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Abstract

This paper introduces an approach to locating dependence structures in a program by searching the space of the powerset of the set of
all possible program slices. The paper formulates this problem as a search-based software engineering problem. To evaluate the
approach, the paper introduces an instance of a search-based slicing problem concerned with locating sets of slices that decompose a
program into a set of covering slices that minimize inter-slice overlap. The paper reports the result of an empirical study of algorithm
performance and result-similarity for Hill Climbing, Genetic, Random Search and Greedy Algorithms applied to a set of 12 C programs.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Dependence analysis has been applied to several stages
of the software engineering process, such as program
restructuring [21,53], program comprehension [26], regres-
sion testing [12] and program integration [42]. It can also
be an effective way of understanding the dependence struc-
ture of a program [13,52] and a measurement of depen-
dence-related attributes such as cohesion and coupling
[10,60]. For these applications, sets of slices are used to
reveal interesting properties of the program under analysis,
such as the presence of dependence clusters and the cohe-
sive (and less cohesive) parts of the program.

The advent of commercial, scalable and robust tools for
slicing such as Grammatech’s CodeSurfer [36] makes it
possible to construct all possible slices for large programs
in reasonable time. By constructing the set of all slices of
a program, it is possible to analyse the dependence struc-
ture of the program. This allows slicing to be used to cap-
ture the dependence of every point in the program,
allowing analysis of the whole program dependence struc-
ture. This raises an interesting research question:
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‘‘How can useful interesting dependence structures be
formed in amongst the mass of dependence information
available?’’

In this paper, dependence is analysed using program
slicing, and so this question is reformulated as:

‘‘Of the set of all possible slices of a program, which sub-

sets reveal interesting dependence structures?’’

Of course, for a program consisting of n program
points, there will be n possible slices and, therefore, 2n

subsets of slices. Since the number of program points
is always at least as large as the number of statements
in the program, the powerset of all possible slices will
be extremely large; too large to enumerate for any real-
istically sized program. This is merely a reflection of
the mass of dependence information available and would
need to be considered by any whole program dependence
analysis. The overwhelming quantity of information
motivates the search-based approach introduced in this
paper.

The paper introduces an approach to location of
dependence structures, founded on the principles of
Search-Based Software Engineering (SBSE) [23,40].
Using this formulation, the problem becomes one of a
search for a set of slices that exhibit interesting depen-
ce structures using search-based slicing, Inform. Softw. Technol.
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dence structures. The choice of what constitutes an
‘interesting dependence structure’ is a parameter to the
overall approach, making it highly flexible. In search-
based software engineering, a fitness function is defined
to capture such a property of interest. In the case of
search-based slicing, it captures the properties of a
dependence structure that make it interesting to a partic-
ular analysis.

The search process is realized by an algorithm that uses
the fitness function to guide a search that seeks to find
optimal or near optimal solutions with respect to the fit-
ness function. In order to experiment with the search-
based slicing approach, the paper presents the results of
an implementation and associated empirical study into
the search for slice sets that decompose a program into
a set of slices that cover the program with minimal over-
lap. The fitness function used in the empirical study is
motivated by work on slicing as a decomposition tech-
nique [34,73].

This instantiation of the search-based slicing approach
formulates the decomposition problem as a set cover
problem [31]. However, it must be stressed that this repre-
sents merely the instantiation of a parameter to the
approach (the fitness function). The search-based slicing
approach derives a great deal of flexibility from the fact
that the fitness function (and therefore the property of
interest) is merely a parameter; in order to search for a
different kind of dependence structure, only the fitness
function needs to be changed.

The paper reports the results of experiments with four
different search algorithms for search-based slicing and
presents the results of an empirical study involving 12 C
programs. The empirical study aims to answer four related
research questions:

(1) How well does each algorithm perform?
(2) How similar are the results produced by each

algorithm?
(3) How can the results be visualized and what do they

reveal?
(4) How efficiently can the best algorithm perform with

large practical programs and for all the functions in
programs?

The paper makes the following primary contributions:

(1) An approach that identifies dependence structures is
introduced as a search problem over the powerset
of the set of all possible program slices, allowing
search-based algorithms to be used to search for
interesting dependence structures.

(2) A fitness function is introduced that seeks to optimise
the search towards solutions that decompose the pro-
gram into a set of slices that collectively cover the
whole program with minimal overlap. Four search
algorithms are implemented in order to experiment
with this fitness function.
Please cite this article in press as: T. Jiang et al., Locating dependen
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(3) The results of an empirical study are reported, showing
that the Greedy Algorithm performs better than Ran-
dom, Hill Climbing and Genetic Algorithm approaches
to the problem. This is an attractive finding, since
Greedy Algorithms are extremely simple and efficient.

(4) A simple visualization is introduced to explore the
results and their similarity. This shows a higher
degree of similarity for the intelligent techniques over
random search. This visual impression is augmented
by computational analysis of results. The similarity
of results for intelligent search provides that the
results are consistent and meaningful.

(5) The visualization also has an interesting side effect,
which may be a useful spin off: the presence of code
clones becomes visually striking in some of the exam-
ples. However, clone detection is not the focus of this
paper.

(6) The paper also reports results on redundancy. That is
how often a slice is completely included by another
one. The results suggest that redundancy phenomena
are universal in 12 programs. However, it is shown
that this redundancy does not affect the Greedy Algo-
rithm advocated in the paper.

(7) Based upon the performance comparison with four
search algorithms, the Greedy Algorithm is further
applied to six larger programs to decompose each
function of each program. The results show that
majority of functions can be decomposed into sets
of slices efficiently.

The data used in this paper are made available to the
research community to facilitate replication at http://
www.dcs.kcl.ac.uk/pg/jiangtao/.

