typed, local, temporary

variables for later use (local with respect to the function body, not the enclosing

block).

Step 5.3.4.2 Insert the call f = local(...) as the first instruction in the then or else

branch of the node containing c that leads towards the flag assignment (i.e.

the target of the branch CFG edge is post–dominated by the flag assignment).

The function local is the standard local fitness function, and the temporary

variables, alongside the binary operator used in c form the arguments of the

function call local. As detailed in Section 5.4, the CIL infrastructure ensures c

does not contain any logical operators.

Step 5.3.4.3 Normalize f to a value between 0 and 1.

Step 5.3.4.4 Add f to the existing value of fitness immediately after the flag assignment.

Step 5.3.4.5 Add an increment for counter immediately after the update to fitness (in

Step 5.3.4.4).

Step 6 Replace if(flag) with if(fitness==counter).

Figure 5.3: The transformation algorithm. Suppose that flag is assigned true outside

the loop and that this is to be maintained.
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either the flag assignment or any other critical branching node for the flag assignment.

For each critical branching node which satisfies this requirement, Step 5.3.2 adds an

increment of 1 to both counter and fitness as the first instructions to the branch

that is not part of the path leading to the flag assignment. This also addresses the case

when flag remains unassigned during a path through the loop.

Next, Step 5.3.3 collects the conditions of those branching nodes, which contain a

branch CFG edge whose target is post–dominated by the flag assignment. For each

of those conditions, Step 5.3.4 implements the more fine–grained approach producing

a landscape more like that shown in the left of Figure 5.1. Smoothing of the fitness

landscape improves the search. Here, if no changes to fitness were made, the resulting

fitness landscape degenerates to the coarse–grained landscape shown in the middle of

Figure 5.1. Instead Step 5.3.4 implements the transformation shown in Figure 5.2(c).

Steps 5.3.4.1 and 5.3.4.2 add the necessary instrumentation to compute a fitness

increment for the path taken by an input. The result of the fitness computation is

saved in a local variable, whose value is normalized in Step 5.3.4.3.

The key observation behind Steps 5.3.4.1 − 5.3.4.3 is that an assignment of false

to flag occurs because a ‘wrong decision’ was taken earlier in the execution of the

program. The algorithm therefore backtracks to this earlier point. That is, it finds

a point at which a different decision (the decision c of Step 5.3.4) could avoid the

assignment of false to flag. The value calculated (in Step 5.3.4.2) for the fitness

increment in this case is based upon the standard approach to local fitness calculation

in evolutionary testing (WBS01).

Finally, Step 5.3.4.4 adds the fitness increment to fitness immediately after the

flag assignment, while Step 5.3.4.5 increments counter.

Step 6 replaces the use of flag with fitness==counter. Observe that the value of

fitness can only equal the value of counter in two cases: either the last assignment

to flag in the loop was the value true and there has been no subsequent assignment

to flag, or the variable flag has not been assigned in the loop (so its value remains

true). In either case, the original program would have executed the true branch of the

predicate outside the loop which uses flag. In all other cases, flag would have been

false in the original program. For these cases, the value of fitness will be some value

less than that of counter. How close together their values are is determined by how

close the loop comes to terminating with flag holding the desired value true.
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It is important to note that the transformed program need not be semantically

equivalent to the original. It is a new program constructed simply to mimic the be-

haviour of the original at the target branch. It does so in a way that ensures a more

attractive fitness landscape. The standard search algorithm (with no modification) can

be applied to the transformed program with the goal of finding test data to execute

the branch controlled by the newly inserted predicate fitness==counter.

Finally, if flag is assigned in several loops, nested one within the other, then the

algorithm is applied to the inner–most loop first in order to obtain a fitness value for

the inner–most loop. This value can then be used as a partial result for the fitness of a

single iteration of the enclosing loop. In this manner, the algorithm is applied to each

enclosing loop, to accumulate a total fitness value.

5.4 Implementation

The algorithm has been implemented in a tool which is based on the CIL (NMRW02)

infrastructure for C program analysis and transformation. CIL provides a number of

predefined program analysis modules, such as control and data flow analysis. It also

offers an extensive API (in Ocaml) to traverse the AST of the parsed source code. The

tool itself is provided as an Ocaml module and can be run on any platform that has

the Ocaml runtime installed.

5.4.1 Definition of Loop–Assigned Flag

For the purpose of the tool, a flag f is considered to be loop–assigned if, and only if it

satisfies the following properties:

1. The definition fdef of f is a descendant of the loop statement ls (i.e. a while or

for construct) in the AST.

2. There exists a definition free path for f from fdef to fuse, where fuse is a predicate

use of f .

3. fuse is not a descendant of ls in the AST. If it is, it must also be a descendant of

another loop statement ls′ in the AST.
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Flags assigned within loops that arise in a CFG as part of unstructured code (e.g.

via the use of goto statements) are not considered to be loop–assigned by the tool,

even though the algorithm proposed in Figure 5.3, in principle, does not necessitate

this restriction. As a consequence, the tool might consider more flags to be loop–

assigned than strictly necessary, while at the same time leaving loop–assigned flags

that arise from unstructured code untransformed.

In general the C language does not contain a dedicated boolean data type1, so

the question remains how to identify flag variables. Generally speaking, since the

aim of the testability transformation is to transform spikes in a fitness landscape, the

transformation algorithm does not need to identify flags in a semantically correct way.

The transformation can thus be applied to any variable whose use creates a spike in

the fitness landscape. A syntactic check on predicates often suffices to identify such

potential ‘problem uses’.

Below are two examples of source code constructs that often cause a spike in the

fitness landscape:

int foo(...){ int foo(...){

. . . . . .
if(C) if(C)

flag = 0; buffer = malloc(. . .);
. . . . . .
if(flag){//target} if(buffer){//target}

. . . . . .
} }

Notice even though buffer is not a flag, the fitness landscape for the //target branch

in the right column exhibits the same features as the flag controlled branch in the left

column.

For the implementation described in this paper, a variable is considered to be a flag

if it is of integral data type, and is used inside a predicate in one of these ways:

1. if (variable)

2. if (!variable)

3. if (variable == constant)

4. if (variable != constant)

1C99 defines a Bool type which can take on the values zero and one.
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5.4.2 Flag Removal

Before applying the transformation algorithm, the parsed source code needs to be

simplified. To this end a number of CIL options, as well as some custom preprocessing

transformations are used.

As mentioned in Section 3.2.3, CIL transforms compound predicates into equivalent

if - then - else constructs. Besides the transformation of compound predicates, the

tool requires the following code transformations prior to applying the flag transforma-

tion:

Simplify: This CIL option (--dosimplify) transforms the source code into simpler

three–address code.

Simple Memory Operations: This option (--dosimpleMem) uses well–typed tempo-

rary variables in order to ensure each CIL lvalue involves at most one memory reference.

Prepare Control Flow Graph: This option (--domakeCFG) converts all break,

switch, default and continue statements and labels into equivalent if and goto

constructs.

Uninline: This custom step converts all in–line predicates (without logical operators)

into equivalent if - then - else statements. Further, this module also implements

Step 1 from Figure 5.3.

The implementation of Case 5.3.1 from Figure 5.3, requires control dependence

information for each statement. CIL provides a module to compute a function’s CFG

by identifying each statement’s control predecessor and successor, as well as a module

to compute the immediate dominator information for a statement. The tool combines

these two modules by first inverting the edges of the CFG (adding a unique exit node

when necessary), and then computing the immediate dominator information for the

inverted CFG. This is equivalent to computing the post domination information for

each statement. Based on the post dominator tree, the control dependence information

is computed for each statement in the AST.

Next, flags are collected by iterating over the CIL AST, performing a syntactic

check on if statements. The preprocessing steps ensure that all predicates appear in

the form of if statements. When a predicate matches the flag pattern described above,
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information about the predicate and its parent statement (i.e. the if statement) are

stored in a hash table.

For each entry in the hash table, the tool uses the CIL reaching definitions module

to collect the set of definition statements for a flag reaching the predicate use of the

flag. For each of these definitions, the tool checks whether they occur within a loop,

and further that the flag use is not contained in the same loop. This is achieved by

traversing the CIL AST. Loop–assigned flags are labeled as such.

For each loop based flag assignment, the control dependence information of the

containing statement is used to derive a local fitness function. An example is given in

Figure 5.2(d). All flag variables of a given type share the same local fitness function.

The necessary type information can easily be extracted via a call to CIL’s typeof

function, which returns the data type of its argument. Finally, the statement containing

the predicate use of the flag is transformed as described in Step 6 of Figure 5.3.

The tool can be run in two modes. By default, the local fitness function is used

to ‘punish’ an assignment to flag, as illustrated in Figure 5.2(c). However, sometimes

a flag assignment may be desired, and thus the transformation can be used to guide

the test data generation process towards the statement containing the flag assignment.

In this mode, fitness is incremented by the local distance function (not inverting its

second parameter) in the branches avoiding the flag assignment.

5.4.3 Runtime

For the transformation to be applicable in practice, the tool should perform at a reason-

able speed. The tool was therefore run on each of the test subjects used in Section 5.5,

and timing information was recorded via the GNU time utility. The time measure-

ments were collected on a HP Compaq 6715b laptop running Ubuntu version 9.04. For

each test subject, the runtime of the tool was recorded five times to allow for slight

variations in the measurements reported by time. The data, averaged over the five

runs, is shown in Table 5.1. The tool did not require more than 2 seconds to apply the

transformation to any of the test subjects.

5.4.4 Limitations

Currently the tool only implements an intraprocedural transformation for loop–assigned

flags. As a result, global flags are ignored by the tool, as are flags passed by reference.
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Table 5.1: Runtime of the transformation (in seconds) for the test subjects as reported

by the time utility. The measurements are averaged over five runs. The column real

refers to the wall clock time, user refers to the time used by the tool itself and any library

subroutines called, while sys indicates the time used by system calls invoked by the tool.

Test Subject real user sys

synthetic examples 0.1252 0.0440 0.0568

EPWIC 0.3092 0.1888 0.0896

bibclean 0.1752 0.0816 0.0632

ijpeg 1.8326 1.7232 0.0584

time 0.1654 0.0760 0.0648

plot2d 1.7412 1.6128 0.0752

tmnc 0.1738 0.0920 0.0544

handle new jobs 0.1548 0.0664 0.0632

netflow 0.1454 0.0568 0.0648

moveBiggestInFront 0.1306 0.0648 0.0520

update shps 0.1664 0.0816 0.0608

Furthermore, the tool does not include any alias analysis and, as a consequence, does

not handle intraprocedural or interprocedural aliasing of flag variables. The tool further

distinguishes between function assigned flags and other flags. Function assigned flags

are variables whose value depends on the return value of a function call. These types of

flags can be handled by a different testability transformation (WBW07). Other kinds of

flags include the loop–assigned flags addressed in this paper, and simply assigned flags

addressed by previous work (AB06; HHH+04; BS03; Bot02). For function assigned,

simple and nested flags, the tool implements the transformation proposed by Wappler

et al. (WBW07).

