
Information and Software Technology 51 (2009) 1379–1393
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Higher Order Mutation Testing

Yue Jia *, Mark Harman
King’s College London, CREST Centre Strand, London WC2R 2LS, UK

a r t i c l e i n f o
Article history:
Available online 10 May 2009

Keywords:
Mutation Testing
Higher order mutant
Search techniques
0950-5849/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.infsof.2009.04.016

* Corresponding author.
E-mail address: yue.jia@kcl.ac.uk (Y. Jia).
a b s t r a c t

This paper introduces a new paradigm for Mutation Testing, which we call Higher Order Mutation Testing
(HOM Testing). Traditional Mutation Testing considers only first order mutants, created by the injection
of a single fault. Often these first order mutants denote trivial faults that are easily killed. Higher order
mutants are created by the insertion of two or more faults. The paper introduces the concept of a subsum-
ing HOM; one that is harder to kill than the first order mutants from which it is constructed. By definition,
subsuming HOMs denote subtle fault combinations. The paper reports the results of an empirical study of
HOM Testing using 10 programs, including several non-trivial real-world subjects for which test suites
are available.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The paper introduces a new form of Mutation Testing, called
Higher Order Mutation Testing (HOM Testing). The underlying
motivation is to seek those rare but valuable higher order mutants
that denote subtle faults. This is achieved using automated search-
based optimization techniques to seek out combinations of simple
faults that partially mask one another, so that the combination of
faults is harder to detect than any of the individual constituent
faults.

Such combinations of faults are relatively rare. As one might ex-
pect, adding more faults to a faulty program tends to make it more
likely that a program will fail and, therefore, more likely that test-
ing will reveal the fault combination. However, the rare exceptions
to this rule are very interesting and, we argue, valuable.

Also, though the combinations we seek are rare, the large num-
ber of possible fault combinations creates a set of candidate
combinations that is exponentially large. As the paper shows,
search-based optimization techniques can be used to manage the
inherent combinatorial explosion involved in locating the rare
but valuable cases from amongst the enormous candidate set. This
makes the algorithmic complexity of seeking out such valuable
fault combinations tractable. Indeed, the empirical study reported
in this paper concerns programs that are several orders of magni-
tude larger than those reported upon in previous studies of (first
order) Mutation Testing. This scale up is made possible by the
exploitation of a search-based optimization approaches.

The approach advocated in this paper is a new form of Mutation
Testing, which we call ‘Higher Order’ because almost all ap-
proaches to traditional Mutation Testing have been conducted by
ll rights reserved.
inserting single small faults in a program to create first order mu-
tants, whereas our approach treats these first order mutants as
merely special cases of higher order mutants.

Mutation Testing has a long history, tracing back to the 1970s. It
was first proposed by DeMillo et al. [1] and Hamlet [2]. Just like
other fault-based testing techniques, the main purpose of Mutation
Testing is to measure the quality of a test set. However, it can also
be used to reduce the size of test set [3], to generate effective test
data [4] and to compare techniques for verification [5,6].

The mutation paradigm brings source code manipulation to bear
within the realm of software testing. In the parlance of source code
analysis and manipulation, each mutant is created by a source-to-
source transformation of the original program. However, the goal
is to insert a simulated fault. Therefore, the transformation should
be non-meaning preserving, while meaning preserving transforma-
tions are eschewed by Mutation Testing because they create equiv-
alent mutants [7]. Indeed, traditional source code analysis has been
proposed as a technique to address this equivalent mutant problem
[8–11], thereby further highlighting the link between Mutation
Testing and source code analysis and manipulation.

In Mutation Testing, from a program p, a set of faulty programs
p0, called mutants, is generated by injecting faults into the original
program p. The motivation for Mutation Testing is that injected
faults should represent mistakes that programmers often make.
Traditionally, a mutant is generated by a single small change to
the original program. For example, Table 1 shows the mutant p0

generated by changing the and operator (&&) of the original pro-
gram p into the or operator ðkÞ of the mutant p0.

A transformation rule that generates a mutant from the original
program is known as a mutation operator. Table 1 contains only
one example of a mutation operator; there are many others. In this
paper we adopt the 77 mutation operators for the C programming
language introduced by Agrawal et al. [12]. Each mutant p0 will be

mailto:yue.jia@kcl.ac.uk
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

Fig. 1. HOMs classification. The central Venn diagram depicts important subclasses
into which HOMs fall, while the outer diagrams depict killing test sets for the HOMs
(shaded) and their constituent FOMs (unshaded). For ease of exposition, the
diagrams illustrate only the second order case, whereas the definitions cover
arbitrary order. HOMs of type (a), (b) and (c) are harder to kill than their constituent
FOMs, thereby capturing subtler faults. In particular, type (a) are both subtle and
useful; they can replace their constituent FOMs because they are killed by a subset
of the intersection of test cases that kill their constituents.

Table 1
A example of mutation operation.

Program p Mutant p0

.

if ða > 0&&b > 0Þ if ða > 0jjb > 0Þ
return 1; return 1;
.

1380 Y. Jia, M. Harman / Information and Software Technology 51 (2009) 1379–1393
run against a test set T. If the result of running p0 is different from
the result of running p for any test case in T , then the mutant p0 is
said to be ‘‘killed”, otherwise it is said to have ‘‘survived”. The ade-
quacy level of the test set T can be measured by a mutation score
that is computed in terms of the number of mutants killed by T .

Mutants can be classified into two types: First Order Mutants
(FOMs) and Higher Order Mutants (HOMs). FOMs are generated
by applying mutation operators only once. HOMs are generated
by applying mutation operators more than once.

This paper introduces the concept of subsuming HOMs. A sub-
suming HOM is harder to kill than the FOMs from which it is con-
structed. As such, it may be preferable to replace the FOMs with
the single HOM. In particular, the paper introduces the concept
of a strongly subsuming HOM. A subsuming HOM is only killed
by a subset of the intersection of test cases that kill each FOM from
which it is constructed.

Consider a subsuming HOM, h, constructed from the FOMs
f1; . . . ; fn. The set of test cases that kill h also kill each and every
FOM f1; . . . ; fn. Therefore, h can replace all of the mutants f1; . . . ; fn

without loss of test effectiveness. The converse does not hold;
there exist test sets that kill all FOMs f1; . . . ; fn but which fail to kill
h. The FOMs cannot, even taken collectively, replace the HOM
without possible loss of test effort. This is the sense in which h
can be said to ‘strongly subsume’ f1; . . . ; fn.

In order to overcome the inherent computational cost that
comes with the large number of HOMs, the paper introduces a
search-based optimization approach to identify these subsuming
HOMs efficiently.

The main contributions of the paper are as follows:

1. We introduce the Higher Order Mutation Testing paradigm. We
categorize the various kinds of HOMs and introduce a search-
based optimization approach to overcome the exponential
explosion in the number of HOMs. We set out a ‘manifesto’
for Higher Order Mutation Testing that clarifies the differences
between the Higher Order Mutation Testing paradigm and the
First Order Mutation Testing paradigm, as previously practiced
and studied. As this manifesto shows, the higher order para-
digm overcomes some limitations and overturns some previ-
ously held ‘myths’ of Mutation Testing.

2. We explore the proportion of all HOMs that are subsuming and
strongly subsuming. The results show that a large proportion of
HOMs are subsuming and that a small proportion of these are
strongly subsuming. Though the proportion of strongly sub-
suming mutants is small, the number of strongly subsuming
mutants is large, because the number of HOMs increases expo-
nentially. The search-based algorithms were able to find signif-
icant numbers of strongly subsuming HOMs in all of the 10
programs studied.

3. We investigate the relationship between mutant-killing set
intersection and mutant order. The results explore the degree
to which higher order mutants contain first order mutants that
are completely decoupled.

4. The paper introduces three algorithms for finding optimal
HOMs. The results indicate that the genetic algorithm performs
best overall. However, they also reveal that each algorithm tar-
gets a different kind of HOM, so all three algorithms are useful.
The rest of this paper is organized as follows. Section 2 intro-
duces the idea of a subsuming HOM formally. Section 3 discussed
the advantage of Mutation Testing. Section 4 presents a search-
based approach and explains three meta-heuristic algorithms used
to find subsuming HOMs. Section 5 explains the experimental set-
ting, while the results are discussed in Section 6. Section 7 presents
a manifesto for Higher Order Mutation Testing in the form of a po-
lemic that discusses what we call the ‘myths’ of Mutation Testing
and how the higher order paradigm overturns these myths. Section
8 discusses threats to validity of experiment. Section 9 introduces
related work, and the paper concludes with Section 10.

2. Higher order mutant classification

HOMs can be classified in terms of the way that they are ‘cou-
pled’ and ‘subsuming’, as shown in Fig. 1. In Fig. 1, the region area
in the central Venn diagram represents the domain of all HOMs.
The sub-diagrams surrounding the central region illustrate each
category. For sake of simplicity of exposition these examples illus-
trate the second order mutant case; one that assumes that there
are two FOMs f1 and f2, and h denotes the HOM constructed from
the FOMs f1 and f2. The two regions depicted by each sub-diagram
represent the test sets containing all the test cases that kill FOMs f1

and f2. The shaded area represents the test set that contains all test
cases that kill HOM h. The areas of the regions indicate the propor-
tion of the domain of HOMs for each category.