The rest of the paper is organised as follows: Section 2
presents the problem description in more detail, while Sec-
tion 3 introduces the search-based algorithms and their
application to the problem. Sections 4 and 5 present the
results of the empirical study. Sections 6 and 7 present
related work and conclusions.

2. Problem description

The goal is to identify dependence structures by search-
ing the space of all subsets of program slices. In this paper,
static backward slicing is used, but the approach is not con-
fined merely to static backward slicing; it can be used with
any analysis that returns a set of program points (thereby
including all forms of program slicing).

As an illustrative example, consider a program that has
only 8 program points. Table 1 gives all the slices of this
hypothetical example in terms of each program point as
slicing criteria.

The table represents the value of each slice. In this table,
a 1 represents a program point that is included in the slice,
while a 0 represents a program point that is not included in
the slice. In this situation, a good decomposition would be
the set {1,5,7}, rather than {1,2,7}, {6} or any other sub-
ce structures using search-based slicing, Inform. Softw. Technol.
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Table 1
An example of looking for optimum properties in program slicing sets

Program slicing Program point

1 2 3 4 5 6 7 8

1 1 0 0 0 0 0 0 0
2 0 1 1 1 1 0 0 0
3 1 0 1 1 0 0 0 0
4 0 1 1 1 1 0 0 0
5 0 1 0 1 1 0 0 0
6 1 1 1 1 1 1 1 0
7 0 0 1 0 0 1 1 1
8 1 0 0 0 1 1 1 1
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sets. The solution {1,5,7} is preferable, even though
{1,2,7} has the same coverage as {1,5,7}, because
{1,2,7} has more overlap than {1,5,7}; even though {6}
has the same overlap as {1,5,7}, because {6} has less cov-
erage than {1,5,7}. The other subsets have the same situa-
tion as the set {1, 2,7} and/or {6}.

However, with increasing program size, the number of
possible solutions grows exponentially. Therefore, the
paper formulates this kind of slice subset identification
problem as an optimization problems within the frame-
work of SBSE. SBSE is a framework for considering
the application of metaheuristic search techniques to soft-
ware engineering problems. The SBSE framework allows
search-based techniques to be used to provide acceptable
solutions in situations where perfect solutions are either
theoretically impossible or practically infeasible [40].

In order to apply the framework to a specific software
engineering problem, it is necessary to reformulate the
problem as a search problem [35,78,79]. This can be
achieved by defining the search space, representation, and
fitness function that describe the problem. The next three
subsections explain each of these attributes of the formula-
tion in more detail.

2.1. Search space

The purpose of all search algorithms is to locate the best
(or an acceptably good) solution among a number of pos-
sible solutions in the search space. The process of looking
for a solution is equivalent to that of looking for some
extreme value – minimum or maximum, in the search
space.

In the experiments reported upon here, the search
space is the set of all the possible sets of slices. Following
Horwitz et al. [44], a ‘possible slicing criterion’ is taken to
mean ‘any node of the System Dependence Graph (SDG)
of the program’. Therefore, for a program with n nodes in
the SDG, there will be n corresponding slicing criteria
and, therefore, 2n subsets of slicing criteria. This space
of 2n subsets of slicing criteria forms the search space
for this problem. Clearly, enumeration will not be possi-
ble since n can be arbitrarily large. This observation moti-
vates the search-based software engineering approach
advocated in this paper.
Please cite this article in press as: T. Jiang et al., Locating dependen
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2.2. Representation of slicing

The representation of a candidate solution is critical to
shaping the nature of the search problem. Frequently used
representations include floating point numbers and binary
code. In this problem, the representation of solutions is
binary. The definition of representation of slicing can be
formulated as a simple 2-dimensional array: Let A½i; j� be
a binary bit, i be a program point and j be a slicing crite-
rion, so that A½i; j� ¼ 1 if the slice based on criterion j

includes the program point i and A½i; j� ¼ 0 if the slice
based on criterion j does not include the program point i.
In this way, the array A denotes the set of slices of the pro-
gram, with both array bounds determined by the number
of program points (i.e. nodes of the SDG).
2.3. Fitness function

The choice of a fitness function depends upon the proper-
ties of the set of slices for which the search algorithm will opti-
mize. This choice is a parameter to the overall approach to
search-based slicing. In order to illustrate the search-based
slicing approach, this section introduces several metrics that
will be used as fitness functions to decompose a program into
a set of slices that collectively cover the entire program, while
minimizing the degree of overlap between the slices.

These metrics are inspired by previous work on sliced-
based metrics by Bieman, Ott and Weiser [10,56,60,65–
69,75,76]. The following notation will be used.

Let M be the number of program points of the program,
P be the number of program points of the optimal slicing
set, \ðS1; . . . ; SiÞ be the intersection of i slices,
[ðS1; . . . ; SiÞ be the union of i slices and MaxðS1; . . . ; SiÞ
be the largest slice selected from i slices. All the metrics
defined below are normalized. Normalization allows for
comparison of metrics from differently sized programs,
while the expression as a percentage is merely a conve-
nience: the metrics are so-defined that 100% denotes the
maximum possible value. The metrics used are as follows:

Coverage. This measures how much the program points
in a slicing set cover the program points of the whole
program. This metric was introduced by Weiser [75].

100 � [ðS1; . . . ; SP Þ
[ðS1; . . . ; SMÞ

1 < P < M

Overlap. This Evaluates the number of program points
of the intersection within a slicing set. It can be defined
in many ways; this paper considers two possibilities:
ce stru
Average. For each pair of slices in the set, evaluate the
percentage of program points that are in both. The
average value is evaluated based on all such pairwise
comparisons.
100 �
XP�1

i¼1

XP

j¼iþ1

\ Si; Sj

� �
Max Si; Sj

� �
 !