Both the algorithm presented in Figure 5.3 and the tool are incomplete in the

presence of unstructured flow of control within the body of loops. Liu et al. (LLLW05)

present a synthetic example which illustrates this incompleteness. In practice this

limitation was only observed in 2 out of 17 functions examined during the empirical

study in Section 5.5. Nevertheless this issue will be resolved in future versions of the

tool.
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5.5 Empirical Algorithm Evaluation

This section presents two empirical evaluations of the impact of the transformation

algorithm. It first reports on the application of the transformation to the synthetic

‘needle in the haystack’ example from Figure 5.2(a). After this, it considers the appli-

cation of the transformation to a collection of flags extracted from several production

systems.

The synthetic benchmark program was chosen for experimentation because it po-

tentially denotes the worst possible case for the search. To investigate how the trans-

formation affects the performance of the test data generation technique with increasing

problem difficulty, twenty versions of this program were experimented with. In each

successive version, the array size was increased, from an initial size of 1, through to

a maximum size of 40. As the size of the array increases, the difficultly of the search

problem increases; metaphorically speaking, the needle is sought in an increasingly

larger haystack. This single value must be found in a search–space, the size of which

is governed by the size of the array, a. That is, the test data generation needs to find

a single value (all array elements set to zero) in order to execute the branch marked

/* target */.

The evaluation of the synthetic benchmark was done using an evolutionary test-

ing system from Daimler (BSS02; WBS01) and AUSTIN. The results for the Daimler

system had already been collected in the work by Baresel et al. (BBHK04) and are in-

cluded in this thesis to facilitate comparisons with AUSTIN. In the work of Baresel et

al. (BBHK04) the Daimler system had been applied to the syntethic benchmarks us-

ing no transformation, the coarse–grained transformation and finally the fine–grained

transformation. Their results showed that the fine–grained transformation consistently

outperforms the coarse–grained transformation. Hence, AUSTIN was only evaluated

on the (standard) no transformation and fine–grained transformation approaches.

5.5.1 Synthetic Benchmarks

The analysis of the synthetic benchmark begins by discussing the results from applying

the Daimler evolutionary testing system to the program without any transformation and

after the fine–grained transformation (for results on the coarse–grained transformation

the reader is referred to reference (BBHK04)).
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Figure 5.4 shows the results, with the ‘no transformation’ case shown at the top. As

one would expect, the evolutionary search in essence deteriorates to a random search for

the no transformation approach. The Daimler system only manages to find test data

in two situations. The first is with an array size of one, where the search has a 1 in 256

chance of finding the needle in the haystack. Given this probability, the evolutionary

search manages to find this needle in all of the 10 runs. The second instance where

the evolutionary search successfully finds test data is with a two element array. The

chance of randomly finding the required test data are reduced to 1 in 65, 536, and the

Daimler system only manages to find the test data in one of 10 runs. Once the size of

the array is increased to more than two elements, the evolutionary search consistently

fails to find the required test data.

As the bottom graph of Figure 5.4 shows, the fine–grained approach on the other

hand, enables the Daimler system to consistently find test data for all instances of the

benchmark program. This provides evidence that the transformation is able to offer the

search guidance towards the global optimum despite increasing problem complexity.

Next, AUSTIN was applied to the synthetic benchmark yielding similar results.

The results using no transformation and the fine–grained transformations are depicted

in Figure 5.6. As with the Daimler evolutionary testing system, AUSTIN fails to find

any test data to cover the branch for array sizes greater than three when working with

the untransformed program. In one run the search manages to cover the branch at an

array size of three, in nine runs with an array size of two, and in all runs when the array

contains only one element. For AUSTIN to cover the branch using the untransformed

program, the search needs to either randomly find the solution, or randomly choose a

starting point which is exactly one neighbourhood move away from the solution (e.g.

a = {-1,0,0}, a = {1,0,0}, etc. ).

For the fine–grained transformed program, AUSTIN requires far fewer fitness eval-

uations than the Daimler evolutionary testing system to cover the target branch. This

is visually evident when comparing the y–axis scales of the chart in Figure 5.5, which

shows the Daimler evolutionary testing system results, with that of the chart in Fig-

ure 5.6b, which shows the AUSTIN results. This difference is consistent with the

findings of Harman and McMinn (HM09) and the results from Chapter 3.

Baresel et al. (BBHK04) reported a high standard deviation for the Daimler system

for the coarse–grained transformation and a spike in standard deviation for an array
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(a) No Transformation

(b) Fine–Grained Transformation

Figure 5.4: Results over ten runs of the evolutionary search for each of the two transforma-

tion approaches. The graphs have been taken from the paper by Baresel et al. (BBHK04).
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Figure 5.5: Results over ten runs of the evolutionary search for the fine–grained trans-

formation approach close–up. The graph has been taken from the paper by Baresel et

al. (BBHK04).

size of two elements in case of the ‘no transformation’ approach. This spike can be

explained by the search randomly finding the test data for one of the runs. The pattern

for AUSTIN is similar: the average for the ‘no transformation’ technique is almost

uniformly the worst–case, while its standard deviation is zero, in all but the cases for

array sizes 1, 2 and 3 (where some random chances led to a successful search). The

high standard deviation for size 2 is again evidence that the one solution was a random

occurrence.

The qualitative assessment presented in Figure 5.4 and Figure 5.6 clearly suggests

that the fine–grained approach is better than the ‘no transformation’ approach. The

‘trend’ of the fine–grained transformation outperforming the ‘no transformation’ ap-

proach manifests itself as the size of the problem increases. It is also the case that as

the difficulty of the problem increases (i.e. as the size of the array increases), the test

data generation process will get harder for both, the fine–grained and ‘no transforma-

tion’ approaches. This can be seen in Figure 5.6b and Figure 5.5. Despite this, the

fine–grained approach will always be able to offer the search guidance, whereas the ‘no

transformation’ approach remains a random search for the ‘needle’ in an increasingly

larger ‘haystack’.

To complement this qualitative assessment quantitatively, an assessment using the

Mann–Whitney test, a non–parametric test for statistical significance in the differences

between two data sets, was performed. Because the test is non–parametric, the data
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(a) No Transformation

(b) Fine–Grained Transformation

Figure 5.6: Results over ten runs of the alternating variable method for the ‘no transfor-

mation’ and fine–grained transformation approaches.
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is not required to be normally distributed for the test to be applicable. The test

reports, among other things, a p–value. The p–value for the test that compares the

‘no transformation’ results with the ‘fine–grained transformation’ results, returning a

p–value of less than 0.0001, indicating that the difference is ‘statistically significant at

the 99% confidence level’.

The results obtained from the synthetic benchmarks clearly show that the test data

generation process on the transformed (fine–grained) version outperforms the test data

generation process on the untransformed version.

5.5.2 Open Source and Daimler Programs

In addition to the study of the synthetic program, which represents a problem that is

synthetically generated to be hard for search–based approaches to solve, the seventeen

C functions shown in Table 5.2 were used to evaluate the impact of the testability

transformation of Figure 5.3. These functions were extracted from a combination of

ten open source and Daimler programs. Each of the seventeen is first described in some

detail to provide an indication of the flag usage in each program. This is followed by a

discussion of the empirical results obtained using these functions.

EPWIC is an image compression utility. The selected function run_length_encode_zeros

loops through a stream of data (encoded as a C string) and counts the number

of consecutive occurrences of 0. If a zero is found, a counter is incremented and

the flag found_zero is set. The flag is initialized to 1 and the test problem is to

find inputs which avoid setting the flag to 0.

bibclean is a program used to check the syntax of BibTeX files and pretty print

them. Two functions were selected. The first, check_ISBN, loops through an

input string to check whether it represents a valid ISBN number. It contains the

flag new_ISBN, which is initialized to 1 and set to 0 at the start of every loop

iteration whenever its value is 1. The flag is reset to 1 in the body of the loop

only when a given number of parsed characters in the range 0 − 9, including ‘x’

and ‘X’, represent an invalid ISBN number, or, the string does not represent a

valid ISBN number at all, but contains more than 10 valid ISBN characters. The

test data generation challenge is to discover a string with more than 10 valid

ISBN characters which do not represent a valid ISBN number. The search has to
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Table 5.2: Test subjects for the evaluation of the transformation algorithm.

Test subject Function under test

EPWIC run length encode zeros

bibclean
check ISBN

check ISSN

ijpeg

emit dqt

format message

next marker

pbm writepbmrowraw

write frame header

time getargs

plot2d CPLOT DetermineSeriesStatistics

tmnc rule I intercept

handle new jobs handle new jobs

netflow netflow

moveBiggestInFront moveBiggestInFront

update shps update shps

navigate through the entire input domain of the function, which is approximately

10120. The second function, check_ISSN works exactly as check_ISBN except

that ISSN instead of ISBN numbers are checked for.

ijpeg implements an image compression and decompression algorithm, of which five

functions were tested. The first, emit_dqt, contains the flag prec. An array of

64 unsigned integers is iterated over. If an element exceeds the value 255, the flag

is set to true. The target branch is dependent on the flag being set to true.

The second function, format_message, formats a message string for the most

recent JPEG error or message. It contains the flag isstring, which is used to

check if the format string contains the ‘%s’ format parameter. The test data gen-

eration problem is to find an input string which contains the character sequence

‘%s’.

The third function, next_marker, contains a loop–assigned flag c, which is part of

the termination criterion for a do {} while() loop. An input buffer is traversed

and the current character assigned to c. The loop terminates if c is not equal
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to 255, thus the challenge is to discover that an array of inputs is required that

contains the value 255 at least once.

The fourth function, pbm_writepbmrowraw, contains the local variable bitshift

of type int which is initialized to 7. The inputs to the function are a file pointer,

a pointer to the start of a row in a matrix of unsigned character types, and the

number of columns in the row. A loop goes through each column and checks its

entry for a non–zero value. Whenever a non–zero character is encountered, the

value of bitshift is decremented by one. When bitshift takes on the value −1

it is reset to 7. After the body of the loop, the function checks for bitshift not

being equal to 7. In this case the hard to cover target branch is the false branch.

