
Analysis of Procedure Splitability

Tao Jiang Mark Harman Youssef Hassoun
King’s College King’s College King’s College
Strand, London Strand, London Strand, London

WC2R 2LS, UK. WC2R 2LS, UK. WC2R 2LS, UK.

Keywords: Procedure Splitting, Program Analysis

Abstract
As software evolves there is a tendency for size to increase
and structure to degrade, leading to problems for ongoing
maintenance and reverse engineering. This paper introduces
a greedy dependence-based procedure splitting algorithm
that provides automated support for analysis and interven-
tion where procedures show signs of poor structure and over
large size. The paper reports on the algorithms, implemen-
tation and empirical evaluation of procedure splitability. The
study reveals a surprising prevalence of splitable procedures
and a strong correlation between procedure size and splitabil-
ity.

1 Introduction
There is evidence that as programs evolve their structure de-
teriorates [12, 13]. One way that this program degradation
manifests itself is that programs become ‘bloated’. That is,
systems have a tendency to accrue additional functionality
and the code that goes with it. In this paper we explore this
question of bloat at the procedure level. The primary ques-
tion that the paper addresses is: is there a link between pro-
cedure size and splitability?

While there has been a lot of work on assessing proce-
dure structure [1, 15] and some work on extracting a single
subprocedure [11], this question has not previously been ad-
dressed. Clearly, more splitable procedures are candidates
for re-engineering and so a positive answer to the question,
though perhaps a further ‘cloud’ over the structural integrity
of large-procedure systems, may contain a ‘silver lining’
of good news for the reverse and re-engineering commu-

nity. That is, for the re-engineering community a positive
answer to the paper’s central question would suggest that re-
engineering becomes increasingly effective as procedure size
increases.

Previous work on this problem has focussed on cohesion
improvement and procedure extraction. For example, tuck-
ing [11] extracts a part of a procedure to make a new subpro-
cedure with the aim of improving cohesion, while procedure
extraction, extracts marked code into a procedure, potentially
improving the procedural abstraction of un-modularised code
blocks [8, 10].

This paper adopts a similar approach to tucking, except
that a procedure may be split into several subprocedures,
rather than merely splitting in two, which tucking does. Our
approach also uses a greedy optimization algorithm to find
the optimal or near optimal points for a split, whereas tucking
simply follows a set of pre-determined rules to locate split (or
wedge) points.

Following an approach inspired by Beiman and Ott’s slice
based measurement of cohesion [1], we define measurements
of splitability; the degree to which a procedure may be split
without replication of any of the code in its body. The pa-
per then uses an implementation of our greedy splitting algo-
rithm to empirically investigate splitability and its correlation
to procedure size.

The paper addresses three research questions RQ1-RQ3 to
evaluate both the splitting technique and the splitability of
code:

RQ1: How frequently are there splitable procedures in the
programs studied?



RQ2: How much repeated code will need to be generated as
a result of splitting. A perfect split requires no repeti-
tion. The more repetition is required, the less splitable
the procedure is.

RQ3: What is the relationship between splitability and the
size of a procedure?

The central finding of the paper lies in the answer to the
last question. The paper demonstrates that there is, indeed,
a statistically significant correlation between increasing pro-
cedure size and increasing splitablity. This is good news for
re-engineers who may naturally consider large procedures as
starting candidates for re-engineering activities.

To answer these questions, the paper presents three related
empirical investigations. The investigations are performed
on six different open source c programs (See Table 2). The
primary contributions of the paper are:

1. An algorithm based on greedy application of depen-
dence analysis is introduced to identify split points in
procedures.

2. The empirical study shows that a surprisingly large pro-
portion of the procedures considered are splitable.

3. The paper provides evidence for a strong statistical cor-
relation between procedure size and splitability in the
programs studied.

The next section, Section 2, defines splitable procedure
and introduces the splitting algorithm. Section 3 presents the
empirical study and answers the research questions posed in
Section 1. Section 4 describes related work while Section 5
draws conclusions.

2 The Splitting Algorithm
Whether or not a procedure is apt to being split depends on
the structure of the procedure. The possibility of splitting is
increased if components of the procedure have little in com-
mon. The attribute of splitting (or splitability) is closely re-
lated to that of cohesion. Procedures are more inclined to
split the lower their cohesion level is. This observation is in-
spired by Bieman and Ott [1] who use slicing as a mechanism
to evaluate cohesion.