0 < i < P
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Plea
(200
Maximum. For each pair of slices in the set, evaluate
the percentage of program points that are in both.
The maximum value is the largest value among all
pairwise comparisons.
100 �Max
\ Si; Sj

� �
Max Si; Sj

� �
 !

0 < i 6¼ j < P

With any definition of properties of interest, a mechanism
is needed to map properties onto overall fitness values. For
multiple objective problems, one simple technique for com-
bining values for n fitness values: Property1; . . . ; Propertyn is
to combine them into a single fitness value using corre-
sponding ‘weights’ K1; . . . ;Kn.

In the experiments reported upon here, two fitness func-
tions are defined, implemented and experimented with (cor-
responding to the two choices for measurement of
average):

Coverage � 0:5þ ð100�AverageÞ � 0:5 ð1Þ
Coverage � 0:5þ ð100�MaximumÞ � 0:5 ð2Þ

In both cases the weights are set to 0.5 so that each of the
two objectives of the two fitness functions is considered
equal. Nevertheless, decision of the weights is optional, dif-
ferent weights for the coverage and overlap could be consid-
ered in terms of the specific needs. As an illustrated
example of fitness here, equal weights are considered since
there are no other evidence that the coverage is more dom-
inant to the overlap and vice versa. Both formulations of
fitness attempt to capture the decomposition of the pro-
gram that maximises coverage while minimizing overlap.
Future work will consider the variation of these weights
and the exploration of the Pareto front of optimal
solutions.
3. Search algorithms

This section describes four types of search algorithms
used in the experiments reported in the paper. The detailed
description of these is given in algorithmic pseudo code in
Figs. 1–4.
3.1. Genetic Algorithm

A Genetic Algorithm (GA) [78] begins with a set of solu-
tions (represented by chromosomes) called a population.
Solutions from one population are used to form a new pop-
ulation. This is motivated by a hope that the new popula-
tion will be better (according to the fitness function) than
the old one. Solutions are selected to form new solutions
(offspring) according to their fitness; the more suitable they
are, the more chance they have to reproduce. This process
is repeated over a series of ‘generations’ until some termi-
nation condition is satisfied. In the GA, the primary oper-
ations and parameters are as follows:
se cite this article in press as: T. Jiang et al., Locating dependence s
7), doi:10.1016/j.infsof.2007.11.001
Selection: Selection determines the chromosomes that
are selected from the population to be parents for cross-
over, based on their fitness. There are many methods for
selecting the best chromosomes such as roulette wheel,
Boltzmann, tournament, rank and steady state [78].
The experiments reported upon in this paper use the elit-
ism and rank selection method.
Crossover and crossover probability: Crossover operates
on selected genes (elements of chromosomes) from par-
ent chromosomes to create new offspring. The likelihood
that crossover will be performed is called crossover
probability [78]. The experiments reported upon in this
paper use the method of multi-point crossover with a
crossover probability of 0.8.
Mutation and mutation probability: Mutation ran-
domly changes the offspring resulting from crossover.
The likelihood of mutation is called the mutation
probability [78]. The experiments reported upon in
this paper use random bit flip with a mutation prob-
ability of 0.01.
3.2. Hill climbing

A Hill-Climbing (HC) Algorithm looks for the neigh-
bour of current solution and if the neighbor is better, this
neighbour replaces the current solution. The operation will
be repeated until no better neighbour can be found. In
order to ensure fairness of comparison, the HC algorithm
has the same budget of computation time. That is, the
experiments use multiple restart hill-climbing and allow
the same number of fitness evaluations in total (over all hill
climbs) as are allowed to other algorithms.

3.3. Greedy Algorithm

In general, a Greedy Algorithm consists of two sets and
three main functions [63]:

Solution set: From which a solution is created.
Candidate set: Which represents all the possible elements
that might compose the solution.
Selection function: Which chooses the most promising
candidate to be added to the solution.
Value-computing function: Which gives the value of a
solution.
Solution function: Which checks whether a final solution
has been reached.

In the experiments, the initial solution set is a binary string
with each bit set to 0 and all the slices make up the candi-
date set; the value-computing function evaluates the num-
ber of program points of current solution set; the selection
function chooses the slice that has the best contribution to
the coverage value of solution and the smallest overlap
value, that is, the bigger the ratio of increment of coverage
and increment of overlap, the more chance the slice is
choosen; the solution function checks whether coverage
tructures using search-based slicing, Inform. Softw. Technol.



Fig. 1. Genetic algorithms used in the study.

Fig. 2. Hill-Climbing Algorithms used in the study.
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Fig. 3. Greedy algorithms used in the study.

Fig. 4. Random algorithms used in the study.
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value of current solution has covered the whole program
points in the program. The Greedy Algorithm is a heuristic
algorithm and not a search algorithm, but its results can be
compared to the others using the same fitness function.

3.4. Random Algorithm

The Random Algorithm generates the individuals (solu-
tions) randomly. The purpose of using the Random Algo-
rithm is to measure the performance of the other
algorithms. Since a random search is unguided and there-
fore ‘‘unintelligent’’, it would be hoped that the guided
search approaches and the Greedy Algorithm would out-
perform it. The random algorithm is therefore included
to provide a base line, below which performance of the
other algorithms should not fall.

4. Empirical study

An empirical study was conducted to investigate the
first three research questions described in Section 1. The
slicing data used in the empirical study was collected by
constructing the set of a possible backward slices (with
CodeSurfer) of each program’s System Dependence
Please cite this article in press as: T. Jiang et al., Locating dependen
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Graph (SDG) [44]. Slice size is measured by counting ver-
tices of the dependence graph, rather than lines of code.
The study concerns source codes of six open source pro-
grams, written in C. The program sizes range is from 37
to 1008 program points. On the first sight, this may seem
relatively small. However, the problem complexity is
determined by the number of sets of slices which ranges
from 237 to 21008 which is a very large search space. Sum-
mary of information concerning the programs studied can
be formed in Table 2.