The final function, write_frame_header, contains the loop–assigned flag is_baseline,

which is initialized to 1 and assigned 0 in the body of the loop. The target branch

depends on the flag retaining its initial value. To complicate matters, the flag

may be initialized to 0 before the start of the loop if two properties of the func-

tion’s input domain are true. This assignment is not part of the transformation

per se (apart from ensuring that the state of the flag is correctly represented by

the helper variables regardless of the path taken to reach the start of loop), thus

it remains an additional goal of the search algorithm to find inputs which avoid

initializing the flag to 0.

time is a GNU command line utility which takes as input another process (a program)

with its corresponding arguments and returns information about the resources

used by the process (e.g., the wall–clock and CPU time used). The function

getargs contains three loop–assigned flags, outfile, append and verbose. The

function parses the command line arguments and sets the option flags accordingly.

The challenge during the test data generation process is to find input parameters

encoded as strings, that are valid options, setting these flags.

plot2d is a small program that produces scatter plots directly to a compressed image

file. The core of the program is written in ANSI C. However the entire application

includes C++ code. Only the C part of the program was considered during

testing. The function CPLOT_DetermineSeriesStatistics contains the loop–

assigned flag computeStats, which is initialized with 1 and only ever assigned 1
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in the body of the loop. The branch dependent on the false outcome of the flag

is therefore infeasible and the true branch trivially covered.

tmnc is a C implementation of the TMN protocol. The function rule_I_intercept

loops through an array of sessions (containing, amongst other things, information

about the initiator and responder), validating a session object. If the session is

valid, a flag is set.

handle new jobs is a job scheduler responsible for management of a set of jobs stored

in an array. Each job has a status and priority, as well as additional data used

during job execution. This code is part of the Daimler C++ testing system itself:

it facilitates parallel execution of test processes. The input space is the job array

(the ‘data’ entries are unimportant for coverage). The test problem is to find

the right input data for the flag, check_work, tested in the last condition of the

function. In order to execute the true branch of this conditional, the assignment

check_work = 1; in the for loop must be avoided in every iteration.

netflow is part of an ACM algorithm for performing net flow optimization. The

function has many input parameters configuring the net to be optimized, for

example connected nodes and connection capacity. The two parameters of the

function are low and high. The netflow function begins with some plausibility

checks on the input parameters. The flag variable violation is typical of a test

for special conditions which cannot be handled by the regular algorithm. As an

invalid input check, violation is set to true when low is set to a larger value

than high.

moveBiggestInFront is part of a standard sorting algorithm. A while loop processes

the elements of an array, checking whether the first element is the biggest. If

no such value exists, this constitutes a special case with the result that the flag

assignment is not executed in any iteration.

update shps is a navigation system used by Daimler in vehicular control systems. The

code has been modified to protect commercially sensitive information. However,

these modifications do not affect the properties of the code with respect to flag

variable use. The navigation system operates on a ‘Shape Point Buffer’ which
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stores information from a digital street map. Streets are defined by shape points.

The buffer contains map locations (points) near to the current location of the

car. For testing, the input space is formed from the set of shape point buffer data

stored in a global array and the position of the car supplied as the parameters

of the function. The function uses a flag, update_points, to identify a situation

where an update is required. The flag is assigned inside a loop traversing the

shape point buffer. The flag becomes true if any shape point from the buffer

is outside a certain area. The target branch is hard to execute because input

situations rarely lead to update_points being assigned false. The search–space

for the predicate if(!update_points) is precisely the worst–case flag landscape

shown on the right side of Figure 5.1.

These seventeen functions capture the full range of difficulties for the search. At

the easy end of the spectrum, test data for the flag use in the predicate from plot2d

was always found in a single evaluation, both before and after transformation. Code

inspection revealed that every path through the loop (and in fact the function) assigned

true to the flag. Prior to the body of the loop, the flag is initialized to true. After the

loop, the function contains a check for the value true of flag. Since the false branch of

this check is clearly infeasible, it is not clear if this code was written anticipating some

structural addition; perhaps it is a bug.

At the other end of the spectrum, the evaluation budget was exhausted in both

the transformed and untransformed versions of three test subjects: getargs_append,

getargs_verbose, and next_marker. The first of the three, getargs_append, comes

from the command line argument processing of the program time. This example un-

covered another limitation in the current AUSTIN and Daimler tool implementations.

The tools do not properly handle C static variables, which are used to hold val-

ues across multiple calls to a function. In this case, time uses the function getopt,

which records an index and look–ahead character in the static variables optind and

nextchar. These two static variables effectively prevent the search from returning to

a previous solution after exploring an inferior neighbour. This bug has now been fixed

in AUSTIN.

The second function getargs_verbose, also from time, and the third next_marker

from ijpeg both contain unstructured control flow. In this case an exit statement
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within the loop, though the impact of statements like return, break and continue

would be similar. In essence, these statements prevent the search from exploiting accu-

mulated fitness information. In both cases, the search does not execute the transformed

predicate (created by Step 6 of the algorithm shown in Figure 5.3).

Observe that none of the aforementioned issues denote flag problems. Rather, the

application of search–based testing techniques to real–world programs has thrown up

subsidiary issues and barriers to test data generation that have nothing to do with flags.

It should be recognized that no ‘perfect’ solution to the test data generation problem

yet exists; all techniques have language features that present difficulties. The purpose

of this chapter is to demonstrate that the barrier to search–based testing raised by the

presence of flag variables can be lowered by the testability transformation approach

advocated in the chapter. However, there will remain further work required on these

other issues of search–based testing.

The remaining thirteen functions fall in between these two extremes. In each case,

the transformation improves the search for test data. The average success over all ten

runs of each test subject is reported in Table 5.3. This table and Table 5.4 are arranged

based on the number of fitness evaluations performed using the untransformed program.

Overall the transformation led to a 28% increase in successful test–data generation.

Table 5.4 shows the number of fitness evaluations used by all ten runs for each

program. This data is shown graphically in Figure 5.7, which uses a log scale on the

y–axis. Overall, the transformation leads to a 45% improvement, reducing the total

number of evaluations needed from 4, 589 to 2, 522, which represents a statistically

significant reduction (student’s t–test p–value = 0.031). It produces an improvement

for all but four of the test subjects. In several cases the improvement is dramatic, for

example, with the function moveBiggestInFront the total number of evaluations drops

from 9, 011 to 10. Even in cases where the untransformed programs never exhausts

its evaluation budget, there are large improvements, for example, with the function

format_message there is a 91% decrease from 2, 811 to 245.

However, these results have to be treated with statistical caution. The average

results of 10 runs for each flag use of each predicate in each function studied was taken.

These average values form a sample from two paired populations: the ‘with treatment’

population and the ‘without treatment population’ for flag uses in predicates. In this
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Table 5.3: Branch coverage results from empirical study of functions extracted from open

source software.

Covered Branches

untrans trans

Program Function -formed -formed

time getargs append 0 0

time getargs verbose 0 0

ijpeg next marker 0 0

ijpeg write frame header 0 10

netflow netflow 0 10

moveBiggestInFront moveBiggestInFront 3 10

tmnc rule I intercept 2 4

EPWIC run length encode zeros 10 10

ijpeg format message 10 10

bibclean check ISBN 10 10

bibclean check ISSN 10 10

ijpeg emit dqt 10 10

time getargs outfile 10 10

update shps update shps 10 10

handle new jobs handle new jobs 10 10

ijpeg pbm writepbmrowraw 10 10

plot2d CPLOT DetermineSeriesStatistics 10 10

average 6.2 7.9

percent improvement 28%
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Table 5.4: Fitness function evaluations from empirical study of functions extracted from

open source software.

Fitness Evaluations

untrans trans percent

Program Function -formed -formed savings reduction

time getargs append 10, 000 10, 000 0 0%

time getargs verbose 10, 000 10, 000 0 0%

ijpeg next marker 10, 000 10, 000 0 0%

ijpeg write frame header 10, 000 412 9, 588 96%

netflow netflow 10, 000 61 9, 939 99%

moveBiggestInFront moveBiggestInFront 9, 011 10 9, 001 100%

tmnc rule I intercept 8, 767 8, 451 316 4%

EPWIC run length encode zeros 3, 401 2, 066 1, 335 39%

ijpeg format message 2, 811 245 2, 566 91%

bibclean check ISBN 1, 385 543 842 61%

bibclean check ISSN 843 664 179 21%

ijpeg emit dqt 835 145 690 83%

time getargs outfile 478 218 260 54%

update shps update shps 271 45 226 83%

handle new jobs handle new jobs 202 6 196 97%

ijpeg pbm writepbmrowraw 7 5 2 29%

plot2d CPLOT 1 1 0 0%

average 4, 589 2, 522

percent improvement 45%
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Figure 5.7: Chart of data from second empirical study.

case, ‘with treatment’ means with some form of transformation aimed to improve the

test data generation process.

The samples involved in this test are not (and, indeed, cannot be) sampled in an

entirely random and unbiased manner. They are samples from the space of all possible

loop–assigned flag uses in all predicates in all functions in all C programs. There is

even an issue here as to what constitutes the ‘population’: should it be, for example,

all C programs possible, all those currently written, or all those in use in production

systems? These questions bedevil any attempt to make reliable claims for statistical

significance of results for studies involving samples of program code. The statistical

tests are merely used to give a rough indication of the strength of the results for the

programs studied, rather than to make claims about the behaviour of untried predicates

in programs as yet unconsidered in the study.
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5.6 Relevant Literature For the Loop–Assigned Flag Prob-

lem

The loop–assigned flag problem discussed in this chapter is relevant for all search–based

test data generation methods, including the chaining approach (FK96; MH06). The

chaining approach tries to identify sequences of nodes in a program’s control flow graph

which need to be executed in order to reach a specified target branch. Loop–assigned

variables may lead to ‘infinite’ chains or result in loss of information because it is not

known a priori how often a node inside a loop needs to be executed.

For a subset of a C–like language, Offutt et al. introduce a dynamic variant of

constraint solving that performs dynamic domain reduction (OJP99). The algorithm

can be applied to the flag problem. Firstly a path to the target is selected for execution,

then the domains of each input variable are refined as execution follows this path.

Domain refinement takes place at assignments and decision statements. For example,

if the domain of a and b were both 1 . . . 10 before if (a != b), then in the true

branch of the if statement, a and b would be assigned the domains 1 . . . 5 and 6 . . . 10

respectively.