The CodeSurfer scripting language based on Scheme-STK
[7] is used to process program code represented as a System

Dependence Graph SDG [9] and to calculate the slices. Slic-
ing is performed on every SDG node, and, therefore, for a
procedure of n nodes, the search space for procedure split-
ting consists of 2n subsets of slices. Next, the concept of
splitable procedure is introduced:

Definition 1 maximal(s)
For the procedure P , let Slices(P ) be all the backward slices
of P based on each SDG node as slicing criterion. A slice s
which is not included in any other slices is called a maximal
slice. Thus, s is maximal(s) ⇐⇒ ∀s′, s′ 6= s ⇒ s * s′

Definition 2 Splitable Procedure
A procedure P is splitable if and only if there exist at
least s1, s2 ∈ Slices(P ) ∧ s1 6= s2∧ maximal(s1) ∧
maximal(s2)

The purpose of applying the optimisation-based slicing ap-
proach advocated here is to identify split points automati-
cally. This paper uses a greedy algorithm [16] to tackle this
problem. The algorithm searches for a set of slices repre-
senting procedure components that make the overlap of these
slices as small as possible.

The purpose of our splitting algorithm is to locate the best
(or an acceptably good) solution among a number of possible
solutions in the search space. The process of looking for a
solution is equivalent to that of looking for a set of slices
in the search space with minimal overlap among the slices.
Clearly, enumeration will not be possible since the search
space grows exponentially in n, the size of the program.

Though this is an exponentially large search space, the un-
derlying optimisation problem is a set cover problem. Set
cover problems submit to optimisation using greedy-based
algorithms. That is, the greedy algorithm is known to pro-
duce solutions within a log of the global optimum for set
cover [5, 20].

In employing the greedy algorithm presented in Figure 2,
a slice is represented as a sequence of binary 0, 1 digits in a
two-dimensional matrix, where columns correspond to SDG
nodes and rows the slices. Here, a “1” and “0” correspond to
whether a SDG node belongs or does not belong to the slice,
respectively. In the same figure, a groups[N ] represents a set
of slices corresponding to a subprocedure.

The splitting algorithm proceeds as follows:

1. Construct all the static backward slices in a procedure



by slicing with respect to all the SDG nodes in the cor-
responding SDG.

2. Find sets of slices representing procedure components
that make the overlap of these slices as small as pos-
sible. A greedy algorithm is used to construct such a
minimal overlap set is described in Figure 2.

3. Recover slice statements from the corresponding SDG
nodes by combining nodes that belong to a single state-
ment. An example illustrating such combination is
shown in Figure 1 where the SDG nodes of a statement
and their dependency relationships are depicted.

4. Make the subprocedures obtained executable.

This paper focusses on steps 1 and 2 in order to investigate
splitability.

gamma = asin()
expression

asin()
call − site

sin()
call − site

sin() ∗ b

actual − in

sin() ∗ b

expression

alpha

actual − in

Figure 1: An example of recovering the statement gamma =
asin(sin(alpha)∗b) from the corresponding six SDG nodes.
Solid lines and dashed lines represent control and data depen-
dency, respectively. The SDG node type (call-site, actual-in
and expression) is shown under the SDG nodes.

One can always split a procedure into a set of slices
where there are ‘useless’ slices that are totally included
within others. Thus, to obtain useful and independent parts,
maximal(s) is defined and the greedy dependence-based
splitting algorithm is introduced to decompose procedures
according to Definition 2.

In the illustrative example presented in Figure 3, Pro-
cedure Sum and Product includes two computations for
Variables Sum and Prod. For simplicity, the example of
Figure 3 only includes statements that correspond to sin-
gle SDG nodes. In general, a statement may have several
SDG nodes as explained in Figure 1. Table 1 shows all the
backward slices for each SDG node of the procedure. The
splitting algorithm is to find a set of maximal slices, each of

// The greedy algorithm
slices[N ]; Array of Array of [0,1] sequence,1

slices[i] is a sequence of [0,1] and corresponds to
node i as a slicing criterion.
groups[N ]; Set of slices, a groups[i] represents2