4.1. Which algorithm is the best?

Each non-Greedy Algorithm was executed 100 times
with randomly chosen initial values (thus effectively sam-
pling the space of possible start points). This produces a
set of 100 results, one for each execution. The results
obtained for some particular execution is determined by
the random seed. The population from which this sample
of 100 execution comes, is thus the population of random
seeds. For the Greedy Algorithm, the execution results
are the same every time since the results are gained with
‘Greedy Strategy’, rather than the random initial
population.
ce structures using search-based slicing, Inform. Softw. Technol.



Table 2
The subject programs studied

Programs LoC Program point Size of search space Description

sum 20 34 1:37� 1011 Numerical value calculation
hello 43 76 7:55� 1022 Simple program, but more complex than ‘hello world’
informationflow 109 176 9:57� 1052 Example of simple information processing
acct 681 546 2:30� 10164 Accounting package
newton 819 998 2:67� 10300 Interpolated polynomial that uses Newton’s method
tss 896 1008 2:74� 10303 Three kinds of mathematical interpolation function

Total 2568 2838 2:74� 10303
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Under the first fitness function (results presented in
Fig. 5), the performance of the Greedy Algorithm is the
best except for the smallest program sum. Moreover, it is
observed that for the smaller programs (e.g. (a) and (b))
HC performs better than either GA or Random. As pro-
gram size increases (e.g. (c)–(f)) the GA performs better,
beating HC and Random. HC performs worse on the lar-
ger programs suggesting that the HC landscape is too flat
to easily find maxima.

To determine the relative performance of these three
algorithms (non-Greedy Algorithms), the Mann–Whitney
and Wilcoxon test is applied to every program. As men-
tioned above, 100 sample results from execution are gath-
ered for each program. For each program, the difference
between the set of samples for each algorithm is significant
due to Asymp. Sig. (2-tailed) = .000 and Exact Sig.(2-
tailed) = .000) at p ¼ :05.

Under the second fitness function (results presented in
Fig. 6), similar characteristics can be observed to the first
fitness function. The Greedy Algorithm outperforms the
others except for the smallest program sum. The GA per-
forms the best of the non-Greedy Algorithms and the HC
algorithm does not improve on Random except in the
smallest program (a). In the same way, the Mann–Whitney
and Wilcoxon test at p ¼ :05 applied in each program finds
that Asymp. Sig. (2-tailed) = .000 and Exact Sig.(2-
tailed) = .000 represent that the difference of values of
GA, Random and HC is statistically significant in each
program.

In summary, the GA performs better as program size
increases with the HC algorithm having the opposite char-
acteristic. Random is beaten by GA in all programs but by
the HC algorithm only in small programs. The Greedy
algorithm beats the other three algorithms in the most sit-
uations. Furthermore, Table 3 shows the execution time of
each algorithm for each program, which suggests that the
Greedy Algorithm also has the best performance among
four algorithms.

4.2. How similar are the results for each algorithm?

This section presents two approaches to compare the
results produced by each algorithm for similarity. The first
is a purely visual representation, used to provide visual evi-
dence for similarity. The second is a quantitative assess-
Please cite this article in press as: T. Jiang et al., Locating dependen
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ment of the similarity of results. The findings suggest that
the algorithms find similar (though not identical) solutions.
This level of agreement, coupled with the low variance in
hill climbing results provides evidence that the landscape
is either uni-modal or multi-modal but with many local
optima of similar value to each other, with the result that
it is possible for search algorithms to find solutions of rea-
sonable quality.

4.2.1. Qualitative similarity analysis

Figs. 7–12 provide a visualization of the results of the
search. The goal of visualizing the optimal slicing set is
to display the result obtained. Thus, the figures show opti-
mal slicing set with search algorithms, rather than the
entire set of slices for all the program points.

The X axis represents the slicing criteria, ordered by
their relative location in the source code: earlier source
code locations appear closer to the left side. The Y axis rep-
resents the program points belonging to the corresponding
slice. As can be seen from these figures, the results pro-
duced by each algorithm are strikingly similar (Especially
for the newton and tss, the image appears almost the same)
but not identical.

In the Figs. 11 and 12, it can be seen that there is a
greater degree of similarity in the three heuristic methods
(Greedy, GA and HC), while the Random algorithm
appears to produce rather less ‘coherent image’. On the
other hand, the Greedy Algorithm is apt to find the optimal
slicing set which has less slices than the GA, HC and ran-
dom algorithm (except for the sum due to so small program
points in the program – too tiny). That is, the greedy can
find optimum solutions which have smallest slices in the
slicing set, such that the decomposition of program has
the simplest form.

Moreover, GA and HC perform better than random
algorithm, which can be observed from Figs. 5 and
6(also from the empirical study in Section 4.1), since
GA and HC always try to cover with the program points
in the program as many as possible, whereas the random
algorithm has the form of less coverage-less coherent
image. However, GA sometimes finds the slicing set
which has more overlap than three others. Of course,
these observations are qualitative and of illustrative value
only. The next subsection provides a quantitative similar-
ity analysis.
ce structures using search-based slicing, Inform. Softw. Technol.



Fig. 5. Box plot of results for backward slicing in term of fitness function 1 defined in Section 2.3. The results show that the Greedy Algorithm performs
the best. The low variance for the Hill-Climbing Algorithm (HC) suggests either a low order of modality in the landscape or a multi-modal landscape with
similar valued peaks.
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4.2.2. Quantitative similarity analysis

Table 4 presents results concerning the quantity of
agreement between each pair of results for each algorithm.
The calculation used for this is: 100 � \ðA;BÞ

MinðA;BÞ. This repre-
sents, as a percentage, the degree of agreement between
two sets A and B. If the sets are identical then agreement
is 100%; if there is no intersection then agreement is 0%.
The percentage agreement measures the size of the intersec-
Please cite this article in press as: T. Jiang et al., Locating dependen
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tion between the two sets relative to the size of the smaller
of the two. Therefore, it is a measure of the degree to which
the maximum possible intersection size is achieved.