Following the coupling effect hypothesis [13], if a test set that
kills the FOMs also contains cases that kill the HOM, we shall say
that the HOM is a ‘coupled HOM’, otherwise we shall say it is a
‘decoupled HOM’. Therefore, in Fig. 1, the sub-diagram is a coupled
HOM if it contains an area where the shaded region overlaps with
the unshaded regions. For example the sub-diagrams (a), (b) and
(f). Since the shaded region from sub-diagrams (c) and (d) do not
overlap with the unshaded regions, (c) and (d) are decoupled
HOMs. Sub-diagram (e) is a special case of a decoupled HOM, be-
cause there is no test case that can kill the HOM; there is no over-
lap, the HOM is an equivalent mutant.

Y. Jia, M. Harman / Information and Software Technology 51 (2009) 1379–1393 1381
Subsuming HOMs, by definition, are harder to kill than their
constituent FOMs. Therefore, in Fig. 1, the subsuming HOMs can
be represented as those where the shaded area is smaller than
the area of the union of the two unshaded regions, such as sub-dia-
grams (a), (b) and (c). By contrast, (d), (e) and (f) are non-subsum-
ing. Furthermore, the subsuming HOMs can be classified into
strongly subsuming HOMs and weakly subsuming HOMs. By defi-
nition, if a test case kills a strongly subsuming HOM, it guarantees
that its constituent FOMs are killed as well. Therefore, if the shaded
region lies only inside the intersection of the two unshaded re-
gions, it is a strongly subsuming HOM, depicted in (a), otherwise,
it is a weakly subsuming HOM, depicted in (b) and (c).

According to the combination of subsuming and decoupled
HOM types, the six possibilities we considered are: strongly sub-
suming and coupled (a), weakly subsuming and coupled (b),
weakly subsuming and decoupled (c), non-subsuming and decou-
pled (d), non-subsuming, decoupled which is equivalent (e), and
non-subsuming and coupled (f) which is useless, as shown in Fig. 1.

The formal definitions of these HOMs are defined below. Let h
be a HOM, constructed from FOMs f1; . . . ; fn. We assume the exis-
tence of a test set T. T is the set of all test cases under consideration.
Th is the subset of T that kills the HOM h, while T1; . . . ; Tn are the
subsets of T that kill the constituent FOMs f1; . . . ; fn respectively.

Definition 1 (Strongly Subsuming and Coupled).

Th �
\

i

Ti and Th–;

Definition 2 (Weakly Subsuming and Coupled).

jThj <
[

i

Ti

�����
�����; Th–; and Th \

[
i

Ti–;

Definition 3 (Weakly Subsuming and Decoupled).

jThj <
[

i

Ti

�����
�����; Th–; and Th \

[
i

Ti ¼ ;

Definition 4 (Non-Subsuming and Decoupled).

jThjP j
[

i

Tij; Th–; and Th \
[

i

Ti–;

Definition 5 (Non-Subsuming and Decoupled).

Th ¼ ; ðEquivalentÞ

Definition 6 (Non-Subsuming and Coupled).

jThjP
[

i

Ti

�����
����� ðUselessÞ
3. Advantages of Higher Order Mutation Testing

At first sight, any move from FOMs to HOMs brings with it an
exponential explosion. Since a HOM is constructed by combining
different FOMs, the number of HOMs can be computed from the
number of FOMs. For such HOMs, let p1...n be the places that can
be mutated, and m1...n be the number of changes that can be ap-
plied at place p1...n. The number of the FOMs is

Pn
i¼0mi. The number

of the HOMs is
Pn

i¼2
i
n

� �
mi.

Because of this exponential explosion, Higher Order Mutation
Testing has previously been considered to be so computationally
expensive as to be impractical. Furthermore, the coupling hypoth-
esis [1,14,13] suggests that the vast majority of HOMs will be cou-
pled to FOMs, such that test sets that kill all FOMs will also kill
almost all HOMs.

However, the few HOMs that are not coupled to their constitu-
ent FOMs may be very important; they are killed by a different set
of test cases than their constituent FOMs. For decoupled mutants,
the act of combining FOMs shifts the fault-revealing test set. Sup-
pose that the act of combining FOMs to form a decoupled HOM
not only shifts the fault-revealing set, but also reduces its size, so
that the HOM is harder to kill than its constituent FOMs. Surely
such a HOM would be potentially valuable in testing. In the
nomenclature we introduce in this paper, it would be a ‘‘subsum-
ing decoupled HOM”.

Decoupling is not the only way to produce a subsuming HOM.
Strongly subsuming HOMs are, by definition, coupled, since the
test sets that kill them are subsets of those that kill each of their
constituent FOMs. Therefore, both coupled and decoupled HOMs
may turn out to be harder to kill than the FOMs from which they
are constructed, making them potentially valuable to the Mutation
Testing process. In this paper we focus on the subsuming HOMs in
general, and the strongly subsuming HOMs in particular, since a
strongly subsuming HOM can always be used as a substitute for
its constituent FOMs. We believe that Higher Order Mutation Test-
ing offers three important benefits: Increased subtlety, reduced ef-
fort and reduced number of equivalent mutants, as explained
below.

3.1. Increased subtlety

The vast majority of FOMs are killed by a few very simple test
cases, because many FOMs denote trivial faults. For instance, a mu-
tant is unlikely to remain alive for very long if it is created by dele-
tion of a frequently-executed statement or the transformation of ‘+’
to ‘�’ on a path to an output statement. Even in the presence of the
most perfunctory testing activity, these ‘dumb’ mutants will not
survive long.

However, by their very nature, the subsuming HOMs we study
in this paper are more subtle; they denote faults that more elabo-
rate testing may not reveal and, in so-doing, they drive the test
data generator to consider the more difficult ‘corner cases’, where
undiscovered faults often reside. In Section 6.4 we give an example
of just such a subtle HOM that our search-based algorithms re-
vealed to be constructible from the very simple and widely studied
benchmark program: Triangle.

3.2. Reduced test effort

One might think that since there are exponentially more HOMs
than FOMs, Higher Order Mutation Testing would be much more
expensive. However, it can be less expensive. We overcome this
apparent paradox by specifically targeting those HOMs, the
strongly subsuming HOMs, each of which can be used to replace
more than one FOM. Fewer (but better) mutants means fewer
(but better) test cases. Our higher order approach avoids dumb
mutants in favour of subtle ones. Of course, in order to find the
subtle HOMs we have to first construct all of their constituent
FOMs. However, this process is entirely automated by the search-
based optimization approach.

By contrast, the process of checking the original program’s
output for each the mutant-killing test cases often requires a (hu-
man) oracle. This oracle cost is often the most expensive part of
the overall the test activity. The oracle cost can be reduced by
reducing the size of the test suite. By moving from the first order
to the higher order paradigm we seek to reduce the number of
mutants considered (simultaneously increasing their quality).

Fig. 2. Test effort reduction example.

1382 Y. Jia, M. Harman / Information and Software Technology 51 (2009) 1379–1393
This has the potential to reduce test effort while improving its
effectiveness.

Fig. 2 illustrates an simple example of using SSHOM to reduce
test effort and to increase test effectiveness at the same time. Sup-
pose there is a SSHOM h which is constructed from FOMs fa and fb.
The two regions Ta and Tb in Fig. 2 represent the test sets contain-
ing all the test cases that kill FOMs fa and fb respectively, while the
region Th represents the test set containing all test cases that kill
SSHOM h. In traditional mutation testing, it is not hard to find test
cases like ta and tb which kill both FOM fa and fb. However the test
case th that kills SSHOM h is a better choice, because it kills FOM fa

and fb both separately and in combination, so a human oracle need
only check one test output. Reduction of test effort can also be
achieved by some ‘smart’ techniques with slightly more effort.
For example, clustering test cases to identify the intersection of
Ta and Tb. Although any test case selected from this intersection
can achieve the same test effort as the test cases that kill the
SSHOM h, such a test case like tab might not able to find the subtle
fault represented by SSHOM h, thereby losing test effectiveness.

3.3. Reduced number of equivalent mutants

A mutant is said to be an ‘equivalent mutant’ if there does not
exist a test input that kills it. Unfortunately, it is undecidable, in
general, whether a mutant is equivalent. The equivalent mutant
problem has been a bugbear for Mutation Testing for several dec-
ades. Although, several authors have proposed ways to partially
detect equivalent mutants [8–11], the core difficulty is the unde-
cidability of the underlying problem.

One, hitherto largely overlooked, aspect of Offutt’s empirical
study of second order Mutation Testing [13], was the compara-
tively low density of equivalent mutants found in the second order
paradigm, compared to that found in the first order paradigm. Off-
utt reported that approximately 1% of the second order mutants
were found (by human examination) to be equivalent, whereas
approximately 10% of the corresponding first order mutants were
found to be equivalent. Furthermore, the search-based approach
we advocate specifically searches the HOM space for non-equiva-
lent HOMs, thereby further reducing the impact of this problem.

4. Algorithms

Due to the large number of HOMs, the cost in finding valuable
HOMs could turn out to be extremely expensive. Therefore, using
a normal undirected search is not efficient enough to find subsum-
ing HOMs. In order to find the subsuming HOMs more effectively,
our approach uses three meta-heuristic algorithms (GR, GA, HC).
This section will introduce the representation and fitness function
first, and then explain the three meta-heuristic algorithms in
detail.
4.1. Representation

To identify a HOM uniquely, two types of value need to be spec-
ified: the position at which to mutate and the mutation operator to
be applied. In our approach, HOMs are represented as a vector of
integers. Each element of the vector denotes an application of a
mutation operator, while indices indicate the position at which
to apply the mutation operator.