Subprocedure i.
count = 1; Integer, represents the number of3

subprocedures.
sort slices according to their sizes4

in descending order;
groups[1] = {slices[1]};5

for I := 2 to N do6

if slices[I] ε groups[count] then continue;7

else8

count++;9

groups[count] = slices[I];10

end11

end12

Figure 2: Procedure splitting algorithm

Sum and Product ((1) int N, (2) int Sum,
(3) int Prod){

(4) int I;
(5) Sum=0;
(6) Prod=1;
(7) for(I = 1; I <= N ; I + +){
(8) Sum=Sum+I;
(9) Prod=Prod*I;}}

Figure 3: An example for the splitting algorithm. The digits
represent the SDG nodes of the procedure.

which represents an independent sub-procedure. In terms of
Definition 1, slice8 and slice9 are two maximal slices and
the rests are not, due to the fact that slice2 and slice5 are
included in slice8, slice3 and slice6 are included in slice9
and slice1, slice4 and slice7 are included in both. In fact,
maximal(s) represents useful independent computation in a
procedure.

In the procedure shown in Table 1 and the splitting algo-
rithm in Figure 2, slices[N ] represents 9 slices of the pro-
cedure; groups[N ] represents a set of maximal slices whilst
count represents the number of maximal slices with initial
value being 1. After sorting, the first maximal slice is slice8



assigned to groups[1]. The for loop is to find out more max-
imal slices if they exist. In this case, slice9 is another maxi-
mal slice.

Program slices SDG nodes
1 2 3 4 5 6 7 8 9

slice1 1 0 0 0 0 0 0 0 0
slice2 0 1 0 0 0 0 0 0 0
slice3 0 0 1 0 0 0 0 0 0
slice4 0 0 0 1 0 0 0 0 0
slice5 0 1 0 0 1 0 0 0 0
slice6 0 0 1 0 0 1 0 0 0
slice7 1 0 0 1 0 0 1 0 0
slice8 1 1 0 1 1 0 1 1 0
slice9 1 0 1 1 0 1 1 0 1

Table 1: The backward slices of the splitable procedure in
Figure 3. A 1 represents a SDG node that is included in the
slice, while a 0 represents a SDG node that is not included in
the slice.

3 Empirical Study
Our algorithm explores procedure structure automatically
and provides candidates for splitting. In this section, pro-
cedure structure and relationships between procedure com-
ponents of six open source systems are analysed. The struc-
ture and relationships are evaluated in terms of code overlap,
splitability and the correlation between procedure size and
splitability.

3.1 RQ1: How frequently are there splits?

It is not always the case that a procedure can be split into two
or more subprocedures. This section explores the frequency
of occurrence of splitable and non-splitable procedures.

Table 2 shows the size of programs with entry ‘Loc’ for
the lines of code, ‘Descriptions’ for the functionality of pro-
grams, ‘Vertices’ for the number of SDG nodes correspond-
ing to source code, ‘Number of Procs’ for the total number
of procedures in the entire program, entry ‘Split procs’ repre-
sents how many procedures in the program can be split into
two or more, ‘Count’ represents the number of procedures
which can be split and ‘Percentage’ represents the ratio be-
tween ‘Count’ and ‘Number of Procs’.

Table 2 provides information about how many procedures
in the program can be split and the percentage of this to the
total number of procedures. The results indicate that more

than 20% of procedures (average 23.6%) in each of the six
programs include independent procedure components con-
tributing to the whole functionality.

Figure 4 shows the percentage of frequency distributions
of procedures in terms of the number of subprocedures ob-
tained by splitting. Each column in the figure represents the
percentage of the number of procedures that can be split to
the total number of procedures in the entire program. Here,
the x-axis entries represent the number of subprocedures
obtained as a result of splitting, where 1 represents non-
splitable procedures. All figures show a maximum split level
of 4. However, (b), (e) and (f) have a very few exceptional
procedures that can be split into 9, 6 and 13 subprocedures
respectively. Fewer than 1% of the procedures can be split
into more than 4 subprocedures so, for clarity, they are not
shown.

The results depicted in Figure 4 show that the majority
of procedures falls into the first column indicating that most
procedures are not splitable. As far as procedure cohesion is
concerned, it is preferable that a procedure only completes
one single task, thus making programs more efficient and
maintainable [2, 3, 18]. However, in some cases, procedures
can be split into two or more subprocedures. This suggests
possible ‘granularity of modularisation’ issues; perhaps pro-
cedures should be split to aid on-going maintainability.