By comparing how many identical slices there are in
each pair of slicing sets, it is possible to measure result sim-
ilarity. That is, the Table 4 indicates the level of agreement
the different search techniques share as to their choices of
optimal solution.
ce structures using search-based slicing, Inform. Softw. Technol.



Fig. 6. Box plot results for backward slicing in term of fitness function 2 defined in Section 2.3. The results confirm the result from fitness function 1
(presented in Fig. 5) that the Greedy Algorithm performs the best. The programs are presented in increasing order of size (top-to-bottom, left-to-right),
providing evidence that the gap in performance between the Greedy Algorithm and the others increases with program size. The low variance for the Hill-
Climbing Algorithm (HC) also replicates the finding for fitness function 1.
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4.3. Visual evidence for the presence for clones

Clone detection is referred to as techniques to detect
duplicated code in programs. Clone detection techniques
have been widely investigated and can be roughly classified
into three categories: string-based [28,45], token-based
[6,46], parse-tree based [9,50,58], which have different per-
formance with refactoring tools to remove duplicated code
Please cite this article in press as: T. Jiang et al., Locating dependen
(2007), doi:10.1016/j.infsof.2007.11.001
[70]. Moreover, Komondoor [49] and Krinke [51] use
dependence to identify clone code.

The visualization of results yields an unexpected but
interesting finding related to the presence of clones.
Notice the repeated patterns in Figs. 13–16. There are
two kinds of repeated patterns. The first kind are exam-
ples of sharing the same program points. In these pat-
terns, the same vertical image is replicated across the X
ce structures using search-based slicing, Inform. Softw. Technol.



Table 3
Execution time of each algorithm for each program in condition of the machine – RAM 512 M; Pentium 4 3.2 GHz

Programs Greedy GA HC Random

F1 F2 F1 F2 F1 F2 F1 F2

sum 11 11 15,121 15,640 14,902 10,985 14,525 14,859
hello 15 15 15,611 16,471 17,760 15,484 13,250 16,096
information 20 20 16,611 17,019 15,531 14,953 16,353 16,768
acct 46 46 30,676 42,007 31,553 21,937 27,256 36,534
newton 139 139 109,122 166,521 1,122,29 97,794 99,665 161,412
tss 140 140 119,124 183,091 127,693 103,511 111,678 171,653

F1 and F2 represent the fitness function (1) and (2) defined in Section 2.3, respectively; the measurement is based upon the milli second.

Fig. 7. Visualized results for backward slicing based on fitness function 1
with the program sum. The GA produces smallest results for this very
small program.

Fig. 8. Visualized results for backward slicing based on fitness function 1
with the program hello.
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axis, for example, the middle section of Fig. 10 (b) where
the number of program points is between 200 and 300.
This is an example of a situation where a whole series
of slices share the same subset of nodes in their slices.

However, there are also some potentially more interest-
ing repeated images. Those are not dependence clusters,
because they do not share a set of y axis points. For exam-
ple, consider the four blocks in Figs. 14 and 16(A–D).
These images denote patterns of dependence that are
Please cite this article in press as: T. Jiang et al., Locating dependen
(2007), doi:10.1016/j.infsof.2007.11.001
repeated in different sections of the code. For instance, if
one scans the program newton, the code related to similar
blocks in Fig. 14 is shown in the Fig. 13. The correspond-
ing four blocks of the codes compute the four interpolated
coefficients with the different inputs. For the code of tss as
shown in Fig. 15, the corresponding blocks A, B, C and D
in Fig. 16 represent four functions which compute three
kinds of mathematical interpolation in different parame-
ters, respectively. In each group of four blocks of codes,
a similar functionality emerges.
ce structures using search-based slicing, Inform. Softw. Technol.



Fig. 9. Visualized results for backward slicing based on fitness function 1
with the program informationflow. Note that the Greedy Algorithm
produces the best results and also achieves this with the fewest slices.

Fig. 10. Visualized results for backward slicing based on fitness function 1
with the program acct. The Greedy Algorithm produces the best results
with the fewest slices.
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Inspection of the code quickly reveals that the four
chunks of code are clones. However, they are not identical.
Nonetheless, they have a similar dependence structure
which shows up in the visualisation. Because the search
seeks to cover the program, these similar figures occur at
different program points they tend to show up.

When these two groups of duplicate code are mapped to
the visualization of slicing sets shown in Figs. 14 and 16
respectively, the corresponding blocks are denoted by a
similar shape, which suggests the presence of clones. Con-
sider the program newton as an illustrated example. The
program computes the outputs of four interpolated coeffi-
cients with the different inputs, and the computation of
each coefficient is dependent on a corresponding block of
code. The code for each of the four is very similar. The
information can be captured with visualization of slices
of the set of some program points contributing to compu-
tation of the coefficients.

This is interesting and may suggest applications for
search-based slicing in clone detection. However, this
remains a topic for future work, as clone detection is not
the focus of the present paper.
Please cite this article in press as: T. Jiang et al., Locating dependen
(2007), doi:10.1016/j.infsof.2007.11.001
4.4. Flexibility of the framework

This paper introduces the general framework that apply-
ing the Search-Based Software Engineering theory to pro-
gram slicing looks for the interesting dependence
structures in the source code. The authors define the fitness
function that can decompose the program into a slicing set
in which the overlaps might be minimum. This is only an
illustrated example to demonstrate the possible application
of the framework. In fact, search-based slicing could be
some other potential applications in source code analyses.
The following section will introduce three feasible applica-
tions with this framework and researchers might define dif-
ferent fitness functions according to the specific purposes
for different problems.