Loops are handled in a similar fashion by marking the loop predicates and dynami-

cally reducing the input domain of the variables involved in loop constraints. However,

the domain reduction requires knowing a priori a path to the target. Thus, for this

dynamic domain reduction technique to cover the flag controlled branch in the program

shown in Figure 5.2(a) requires that it first selects the path through the body of the

loop which avoids each assignment to flag. This selection is essentially done by chance

and the set of feasible paths is large, therefore this may take some time.

Flags often present the worst–case scenario to search–based test data generation

techniques, particularly when only very few sub–paths will result in a flag taking on

one of its two values. In contrast, the approach presented in this chapter is able to offer

the search coarse and fine–grained guidance. This makes the approach more applicable

to the flag problem in the presence of loop–assigned flags.

Search–based testing in the presence of flags has been studied by four authors (Bot02;

BS03; HHH+04; LLLW05). Bottaci (Bot02) aimed to establish a link between a flag

use and the expression assigning a flag. This is done by storing the fitness whenever a

flag assignment occurs so it can be used later on.
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Baresel and Sthamer (BS03) use a similar approach to Bottaci. However, whereas

Bottaci’s approach is to store the values of fitness as the flag is assigned, Baresel and

Sthamer use static data analysis to locate the assignments in the code, which have an

influence on the flag condition at the point of use. Baresel and Sthamer report that the

approach also works for enumeration types and give results from real–world examples,

which show that the approach reduces test effort and increases test effectiveness.

Harman et al. (HHH+04) illustrate how a testability transformation originating from

an amorphous slicing technique can be used to transform flag–containing programs into

flag–free equivalents. They achieve this by substituting a flag use with the condition

leading to, as well as the definition of a flag, with the aid of temporary variables.

Liu et al. (LLW+05) present an approach for unifying fitness function calculations

for non–loop–assigned flags, and consider the problem of loop–assigned flags in the

presence of break and continue statements (LLLW05).

Three of these approaches share a similar theme: they seek to connect the last

assignment to the flag variable to the use of the flag at the point where it controls

the branch of interest. In Bottaci’s approach the connection is made through auxiliary

instrumentation variables, in that of Baresel and Sthamer it is made through data

flow analysis and, in the approach of Harman et al., a literal connection is made by

substitution in the source code.

The algorithm presented in Figure 5.3 and the approach by Liu et al. could be

thought of as a combination of the approaches of Bottaci and Harman et al. They

share the use of auxiliary ‘instrumentation variables’ with Bottaci’s approach, but use

these in a transformed version of the original program using transformations like the

approach of Harman et al.

Alshraideh and Bottaci (AB06) proposed an approach to increase diversity of population–

based test data generation approaches, for situations where the fitness function results

in plateaux. This partly addresses issues relating to plateaux by increasing the chances

that random mutations will move the population off the plateau. One of the underly-

ing features of the flag problem is the way in which plateaux are present. In the case

of hard–to–test flags, the landscape is formed of one very large plateau (with a tiny

spike; the needle in the haystack) and, even with increased diversity, the search–based

approach reduces to random search.
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All of the evolutionary approaches can benefit from general improvements in genetic

algorithms. For example, Godefroid and Khurshid consider a framework for exploring

very large state spaces often seen in models for concurrent systems (GK04). They

describe an experiment with an implementation based on the VeriSoft tool. They

experiment with heuristics that improved the genetic algorithm’s mutation operators

and also show how Partial–order reduction can allow a greater search–space to be

considered.

Finally, from a transformation standpoint, the algorithm presented here is inter-

esting because it does not preserve functional equivalence. This is a departure from

most previous work on program transformation, but it is not the first instance of

non–traditional–meaning preserving transformation in the literature. Previous exam-

ples include Weiser’s slicing (Wei79) and the ‘evolution transforms’ of Dershowitz and

Manna (DM77) and Feather (Fea82). However, both slices and evolution transforms

do preserve some projection of traditional meaning. The testability transformation in-

troduced here does not; rather, it preserves an entirely new form of meaning, derived

from the need to improve test data generation rather than the need to improve the

program itself.

5.7 Conclusion

This chapter presented a testability transformation that handles the flag problem for

evolutionary testing. Unlike previous approaches, the transformation introduced here

can handle flags assigned in loops. Also, unlike previous transformation approaches

(either to the flag problem or to other more traditional applications of transformation)

the transformations introduced are not meaning preserving in the traditional sense;

rather than preserving functional equivalence, all that is required is to preserve the

adequacy of test data.

An implementation of the algorithm is discussed. The implementation is based

on CIL, an infrastructure for C program analysis and transformations. The modular

nature of both CIL and the tool allows the system to be extended in the future and in-

corporate different transformation algorithms, thus forming an effective transformation

tool, geared toward improving evolutionary testing.
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The behaviour of the algorithm is evaluated with two empirical studies that involve

a synthetic program and functions taken from open source programs. The synthetic

examples are used to illustrate how two variations of the algorithm perform for different

levels of difficulty. The results show that the approach scales well to even very difficult

search landscapes, for which test data is notoriously hard to find. The worst–case

considered involves finding a single adequate test input from a search–space of size

2320. Despite the size and difficulty of this search problem, the search–based testing

approach, augmented with the transformation algorithm introduced here, consistently

finds this value.
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Chapter 6

Multi–Objective Test Data

Generation

6.1 Introduction

In all previous work on search–based branch adequate test data generation, the problem

has been formulated as a single–objective search problem: the sole objective is to cover

the branch in question. While this is valuable, in many situations the tester may have

additional goals they would like to achieve using the same test set. For example, the

tester may also wish to find test cases that are more likely to be fault–revealing, or test

cases that combine different non–subsuming coverage based criteria. The tester might

also be concerned with test cases that exercise the usage of the stack or the heap,

potentially revealing problems with the stack size or with memory leaks and heap

allocation problems. There may also be additional domain–specific goals the tester

would like to achieve, for instance, exercising the tables of a database in a certain way,

or causing certain implementation states to be reached. In any such scenario in which

the tester has additional goals over and above branch coverage, existing approaches

represent an over–simplification of the problem in hand. A multi–objective optimization

approach would be more realistic. The lack of any previous work on multi–objective test

data generation therefore highlights an important gap in the literature. This chapter

takes a first step towards filling this gap. It formulates the test data generation problem

as a multi–objective optimization problem, presenting results from a study of a Pareto

optimal approach and a weighted fitness approach.
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In order to scope the problem, it was necessary to consider a suitable multi–objective

scenario. As the previous discussion indicates, there are many choices. The scenario

adopted is one in which the tester wishes to achieve branch coverage, while also con-

structing test cases that exercise the dynamic memory allocation of the program under

test. This scenario would occur where, for example, the tester knows that memory

is highly constrained or where the tester believes that there may be memory leaks or

possible null pointer dereferences. The chapter presents results from five case studies of

this multi–objective problem when applied to real code from the Software–artifact In-

frastructure Repository (SaIR) and also to specially constructed examples that denote

extreme cases where the two objectives are either in full agreement or total opposition.

These extreme cases allow the approaches to be explored at the limits for which they

might be expected to be applied. The primary contributions of this chapter are as

follows:

1. The chapter introduces the first formulation of test data generation as a multi–

objective problem. It describes the particular goal oriented nature of the coverage

criterion, showing how it presents interesting algorithmic design challenges when

combined with the non goal oriented memory consumption criterion.

2. The chapter presents results that confirm that multi–objective search algorithms

can be used to address the problem, by applying the ‘sanity check’ that search–

based approaches outperform a simple multi–objective random search.

3. The chapter presents results that suggest that a suitably constructed weighted

multi–objective approach, though simplistic, can be effective for this problem in

some cases. However, there is also evidence that a Pareto optimal approach can

find better solutions in other cases, with respect to a certain objective. The chap-

ter shows how a weighted and Pareto hybrid approach can be used to complement

each other.

4. The chapter also presents results from the application of a Pareto optimal evo-

lutionary algorithm, assessing the impact of the interdependencies that arise be-

tween the set of search problems denoted by the set of branches to be covered.

The rest of this chapter is organised as follows. Section 6.2 provides an overview

of background information on multi–objective evolutionary algorithms. Section 6.3
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describes two different approaches for attempting branch coverage while maximiz-

ing dynamic memory allocation. It also outlines the NSGA–II algorithm by Deb et

al. (DAPM00) used in one approach. Sections 6.4 and 6.5 present the experimental

setup and five case studies comparing both approaches when applied to synthetic and

real–world programs. Insights gained during the studies are revealed in Section 6.6 and

Section 6.7 concludes.

6.2 Background

Multi–objective evolutionary algorithms are algorithms designed for solving problems

where no single optimal solution exists and a set of solutions is required instead. An

example of a mutli–objective problem is the Knapsack problem (MT81), where weight

has to be minimized and profit maximized. This is also a typical example where two

objectives are in direct conflict with each other.

As stated, MOPs require a set of solutions known as a Pareto optimal set. Such a

set contains only non–dominating solutions. The concept of domination is defined as:

Individual X dominates Y if, and only if, X is better than Y in at least one

objective, and no worse in all other objectives.

A Pareto front and Pareto optimal set can be defined as ((HBC+04))

Pareto Optimal Set: For a given MOP ~f(~x), the Pareto Optimal Set

(P∗) is defined as: P∗ := {~x ∈ F | ¬∃~x′ ∈ F ~f(~x′) ≤ ~f(~x)}, where F is the

decision variable space.

Genetic algorithms are naturally suited for MOPs because they maintain a number

of individuals in every population, each of which may be better suited for one objective

than another. Genetic algorithms can also optimize multiple objectives in parallel. A

Pareto GA exploits this feature, giving it the ability to generate a Pareto optimal set

in a single run.

A special type of single–objective GA, such as a weighted GA, might achieve the

same results over a number of runs. However, for each run, the objectives have to be

formulated as a set of constraints rather than optimization problems.
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Most MOPs, such as the Knapsack problem mentioned above, have a large set

of ‘good compromise’ solutions compared to the set of ‘unpractical’ solutions. For

example, the only ‘useless’ solutions for the Knapsack problem are the zero weight or

minimal profit solutions, i.e. the very extreme points on a Pareto front.

The opposite is true for the MOP addressed in this chapter. Branch coverage is

attempted at a sub–goal level, with each goal corresponding to a branch in a program.

It follows that branch coverage can only have a boolean outcome; either a test case

traverses the branch or it fails to do so. The latter test cases are of no practical use,

therefore branch coverage has to be achieved, even if this should mean failing to allocate

any memory. Hence, the set of desirable solutions is very restricted; it may only contain

one solution.