3.2 RQ2: Splitability of Procedures

This section analyses the dependency amongst subproce-
dures of each splitable procedure and explores the overlap
and splitability distributions. To this end, code overlap and
splitability measures are defined in terms of the subproce-
dures’ sizes.

Since, in general, different procedure components are not
completely independent, subprocedures might share some
common SDG nodes whose computation contributes to all
the subprocedures. In this case, there is extra repeated code
generated and shared between different subprocedures. As
can be seen from Figure 4, the majority of splitable proce-
dures are split into two or three subprocedures, to be referred
to as 2-way and 3-way splitable procedures, respectively. In
what follows, we concentrate on this group of splitable pro-
cedures, disregarding those that could potentially be split into
more than three subprocedures.

Depending on the size of the overlap or repeated code
common to all subprocedures, different levels of splitability
can be defined. Evaluating repeated code shared by all sub-



Programs Description Size Number Split Procs
Loc Vertices of Procs Count Percentage

termutils-2.0 terminal control utilities 4,334 2,952 56 15 26.8
acct-6.3 accounting utilities package 6,178 4,305 88 24 27.3
space ESA ADL interpreter 9,106 9,887 137 25 18.2
oracolo2 an array processor 14,326 8,776 135 25 18.5
byacc-1.9 LALR parser generator 6,420 8,046 178 50 28.1
a2ps-4.1 Text to postscript converter 20,407 17,226 248 55 22.2
Total 60,771 51,192 842 194 23.0
Average 10,129 8,532 141 33 23.6

Table 2: The set of programs studied.

0

10

20

30

40

50

60

70

80

1 2 3 4

(a) termutils

0

10

20

30

40

50

60

70

80

1 2 3 4

(b) acct

0

10

20

30

40

50

60

70

80

1 2 3 4

(c) space

0

10

20

30

40

50

60

70

80

1 2 3 4

(d) oracolo2

0

10

20

30

40

50

60

70

80

1 2 3 4

(e) byacc

0

10

20

30

40

50

60

70

80

1 2 3 4

(f) a2ps

Figure 4: Distribution of splitable procedures. A column at horizontal position x of height y means that y/N% of procedures
are split into x subprocedures, where N is the total number of procedures.

procedures suggests a measure of dependency between sub-
procedures. Splitability decreases as dependency between
subprocedures increases, because too many repeated SDG
nodes imply high inter-dependency relatedness between dif-
ferent procedure components. The splitability measure ex-
presses how tightly different procedure components are re-
lated. High splitability indicates that procedures tend to com-
pute more than a single and independent functionality and
vice versa.

In order to define procedure splitability as a quantifiable
measure, the following definitions are required. These def-
initions capture different metrics for assessing splitability.
Let Si and Sj denote two subprocedures of a splitable proce-
dure, Size(Si) and Size(Sj) denote the sizes, i.e., the num-
ber of SDG nodes of Si and Sj , respectively. Further, let
Size(Si∩Sj) be the number of the SDG nodes shared by the
two subprocedures Si and Sj and Max(Size(Si), Size(Sj))
be the greater value of the two sizes.



Definition 3 Overlap between two subprocedures of 2-way
splitable procedures
Overlap of 2-way splitable procedures, σ12, is the ratio of
the number of SDG nodes shared by the two subprocedures
to the number of SDG nodes of the subprocedure of greater
size,

σ12 =
Size(S1 ∩ S2)

Max(Size(S1), Size(S2))
(I)

Definition 4 Min-Overlap amongst three subprocedures of
3-way splitable procedures
Min-Overlap of 3-way splitable procedures, σ123

min, is the ratio
of the number of SDG nodes shared by the three subproce-
dures to the number of SDG nodes of the subprocedure of
greatest size,

σ123
min =

Size(S1 ∩ S2 ∩ S3)
Max(Size(S1), Size(S2), Size(S3))

(II)

Definition 5 Max-Overlap amongst three subprocedures of
3-way splitable procedures
Max-Overlap of 3-way splitable procedures, σ123

max, is the
biggest Overlap of three pairs of subprocedures. If

σ12 =
Size(S1 ∩ S2)