4.4.1. Splitting/refactroing functions/procedures to improve

cohesion
In general, a function (or procedure) in a program inde-

pendently computes one or multi results and return outputs
ce structures using search-based slicing, Inform. Softw. Technol.



Fig. 11. Visualized results for backward slicing based on fitness function 1
with the program newton. Note the image for the Random search appears
to be a ‘grainy’ version of that for the others and that the Greedy
Algorithm result contains fewer slices. There are more similarity in the
intelligent searches; random produces a ‘poor imitation’.

Fig. 12. Visualized results for backward slicing based on fitness function 1
with the program tss. Note the image for the Random search appears to be
a ‘grainy’ version of that for the others and that the Greedy Algorithm
result contains fewer slices.
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by defining some processing elements [68]. Functions have
different cohesion levels, which determine the readability,
testability, and maintainability of software in terms of the
relationship between these processing elements. High cohe-
sion is usually considered to be desirable [14,2]. According
to the definition of Ott and Thuss [68], cohesion levels can
be divided into four classifications: low, control, data and
function as depicted in Fig. 17.

The goal of splitting a function is to reconstruct the ori-
ginal function which has the lower cohesion into the set of
subfunctions which all have higher cohesion, without
changing original semantics. The hope is that each smaller
function is more reusable and robust.

The low level suggests several distinct unrelated process-
ing elements; the control level case is similar to the low level
except that processing elements is all dependent on some
control statements. In this situation, search approaches
can find several sets of slices, each of which represents a
processing element, thereby in condition of no overlap or
minimum overlap (or only control statements) allowing
Please cite this article in press as: T. Jiang et al., Locating dependen
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the function to be split out into subfunctions, hopefully
with higher cohesion levels. The results of splitting the
function are shown in Fig. 18(a) and (b). For the data level,
there are two cases. Fig. 17(c) suggests that the computa-
tion of the processing elements B and C depend upon the
results of the element A. This function also can be divided
into two subfunctions by putting the element A into each
subfunction computing B and C in the Fig. 18(c).

On the other hand, Fig. 17(d) and (e) shows ‘non-split-
function’ cases. However, search approaches can look for
several sets of slices corresponding to the processing ele-
ments A, B in (d) and A in (e). In this situation, a set/sets
of slices representing the processing element A and/or B
can be extracted from the functions into a new subfunction
and position of the A and/or B can be replaced by function
calling. The results of refactoring the function are shown in
Fig. 18(d) and (e).
4.4.2. Parallelism computation
Parallelizability can be measured as the number of slices

which have a pair-wise overlap less than a certain thresh-
ce structures using search-based slicing, Inform. Softw. Technol.



Table 4
Comparison of slicing sets between the programs of the source code,
100 � \ðA;BÞ

MinðA;BÞ

Algorithms Greedy Genetic Hill-Climbing Random

(a) Program1 sum.c
Greedy N/A 40 60 71
Genetic 40 N/A 50 29
Hill-Climbing 60 50 N/A 57
Random 71 29 57 N/A

(b) Program2 hello.c
Greedy N/A 71 91 80
Genetic 71 N/A 79 71
Hill-Climbing 91 79 N/A 82
Random 80 71 82 N/A

(c) Program3 informationflow.c
Greedy N/A 32 41 38
Genetic 32 N/A 48 61
Hill-Climbing 41 48 N/A 59
Random 38 61 59 N/A

(d) Program4 acct.c
Greedy N/A 28 34 32
Genetic 28 N/A 53 55
Hill-Climbing 34 53 N/A 56
Random 32 55 56 N/A

(e) Program5 newton.c
Greedy N/A 54 56 57
Genetic 54 N/A 58 61
Hill-Climbing 56 58 N/A 59
Random 57 61 59 N/A

(f) Program6 tss.c
Greedy N/A 38 36 32
Genetic 38 N/A 49 57
Hill-climbing 36 49 N/A 51
Random 32 57 51 N/A
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old. A high degree of parallelizability would suggest that
assigning a processor to execute each slice in parallel could
give a significant program speed-up [77].

Search approaches can seek to find specific combina-
tions of slices which can reach such a threshold. Therefore,
the fitness function can be described as:

‘‘Seek to search for a set of slices Slice1; . . . ; Slicen, in
which the overlap of each pairwise is all less than the
parameter of parallelism (to be defined in terms of the
specific problem), such that the influences among the
slices are least when each slice is given a separate
processor’’.
4.4.3. ‘The chain of slices’ for program comprehension

Normally, some slices in a program have overlaps,
other than complete ‘independence’. Especially, some
slices could completely include the others or some slices
are identical, for example, in the same dependence clus-
ter [11]. Therefore, search approaches could look for
several sets of slices, in each of which bigger slices
Please cite this article in press as: T. Jiang et al., Locating dependen
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can cover the smaller one, which is like a set of a chain
of slices.

Therefore, the fitness function can be described as:

‘‘Seek to search for a set of sets of slices fS1; . . . ; Sng
containing the whole program, in which S1; . . . ; Sn each
represent a set of slices Slice1; . . . ; Slicem which are cho-
sen by the criteria: Slicei � Sliceiþ1. That is:
8x 2 Slicei ) x 2 Sliceiþ1 ð0 < i < mÞ’’

This idea is to find out some inclusive relationship
amongst slices such that it can contribute to comprehen-
sion for understanding the program. When maintainers
want to catch on the program developed by other program-
mers, ‘the chain’ is helpful for comprehending the program
structure step by step by understanding a program from
the smallest slice to biggest one.