4.2. Fitness function

In order to measure the fitness of the HOM, a value is needed
that measures the ease with which a FOM or HOM can be killed.
Let T be a set of test cases, fM1; . . . ;Mng be a set of mutants, and
the killðfM1; . . . ;MngÞ function returns the set of test cases which
kill mutants M1; . . . ;Mn. We shall define fragility for a set of mu-
tants so that a single definition caters for individual mutants
(which may be either first order or higher order), but also for sets
of individual mutants. That is the fragility of a mutant shall be de-
fined as follows:

Definition 7 (Fragility).

fragilityðfM1; . . . ;MngÞ ¼
Sn

i¼1killðMiÞ
�� ��

jTj

The value of fragility lies between 0 and 1. When it equals 0 this
means that there is no test case that can kill this mutant, which
indicates that this mutant is potentially an equivalent mutant. As
the value of fragility increases from 0 to 1, the mutant is assessed
to be weaker, until the value equals 1, which means that the mu-
tant is so weak that it can be killed by any of the test cases. In
the following, we use M1...n to denote a HOM consisting of the
FOMs F1 to Fn. The fitness function for a HOM is defined as follows.

Definition 8 (Fitness Function).

fitnessðM1 . . . nÞ ¼ fragilityðfM1 . . . ngÞ
fragilityðfF1; . . . ; FngÞ

That is the fitness of a HOM is defined to be the ratio of the fra-
gility of its HOM to the fragility of the constituent FOMs. From the
definition, if the fitness is greater than 1, it means the HOM is
weaker than the constituent FOMs (i.e. it is useless). As the fitness
decreases from 1 to 0, the HOM becomes gradually stronger than
its constituent FOMs. However, when the fitness value reaches 0,
it is considered as a potential equivalent HOM, and so all such
zero-valued HOMs are discarded. All of the following algorithms
use this fitness function to evaluate the fitness of HOMs.
4.3. Greedy algorithm

A greedy algorithm is an algorithm that makes local optimized
choices at each stage with the hope of achieving a near global opti-
mum [15]. The general procedure of the greedy algorithm starts
from solving the first sub-problem by selecting the solution with
maximum current fitness. It then repeats the action to solve the
rest of the problem. Therefore, it can only be used to solve a prob-
lem that can be divided into sub-problems, and can only provide a
single solution. In order to apply the greedy approach to finding
more than one subsuming HOM, several optimized changes have
been made. An initial FOM is chosen at random as a starting point.
Subsequently, the normal greedy algorithm process is performed
to incrementally augment with additional the correct solution
FOMs. An archive operation is used to store the subsuming HOMs
found. The overall algorithm is iterated with repeated randomized
initial position, much like a random-restart hill climbing algorithm.
The pseudo-code is shown in Algorithm 1.

Y. Jia, M. Harman / Information and Software Technology 51 (2009) 1379–1393 1383
Algorithm 1. Optimized greedy algorithm
Input: Running Time Limit: limit
Output: Mutation vector homlist

1 set counter = 0
2 while counter < limit do
3 set hom = generateRandFOM ()
4 foreach FOM m of Program do
5 temp_hom = combine(hom, m)
6 if fitness (temp_hom) > fitness (hom) then
7 hom = temp_hom
8 end
9 archvie (temp_hom)

10 end
11 end
4.4. Genetic algorithm

A genetic algorithm is an algorithm that simulates the process
of natural genetic selection according to the Darwinian theory of
biological evolution [16]. In a genetic algorithm, every possible
solution within the solution domain will be represented as a chro-
mosome, and crossover and mutation operation will be performed
on chromosomes to produce new solutions repeatedly, until one
member of the population denotes a suitably ‘good’ solution. In
the proposed genetic algorithm, each gene of a chromosome repre-
sents the position and possible types of mutation operator (see
Section 4.1), and in additional to crossover and mutation operators,
an archive operator is used to store the subsuming HOMs found.
The pseudo-code is shown in Algorithm 2.

Algorithm 2. Optimized genetic algorithm
Input: Running Time Limit: limit
Output: Mutation vector homlist

1 set counter = 0
2 for each Mutation m in population do
3 set m = generateRandHOM () fitness (m)
4 end
5 while counter < limit do
6 createMtPool (population)
7 archvie (population)
8 crossover (population)
9 mutate (population)

10 fitness (population)
11 counter ++
12 end
4.5. Hill climbing algorithm

A hill climbing algorithm is a local search algorithm in which
the next solution considered will depend on both the fitness value
and distance to the current solution. The process starts from ran-
dom initial solution. By comparing the current solution and its
neighbour solution’s fitness, the greater one becomes the new cur-
rent solution, until fitness cannot be further improved. Our opti-
mized algorithm is based on a random-restart hill climbing
algorithm, which chooses a random starting solution for each
run. The pseudo-code is shown in Algorithm 3.

Algorithm 3. Optimized hill climbing algorithm
Input: Running Time Limit: limit
Output: Mutation vector homlist

1 set counter = 0
2 set hom = generateRandFOM ()
3 while counter < limit do
4 temp_hom = getNeighbor (hom)
5 if fitness (temp_hom) < fitness (hom) then
6 hom = temp_hom
7 archvie (hom)
8 end
9 hom = generateRandFOM ()

10 counter ++
11 end
5. Experiment set up

This section describes the set of experiments which are de-
signed to explore properties of subsuming HOMs. Section 5.1 dis-
cusses the research questions that the study will address. Section
5.2 describes the subject programs used in this study. Sections
5.3 and 5.4 briefly overview the selected mutation operators and
the mutation tool used to implement these experiments. Section
5.5 explains the experimental procedure.

5.1. Research questions

This section sets out the research questions addressed in the
empirical study and for which the next section provides answers.

RQ1: How numerous are subsuming HOMs?
The main goal of this paper is to introduce and study subsuming

HOMs. Therefore, the natural first research question is how preva-
lent are subsuming HOMs?

RQ2: What proportion of subsuming HOMs have entirely
decoupled constituent FOMs?

Since we seek ways in which first order mutants combine to
make valuable higher order mutants that partially mask each
other, we are also interested to know what proportion of higher or-
der mutants contain first order mutants whose killing sets do not
overlap. Where there is no intersection between the killing sets
of the first order mutants, these first order mutants cannot com-
bine in ways that partially mask one another. In RQ2 we explore
this issue, by repeated sampling of HOMs to determine the relative
proportion (for each program studied) of the HOMs that consists of
entirely decoupled FOMs. This allows us to approximate the overall
proportion of ‘decoupled HOMs’ and the degree to which this pro-
portion varies per program studied.

RQ3: What proportion of subsuming HOMs are strongly
subsuming?

As introduced in Section 2, strongly subsuming HOMs are the
most valuable HOMs that can be applied in Higher Order Mutation
Testing directly. RQ3 studies the proportion of the strongly sub-
suming HOMs found in all subsuming HOMs.

RQ4: What do strongly subsuming HOMs look like?
In order to understand HOMs better, we examined several of

those found by our algorithms to find the simplest example of a
strongly subsuming HOM. This illustrates the way in which faults

Table 2
Selected subject programs: scale shows the size of the programs, number of FOMs is a
count of all FOMs generated for each program. The ‘possible equivalent’ FOMs are
those not killed by any test cases, while the ‘dumb FOMs’ are those killed by all test
cases.

Programs Scale No. of
test
cases

No. of
FOMS

No. of possible
equivalent FOMs

No. of
dumb
FOMs

Triangle 50 LoC 60 601 62 35
TCAS 150 LoC 1608 744 239 60
Schedule2 350 LoC 2710 1603 238 970
Schedule 400 LoC 2650 1213 155 810
Totinfo 500 LoC 1052 2316 245 1100
Replace 550 LoC 5542 4195 486 3133
Printtokens2 600 LoC 4054 1714 345 569
Printtokens 750 LoC 4071 1237 557 210
Gzip 5500 LoC 228 12027 1124 5770
Space 6000 LoC 13498 68843 26401 5378

1384 Y. Jia, M. Harman / Information and Software Technology 51 (2009) 1379–1393
may partially mask one another so that the set of test cases that kill
all FOMs is a subset of the intersection of the test sets that kill the
FOMs. To our surprise, our algorithms even managed to find such
an example in the familiar Triangle program. Our initial intuition
had been that such a program would have been too small and sim-
ple to allow for the construction of a strongly subsuming HOM.

RQ5: Which algorithms perform best at finding subsuming
HOMs?

The paper introduces three algorithms for finding subsuming
HOMs. RQ5 asks how these algorithms perform relative to one
another.

5.2. Subject programs

The experiments use 10 benchmark C programs with branch
adequate test sets from the Software-artifact Infrastructure Repos-
itory (SIR) [17], as described in the first two columns of Table 2.
The Triangle program is a small program that is used to deter-
mine the type of triangle from the length of its sides. This version
is the one used by Michael and McGraw in their test data genera-
tion study [18].

The seven programs Replace, TCAS, Schedule2, Schedule,
Totinfo, Printtokens and Printtokens2 are collectively
known as the ‘Siemens Suite’, which is widely used as a benchmark
for software testing techniques. TCAS is a program used to avoid an
aircraft collision. Schedule2 and Schedule are programs that pri-
oritize schedulers. Totinfo is a program that computes statistics
from input data. Printtokens and Printtokens2 are lexical
analyzers. Replace performs pattern matching and substitution.