Max(Size(S1), Size(S2))
,

σ13 =
Size(S1 ∩ S3)

Max(Size(S1), Size(S3))
, and

σ23 =
Size(S2 ∩ S3)

Max(Size(S2), Size(S3))
then

σ123
max = Max(σ12, σ13, σ23) (III)

Overlap represents the cohesive degree between subproce-
dures, that is, the more overlap between subprocedures is, the
more cohesive a procedure is, and therefore, the less likely
the procedure is splitable. Splitability is therefore measured
as the opposite of overlap. Thus,

Definition 6 Splitability between two subprocedures of 2-
way splitable procedures
Splitability of a 2-way splitable procedure is defined as the
opposite of Overlap of the procedure.

S = 1− σ12 (IV )

Definition 7 Max-Splitability amongst three subproce-
dures of 3-way splitable procedures
Max-Splitability of a 3-way splitable procedure is defined as
the opposite of Min-Overlap of the procedure.

Smax = 1− σ123
min (V )

Definition 8 Min-Splitability amongst three subprocedures
of 3-way splitable procedures
Min-Splitability of a 3-way splitable procedure is defined as
the opposite of Max-Overlap of the procedures.

Smin = 1− σ123
max (V I)

Figure 5 shows overlap frequency distribution of splitable
procedures that are split into two subprocedures. The x-axis
represents the range of the overlap as defined in (I). The y-
axis represents the percentage of the number of the splitable
procedures which lie in the corresponding overlap range to
the number of all the 2-way splitable procedures of each pro-
gram.

The overlap distribution expresses dependency between
two different procedure components. Locations closer to the
origin indicate low inter-dependency implying high splitabil-
ity. In this region, procedures can be split without generating
a large amount of repeated code, i.e., their components share
few common SDG nodes.

For locations away from the origin, splitability of proce-
dures decreases since increasing overlap between two sub-
procedures indicates high inter-dependency between subpro-
cedures. That is, the different components of a procedure
share quite a few common SDG nodes. In this case, splitting
generates a large amount of repeated code.

Turning to 3-way splitable procedures, there are two em-
pirical investigations of procedure overlap corresponding to
definitions (II) and (III). Figure 6 shows the overlap distri-
bution for 3-way splitable procedures in terms of the overlap
measure defined in (II). For low overlap ranges, splitable
procedures consist of multi-functionality, where at least two
subprocedures are relatively independent and do not share
many common SDG nodes. The distributions of the six pro-
grams considered in this study exhibit different behaviour.

Figure 7 shows the overlap distribution for 3-way splitable
procedures corresponding to maximum overlap σ123

max as de-
fined in (III). This figure shows a different behaviour to
that corresponding to minimum overlap of Figure 6. For



0

10

20

30

40

50

>0-
.1
>.1

-.2
>.2

-.3
>.3

-.4
>.4

-.5
>.5

-.6
>.6

-.7
>.7

-.8
>.8

-.9 >.9
-1

(a) termutils

0

10

20

30

40

50

>0-
.1
>.1

-.2
>.2

-.3
>.3

-.4
>.4

-.5
>.5

-.6
>.6

-.7
>.7

-.8
>.8

-.9>.9
-1

(b) acct

0

10

20

30

40

50

>0-
.1
>.1

-.2
>.2

-.3
>.3

-.4
>.4

-.5
>.5

-.6
>.6

-.7
>.7

-.8
>.8

-.9>.9
-1

(c) space

0

10

20

30

40

50

>0-
.1
>.1

-.2
>.2

-.3
>.3

-.4
>.4

-.5
>.5

-.6
>.6

-.7
>.7

-.8
>.8

-.9>.9
-1

(d) oracolo2

0

10

20

30

40

50

>0-
.1
>.1

-.2
>.2

-.3
>.3

-.4
>.4

-.5
>.5

-.6
>.6

-.7
>.7

-.8
>.8

-.9>.9
-1

(e) byacc

0

10

20

30

40

50

>0-
.1
>.1

-.2
>.2

-.3
>.3

-.4
>.4

-.5
>.5

-.6
>.6

-.7
>.7

-.8
>.8

-.9>.9
-1

(f) a2ps

Figure 5: Overlap frequency distribution of splitable procedures that can be split into two subprocedures. The x-axis
measures overlap using σ12 defined in (I). The y-axis represents the percentage of 2-way splitable procedures that lie in the
corresponding overlap range.

low overlap ranges, splitable procedures consist of multi-
functionality where all the three subprocedures are relatively
more independent of each other and all do not share many
common SDG nodes.