This observation would suggest that a weighted GA is better suited for this prob-

lem. However, as memory allocation may be optimizable for some branches (e.g. by

increasing loop–iterations which allocate memory), a Pareto GA might also be ade-

quate, especially since finding the right set of ‘weights’ can prove challenging and a

different set of weights might be required for each branch.

In a weighted GA, each objective is given a coefficient, acting as a ‘weight’ for

its fitness value. The fitness values for each objective are then combined into a sin-

gle value, from which point onwards the multi–objective GA becomes identical to a

single–objective GA. In order for a weighted GA to be effective, particularly when two

objectives are in conflict, the objectives have to be ordered or prioritized in some way.

This is in contrast to a MOEA, which treats all objectives as equally important.

For the problem considered in this chapter, one objective, maximizing memory

allocation, is not clearly definable or quantifiable, because memory consumption may

not have an obvious ‘optimum’. Giving it too much weighting might inhibit branch

coverage, because of the adverse effect on the overall fitness value (depending on the

code/inputs). On the other hand, excessively reducing its weighting might render it

insignificant. The aim of maximizing memory allocation would thus be reduced to a

random search.
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6.3 Implementation

The IGUANA tool (McM07) was adapted for the implementation of the two algorithms,

which are based on a model described by Wegener et al. (WBS01). In order to measure

memory allocation, the source code was instrumented with a global variable, used to

count all bytes allocated during the execution of a function. The freeing of memory

by deallocating memory pointed to by a pointer was not accounted for in this study

because all the memory was allocated to global pointers which were released outside

the scope of the function under test. The next section describes the operations used

by the GAs and their configuration.

Two different types of selection operators were used for the implementation of the

weighted and Pareto GA. For the Pareto approach an elitist selection and reinsertion

strategy was chosen. Elitism ensures that the current best individual (or a set of best

individuals in case of a multi–objective GA) is copied across into the next generation.

The weighted GA uses stochastic universal sampling (Bak87) as a selection method,

where the probability of an individual being selected is proportionate to its fitness

value. This means ‘fitter’ individuals have more chance of being selected, but an ‘unfit’

individual may still be included, thereby partially maintaining diversity within the

population in order to prevent a premature convergence at a sub–optimal solution.

Before individuals are selected for crossover, they must be ranked according to their

fitness value within the population. The weighted-GA uses linear ranking (Whi89) with

a selection pressure Z of 1.7 (in accordance with the Wegener model), where ordered

individuals are assigned fitness values such that the best individual has a fitness of Z,

the median individual a fitness of 1.0 and the worst individual a fitness of 2−Z, where

Z = [1.0, 2.0]. These ranked values are then converted into proportionate fitness values

before selection takes place. Ranked fitness values for the Pareto GA are calculated

based on the Pareto–ranking method described in Section 6.3.1.

Discrete recombination (MSV93) was used to produce offspring and the mutation

algorithm is based on the breeder genetic algorithm (MSV93). It defines a mutation

probability of 1/len, where len is the length of the input vector. Each of the breeding

populations contains a different mutation step size p, ranging from 0.1 to 0.000001. A

mutation range ri is defined for each input parameter xi by the product of p and the

domain size of xi, with 0 ≤ i < len. The ‘mutated’ value vi of xi can thus be computed

145



6. MULTI–OBJECTIVE TEST DATA GENERATION

as vi = xi ± ri ∗ δ. Addition or subtraction is chosen with an equal probability. The

value of δ is defined to be
∑15

x=0 αx ∗ 2−x, where each αx is 1 with a probability of 1/16

else 0. If vi is outside the allowed bounds of xi, its value is set to either the minimum

or maximum value for xi.

A competition manager controls the number of individuals each population evolves.

Every 20 generations, 10% of the individuals are randomly chosen for migration from

one population to another. A migration manager ensures a population will only receive

individuals from at most one other population. The competition manager also calcu-

lates a progress value for each population at the end of a generation. This progress

value p is computed for a population at generation g as follows: 0.9 ∗ p + 0.1 ∗ rank.

rank indicates the average fitness of a population and is obtained by linearly ranking

the individuals within a population, as well as the populations amongst themselves.

Again, a selection pressure of 1.7 was used for obtaining each rank value.

Every n number of generations, where n is configured via the competition manager,

the populations are ranked according to their progress values. After this, a reallocation

parameter is computed for each population, which controls how many individuals from

the worst performing populations are transfered to the best performing ones. However,

a population is not allowed to loose its last five individuals to prevent it from dying

out. The transfer of individuals between populations is aimed at improving the overall

performance of the GA. Thus, in effect, the best performing population is seeded every

n number of generations and, as a result, will contribute most to the number of fitness

evaluations.

6.3.1 Pareto Genetic Algorithm Implementation

The implementation adapted for this chapter is based on the NSGA–II algorithm de-

scribed by Deb et al. (DAPM00). The main difference between a standard GA and

a multi–objective GA is the way fitness values are computed and individuals ranked

within a population. The NSGA–II algorithm creates a set of front lines, each front

containing only non–dominating solutions. Within a front, individuals are rewarded

for being ‘spread out’. The algorithm also ensures that the lowest ranked individual

of a front still has a better fitness value than the highest ranked individual of the next

front.

The remainder of this section explains the ranking algorithm’s steps in detail.
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The first stage of the algorithm calculates two entities for each solution (DAPM00):

1) a count c for the number of individuals which dominate the current individual; 2) a

set of individuals which are dominated by the current individual.

All individuals with a count of zero, i.e. those not dominated by any other individ-

ual, are grouped together to form the first front. The individuals from this front are

then iterated and for each individual in their ‘domination set’, the count is reduced by

one. Individuals that subsequently end up with a count of zero are again grouped to-

gether to form the next front. This process is repeated until all individuals are assigned

to a front.

In order to encourage diversity within a front and prevent premature convergence,

individuals are rewarded for lying either at extreme ends or less crowded regions of

a front. This is done by assigning a ‘distance’ attribute d to each individual, which

measures the distance of an individual to its closest neighbours. The value of d is defined

to be
∑n−1

x=0 δx where n is the number of objectives and δx the combined distance of an

individual from its closest neighbours with respect to the current objective.

Thus, if two individuals have the same non–domination count c, the individual with

the greater ‘distance’ d ranks higher.

6.3.2 Weighted Genetic Algorithm Implementation

Unlike the Pareto GA, a weighted GA can only find a single best solution. This ap-

proach is commonly applied to multi–objective problems where it is possible to prioritize

or order objectives in a meaningful way.

Branch coverage is a minimization task, where an ideal solution has an objective

value of zero. In order to combine the objective value for the memory allocation with

the distance measures, the inverse of the normalized number of bytes allocated was

used. As this value can never reach zero, a cut–off point of 10−5 was chosen as the

‘ideal’ memory value and thus ideal overall fitness. If a branch fails to allocate any

memory, a worst–case value of 1000 was used as the objective value for the memory

allocation.

Thus, if a test case allocates memory, the formula used to obtain the objective value

is: 1.001−b∗w−1b +1.0∗d, where b is the raw number of bytes allocated, wb is the weight

for the memory objective, with 0 < wb ≤ 105, and d the distance measure composed of

branch distance and approach level. The weight for d was left constant at 1.0.
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6.4 Experimental Setup

Five case studies were carried out into the effectiveness of different search methods in

generating branch adequate test data while maximizing dynamic memory allocation.

The three searches considered are: a random search, Pareto optimal and, a weighted

search. Two case studies are based on real–world C code and three on synthetic pro-

grams. The synthetic programs were chosen to evaluate the performance of a search

in the context of ‘extreme’ examples. Although very small with respect to lines of

code, the input domain for the synthetic programs ranges up to 1010. The degree of

difficulty for search–based testing is determined by the size of the search–space as well

as the shape of the fitness landscape, ensuring the synthetic examples are not trivial.

In addition, the dynamic memory allocation was designed to add further complexity to

the problem.

A search was terminated if either:

1. an ideal solution was found, or

2. 100,000 fitness evaluations had been performed, or

3. no progress, with respect to the current best solution, had been made over 25

generations.

For the Pareto GA, an ideal solution was considered to be the best solution with respect

to memory allocation, which also achieved the branch target.

6.5 Case Study Results

Each case study consists of the three algorithms run 10 times. These results are pre-

sented in Figure 6.1.

Case Study 1 is the addscan function from the space program, used by the

European Space Agency for scanning star field patterns. Memory is allocated without

releasing it, thus to avoid memory leaks, the function was modified for test purposes

to free the allocated memory.

Summary: Overall the Pareto GA allocates 66% more bytes than the weighted

GA at the expense of branch coverage. The function contains 32 branches and its
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domain size is approximately 10539. The weighted GA is deliberately directed towards

covering branches, making it more likely to succeed within the limits set by the stopping

conditions described above. The 3 branches left uncovered were either infeasible or the

search simply failed.

In order for the Pareto GA to cover a branch it needs to find an ‘extreme’ point

on the Pareto front. These points will only be ‘discovered’ quite late in the search,

because a Pareto GA always tries to find a good spread of solutions across the front,

evolving from a central region towards the ‘end points’ of a frontline.

Case Study 2 is a function taken from the cgi-util.c source, which is based on

post-query.c and query.c by NCSA. It takes a string and a ‘stop’ character as input,

and parses the string until either a terminating null or a stop character is found. The

new substring is removed from the input string and returned by the function. Only

the length of the input string affects the amount of memory being allocated. However,

this amount is constant for all branches because the memory allocation occurs at the

start of the function. The length of the input string was restricted to 104 characters

for practical reasons. This function also had to be modified to release the memory

allocated after each test run to prevent memory leaks.

Summary: The results from Figure 6.1 confirm that a random search is good at

achieving high branch coverage for ‘easy to cover’ branches. However, over 10 runs the

search only manages to allocate 13.62% of the optimum for memory allocation. The

weighted GA used a weight distribution of 3 : 2 in favour of branch coverage for this

case study. It manages to comprehensively beat the Pareto GA in terms of branch

coverage. However, over 10 runs the weighted GA allocates fewer bytes (6258.7 on

average) than the Pareto GA. While the Pareto GA manages to allocate the maximum

amount of memory possible in 1 run, its average branch coverage is only 95%. Thus,

the weighted GA can be considered better suited for this case study because achieving

full branch coverage is required.