Besides the Triangle program and the Siemens suite, there are
two other ‘real world’ programs: Gzip and Space. Gzip is a widely
used compression program and Space is an interpreter for an array
definition language.

There are two reasons for choosing these programs. The first
reason is that previous studies of HOMs are limited to programs
on a small scale. By contrast, this study is able to consider pro-
grams from 50 to 6000 lines of code. The second reason is that,
in order to measure the fitness of HOMs precisely, the HOMs have
to be executed against a set of reasonably high quality test cases.
The SIR provides branch adequate test sets, thereby achieving this
aim. So far as we are aware this is the largest study of Mutation
Testing (first order or higher order) to date.

5.3. Mutation operators

As explained in Section 2. The total number of HOMs are corre-
lated to number of FOMs. Therefore, in order to reduce the runtime
cost, selective mutation technique are used. The study of Agrawal
et al. describe the mutation operator for C language into 77 set.
However, not all of the mutation operators increase the effective-
ness of Mutation Testing. Offutt [19,20] shows that 5 of 22 FOR-
TRAN mutation operators used by Mothra are sufficient to carry
out Mutation Testing effectively. In our experiment, only the sub-
set of the C mutation operators (23 of 77) which falls into Offutt’s
five categories will be used.
5.4. Experiment tool: MILU

In spite of several existing Mutation Testing tools, there is none
designed for studying HOMs. Therefore, a new Mutation Testing
infrastructure called MILU has been developed [21]. MILU is specially
designed for the study the HOMs in C programs, and supports gen-
eral purpose of Mutation Testing as well higher order study. The
objective of MILU is to allow users to focus, on either algorithms
for generating FOMs and HOMs, or on analysing the experimental
results. MILU currently supports 70 of the 77 mutation operators for
the C language, and provides a source code analysis and program
testing environment to support full Mutation Testing with either
FOMs, HOMs or both. All of the experiments are performed within
the MILU mutation infrastructure. MILU supports the full C language.
A full description of the tool is beyond the scope of the present pa-
per. We plan to make the tool publicly available and to publish
implementation details.
5.5. Experimental procedure

Algorithm 4 sets out the steps involved in the experimental pro-
cedure. Trivial mutants are first filtered out from the set of all
FOMs to remove from consideration those killed by all test cases
and those killed by none. The remaining ‘non-trivial mutants’ are
used to generate subsuming higher order mutants. The set of all
possible subsuming higher order mutants is infeasibly large, but
we use search-based optimization to locate them so this size is
not a problem. Rather, it provides a rich set from which to seek
useful HOMs.

Algorithm 4. Experimental procedure
1 for each subject program do
2 generate all possible FOMs
3 filter out the FOMs that are killed by all test cases
4 filter out the FOMs that are killed by non-test cases
5 store rest FOMs as the set: ‘non-trivial FOMs’
6 apply search-based optimization to generate subsum-

ing HOMs from non-trivial FOMs
7 for 100 trails, from all non-trivial FOMs, allow the algo-

rithm to consider 10, 000 HOMs from which its optimiza-
tion procedure finds as many subsuming HOMs as
possible, guided by the fitness function do

8 count the percentage of Subsuming HOMs within the
HOMs (SHOMs)

9 count the percentage of Strongly Subsuming HOMs
(SSHOMs) within the subsuming HOMs

10 count the percentage of Non-Intersection HOMs (NIH-
OMs) within the subsuming HOMs

11 end
12 end

Y. Jia, M. Harman / Information and Software Technology 51 (2009) 1379–1393 1385
However, in order to answer questions about relative propor-
tions, a kind of sampling approach is required to approximate
the answers. Each ‘sample’ is a set of subsuming HOMs, con-

structed by one of the search based optimization algorithms from
an allowed ‘budget of consideration’ of 10,000 HOMs. The particu-
lar algorithm used is a parameter to the procedure.

In answering RQ5, we report results for the performance of four
algorithms: A Greedy Algorithm, a Hill Climber, a Genetic Algo-
rithm and (for base line comparison) a random search. However,
to answer the questions about proportions of HOMs that have
the properties captured by RQ1–RQ3, we use only the genetic algo-
rithm, since this was found to locate the most subsuming HOMs.
From each set of 10,000 HOMs we compute the proportion of
HOMs constructed by the genetic algorithm that were subsuming.
From the set of subsuming HOMs we compute both the proportion
that were strongly subsuming and the proportion that is entirely
decoupled. These proportions are reported as percentages. In order
to factor out possible effects from sampling, thereby arriving at a
more accurate approximation to the true proportion, we repeat
the entire process for 100 trials per program and report average
per program over the 100 trials.
6. Results and analysis

In this section we present the answer to each research question
in turn, indicating how the results answer each.
Fig. 3. Overall typ

Table 3
The proportion of HOMs which are Subsuming HOMs (SHOMs) and the proportion of
these SHOMs that are Strongly Subsuming HOMs (SSHOMs) and Non-Intersecting
HOMs (NIHOMs).

Program Non-trivial FOMs % of SHOMs % of SSHOMs % of NIHOMs

Triangle 504 81.6 0.24 80.4
TCAS 445 89.5 0.11 97.2
Schedule2 395 57.5 0.27 77.2
Schedule 248 75.1 0.39 64.1
Totinfo 971 58.2 0.24 49.3
Replace 576 67.5 0.31 62.2
Printtokens2 800 47.0 0.10 31.2
Printtokens 470 52.2 0.01 50.9
Gzip 5133 71.4 0.08 43.3
Space 39,064 77.5 0.21 32.4
6.1. Answer to RQ1

RQ1 is designed to investigate the quantity of the subsuming
HOMs. To begin the analysis, the second and third columns of
Table 3 present the overall results for sum of percentage subsum-
ing HOMs found in each subject programs by our GA algorithm
with 10,000 fitness evaluations, repeated for 100 trials (giving
1,000,000 fitness evaluations in total per program). From the
smallest Triangle program (50 LoC) to the largest Space pro-
gram (6000 LoC), there exist subsuming HOMs.

6.2. Answer to RQ2

1.2 RQ2 is designed to investigate the proportion of entirely
decoupled subsuming HOMs. Fig. 3 shows the percentage of HOMs
that are constructed of non-intersecting FOMs on the vertical axis
against the order of the HOM concerned on the horizontal axis. For
instance, a point at ðx; yÞ means that y% of all HOMs of order x are
non-intersecting. That is, their FOMs are entirely decoupled; there
is no pairwise intersection between any of the sets of test cases
that kill each of the constituent FOMs.

As the figure shows, there is a tendency for decoupling to in-
crease as the order of the HOM increases (for all programs studied).
However, the figure reveals that this property is very different for
different programs. For instance, for the program totinfo, only
about 5% of ninth order HOMs are composed of entirely decoupled
FOMs, whereas about 90% of the ninth order HOMs for triangle
and TCAS consist of entirely decoupled FOMs.

The rightmost column of Table 3 shows the proportion of all
SHOMs constructed that were found to be composed of entirely
decoupled FOMs. Notice that the number of NIHOMs appears to
decrease as the number of FOMs increases. We performed a
Spearman Rank Correlation statistical test to investigate this
observation more rigorously. The test showed a strong rank
e distribution.

Table 4
Killing test cases for the Triangle HOM and its FOMs

Mutant Test case Original result Mutant result

M1 a ¼¼ b&&aþ b > c Isosceles Invalid
a ¼¼ c&&aþ b > c&&aþ c <¼ b Invalid Isosceles
b ¼¼ c&&aþ b > a&&bþ c <¼ a Invalid Isosceles

M2 a ¼¼ b&&aþ b > c Isosceles Invalid
a ¼¼ b&&aþ b <¼ c Invalid Isosceles

M12 a ¼¼ b&&aþ b > c Isosceles Invalid

1386 Y. Jia, M. Harman / Information and Software Technology 51 (2009) 1379–1393
correlation between the proportion of subsuming HOMs that are
NIHOMs and the number of FOMs and also between the propor-
tion of subsuming HOMs that are NIHOMs and the number of
non-trivial FOMs.

6.3. Answer to RQ3

RQ3 is designed to investigate the proportion of strongly sub-
suming HOMs. Of all subsuming HOMs found in our experiments,
between approximately 0.01% and 0.4% of these were found to be
of the highly valuable, strongly subsuming type.1 This may be a
very small proportion, but there are a very large number of subsum-
ing HOMs because the proportion of all HOMs that are subsuming
HOMs is very large and so the numbers of strongly subsuming HOMs
is high.

6.4. Answer to RQ4

RQ4 focused on the study of strongly subsuming HOMs. To an-
swer RQ4 we present a case study of a strongly subsuming HOM
that our genetic algorithm found in the Triangle program. The
Triangle is a small C program (50 LoC) that has been studied
for at least 30 years [1]. The program takes the length of sides of
a triangle, and outputs whether the triangle is a valid and whether
it is equilateral, isosceles or scalene. Program 4 shows the source of
the Triangle program. There are two main factors to decide the
type of the triangle. The first is the side length constraint; the
sum of any two sides has to be greater than the third. The second
is captured by the variable trian, whose value is used to specify the
type of the triangle. For instance, if a triangle’s trian value equals 0,
and the side lengths satisfy the side length constraint, it is a ‘valid
scalene’ triangle.