3.3 RQ3: Exploration of correlation between procedure
size and splitability

This section explores the correlation between procedure size
defined in terms of SDG nodes and splitability as defined
in (IV ), (V ) and (V I). That is, how the size of a pro-
cedure is related to its splitability. Both, 2-way splitable
and 3-way splitable procedures are considered. Intuitively,
procedures with relatively small size should turn out to be
barely splitable; with increasing procedure size, the proce-
dures would be expected to be more likely to split into more
subprocedures.

The Spearman correlation coefficient (ρ) is used in this
paper to investigate the relationship between a procedure’s
size and its splitability.

Table 3 shows the first correlation between procedure size
and splitability in terms of splitability definition (IV ), where

procedures are split into two subprocedures. For all the six
programs considered in our empirical study, except a2ps, ρ
lies between 0.7 and 0.9 indicating a strong correlation be-
tween procedure size and splitability. For a2ps, the ρ-value
approaches 1 indicating a stronger correlation. This kind of
strong or very strong correlation indicates that as procedure
size increases, procedure’s splitability increases. Our results
show that, with increasing procedure size, there is a trend to
2-way splitability.

Table 4 shows the second correlation between procedure
size and splitability in terms of splitability as defined in (V )
where procedures are split into three subprocedures. The ρ-
values for termutils and a2ps lie between 0.0 and 0.2,
which denotes very weak to negligible correlation. The ρ-
value for space is between 0.2 and 0.4, which indicates
weak or low correlation. In this case, there is no significant
correlation between procedure size and splitability. How-
ever, the ρ-value for byacc lies between 0.9 and 1 indicating
very strong correlation. For acct and oracolo2, since the
number of ranks is too small, the ρ-value is not statistically
significant.



0

10

20

30

40

50

60

70

80

>0-
.1
>.1

-.2
>.2

-.3
>.3

-.4
>.4

-.5
>.5

-.6
>.6

-.7
>.7

-.8
>.8

-.9>.9
-1

(a) termutils

0

10

20

30

40

50

60

70

80

>0-
.1
>.1

-.2
>.2

-.3
>.3

-.4
>.4

-.5
>.5

-.6
>.6

-.7
>.7

-.8
>.8

-.9>.9
-1

(b) acct

0

10

20

30

40

50

60

70

80

>0-
.1
>.1

-.2
>.2

-.3
>.3

-.4
>.4

-.5
>.5

-.6
>.6

-.7
>.7

-.8
>.8

-.9>.9
-1

(c) space

0

10

20

30

40

50

60

70

80

>0-
.1
>.1

-.2
>.2

-.3
>.3

-.4
>.4

-.5
>.5

-.6
>.6

-.7
>.7

-.8
>.8

-.9>.9
-1

(d) oracolo2

0

10

20

30

40

50

60

70

80

>0-
.1
>.1

-.2
>.2

-.3
>.3

-.4
>.4

-.5
>.5

-.6
>.6

-.7
>.7

-.8
>.8

-.9>.9
-1

(e) byacc

0

10

20

30

40

50

60

70

80

>0-
.1
>.1

-.2
>.2

-.3
>.3

-.4
>.4

-.5
>.5

-.6
>.6

-.7
>.7

-.8
>.8

-.9>.9
-1

(f) a2ps

Figure 6: Overlap frequency distribution of splitable procedures that can be split into three subprocedures. The x-axis
measures overlap using σ123

min defined in (II). The y-axis represents the percentage of 3-way splitable procedures that lie in
the corresponding overlap range.

Programs termutils acct space oracolo2 byacc a2ps
Spearman coefficient

(Correlation) 0.81 0.73 0.82 0.73 0.83 0.92
Number of 2-way

Splitable procedures 8 17 19 21 27 40
(Ranks)

Table 3: Correlation between procedure size and splitability of procedures where splitable procedures can be split into two
subprocedures in terms of S defined in (IV ).

Spearman Correlation data corresponding to Definition
(V I) shows similar results to those of Table 4, i.e, there is
no significant strong correlation between procedure size and
splitability, except for byacc.