5. Further empirical study

In our previous experiments in Section 4, all six pro-
grams studied were relatively small since the purpose was
to demonstrate that the SBSE framework can be applied
to program slicing, to locate the interesting dependence
structures in source code. At the same time, it was found
that the Greedy algorithm was the best of the four algo-
rithms in terms of its fitness function value, its execution
time and the number of the chosen slices in the solution
it finds.

Our further empirical study, reported below, applies
the Greedy Algorithm to six different larger C programs
as shown in Table 5. These programs are all open
source, drawn from the ‘Gnu’ website (ftp://
ftp.gnu.org/gnu). The vertices are the program points
in the SDG [43] and the slices are based on contribu-
tions from source code only. This is because, for the
decomposition problem, the real concern is with the
program exclusive of its library files and other program
points from CodeSurfer representations. The purpose
here is to find out how efficient the Greedy Algorithm
is in its decomposition of the program into a set of
slices.

In Table 6, the percentage indicates the ratio of the size
of the optimal set of slices to the size of the whole set of
slices. The execution time shows running time to decom-
pose the whole program. For each program, each func-
tion is decomposed into a set of slices using the Greedy
Algorithm. Fig. 19 shows the frequency distributions of
the percentage of the functions decomposed in each
program.

As this figure shows, the majority of decomposed func-
tions falls into the range where the percentage is lower than
25%. Many of them lie between 6% and 20% and relatively
few are higher than 50%. This suggests that less than one
fifth of a program can usually be used to decompose the
whole program or function. Moreover, in Table 6, the
ce structures using search-based slicing, Inform. Softw. Technol.
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Fig. 13. Clones present in the program newton.
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Fig. 14. Clone detection to newton.

Fig. 15. Clone codes in tss.
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percentage for the whole program also suggests that fewer
than 20% of the program points can be used to decompose
the whole program, capturing the programs semantics in
the transitive closure of the dependencies of only one fifth
of its program points.

In this empirical study, the non-Greedy algorithms are
not considered. This is because it was found earlier that
Please cite this article in press as: T. Jiang et al., Locating dependen
(2007), doi:10.1016/j.infsof.2007.11.001
the Greedy approach outperforms the others. On the other
hand, there are scalability issues for the Genetic, HC and
Random algorithms with large programs. For instance,
our experiments implement the four algorithms with the
program space, a popular source code that has 9887 source
code program points. Except for the Greedy Algorithm,
which runs in 126.4 s, the running times of the others are
ce structures using search-based slicing, Inform. Softw. Technol.



Fig. 16. Clone detection to tss.

Fig. 17. Four classifications of function cohesion. The A, B and C represent the processing elements; A1, A2 and A3 represent the processing elements are
all in the same control block such as if, for or while.

Fig. 18. The results of splitting or refactoring the functions. En and Re represent subfunction entry and return value, respectively; Fa and Fb represent
function calling sites to subfunctions of processing element A and B, respectively. Note that the new subfunctions in (b) all includes control statements in
which block A1, A2 and A3 belong.

Table 5
Program descriptions

Programs termutils2.0 acct6.3 space oracolo2 byacc1.9 a2ps4.1
Size (Loc) 6697 9536 9126 14326 6337 42600
Number of vertices 11,037 21,382 20,556 20,551 33,022 43,141
Number of slices 2952 5305 9887 8776 8046 17,226
Number of functions 56 88 137 135 178 248
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roughly 1 min for each individual fitness function evalua-
tion. That is, for both 100 populations and 100 genera-
Please cite this article in press as: T. Jiang et al., Locating dependen
(2007), doi:10.1016/j.infsof.2007.11.001
tions, running times are about a week. This is clearly
impractical.
ce structures using search-based slicing, Inform. Softw. Technol.



Table 6
Percentage and execution time

Programs termutils2.0 acct6.3 space oracolo2 byacc1.9 a2ps4.1
Percentage 14 20 18 13 19 20
Execution time of the program 6.7 44.0 126.4 105.0 140.4 1399.0
Execution time of the functions 1.4 3.3 8.3 8.1 7.5 208.4

Percentage is the ratio of the optimal set of slices to the set of all the slices in the whole program; execution time measured in seconds was obtained from
execution on a Pentium 4 3.2 GHz with 512 MB RAM.
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5.1. Redundancy

This section reports the results of an experiment which
aims to establish the extent to which redundancy in the
slices affects the accuracy of decomposition. Redundancy
here refers to instances when slices are the same as others
or are completely included within others. Such slices are
redundant because they will not contribute the fitness func-
tion value; they could always be subsumed by an alterna-
tive slice.

Possible ways in which such redundancy would likely
affect our search algorithms are as follows:

with the Greedy Algorithm: First, where a slice is com-
pletely the same as another one or completely included
by another one, the algorithm selects either one or the
other (but not both). Second, even where slices are sim-
ilar as opposed to exactly the same or included in others,
the ‘Greedy Strategy’ enables the Greedy Algorithm to
take into consideration the extent of overlap (as well
as of the coverage) when selecting – or not selecting –
a given slice. Therefore, every slice chosen by the algo-
rithm is one that will include the greatest fitness
improvement. That is, the ‘Greedy Strategy’ will not
select slices that are redundant.
with the GA and HC Algorithms: Although many identi-
cal or similar pairs of slices are likely to be selected as
the initial generation, the fitness function values will
gradually improve – through crossover and mutation
(in the GA), or consideration of neighbours (in the
HC). That is, redundancy will be filtered out as the algo-
rithm progresses.
with the Random Algorithm: Redundancy could affect
the algorithm’s performance. However, the random
algorithm is only considered as a baseline to check the
performance of the other algorithms, rather than as a
genuinely ‘intelligent’ search approach.

As the above analysis reveals, redundancy will not affect
the value of fitness function with the Greedy, Genetic and
HC algorithms, but it could affect overall execution times,
especially when there are a lot of redundant slices in the
program.