Program 5 presents the source code of Triangle program, two
FOMs and the subsuming HOM constructed from them, which was
found by our optimized genetic algorithm. The way in which the
HOM strongly subsumes the two FOMs is subtle and involves an
interplay between the validity and type-of-triangle tests in the ori-
ginal program. We believe that it is just this sort of subtle interac-
tion that leads to faults that may go unnoticed in less rigorous
testing.

Table 4 summaries the reasons why this is an instance of strong
subsumption. From the table, only three types of test cases can kill
FOM i while two types of test cases can kill FOM j. However, careful
consideration reveals that HOM ij can only be killed by test cases of
the form ða ¼¼ b&&aþ b > cÞ. Test cases of this form also kill
FOM i and FOM j. There is no other test case that can kill HOM ij.
Therefore, we can use strongly subsuming HOM ij to replace both
FOM i and FOM j in Mutation Testing.

6.5. Answer to RQ5

RQ5 is designed to investigate the effectiveness of proposed
algorithms. The chart in Fig. 4 presents the result of comparison
of the four algorithms, which answers RQ5. We use an oracle of
all subsuming HOMs found, to provide a reference against which
each algorithm is assessed. The oracle contains the union of result-
ing subsuming HOMs from each algorithm. The greater the per-
centage of this oracle an algorithm can find, the better is the
1 In the conference version of this paper, we allowed only a short computation time
before a mutant was deemed to be killed due to non-termination. However, in the
journal version, we re-implemented the system to allow for testing of mutants in
parallel. This increased the available computing power and allowed us to let mutants
run on far longer before we deemed them to have failed to terminate. As a result we
found far fewer FOMs were killed and this increased the precision of the results that
we are able to report here in the extended version of the paper for I&ST.
algorithm is deemed to perform. In Fig. 4, the x-axis shows the four
algorithms, and the y-axis shows the percentage of oracle HOMs
found. The genetic algorithm bar is the highest. We believe that
the GA algorithm performs best, because the subsuming HOMs
are easier to generate from existing subsuming HOMs. In the ge-
netic algorithm, this observation favours crossover, which is one
of the genetic algorithm’s distinguishing features.

Program 5. The Triangle program together with a strongly
subsuming HOM and its two constituent FOMs. As this case study
demonstrates, even from this trivially small program, extremely
subtle strongly subsuming HOMs can be constructed. Table 4
depicts the corresponding killing test cases.
Program: Triangle
Input: Three sides a, b, c
Output: Types of Triangle

1 int trian
2 if ða <¼ 0jjb <¼ 0jjc <¼ 0Þ then
3 return INVALID
4 trian = 0
5 if ða ¼¼ bÞ then trian = trian + 1
6 if ða ¼¼ cÞ then trian = trian + 2
7 if ðb ¼¼ cÞ then trian = trian + 3
8 if ðtrian ¼¼ 0Þ then
9 if ðaþ b < cjjaþ c < bjjbþ c < aÞ then

10 return INVALID
11 else return SCALENE
12 if ðtrian > 3Þ then return EQUILATERAL
13 if ðtrian ¼¼ 1&&aþ b > cÞ then
14 return ISOSCELES then
15 else if ðtrian ¼¼ 2&&aþ c > bÞ then
16 return ISOSCELES
17 else if ðtrian ¼¼ 3&&bþ c > aÞ then
18 return ISOSCELES
19 return INVALID

Mutant: FOM_i -
13 if ðtrian > 1&&aþ b > cÞ then
14 return ISOSCELES then
15 else if ðtrian ¼¼ 2&&aþ c > bÞ then
16 return ISOSCELES
17 else if ðtrian ¼¼ 3&&bþ c > aÞ then
18 return ISOSCELES
19 return INVALID

Mutant: FOM_j -
13 if ðtrian ¼¼ 1&&aþ b <¼ cÞ then
14 return ISOSCELES then
15 else if ðtrian ¼¼ 2&&aþ c > bÞ then
16 return ISOSCELES
17 else if ðtrian ¼¼ 3&&bþ c > aÞ then
18 return ISOSCELES
19 return INVALID

Mutant: HOM_ij -
13 if ðtrian > 1&&aþ b <¼ cÞ then
14 return ISOSCELES then
15 else if ðtrian ¼¼ 2&&aþ c > bÞ then
16 return ISOSCELES
17 else if ðtrian ¼¼ 3&&bþ c > aÞ then
18 return ISOSCELES
19 return INVALID
Although the genetic algorithm found more of the subsuming
HOMs, the hill climbing algorithm and the greedy algorithm also

Fig. 4. Algorithm comparison.

Y. Jia, M. Harman / Information and Software Technology 51 (2009) 1379–1393 1387
have their advantages. The hill climbing algorithm always finds the
highest fitness HOMs, because its subroutine repeatedly improves
the fitness of HOMs, while the greedy algorithm finds the highest
order HOMs, because it starts from a random FOM, and tries to
achieve as high an order as possible. Therefore, the results reveal
that genetic algorithm is the best performing algorithm and the
greedy algorithm and hill climbing algorithm can also be used to
augment results and to search for extreme cases. The results also
show that even random search can find a large number of subsum-
ing HOMs, indicating that there are a large number of available
subsuming HOMs that are relatively easy to find.
7. Myths of Mutation Testing

The leap from first order Mutation Testing, as traditionally prac-
ticed for over three decades, to higher order mutation presents
challenges to several widely held beliefs about Mutation Testing.
It also denotes a shift in thinking about the philosophy underlying
Mutation Testing. This section aims to address these philosophical
issues head-on in the form of a polemic against some of the ‘re-
ceived wisdom’ and ‘folklore’ of Mutation Testing. The section con-
stitutes a manifesto for Higher Order Mutation Testing.

The section characterises the points of departure, at which HOM
Testing diverges from this received wisdom. In order to focus
attention on these points of departure, the section is constructed
as a set of ‘myths of Mutation Testing’. That is, those aspects of
the Mutation Testing folklore that the authors consider to be
‘myths’ about the nature of Mutation Testing, why they are mis-
conceived and the way in which Higher Order Mutation Testing
challenges these myths.

7.1. Real Fault Representation Myth (RFR)

Mutants denote faults that a typical programmer might make.

7.1.1. The misconception underlying this myth
Many of the mutants created by first order mutation are not real

faults, certainly not those that would be likely to be committed by
a ‘competent programmer’. For instance, arbitrarily replacing a
plus symbol with a minus symbol might represent a few real faults
in a few spacial cases, but it is likely to create a large number of
faults which no competent programmer would commit. Most mu-
tants do not denote real faults at all. This is also true of most higher
order mutants.

7.2. How Higher Order Mutation Testing challenges the RFR Myth

Higher Order Mutation Testing is not based on any claim that
higher order mutants are inherently more realistic than first order
mutants. Rather, the approach is based on the philosophy that all
mutation, whether higher order or first order, should be considered
to be a search process, in which the goal is to seek out a set of mu-
tants that represent some aspect of interest. This aspect of interest
could be some measure of realism (perhaps guided by a fault mod-
el), or it could be a measure of subtlety (as explored in the results
presented in this paper). There are many possible choices for what
might be sought from a set of mutants. The approach advocated
here is that these should be captured by a fitness function, so that
search-based optimization techniques can be applied to automate
the process of locating high quality mutant suites according to the
chosen fitness function.

7.3. Unscalability of Mutation Testing Myth (UMT)

The Unscalability of Mutation Testing Myth states that Muta-
tion Testing cannot scale to larger programs because of the large
number of mutants created. This myth originated in the observa-
tion that a large number of first order mutants that were created
for even very trivial programs (for instance 601 first order mutants
are created from the 50 lines of the triangle program). The UMT
Myth is implicitly acknowledged by the Mutation Testing commu-
nity; much effort has been devoted to reducing the number of mu-
tants to be considered [19,20] by sampling and selection and in
reducing Mutation Testing effort [22–30].

7.3.1. The misconception underlying this myth
The UMT Myth derives from the assumption that all mutants

that can be created should be tested. This misconceived assump-
tion is captured in the All Mutants and Equal Equality Myth below.

7.4. All Mutants are Equal (AME)

The AME Myth states that all mutants are created equal and ef-
fort must be put into trying to kill them all. This is implicitly how
all Mutation Testing tools work. They create a set of mutants that
another tool or another part of the creation tool should seek to kill.
There may be some attempt to remove equivalent mutants, but all
those deemed to be potentially non-equivalent are otherwise con-
sidered to be equal.

Notice that the AME Myth has not been rejected, despite the
more recent attention in the literature to work on mutant sampling
[31,22] and selective mutation [20,19]. Both these techniques seek
to reduce the number of mutants created. However, both implicitly
respect the AME Myth. That is, in mutant sampling, all mutants are
equal, but since there are too many to test all of them, we sample
randomly from the set of all possible mutants. In selective muta-
tion, we consider all mutants equal, but focus attention on the
operators that generate mutants, seeking to reduce the number
of mutants created by permanently removing certain mutant gen-
eration operators. This reduces the set of operators that are ap-
plied, but the remaining operators produce a set of mutants, all
of which are considered to be of equal value.