In summary, these results indicate that there is no con-
sistent correlation between procedure size and procedure’s
splitability into three subprocedures, though there is for
splitability into two subprocedures.

4 Related Work

Several authors have addressed the question of measuring
procedure cohesion [1, 18, 19]. The previous work uses slic-
ing based approaches to analyse and quantify the measure-
ment of cohesion of procedures in terms of output variables.
However, no proposal has been made to automate the process
of finding procedure components as a first step for measuring
cohesion.

Ott and Thuss [18] quantify cohesion defined by Con-
stantine and Yourdon [3] using program slicing. Thus, the



0

10

20

30

40

50

60

>0-
.1
>.1

-.2
>.2

-.3
>.3

-.4
>.4

-.5
>.5

-.6
>.6

-.7
>.7

-.8
>.8

-.9>.9
-1

(a) termutils

0

10

20

30

40

50

60

>0-
.1
>.1

-.2
>.2

-.3
>.3

-.4
>.4

-.5
>.5

-.6
>.6

-.7
>.7

-.8
>.8

-.9>.9
-1

(b) acct

0

10

20

30

40

50

60

>0-
.1
>.1

-.2
>.2

-.3
>.3

-.4
>.4

-.5
>.5

-.6
>.6

-.7
>.7

-.8
>.8

-.9>.9
-1

(c) space

0

10

20

30

40

50

60

>0-
.1
>.1

-.2
>.2

-.3
>.3

-.4
>.4

-.5
>.5

-.6
>.6

-.7
>.7

-.8
>.8

-.9>.9
-1

(d) oracolo2

0

10

20

30

40

50

60

>0-
.1
>.1

-.2
>.2

-.3
>.3

-.4
>.4

-.5
>.5

-.6
>.6

-.7
>.7

-.8
>.8

-.9>.9
-1

(e) byacc

0

10

20

30

40

50

60

>0-
.1
>.1

-.2
>.2

-.3
>.3

-.4
>.4

-.5
>.5

-.6
>.6

-.7
>.7

-.8
>.8

-.9>.9
-1

(f) a2ps

Figure 7: Overlap frequency distribution of splitable procedures that can be split into three subprocedures. The x-axis
measures overlap using σ123

max defined in (III). The y-axis represents the percentage of 3-way procedures that lie in the
corresponding overlap range.

Programs termutils acct space oracolo2 byacc a2ps
Spearman Coefficient

(Correlation) 0.05 1.0 0.40 1.0 0.93 0.06
Number of 3-way

Splitable procedures 5 2 4 2 14 8
(Ranks)

Table 4: Correlation between procedure size and splitability of procedures where splitable procedures can be split into three
subprocedures in terms of Smax defined in (V ).

quantitative measurement is specified to evaluate quality of
programs. However, in this work, no methodology for au-
tomating procedure splitting to explore procedure cohesion
has been suggested. Moveover, no empirical study for eval-
uating single procedure cohesion on existing open sources
samples has been performed. The work reported here helps
to analyse the structure of procedures by dividing each pro-
cedure into subprocedures moving this previous work from
passive measurement to active improvement.

There are other techniques that extract a single procedure
component as a new separate procedure to re-factor the orig-

inal procedure. For example, Lakhotia [11] combines pro-
gram slicing and transformations to ‘tuck’ a code fragment
in a procedure as a new subprocedure and replace the sub-
procedure code through a procedure call. As a result, the
cohesion level is improved for the whole procedure without
changing semantics.

However, ‘tucking’ does not consider the whole structure
of procedure; it only extracts some concerned code fragment
based upon the slice of an interesting statement. Another
example, is the “Extract Method” refactoring transformation
[6, 17] which aims at improving the internal structure of the



program. The approach followed in this paper differs from
refactoring in exploring the program structure through an
empirical study.

Similarly, there are other procedure refactoring techniques
such as those that use program slicing [4, 14] and transfor-
mation techniques [8, 10] for procedure extraction. These
techniques all focus on single procedure extraction for reuse,
rather than splitting procedures. As such, these approaches
allow for the construction of subprocedures, though cannot
explore the entire structure of procedure and obtain all pos-
sible subprocedures. Our approach employs a splitting al-
gorithm which allows for the splitting of procedure into its
components. As has been shown, there may be many such
subprocedures not merely one. The results reported are also
the first to statistically explore the relationship between pro-
cedure size and procedure splitability.