Case Study 3 is a function containing four predicates. The first three follow an

if - then - else - if structure and allocate a constant amount of memory. The

true branch of the first predicate allocates 20 bytes, the true branch of the second

predicate 10 bytes and the third predicate, 5 bytes. The last predicate does not allocate

any memory. This example was chosen to investigate an inverse relationship between
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‘approach level’ for branch coverage and memory allocation and the effects on finding

a Pareto optimal set.

Summary: The random search is uninteresting as it neither achieves 100% coverage

nor allocates any memory at all in 9 of the 10 runs. The Pareto GA finds the maximum

amount of bytes that can be allocated in 50% of the runs. However, it also leaves at best

3 branches uncovered. By achieving 100% branch coverage, the weighted GA manages

to optimize the input vector to allocate the maximum amount of memory possible in

all runs, clearly outperforming the Pareto GA at less computational cost.

Case Study 4 is a program that generates a random sequence of characters from

the alphabet and stores them in a string. The length of the string generated depends

on the input parameters. The first parameter affects the path to be taken through the

function; the second parameter specifies the length of the string. The branching nodes

ensure that the second parameter only influences the memory allocation if the test case

traverses the true branch of the first predicate. If a test case fails to cover this branch,

the memory allocation for the rest of the function will either be constant, or, in one

case, the function will exit prematurely and no memory will be allocated.

Summary: The input domain for Case Study 4 is 105 and the maximum number of

bytes that can be allocated is restricted to 256. Even though the input domain is quite

small, all methods fail to cover 100% of the branches. One of the uncovered branches

is controlled by a predicate checking if the memory allocation was successful. The

true branch of this predicate can be considered infeasible because of the restrictions

imposed on the memory allocation. All other branches are covered by the weighted

GA 40% of the time. Both the Pareto GA and random search fail to cover at least one

more branch than the weighted GA. One of these uncovered branches is controlled by a

flag–containing predicate. The success of the weighted GA in covering this branch can

be explained by the distribution of weights. These ensure more resource is spent on

the branch coverage objective compared to the Pareto GA, which shares its resources

amongst the objectives.

Case Study 5 is a function constructed to produce a ‘difficult to search’ fitness

landscape for the GAs (MBHar). To further add complexity, the memory allocation is

constant for all but one branch. The false branch of a ‘hard to cover’ predicate contains

an additional reallocation of memory, which in effect ‘rewards’ a search for missing the

target, creating a deliberate conflict between the two objectives.
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Summary: The random search fails to allocate more than 33% of the total possible

memory and only covers 17% of all branches. Perhaps surprisingly the Pareto GA

outperforms the weighted GA by covering at least 1 more branch than the weighted

GA in all but 1 run. It also consistently allocates the maximum number of bytes

possible over the 10 runs, whereas the weighted GA only manages to do so in 50% of

the runs.

6.6 Discussion

This section discusses the findings of the case studies from Section 6.5 and the results

presented in Figure 6.1. It also includes some insights gained during the case studies.

For Case Studies 3 and 4 the weighted GA clearly outperforms the Pareto GA in

all objectives. Case Study 1 presents a trade–off between the two GAs. The weighted

GA covers an average 88% of the branches, compared to just under 80% covered by

the Pareto GA. However, the weighted GA only manages to allocate about 34% of the

number of bytes the Pareto GA allocates over 10 runs. In Case Study 2 the weighted

GA achieves an overall higher branch coverage than the Pareto GA, while allocating

fewer bytes. Finally, in Case Study 5 the Pareto GA beats the weighted GA over a

total of 10 runs.

The maximum number of bytes recorded during the case studies refer to the highest

values found by a test case which covered a particular target. Any ‘better’ value found

for this objective whilst attempting the target was not recorded if the test case missed

the target and covered another branch, e.g. branch b instead. However, Figure 6.2

shows that the ideal solution for branch b will allocate at least the same amount of

memory.

Overall, the findings suggest that it is not possible to pick one search method over

the other, as each performs better in some cases. For example, Table 6.1 illustrates that

both the weighted and Pareto GA, cover branches missed by either Pareto or weighted

GA respectively. Equally, both approaches have a number of disadvantages: the high

computational cost associated with the Pareto GA and the difficulty of finding the

most efficient set of weights for the weighted GA. For some example functions even a

slight increase in the weight for the memory objective resulted in a significant drop in

branch coverage. For others, adjusting the weights did not seem to affect the branch
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Case Study 1 Case Study 2

Case Study 3 Case Study 4

Case Study 5

Figure 6.1: Results of the branch coverage and memory allocation achieved by three

different algorithms: a random search, a Pareto GA and, weighted GA.
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coverage and only marginally improved the memory allocation, even with a ‘drastic’

redistribution of weights. A set of experiments were carried out to investigate the

impact different weights have on the behaviour of the weighted GA before deciding on

the final weights used in the case studies.

Given the results presented in Table 6.1 and Figure 6.1, a hybrid approach may

be advisable. For example, a weighted GA could be used to cover branches for which

the Pareto GA failed to find test cases. This would also solve the issue of not being

able to evaluate the performance of a weighted GA for an objective with an undefined

optimum. Case Study 1 is an example where the maximum number of bytes allocated

by the weighted GA is meaningless without a point of reference. The Pareto GA is

more likely to find a good approximation to the ‘real’ optimum because it has less room

for error, e.g. by not having an ideal distribution of weights.

The case studies also revealed that, in most cases, the Pareto GA does not produce

a frontline. It converges at a single solution instead (see Figure 6.3). Where a frontline

exists, it often lacks diversity. While this is not entirely due to the sub–goal approach,

it is emphasized by it.

For a frontline to contain many points, the target branch needs to either allocate

varying amounts of memory, or an inverse relationship between the distance of a test

case from the target and the memory allocated by it, must exist (see Figure 6.2).

In any other scenario the frontline contains at most two points: one point repre-

senting a case that reached the target and the other, any test case that happens to

allocate more memory than the first but misses the target.

Another issue revealed is that 100% branch coverage is very hard to achieve for pro-

grams containing malloc, calloc and realloc statements. After allocating memory,

a well written program should check whether the allocation has been successful. It is

these cases that are of interest, and which partly motivated the exploration of applying

a Pareto GA to the branch coverage problem. However, to exhaust a program’s heap

space can be very challenging, possibly requiring a large number of loop–iterations or

the presence of a memory leak to name but a few scenarios. Once the heap space is

exhausted, the C program may crash, especially if it is not well written. As a result,

the test environment will also terminate, thus being unable to log the test case that

caused the crash.
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int p*;

if( a == 0)

{

/*target 1T*/

}

else

{

/*target 1F*/

p = (int*)malloc(a*sizeof(int));

}

Code snippet

Figure 6.2: Final Pareto fronts produced for targets 1T and 1F. The upper point on

the y–axis represents the ‘ideal’ solution for target 1F. As can be seen, once the branch

has been reached, a single solution will dominate all others because it is the only branch

allocating memory. When attempting to cover target 1T on the other hand, the Pareto

optimal set potentially consists of an infinite number of solutions. The graph combines

five runs which reveal little variance between the frontlines produced. Interestingly, the

‘ideal’ point for target 1F corresponds to the maximum value contained within the Pareto

optimal set for target 1T with respect to memory allocation.
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Branch ID Example Function

char *makeword(char *line, char stop) {

int x = 0,y;

char *word;

word=(char *)malloc(sizeof(char)*(strlen(line)+ 1));

1T/1F for(x=0;((line[x]) && (line[x] != stop));x++)

word[x] = line[x];

word[x] = ’\0’;

2T/2F if(line[x]) ++x;

y=0;

3T/3F while(line[y++] = line[x++]);

return word;

}

Bytes allocated

1T {9634}
1F {9856}
2T {9692}
2F {1194}
3T {9553}
3F {9649}

Figure 6.3: The table at the bottom presents the Pareto optimal sets for each ‘sub–goal’

of the example function above used in Case Study 2. It combines the results collected over

five runs and illustrates that it is often not possible to generate a Pareto frontline when

considering branch coverage and memory allocation as a MOP. Although the amount of

dynamic memory allocated depends on the input parameters, it is constant for all branches.

As a result one solution will dominate all others with respect to a particular target.
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Table 6.1: The table shows the branches covered by the weighted GA and not the Pareto

GA, or vice versa. The ‘distance’ measure illustrates how close the best solution came to

traversing the target branch. It combines the normalized branch distance and the approach

level. A distance of 0 indicates a branch has been covered. These results were obtained

during Case Study 1.

Branch ID Bytes allocated Distance

Pareto weighted Pareto weighted

7 2826560 690360 0.001997004 0

9 2494888 534160 0.005979056 0

10 5622848 1529968 1.001997004 0

11 5978016 1309352 2.001997004 0

12 6372608 586784 2.001997004 0

15 6969776 518320 0.000699161 0

16 1374560 1304160 0.5 0

17 2644048 758032 1.000999001 0

21 2455024 195888 3.000999001 0

28 6728128 291368 0 6.2

6.7 Conclusion

This chapter has presented a first multi–objective approach to branch coverage. Tra-

ditionally, the aim of branch coverage has solely been to find test cases which traverse

a specific branch. The chapter supplements this goal with the additional objective of

consuming as much dynamic memory as possible at the same time.

Five case studies, two based on real–world C code and three created to push the

techniques to the extremes, compared the performance of three search methods: a

random search, Pareto GA and weighted GA. The results show that a weighted GA is

best suited in most cases, achieving the same results as a Pareto GA more efficiently.

However, the studies also reveal that a hybrid approach between the two algorithms

may offer the best overall results.
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Chapter 7

Conclusions and Future Work

7.1 Summary of Achievements

This thesis has proposed two solutions to extend and improve search–based testing. In

addition it has provided a first formulation of a multi–objective branch coverage test

adequacy criterion. The original aims and objectives of the thesis were as follows:

1. To advance the capabilities of the current state–of–the–art search–based test-

ing techniques, extending them so they can handle pointers and dynamic data

structures.

2. To perform a thorough empirical investigation, evaluating the extended search–

based strategy against a concolic testing approach. The study aimed to provide

a concrete domain of programs for which the approaches will either be adequate

or inadequate.

3. To empirically investigate the use of a testability transformation for the loop–

assigned flag problem in search–based–testing.

4. To investigate the use of search–based testing in multi–objective test data gener-

ation problems.

The first of the objectives was addressed by combining a constraint solving method

based on symbolic execution in a novel way with a hill climber in a tool called AUSTIN.