7.4.1. The misconception underlying this myth
All mutants are not of equal value; though one cannot differen-

tiate a priori between mutant operators, it is possible to differenti-
ate between different mutants of a given program p. Some mutants
will be better at denoting faults in p than others. Some will present
a tougher challenge to the tester. To take an extreme example, con-
sider a mutant that is killed by every possible test case that could
be applied to p. Testing with any test suite apart from the empty
test suite will kill it. Putting such a mutant into the testing process
is a waste of testing effort. Such a mutant is worthless and, there-
fore, should be considered to have lower value than some other
mutant that is not killed by at least one test for p.

Fig. 5. The growth in the number of first order mutants killed for each program. In these graphs, y mutants are killed by x% or more of the test cases.

1388 Y. Jia, M. Harman / Information and Software Technology 51 (2009) 1379–1393

Fig. 6. The growth in the number of mutants killed for all first order mutants created. In these graphs, y mutants are killed by x% or more of the test cases.

Y. Jia, M. Harman / Information and Software Technology 51 (2009) 1379–1393 1389
To illustrate, consider Fig. 5. This figure shows the cumulative
numbers of all mutants that are killed by different degrees of test
set. At the leftmost end of the horizontal axis, the figure shows
the number of all mutants that are killed by all test cases (the mu-
tants that we call ‘dumb’ mutants). As we move across the horizon-
tal axis we decrease this lower threshold on the proportion of all
test cases considered, until at the rightmost end of the horizontal
axis we show the number of mutants killed by 0% or more of the
test cases (that is all mutants). A point ðx; yÞ on these figures means
that y mutants are killed by x% or more of the test cases.

The figures show that all the programs have some dumb mu-
tants. They also reveal that many of the programs have large num-
bers of dumb mutants. Fig. 6 shows the growth trend over all first
order mutants from all programs.

7.5. How Higher Order Mutation Testing challenges the UMT and AME
Myths

In Higher Order Mutation Testing, not all mutants that can be
created are equal. Rather than pre-determining a set of mutation
operators, in HOM Testing, we first decide upon a criterion of mu-
tant quality. This criterion is captured by a fitness function, which
is able to determine which is the better or two candidate mutants
according to which better meets the criterion of interest. Mutation
testing now becomes a process of fitness guided selection from the
vast set of candidate mutants. The selection process is formulated
as an optimization problem, using Search Based Software Engi-
neering, guided by the fitness function.

The reformulation of Mutation Testing as a search-based selec-
tion problem denotes a significant shift that finds its origins in the
work on mutant sampling [3] and selective mutation [32]. How-
ever, the key difference in the approach advocated by HOM Testing
is that all mutants are considered as candidates for selection; both
first order and higher order and that the selection should is tailored
to the program under test; it is not possible to define the fitness
function without reference to the program under test p. This sec-
ond observation is captured in the Global Mutant Operator Myth
below.

7.6. Global Mutant Operator Myth (GMO)

The Global Mutant Operator Myth (GMO) assumes that the best
way to create mutants is to define a set of global mutation opera-
tors before any programs under test have been encountered and
then to apply this same set of global mutation operators to all pro-
grams, without any difference in application based on the pro-
grams under test themselves.
7.6.1. The misconception underlying this myth
According to the GMO Myth, all programs are alike and they

should be subjected to the same set of mutation operators. How-
ever, all programs are not alike. No human tester would attempt
to test every program using exactly the same testing procedure,
so why should an automated process behave in this inflexible
manner?

7.7. How Higher Order Mutation Testing challenges the GMO Myth

According to HOM Testing, each program should have its own
set of mutants, purpose built, taking into account the syntactic
structure and semantics of the program under test. The mutants
are tailored by a fitness function that guides the search for good
mutants. The fitness function is not merely a function of ‘globally’
determined aspects of ‘mutant quality’. Rather, it is partly deter-
mined by ‘local’ consideration of the specific program under test.
For example, in this paper, we seek to construct mutants that are
hard to kill. This is inherently a property of a mutant that depends
upon the syntax and semantics of program under test.

7.8. Competent Programmer Hypothesis Myth (CPH)

The Competent Programmer Hypothesis states that program-
mers are generally competent engineers who make some mistakes,
but only relatively few and that, therefore, their programs are with-
in a few keystrokes of being correct.

7.9. The Syntactic Semantic Size Myth (SSS)

In traditional Mutation Testing small syntactic changes are
made. The philosophy underlying this approach is that these small
syntactic changes denote the relatively small ways in which pro-
grams may be faulty. The origin of the SSS Myth can be traced to
an incorrect extrapolation from the Competent Programmer
Hypothesis, which is formulated by Offutt and Lee [33] as follows

‘‘The competent programmer hypothesis states that competent
programmers tend to write programs that are ‘close’ to being
correct. Although a program written by a competent program-
mer may be incorrect, it will only differ from a correct version
by relatively few faults.”

The SSS Myth extrapolates from this, with the (incorrect)
assumption that relatively few faults means relatively few minor
syntactic changes. The SSS Myth is implicit in all previous work
on Mutation Testing, and is sometimes made explicit in the
literature:

1390 Y. Jia, M. Harman / Information and Software Technology 51 (2009) 1379–1393
‘‘The Competent Programmer Hypothesis states that program-
mers are generally competent and produce a program close to
a correct program. A correct program can be constructed from
an incorrect program by making changes that are composed
of minor alterations.” [34]
‘‘A competent programmer can be viewed as someone who cre-
ates programs close to being correct. If a competent program-
mer creates an incorrect program, the correct version may
differ by a small amount, perhaps a single program lexeme.”
[35]
‘‘An important concept is the competent programmer hypothe-
sis, a theory proposed by DeMillo, asserting that good program-
mers will write code that is within few keystrokes of what is
correct. Therefore, ‘simple’ mutants that are a few keystrokes
off of the original should be similar in nature to typical pro-
grammer faults.” [36]
7.9.1. The misconception underlying this myth
A small semantic change in a program may be denoted by a

small syntactic change, but it is not necessarily the case that small
semantic changes are always denoted by small syntactic changes,
far from it. A small variation in semantics can be produced by a
programmer’s selection of entirely the wrong data structure for
the central database in their program. The incorrect program
may behave correctly almost all of the time, thereby representing
a small semantic change from the correct program. However, to
correct the fault, an entirely different data structure is required.

The HOM Testing approach advocated in this paper is not the
first to draw attention to the difference between a fault’s syntactic
and semantic size. For example, Offutt and Hayes addressed pre-
cisely this issue in 1996 [37]. However, the SSS Myth is character-
ised here as a myth, because it remains an implicit assumption that
lies at the heart of the way in which traditional Mutation Testing is
practiced and it is challenged by HOM Testing, in a way that agrees,
for example, with Offutt and Hayes [37], but which disagrees with
those works cited above [34–36] and which significantly differs
from Mutation Testing as currently practiced within the first order
paradigm.

7.10. How Higher Order Mutation Testing challenges the CPO and SSS
Myths

HOM Testing accepts that many small syntactic changes may
need to be made in order to construct a fault. However, although
this paper goes some way towards the idea that large syntactic
changes may be required to affect a small semantic change, the
changes we consider are based on a set of initial FOMs that are
the ‘traditional’ tiny syntactic changes of First Order Mutation Test-
ing. Further work is required to consider macro level changes that
denote significant syntactic changes to the program, in order to see
whether a set of such large macro syntactic changes could be com-
bined to create a mutant that is hard to kill, because it denotes a
relatively small semantic change.

7.11. Coupling Hypothesis Extension Myth (CHE)

The coupling hypothesis is stated by Offutt [13] as follows:

‘‘Complex faults are coupled to simple ones in such a way that
test data which find all simple ones will detect high percentage
of complex faults.”

Observe that Offutt does not claim that test data which finds all
simple faults will find all complex faults. That is, by ignoring higher
order mutants, there may be a small percentage of faults that are
not tested.
The Coupling Effect Extension is a false corollary of the Coupling
Effect Hypothesis that states that, because of the Coupling Effect,
higher order mutants need not be considered. This is a convenient
myth; in a world where all mutants have to be tested (according to
the AME Myth) the CHE Myth renders Mutation Testing tractable,
when it would otherwise have been prohibitively expensive. That
is, if one accepts the AME Myth, then one is almost forced to also
accept the CHE Myth, because of the infeasibily large number of
mutants that would otherwise result from the inclusion of sets of
higher order mutants.

7.11.1. The misconception underlying this myth
In this case, the misconception is simply to over extend the

reach of the Coupling Effect Hypothesis. As formulated by Offutt,
the hypothesis only claims that most HOMs are unnecessary, not
that all HOMs are unnecessary.

7.12. How Higher Order Mutation Testing challenges the CHE Myth

In HOM Testing we consider higher order mutants and first or-
der mutants as equally valid candidates from which to select. In
this paper we focus on selecting from this candidate set, those
HOMs that are killed by a subset of the test cases that kill the
FOMs. Such HOMs are clearly coupled to their FOMs and yet they
may strongly subsume the FOMs from which they are constructed.
The paper directly challenges the CHE Myth, by seeking to find
HOMs that can strongly subsume the FOMs from which they are
constructed. This has the potential to reduce the number of mu-
tants that need be considered with no loss test effectiveness. The
paper does not claim that FOMs should be ignored, but merely that
FOMs should be regarded as a special case of HOMs in which the
mutant order is one.

In the paper we further categorised the ways in which FOMs
and HOMs can be coupled, distinguishing between the different
categories, developing the theory that underlies the coupling ef-
fect. Further work will consider the other categories, including
HOMs that are partly coupled or de coupled. These may also denote
interesting faults.
8. Threats to Validity and Limitations

This section considers the threats to validity of our experiments.
Although due to limitations of the experiments, the following
threats may affect some of the results, for instance, the distribution
and classification of subsumed HOMs, it should be noted that they
do not affect the proof of the existence of strongly subsuming
HOMs found by the experiments.