Table 7 lists the percentage of redundant slices of the 12
programs in our experiments. Redundancy is defined as the
number of slices which are included in others as a percent-
age of the number of all the slices in the program. As
Please cite this article in press as: T. Jiang et al., Locating dependen
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shown in the figure, redundancy is prevalent in all 12 pro-
grams. It is suggested that execution time could be
improved by reducing the redundancy in the source code.
This is referred to as the further work.

6. Related work

The work reported here is related to work in three areas
that the paper draws together: set cover problems, decom-
position slicing and SBSE. This section briefly reviews
related work on each of these three areas.

The set cover problem [31] is that of finding a mini-
mally sized subset, r of a set of sets, R, such that the dis-
tributed unions of r and R are identical. The idea is that
r ‘covers’ the elements of R in the most economical man-
ner. Though the set cover problem is NP-hard, it has
been shown that Greedy Algorithms can provide good
approximate answers [41]. This finding is also bourne
out here for the application of set cover to slice
decomposition.

The closest work to that reported in the present paper is
that of Leon et al. [54], which considered minimum set
cover in order to generate test cases by filtering techniques.
The primary difference to the work reported here is that
our set cover problem is also constrained by the need to
reduce the overlap between the sets in the solution and,
of course, the application area for the present paper is
dependence analysis, not testing.

Gallagher introduced decomposition slicing, which cap-
tures all computation on a given variable [32]. Its purpose
is to form a slice-based decomposition for programs
through a group of algorithms. Decomposition slicing
introduced a new software maintenance process model
such that the need for regression testing can be elimi-
nated. The idea is that changes to the decomposition slice
that do not effect the compliment can be performed
safely. In this way, the approach of limiting the side
effects of software changes [33] has recently been extended
by Tonella [73] to provide a mechanism for comprehen-
sion and impact analysis, using a formal concept lattice
of slices.

The work reported here takes a different approach to
decomposition. Rather than focusing on a particular vari-
able, the approach seeks to find sets of criteria that parti-
tion the program. However, this was merely selected as
one illustrative example of the general approach of
search-based slicing. One attractive aspect of this approach
ce structures using search-based slicing, Inform. Softw. Technol.



Fig. 19. Frequency distributions of the percentage of decomposed functions. The X axis is the percentage of the ratio of the size of the optimal set of slices
to the size of all slices in a function; the Y axis is the number of decomposed functions which lie within the corresponding percentage ranges.
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is the component-based nature of the search criteria; the fit-
ness function is all that need be changed to search for a dif-
ferent set of slice properties.
Please cite this article in press as: T. Jiang et al., Locating dependen
(2007), doi:10.1016/j.infsof.2007.11.001
The work reported here is an instance of Search-Based
Software Engineering. Search-based techniques have been
applied to many software engineering activities from
ce structures using search-based slicing, Inform. Softw. Technol.



Table 7
Percentage of redundant slices

Programs sum hello informationflow acct newton tss

Percentage 3.57 2.17 21.54 26.52 41.98 42.76

Programs termutils-2.0 acct-6.3 space oracolo2 byacc1.9 a2ps-4.1
Percentage 43.1 45.2 40.5 40.9 44.9 48.7

Slicing criteria are referred to as every program point in the programs.
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requirements engineering [5], project planning and cost
estimation [1,3,4,20,27,48] through testing
[7,8,15,18,19,37,39,55,59,74], to automated maintenance
[16,30,38,61,62,64,71,72], service-oriented software engi-
neering [22], compiler optimization [24,25] and quality
assessment [17,47]. Although there has been much previous
work on SBSE [29,39,57,62,74]. However, to the authors’
knowledge, this is the first application of SBSE to depen-
dence analysis.

In the last decade, several clone detection techniques
have been investigated to detect duplicated code in pro-
grams exceeding hundreds of thousands lines of code:
string-based [28,45], which is best suited for a first crude
overview of the duplicated code; token-based [46,6], which
works best in combination with a refactoring tool that is
able to remove duplicated subroutines; parse-tree based
[50,58,9], works best in combination with more fine-
grained refactoring tools that work the statement level.

Moreover, Krinke [51] and Komondoor and Horwitz
[49] introduce dependence-based approach to the identifi-
cation of clone code by looking for similar isomorphic sub-
graphs of Procedure Dependence Graphs (PDG). The
former constructs isomorphic subgraphs by partitioning
the edges and vertices into the equivalence classes in terms
of their PDG [44]. The latter constructs the similar sub-
graphs with backward and forward program slicing based
on the PDG which also is partitioned into equivalence clas-
ses according to the syntactic structure of the statements
and predicates of the program.

The observation of pictorial similarity in visualization of
the optimal set of slices in Section 4.3 indicates that search-
based techniques for finding dependence patterns may also
be useful in clone detection. More work is required to eval-
uate this possibility.
7. Conclusions

This paper has introduced a general framework for
search-based slicing, in which the principles of Search-
Based Software Engineering are used to formulate a prob-
lem of locating dependence structures as a search problem.

The paper presented results from an instantiation of this
general framework of search-based slicing, for the problem
of program decomposition, presenting the results of a case
study that evaluated the application of Greedy, Hill Climb-
ing and Genetic Algorithms for both performance and sim-
ilarity of results. Based upon the Greedy Algorithm, the
Please cite this article in press as: T. Jiang et al., Locating dependen
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best of four algorithms, further empirical study is formed
to explore how efficiently large programs and single func-
tion can be decomposed.

The results indicate that the algorithms produce rela-
tively consistent results and that the Greedy Algorithm
outperforms its rivals. The results also provide the evidence
that the landscape for the problem is either of low modality
or is multi-modal, but with similarly valued peaks. The
results are encouraging, because they suggest that it is pos-
sible to formulate dependence analysis problems as search
problems and to find good solutions in reasonable time
using this approach.
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