The tool was then evaluated in an empirical study in which its effectiveness and effi-

ciency in generating test data were compared with that of the state–of–the–art ETF
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structural test component, developed within the scope of the EU–funded EvoTest

project. A comparison was also made with the ETF configured to perform a ran-

dom search. The test objects consisted of eight non–trivial C functions drawn from

three real–world embedded software modules from the automotive sector and imple-

mented using two popular code–generation tools. For the majority of the functions,

AUSTIN is at least as effective (in terms of achieved branch coverage) as the ETF and

is considerably more efficient. These findings agree with previous research comparing

the performance of a hill climbing algorithm with a genetic algorithm for structural test

data generation on a smaller scale. The empirical study presented in Chapter 3 also

goes some way towards addressing the lack of ‘real–world’ evaluations in search–based

testing.

After successfully applying AUSTIN to machine generated code and achieving rela-

tively high levels of coverage, the second objective was achieved by comparing AUSTIN

with CUTE, a concolic testing tool, on five large open source applications. The study

is the first of its kind. Each tool was applied ‘out of the box’; that is, without writing

additional code for special handling of any of the individual subjects, or by tuning the

tools’ parameters. Perhaps surprisingly, the results show that both tools can only ob-

tain, at best, a modest level of code coverage. For AUSTIN the two major contributors

to its poor performance were segmentation faults in the function under test and spikes

and plateaux in the fitness landscape. Segmentation faults were caused by the absence

of preconditions for pointer inputs. AUSTIN currently cannot infer such preconditions,

i.e. it either requires a tester to specify preconditions in the test driver, or, requires a

program to be coded ‘defensively’. A defensive programming style includes checks on

pointer variables to ensure they are initialized before dereferencing their value. The

second contributor was tackled in Chapter 5 by proposing a testability transformation

for loop–assigned flags.

Most search–based testing approaches degenerate to random testing in the presence

of flag variables, because flags create spikes and plateaux in the fitness landscape. Both

these features are known to denote difficult optimization problems for search–based op-

timization techniques. Several authors have studied flag removal transformations and

fitness function refinements to address the issue of flags, but the problem of loop–

assigned flags remained unsolved. This thesis introduced a testability transformation

158



7.1 Summary of Achievements

along with a tool that transforms programs with loop–assigned flags into flag–free equiv-

alents, so that existing search–based test data generation approaches can successfully

be applied.

The behaviour of the algorithm was evaluated with two empirical studies that in-

volved a synthetic program and functions taken from open source programs. The

synthetic examples were used to illustrate how two variations of the algorithm perform

for different levels of difficulty. The results show that the approach scales well to very

difficult search landscapes, for which test data is notoriously hard to find. The worst–

case considered involves finding a single adequate test input from a search–space of

size 2320. Despite the size and difficulty of this search problem, the search–based test-

ing approach, augmented with the transformation algorithm introduced in this thesis,

consistently finds this value.

The final objective of the thesis was achieved by investigating a multi–objective

branch coverage problem. Traditionally, the aim of branch coverage has solely been to

find test cases which traverse a specific branch. However, in many scenarios a single–

objective formulation is unrealistic; testers will want to find test sets that meet several

objectives simultaneously in order to maximize the value obtained from the inherently

expensive process of running the test cases and examining the output they produce. In

Chapter 6 the thesis supplemented the goal of generating branch adequate test data

with the additional objective of consuming as much dynamic memory as possible at the

same time. This new multi–objective problem was investigated with the help of five

case studies, two based on real–world C code and three created to push the techniques

to the extremes. Three search methods were used during the evaluation: a random

search, Pareto GA and weighted GA. The results show that a weighted GA is best

suited in most cases, achieving the same results as a Pareto GA more efficiently.

In summary, Chapters 3, 4 and 6 are novel to this thesis, while the work in Chapter 5

is an extension of previous work by Baresel et al. (BBHK04). The work in this thesis

differs from the work of Baresel et al. in the following primary ways:

1. modified flag replacement algorithm;

2. new implementation section;

3. empirical evaluation of the flag replacement algorithm.
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The work in Chapter 5 also forms part of a recently published article in Transactions

on Software Engineering and Methodology (BHLar). The published article also contains

an empirical study to show that the flag problem considered is prevalent among those

uses of flags found in a suite of real–world programs. This empirical study does not

feature in Chapter 5.

7.2 Summary of Future Work

Despite the promising results obtained by AUSTIN in Chapter 3, bridging the gap

between research and industrial applicability remains an open problem for search–based

testing tools. For example, search–based testing tools targeting C code need to support

a wider range of input types, such as union constructs, void pointers, function pointers

and strings. While work has been done to support string inputs in testing, mostly

outside the field of search–based testing, no previous work in the field of search–based

testing addresses the problem of void and function pointers in C code, even though they

are commonly used programming paradigms in real–world code. Also, on a practical

level, tools need to be able to prevent or recover from segmentation faults, so that they

may continue the test data generation process after the system under test raises such

exceptions.

Any future work will also have to consider a large body of real–world code. In order

to extend the scalability of AUSTIN further, the path condition collected during the

symbolic execution (described in Chapter 3) will be used to perform an input domain

reduction. This will be done in two stages. First, a constraint solver will be used for any

linear constraints in order to improve the efficiency of the search by saving hill climb

moves. The intention is to use a hill climb algorithm only in the presence of floating

point calculations, non–linear expression, or generally for branch predicates which are

too complex to be handled by a lightweight constraint solver. Suppose execution of

the path which executes the true branch of the program of Figure 7.1(a) is required.

AUSTIN will start by executing the function with the values 0 and 0 for x and y

respectively. It will then take AUSTIN a total of 5 fitness evaluations to reach the

true branch depicted in Figure 7.1(a). By contrast, a dynamic symbolic execution

based tool would be able to do so in a maximum of 2 iterations (i.e. executions of

the function). AUSTIN already forms a path condition for all symbolic variables,
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but currently discards constraints which are not over pointer inputs. It would not

take much to filter out constraints over primitive type variables and pass those to a

constraint solver. Further, it would enable AUSTIN to benefit from another strength of

symbolic execution, namely being able to detect infeasible paths, and thus save wasteful

fitness evaluations.

The second stage is to perform a dynamic variable dependence analysis in order to

reduce the size of the search–space. Suppose execution of the path which executes the

true branch of the program of Figure 7.1(b) is required again. AUSTIN will start by

executing the function with all variables of primitive type set to zero. When starting its

exploratory moves, it will waste 4 moves by exploring neighbouring values for the inputs

a and b respectively. These wasteful moves will be repeated every time a pattern move

finishes, or a random restart is performed. The un–trimmed path condition AUSTIN

constructs (see Section 3.2.5) for the path executed by input variables set to zero is

<x ∗ y ≥ 100>. The proposed idea is to only include those variables in the AVM which

appear in constraints in the path condition, i.e. x and y, thereby saving potentially

wasteful moves. The dynamic input domain reduction would be more light-weight than

a more traditional static analysis such as the one used by Harman et al. (HHL+07).

Further, it is currently not straightforward to include the results of the static analysis

in the test data generation process, requiring the assistance of a human. The idea

presented in this thesis is fully automated.

Once the (predominantly) implementation related problems have been solved, and

AUSTIN has been made more efficient, the next challenge will be to improve the quality

of test data produced by an automated technique. To date, the quality of a technique for

generating test data is still overwhelmingly based on the number of syntactic features

covered, e.g. branches in a function. Yet, there has been much debate about whether

or not these measures correlate to fault revelation (MRBW95; Bei90). Furthermore,

the current techniques do not consider the oracle cost; the time and effort it takes (for

a human) to check that the input values generated by the automated technique

1. obey any implied precondition to the function

2. did not produce an unexpected behaviour of the function under test

3. resulted in the expected output values given the input values
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void testme1(int a, int b)

{

a += 5; b -= 10;

if (a == b)

// ...

}

(a) Example for demonstrating how AUSTIN ‘wastes’ fitness evaluations. The branch predicate is

linear.

void testme2(int a, int b, int x, int y)

{

if (x * y < 100)

// ...

}

(b) Example for demonstrating how AUSTIN could use a light weight dynamic input domain re-

duction. The branch predicate is non–linear.

Figure 7.1: Code example to illustrate ideas for future work.

The above points are inherently hard to automate, especially for programming

languages like C, which do not natively support features such as explicit pre and post

conditions of a function. One possible way to strengthen the test data produced by

an automated technique could be to link the test data generation process with an

automated invariant inference technique.

The most popular invariant detector is the Daikon tool (EPG+07). Daikon is able

to generate program invariants based on program trace files. These files are produced

by executing a set of test cases (inputs to a program) and recording their effect. The

‘quality’ of the inferred invariants are thus largely dependent on the quality of the

original test set which was used to obtain the invariants.

One way to improve both the quality of the invariants as well as the test data would

be to use the test data generation as a means to generate counter examples to drive

the development of new pre– and post–conditions. In this way both the specifications

and the test cases would form a kind of co–evolution. Initially, a test set would consist

of branch adequate test data, i.e. test data search–based techniques such as those

implemented in AUSTIN are currently able to generate. Suppose that the test set has
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a ‘poor’ quality according to a fault revelation metric. Any inferred specifications from

such a test set will consequently also be of poor quality, because they are likely to

be inaccurate. However, as the test cases ‘evolve’ and reveal counter examples, the

specification inference will become ever more precise, as the pool of data from which

observations are made increases.

The end result is a set of test data and a specification for the function under test.

Even if the test cases obtained through this co–evolution do not turn out to be more

fault revealing than test data produced by existing techniques, they are still likely to

yield deep insights into the relationship between test cases and specifications. Further,

they should reduce the burden on testers by presenting a specification which is close to

the true specification of the function, and a set of test cases which should, in theory,

be easier to validate because they are coupled with a specification.
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Appendix A

Abbreviations and Acronyms

API – Application Programming Interface

AUSTIN – AUgmented Search–based TestINg

AVM – Alternating Variable Method

CFG – Control Flow Graph

CIL – C Intermediate Language

ETF – Evolutionary Testing Framework

EU – European Union

FUT – Function Under Test

GA – Genetic Algorithm

IGUANA – Input Generation Using Automated Novel Algorithms

LOC – Lines Of Code

MC/DC – Modified Condition / Decision Coverage

MOEAs – Multi–Objective Evolutionary Algorithms

MOP – Multi–Objective Problem

SBST – Search–Based Software Testing
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[CDH+03] John Clark, José Javier Dolado, Mark Harman, Robert Mark Hierons, Bryan Jones, Mary

Lumkin, Brian Mitchell, Spiros Mancoridis, Kearton Rees, Marc Roper, and Martin Shep-

perd. Reformulating software engineering as a search problem. IEE Proceedings — Soft-

ware, 150(3):161–175, 2003. (Cited on page 2.)