The selection of mutation operators is the first threat. In order
to reduce the computational cost, in our experiment, 23 of 77 C
mutation operators were selected to generate HOMs. However,
the selected subset belongs to the five selective mutation operator
categories suggested by Offutt [19,20], so it is typical and also
widely used by other researchers. The threat to validity will be
overcome by future work which will investigate the relationship
between HOMs and mutation operators.

The quality of the test sets is another potential threat. Since the
fitness of HOMs is computed in terms of their fragility, low quality
test sets may affect the results. Although the test sets provided by
SIR achieve brunch coverage [17], given a different test set as input,
the experiment may lead to different results in terms of distribu-
tion and classification. To overcome this threat we plan, in future
work, to combine Higher Order Mutation Testing with the co-evo-
lutionary Mutation Testing approach of Adamopoulos et al. [3].
This will allow us to co-evolve test sets adequate to kill the co-
evolving HOM set.

Y. Jia, M. Harman / Information and Software Technology 51 (2009) 1379–1393 1391
The last threat is equivalent mutants. Although the problem of
equivalent mutants has been studied by numerous researches
[9,10,38], there is no approach that can solve it in both an effective
and a precise way. In order to avoid this problem, the fitness func-
tion for finding interesting HOMs is designed to filter out potential
equivalent mutants. With a low quality test set, some of the ‘stub-
born decoulped’ HOMs may be wrongly treated as equivalent mu-
tants. However, this would only reduce the number of HOMs
found, so our results can be considered to be a lower bound on
the number of subsuming HOMs to be found.
9. Related work

This paper focused on an investigation of the higher order mu-
tants and their relationship to first order mutants. Since a FOM can
be taken as a case of a HOM, we have been able to use and adapt
many existing techniques associate with previous work on tradi-
tional (first order) Mutation Testing. This section discusses this re-
lated work.

In our study the number of generated FOMs clearly affects the
running cost. Therefore, we applied selective mutation techniques
to reduce the number of FOMs. The idea of selective mutation is to
choose a subset of mutant without significant loss of test effective-
ness in Mutation Testing. It was first suggested as ‘constrained
mutation’ by Wong et al. [39] in 1994. Offutt et al. extended this
idea calling that selective mutation by only applying a selected
set of mutation operators [20,19].

In addition to selective mutation, there are other techniques to
reduce the number of FOMs. For example, mutant sampling, which
was first proposed by Acree [40] and Budd [41]. The idea of mutant
sampling is to randomly select a subset of mutants to be executed.
In Wong’s [22] experiments, the results show that using only 10%
of all mutants will only reduce test effectiveness by 16%.

In this paper we use a very simplistic selection technique to re-
move trivial higher order mutants that cannot help us to build use-
ful subsuming higher order mutants. We remove first order
mutants that are killed by no test cases and those killed by all test
cases. This is a kind of ‘biased mutation sample’.

In order to apply Mutation Testing to real world programs,
strong Mutation Testing is adopted by our experiments. In strong
Mutation Testing, a mutant is killed if its final output is different
from the original program. Therefore, each mutant is executed un-
til it terminates or is killed. In order to reduce the running cost,
previous work also considered weak Mutation Testing, first pro-
posed by Howden [24]. In weak Mutation Testing, mutants are
evaluated immediately after execution of their mutation point.
This is faster than strong Mutation Testing but at the expense of
imprecision. There are also other approaches that lie between
strong and weak Mutation Testing, known as firm Mutation Test-
ing [25,26].

In this paper, since this is the first paper to consider Higher Or-
der Mutation Testing as a valid alternative to First Order Mutation
Testing, we prefer the full precision of strong Mutation Testing.
Weak and firm Higher Order Mutation Testing remain interesting
and potentially important topics for future work.

The closest research area related to this work is the previous
work on the coupling effect hypothesis. Although the coupling ef-
fect has been studied by many researches [14,13,25,41–43], these
studies all focus on verifying or disproving the coupling effect,
rather than finding subsuming HOMs, which could be thought of
as special cases.

The experimental studies presented by Offutt [14,13] show re-
sults that support Offutt’s version of the mutation coupling effect.
However, Offutt modifies Demillo et al.’s original statement of the
coupling effect [1], which was:
‘‘Test data that distinguishes all programs differing from a cor-
rect one by only simple errors is so sensitive that it also implic-
itly distinguishes more complex errors [1].”

The original formulation appears to suggest that all HOMs are
coupled, whereas Offutt [13] weakens this to suggest that a ‘large
percentage’, are coupled:

‘‘Complex mutants are coupled to simple mutants in such a way
that a test data set that detects all simple mutants in a program
will detect a large percentage of the complex mutants.” [13]

The stronger formulation of the coupling effect is termed the
CHE Myth in the present paper.

Some of our ‘subsuming HOMs’ are drawn from the minority
‘decoupled’ mutant set. Offutt’s experiments were based on three
small FORTRAN77 programs (16–28 LOC). All of the second order
and some of the third order mutants of these programs were gen-
erated by the Mutation Testing tool Mothra. The results suggested
that the selected adequate test set which killed all the first order
mutants, killed over 99% of the second and third order mutants.
This study implied that the mutation coupling effect is valid in
the most general case, which also agreed with the empirical study
by Lipton and Sayward [44] and Morell [25].

The validity of the mutation coupling effect has also been con-
sidered in a theoretical study by Wah [42,43]. A simple theoretical
model, the q function model, considers a program to be a set of fi-
nite functions. By applying test sets of order 1 and order 2 to this
model, the results indicated that the average survival ratio of
high-order mutants is 1=n and 1=n2 respectively, which is also sim-
ilar to the estimated results of empirical studies mentioned above.
However, compared to a real world program, this model is very
simplistic. In real programs, the data and control flow between
functions are more complex and unpredictable.

In this paper we proposed using strongly subsuming HOMs in
mutation testing. This idea has been partly proved by Polo et al.’s
work [45]. In their experiment, they focused on a specific order
of HOMs, namely the second order mutants. They proposed differ-
ent algorithms to combine first order mutants to generate the sec-
ond order ones. By applying the second order mutants, test effort
was reduced around 50%, without much loss of test effectiveness.
However, Polo et al. did not use search-based optimization and
so they were limited to small number of lower orders. Future work
will consider the question of whether search can find arbitrary or-
der HOMs that can reduce test effort.

10. Conclusion

This paper introduces the paradigm of Higher Order Mutation
Testing (HOM Testing). The paper introduced the concept of sub-
suming higher order mutant; a HOM that is hard to kill than its
constituent FOMs. In terms of fragility, the whole is greater than
the sum of its parts. That is, the HOM is greater than the collection
of FOMs from which it is constructed because it is less fragile. The
paper introduced a search-based approach to find these subsuming
HOMs and presented an empirical study that compared a greedy
algorithm, a genetic algorithm and a hill climbing algorithm.

The experimental results from 10 programs indicate that there
exist many subsuming HOMs in each studied program. The results
also reveal that genetic algorithm is the most efficient algorithm
for finding those subsuming HOMs, while the greedy algorithm
and hill climbing algorithm can also be used to improve the quality
of the results.

The paper introduced the concept of a strongly subsuming
HOM. A strongly subsuming HOM is only killed by a subset of
the intersection of the set of test cases that kill its constituent
FOMs. Therefore, a strongly subsuming HOM is one that is so much

1392 Y. Jia, M. Harman / Information and Software Technology 51 (2009) 1379–1393
harder to kill than the FOMs from which it is constructed that one
can replace all the FOMs with the SHOM without any loss of test
effectiveness.

The paper showed that the search-based approach was able
to find a number of these SSHOMs in every one of the 10 pro-
grams studied. Though the proportion of all HOMs that are SSH-
OMs is small, the size of the HOM set grows exponentially so the
number of these valuable SSHOMs is relatively high. The paper
illustrated the intricate interplay between faults that SSHOMs
exhibit by describing one of the HOMs found by the genetic
algorithm and the test sets that kill it and its constituent FOMs
in detail.

There remains much work to do in developing the field of High-
er Order Mutation Testing. Future work will consider different cat-
egories of HOMs and the way in which HOMs can be used to reduce
mutation test effort; replacing a whole set of FOMs by a HOM that
strongly subsumes them. Further work is also required to develop
techniques for generating test data able to kill HOMs. For this we
plan to use a co-evolutinary approach along the lines first sug-
gested by Adamopoulos et al. [3]. The approach will co-evolve sets
of SSHOMs and the test cases that are able to kill them with the
goal of generating a set of very subtle faults and a set of test data
that is sufficient to reveal them.

Acknowledgement

The authors would like to thank Jeff Offutt and John Clark for
many helpful discussions on Higher Order Mutation and for com-
menting on an earlier draft of this paper.

Yue Jia is supported by the EPSRC Grant EP/D050863 (SEBASE)
and the ORSAS. Mark Harman is partly supported by the EPSRC
Grants EP/F059442/1, EP/F010443/1, EP/E002919/1, EP/D050863/
1 and GR/T22872/01.

References

[1] R.A. DeMillo, R.J. Lipton, F.G. Sayward, Hints on test data selection: help for the
practicing programmer, IEEE Computer 11 (4) (1978) 34–41.