5 Conclusions
The paper analyses procedure splitability. To this end, an em-
pirical study is performed using six real world open source
programs. The empirical investigation targeted, firstly, eval-
uating program structure in terms of splitable procedure dis-
tribution, secondly, defining procedure splitability for 2-way
and 3-way splitable procedures, and analysing the splitability
distribution for these two classes of splitable procedures, and
thirdly exploring the correlation between procedure size and
procedure splitability. The results show that there is a strong
correlation between procedure size and procedure splitabil-
ity in the case of 2-way splitable procedures. However, the
results indicate no strong correlation in the case of 3-way
splitable procedures for five out of six programs.

References
[1] J. M. Bieman and L. M. Ott. Measuring functional cohesion.

IEEE Transactions on Software Engineering, 20(8):644–657,
Aug. 1994.

[2] B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative eval-
uation of software quality. In ICSE ’76: Proceedings of the
2nd international conference on Software engineering, pages
592–605, 1976.

[3] L. L. Constantine and E. Yourdon. Structured Design. Pren-
tice Hall, 1979.

[4] R. Ettinger and M. Verbaere. Untangling: a slice extraction
refactoring. In AOSD ’04: Proceedings of the 3rd interna-
tional conference on Aspect-oriented software development,
pages 93–101, 2004.

[5] U. Feige and P. Tetali. Approximating min sum set cover.
In Algorithmica, volume 40, pages 219–234. Springer New
York, Sept. 2004.

[6] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[7] Grammatech Inc. The codesurfer slicing system, 2002.
url:www.grammatech.com.

[8] M. Harman, D. Binkley, R. Singh, and R. Hierons. Amor-
phous procedure extraction. In 4th International Workshop on
Source Code Analysis and Manipulation (SCAM 04), pages
85–94, Sept. 2004.

[9] S. Horwitz, T. Reps, and D. W. Binkley. Interprocedural slic-
ing using dependence graphs. Proceedings in ACM SIGPLAN
Notices, 23(7), pp.35–46, 1988.

[10] R. Komondoor and S. Horwitz. Effective automatic proce-
dure extraction. In 11th IEEE International Workshop on
Program Comprehension, pages 33–43, Los Alamitos, Cal-
ifornia, USA, May 2003.

[11] A. Lakhotia and J.-C. Deprez. Restructuring programs by
tucking statements into functions. Information and Soft-
ware Technology Special Issue on Program Slicing, 40(11 and
12):677–689, 1998.

[12] M. M. Lehman. On understanding laws, evolution and con-
servation in the large program life cycle. Journal of Systems
and Software, 1(3):213–221, 1980.

[13] M. M. Lehman. Software’s future: Managing evolution. IEEE
Software, 15(1):40–44, Jan. / Feb. 1998.

[14] K. Maruyama. Automated method-extraction refactoring by
using block-based slicing. In SSR ’01: Proceedings of the
2001 symposium on Software reusability, pages 31–40, New
York, NY, USA, 2001. ACM Press.

[15] T. Meyers and D. W. Binkley. Slice-based cohesion metrics
and software intervention. In 11th IEEE Working Conference
on Reverse Engineering, pages 256–266, Los Alamitos, Cali-
fornia, USA, Nov. 2004.

[16] H. Naeimi and A. DeHon. A greedy algorithm for tolerating
defective crosspoints in NanoPLA design. In Proceedings of
the International Conference on Field-Programmable Tech-
nology, pages 49–56, 2004.

[17] W. F. Opdyke. Refactoring Object-Oriented Frameworks.
PhD thesis, Urbana-Champaign, IL, USA, 1992.

[18] L. M. Ott and J. J. Thuss. The relationship between slices and
module cohesion. In Proceedings of the 11th ACM Confer-
ence on Software Engineering, pages 198–204, May 1989.

[19] L. M. Ott and J. J. Thuss. Slice based metrics for estimat-
ing cohesion. In Proceedings of the IEEE-CS International
Metrics Symposium, pages 71–81, Los Alamitos, California,
USA, May 1993.

[20] C. H. Papadimitriou and K. Steiglitz. Combinatorial Opti-
mization: Algorithms and Complexity. Dover, 1998.