168



REFERENCES

[CE05] Cristian Cadar and Dawson R. Engler. Execution generated test cases: How to make

systems code crash itself. In Model Checking Software, 12th International SPIN Workshop,

San Francisco, CA, USA, August 22-24, 2005, Proceedings, volume 3639 of Lecture Notes

in Computer Science, pages 2–23. Springer, 2005. (Cited on pages 2, 3, 27, 29, 31, 35, 87

and 90.)

[CG06] Arindam Chakrabarti and Patrice Godefroid. Software partitioning for effective auto-

mated unit testing. In Proceedings of the 6th ACM & IEEE International conference on

Embedded software, EMSOFT 2006, October 22-25, 2006, Seoul, Korea, pages 262–271.

ACM, 2006. (Cited on pages 31 and 108.)

[CGMC03] Myra B. Cohen, Peter B. Gibbons, Warwick B. Mugridge, and Charles J. Colbourn.

Constructing test suites for interaction testing. In Proceedings of the 25th International

Conference on Software Engineering (ICSE-03), pages 38–48, Piscataway, NJ, May 3–10

2003. IEEE Computer Society. (Cited on page 2.)

[CK06] Yoonsik Cheon and Myoung Kim. A Specification-based Fitness Function for Evolution-

ary Testing of Object-oriented Programs. In Proceedings of the 8th annual Conference on

Genetic and Evolutionary Computation (GECCO ’06), pages 1953–1954, Seattle, Wash-

ington, USA, 8-12 July 2006. ACM. (Cited on page 17.)

[CPDGP01] Alberto Coen-Porisini, Giovanni Denaro, Carlo Ghezzi, and Mauro Pezzè. Using symbolic
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[LBW04] Frank Lammermann, André Baresel, and Joachim Wegener. Evaluating Evolutionary

Testability with Software-Measurements. In Proceedings of the 2004 Conference on Ge-

netic and Evolutionary Computation (GECCO ’04), volume 3103 of Lecture Notes in

Computer Science, pages 1350–1362, Seattle, Washington, USA, 26-30 June 2004. Springer

Berlin / Heidelberg. (Cited on page 16.)

[LHM08] Kiran Lakhotia, Mark Harman, and Phil McMinn. Handling Dynamic Data Structures

in Search Based Testing. In Maarten Keijzer, editor, Proceedings of the 10th Annual

Conference on Genetic and Evolutionary Computation (GECCO ’08), pages 1759–1766,

Atlanta, GA, USA, 12-16 July 2008. ACM. (Cited on page 16.)

[LI08] Raluca Lefticaru and Florentin Ipate. Functional Search-based Testing from State Ma-

chines. In Proceedings of the First International Conference on Software Testing, Verfica-

tion and Validation (ICST 2008), pages 525–528, Lillehammer, Norway, 9-11 April 2008.

IEEE Computer Society. (Cited on page 17.)

[Lit01] Tim Littlefair. An Investigation Into The Use Of Software Code Metrics In The Indus-

trial Software Development Environment. PhD thesis, Faculty of computing, health and

science, Edith Cowan University, Australia, 2001. (Cited on pages xvii, 72 and 74.)

[LLLW05] Xiyang Liu, Ning Lei, Hehui Liu, and Bin Wang. Evolutionary testing of unstructured

programs in the presence of flag problems. In APSEC, pages 525–533. IEEE Computer

Society, 2005. (Cited on pages 122, 137 and 138.)

[LLW+05] Xiyang Liu, Hehui Liu, Bin Wang, Ping Chen, and Xiyao Cai. A unified fitness function

calculation rule for flag conditions to improve evolutionary testing. In 20th IEEE/ACM

172



REFERENCES

International Conference on Automated Software Engineering (ASE 2005), November 7-

11, 2005, Long Beach, CA, USA, pages 337–341. ACM, 2005. (Cited on page 138.)

[LMH09] Kiran Lakhotia, Phil McMinn, and Mark Harman. Automated Test Data Generation for

Coverage: Haven’t We Solved This Problem Yet? In 4th Testing Academia and Industry

Conference - Practice and Research Techniques TAIC PART 09, pages 95–104, 2009.

(Cited on pages x, 37 and 40.)

[MBHar] Phil McMinn, David Binkley, and Mark Harman. Empirical evaluation of a nesting testa-

bility transformation for evolutionary testing. ACM Transactions on Software Engineering

Methodology, To appear. (Cited on page 150.)

[McM04] Phil McMinn. Search-based software test data generation: A survey. Software Testing,

Verification and Reliability, 14(2):105–156, June 2004. (Cited on pages 2 and 16.)

[McM05] Phil McMinn. Evolutionary Search For Test Data In The Presence Of State Behaviour.

PhD thesis, University of Sheffield, 2005. (Cited on page 24.)

[McM07] Phil McMinn. IGUANA: Input generation using automated novel algorithms. A plug

and play research tool. Technical Report CS-07-14, Department of Computer Science,

University of Sheffield, 2007. (Cited on page 145.)

[MH06] Phil McMinn and Mike Holcombe. Evolutionary testing using an extended chaining ap-

proach. Evolutionary Computation, 14(1):41–64, 2006. (Cited on pages x, 16, 40, 106

and 137.)

[MHH01] Rob Hierons Mark Harman and Lin Hu. Testability enhancement transformation. Tech-

nical report, DAIMLER-CHRYSLER, 2001. (Cited on page 112.)

[MMS01] Christoph C. Michael, Gary McGraw, and Michael Schatz. Generating software test data

by evolution. IEEE Trans. Software Eng, 27(12):1085–1110, 2001. (Cited on pages 2, 16

and 108.)

[MRBW95] James Miller, Marc Roper, Andrew Brooks, and Murray Wood. Towards a benchmark

for the evaluation of software testing techniques. Information and Software Technology,

37(1):5–13, 1995. (Cited on page 161.)

[MRZ06] James Miller, Marek Reformat, and Howard Zhang. Automatic Test Data Generation

using Genetic Algorithm and Program Dependence Graphs. Information and Software

Technology, 48(7):586–605, July 2006. (Cited on page 16.)

[MS76] Webb Miller and David L. Spooner. Automatic generation of floating-point test data.

IEEE Transactions on Software Engineering, 2(3):223–226, September 1976. (Cited on

pages 1, 2 and 13.)

[MS07] Rupak Majumdar and Koushik Sen. Hybrid concolic testing. In ICSE, pages 416–426.

IEEE Computer Society, 2007. (Cited on pages 90 and 107.)

173



REFERENCES

[MSV93] Heinz Mühlenbein and Dirk Schlierkamp-Voosen. Predictive models for the breeder genetic

algorithm: I. continuous parameter optimization. Evolutionary Computation, 1(1):25–49,

1993. (Cited on page 145.)

[MT81] Silvano Martello and Paolo Toth. Heuristic algorithms for the multiple knapsack problem.

Computing, 27(2):93–112, 1981. (Cited on page 143.)

[NMRW02] George C. Necula, Scott McPeak, Shree P. Rahul, and Westley Weimer. CIL: Intermediate

language and tools for analysis and transformation of C programs. Lecture Notes in

Computer Science, 2304:213–228, 2002. (Cited on pages 41 and 118.)

[OJP99] A. Jefferson Offutt, Z. Jin, and Jie Pan. The dynamic domain reduction approach to test

data generation. Software Practice and Experience, 29(2):167–193, January 1999. (Cited

on page 137.)

[PHP99] Roy P. Pargas, Mary Jean Harrold, and Robert Peck. Test-data generation using genetic

algorithms. Softw. Test, Verif. Reliab, 9(4):263–282, 1999. (Cited on pages 2, 16 and 22.)

[PW08] Maria Prutkina and Andreas Windisch. Evolutionary Structural Testing of Software with

Pointers. In Proceedings of 1st International Workshop on Search-Based Software Testing

(SBST) in conjunction with ICST 2008, pages 231–231, Lillehammer, Norway, 9-11 April

2008. IEEE. (Cited on pages 16 and 70.)

[Rad92] Radio Technical Commission for Aeronautics. RTCA DO178-B Software considerations

in airborne systems and equipment certification, 1992. (Cited on pages 2, 16 and 109.)

[RMB+95] Marc Roper, Iain Maclean, Andrew Brooks, James Miller, and Murray Wood. Genetic

algorithms and the automatic generation of test data. Technical report, Semin. Arthr.

Rheum, 1995. (Cited on pages 2 and 16.)

[Rop97] Marc Roper. Computer-aided software testing using genetic algorithms. In Proceedings

of the 10th International Software Quality Week (QW ’97), San Francisco, USA, 1997.

(Cited on page 21.)

[Rux06] Graeme D Ruxton. The unequal variance t-test is an underused alternative to Student’s

t-test and the Mann-Whitney U test. Behavioral Ecology, 17(4):1045–2249;1465–7279, Jul

2006. (Cited on page 78.)

[SA06] Koushik Sen and Gul Agha. CUTE and jCUTE: Concolic unit testing and explicit path

model-checking tools. In Computer Aided Verification, 18th International Conference,

CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, volume 4144 of Lecture

Notes in Computer Science, pages 419–423. Springer, 2006. (Cited on page 32.)

[SA08] Anastasis A. Sofokleous and Andreas S. Andreou. Automatic, Evolutionary Test Data

Generation for Dynamic Software Testing. Journal of Systems and Software, 81(11):1883–

1898, 2008. (Cited on page 16.)

[Sag07] Ramón Sagarna. An Optimization Approach for Software Test Data Generation: Applica-

tions of Estimation of Distribution Algorithms and Scatter Search. PhD thesis, University

of the Basque Country, San Sebastian, Spain, January 2007. (Cited on page 17.)

174



REFERENCES

[SaIR] The Software-artifact Infrastructure Repository. http://sir.unl.edu/portal/index.

html. (Cited on page 142.)

[SAY07] Ramón Sagarna, Andrea Arcuri, and Xin Yao. Estimation of Distribution Algorithms for

Testing Object Oriented Software. In Proceedings of the IEEE Congress on Evolutionary

Computation (CEC ’07), pages 438–444, Singapore, 25-28 September 2007. IEEE. (Cited

on page 17.)

[SB92] Nicol N. Schraudolph and Richard K. Belew. Dynamic parameter encoding for genetic

algorithms. Machine Learning, pages 9–21, 1992. (Cited on page 18.)
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