[2] R.G. Hamlet, Testing programs with the aid of a compiler, IEEE Transactions on
Software Engineering SE-3 (4) (1977) 279–290.

[3] K. Adamopoulos, M. Harman, R.M. Hierons, How to overcome the equivalent
mutant problem and achieve tailored selective mutation using co-evolution,
in: Proceedings of the 6th Annual Conference on Genetic and Evolutionary
Computation, GECCO’04, vol. 3103, 2004, pp. 1338–1349.

[4] K. Ayari, S. Bouktif, G. Antoniol, Automatic mutation test input data generation
via ant colony, in: Proceedings of the 9th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’07, ACM, New York, NY, USA, 2007, pp.
1074–1081.

[5] J.S. Bradbury, J.R. Cordy, J. Dingel, Comparative assessment of testing and
model checking using program mutation, in: TAICPART-MUTATION’07:
Proceedings of the Testing: Academic and Industrial Conference Practice and
Research Techniques – MUTATION, IEEE Computer Society, Washington, DC,
USA, 2007, pp. 210–222.

[6] S.-S. Hou, L. Zhang, T. Xie, H. Mei, J.-S. Sun, Applying interface-contract
mutation in regression testing of component-based software, in: Proceedings
of the 23rd IEEE International Conference on Software Maintenance (ICSM
2007), 2007.

[7] P.G. Frankl, S.N. Weiss, C. Hu, All-uses vs mutation testing: an experimental
comparison of effectiveness, Journal of Systems and Software 38 (3) (1997)
235–253.

[8] D. Baldwin, F. Sayward, Heuristics for Determining Equivalence of Program
Mutations, Research Report 276, Department of Computer Science, Yale
University, 1979.

[9] R.M. Hierons, M. Harman, S. Danicic, Using program slicing to assist in the
detection of equivalent mutants, Software Testing, Verification & Reliability 9
(4) (1999) 233–262.

[10] A.J. Offutt, W.M. Craft, Using compiler optimization techniques to detect
equivalent mutants, Software Testing, Verification & Reliability 4 (3) (1994)
131–154.

[11] A.J. Offutt, J. Pan, Detecting equivalent mutants and the feasible path
problem, in: Proceedings of the 1996 Annual Conference on Computer
Assurance, IEEE Computer Society Press, Gaithersburg, Maryland, 1996, pp.
224–236.

[12] H. Agrawal, R. Demillo, R. Hathaway, W. Hsu, W. Hsu, E. Krauser, R.J. Martin, A.
Mathur, E. Spafford, Design of Mutant Operators for the C Programming
Language, Tech. Rep. SERC-TR-41-P, Software Engineering Research Centre,
March 1989.

[13] A.J. Offutt, Investigations of the software testing coupling effect, ACM
Transactions on Software Engineering and Methodology 1 (1) (1992) 5–20.

[14] A.J. Offutt, The coupling effect: fact or fiction, ACM SIGSOFT Software
Engineering Notes 14 (1989) 131–140.

[15] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms,
second ed., The MIT Press, 2001.

[16] M. Mitchell, An Introduction to Genetic Algorithms, The MIT Press, 1996.
[17] H. Do, S.G. Elbaum, G. Rothermel, Supporting controlled experimentation

with testing techniques: an infrastructure and its potential impact,
Empirical Software Engineering: An International Journal 10 (4) (2005) 405–
435.

[18] C.C. Michael, G. McGraw, M. Schatz, Generating software test data by
evolution, IEEE Transactions on Software Engineering 27 (12) (2001) 1085–
1110.

[19] A.J. Offutt, G. Rothermel, C. Zapf, An experimental evaluation of selective
mutation, in: Proceedings of the Fifteenth International Conference on
Software Engineering, IEEE Computer Society Press, Baltimore, Maryland,
1993, pp. 100–107.

[20] A.J. Offutt, A. Lee, G. Rothermel, R.H. Untch, C. Zapf, An experimental
determination of sufficient mutant operators, ACM Transactions on Software
Engineering and Methodology 5 (2) (1996) 99–118.

[21] Y. Jia, M. Harman, MILU: a customizable, runtime-optimized higher order
mutation testing tool for the full C language, in: 3rd Testing Academia and
Industry Conference – Practice and Research Techniques TAIC PART’08,
Windosor, UK, 2008.

[22] W.E. Wong, On Mutation and Data Flow, Ph.D. Thesis, Purdue University, West
Lafayette, Indiana, December 1993.

[23] R.H. Untch, A.J. Offutt, M.J. Harrold, Mutation analysis using mutant schemata,
in: Proceedings of the 1993 ACM SIGSOFT International Symposium on
Software Testing and Analysis, Cambridge, Massachusetts, 1993, pp. 139–148,
doi:10.1145/154183.154265.

[24] W.E. Howden, Weak mutation testing and completeness of test sets, IEEE
Transactions on Software Engineering SE-8 (4) (1982) 371–379.

[25] L.J. Morell, Theoretical insights into fault-based testing, in: Proceedings of the
Second Workshop on Software Testing, Verification, and Analysis, IEEE
Computer Society Press, Banff Alberta, Canada, 1988, pp. 45–62,
doi:10.1109/WST.1988.5353.

[26] M.R. Woodward, K. Halewood, From weak to strong, dead or alive? An
analysis of some mutationtesting issues, in: Proceedings of the Second
Workshop on Software Testing, Verification, and Analysis, IEEE Computer
Society Press, Banff Albert, Canada, 1988, pp. 152–158, doi:10.1109/
WST.1988.5370.

[27] J.R. Horgan, A.P. Mathu, Weak Mutation is Probably Strong Mutation, Technical
Report SERC-TR-83-P, Software Engineering Research Center, Purdue
University, West Lafayette, Indiana, December 1990.

[28] R.A. DeMillo, E.W. Krauser, A.P. Mathur, Compiler-integrated program
mutation, in: Proceedings of the Fifteenth Annual Computer Software and
Applications Conference, IEEE Computer Society Press, Tokyo, Japan, 1991, pp.
351–356.

[29] M.E. Delamaro, J.C. Maldonado, Proteum-A tool for the assessment of test
adequacy for C programs, in: Proceedings of the Conference on Performability
in Computing Systems, New Brunswick, New Jersey, 1996, pp. 79–95.

[30] B. Choi, A.P. Mathur, High-performance mutation testing, Journal of
Systems and Software 20 (2) (1993) 135–152, doi:10.1016/0164-
121(93)90005-I.

[31] M. Sahinoglu, E.H. Spafford, A Bayes sequential statistical procedure for
approving software products, in: W. Ehrenberger (Ed.), Proceedings of the
International Federation for Information Processing Conference on Approving
Software Products, Elsevier Science, Garmisch Partenkirchen, Germany, 1990,
pp. 43–56.

[32] Y. Zhan, J.A. Clark, Search-based mutation testing for simulink models, in:
Proceedings of the 2005 Conference on Genetic and Evolutionary
Computation, Washington DC, USA, 2005, pp. 1061–1068.

[33] A.J. Offutt, S. Lee, An empirical evaluation of weak mutation, IEEE Transactions
on Software Engineering 20 (5) (1994) 337–344. doi:An empirical evaluation
of weak.

[34] R.T. Alexander, J.M. Bieman, S. Ghosh, B. Ji, Mutation of Java objects, in:
ISSRE’02: Proceedings of the 13th International Symposium on Software
Reliability Engineering (ISSRE’02), 2002, p. 341.

[35] P. May, K. Mander, J. Timmis, Software vaccination: an artificial immune
system approach to mutation testing, in: Artificial Immune Systems Second
International Conference, ICARIS 2003, 2003, pp. 81–92.

[36] I. Stamelos, Detecting associative shift faults in predicate testing, Journal of
Systems and Software 66 (2003) 57–63.

[37] A.J. Offutt, J.H. Hayes, A semantic model of program faults, in: ISSTA’96:
Proceedings of the 1996 ACM SIGSOFT International Symposium on Software
Testing and Analysis, 1996, pp. 195–200.

[38] A.J. Offutt, J. Pan, Automatically detecting equivalent mutants and infeasible
paths, Software Testing, Verification & Reliability 7 (3) (1997) 165–192.

[39] W.E. Wong, M.E. Delamaro, J.C. Maldonado, A.P. Mathur, Constrained mutation
in C programs, in: Proceedings of the 8th Brazilian Symposium on Software
Engneering, Curitiba, Brazil, 1994, pp. 439–452.

[40] A.T. Acree, On Mutation, Ph.D. Thesis, Georgia Institute of Technology, Atlanta
Georgia, 1980.

http://dx.doi.org/10.1145/154183.154265
http://dx.doi.org/10.1109/WST.1988.5353
http://dx.doi.org/10.1109/WST.1988.5370
http://dx.doi.org/10.1109/WST.1988.5370
http://dx.doi.org/10.1016/0164-121(93)90005-I
http://dx.doi.org/10.1016/0164-121(93)90005-I

Y. Jia, M. Harman / Information and Software Technology 51 (2009) 1379–1393 1393
[41] T.A. Budd, Mutation Analysis of Program Test Data, Ph.D. Thesis, Yale
University, New Haven, Connecticut, 1980.

[42] K.S.H.T. Wah, A theoretical study of fault coupling, Software Testing,
Verification & Reliability 10 (1) (2000) 3–46.

[43] K.S.H.T. Wah, An analysis of the coupling effect I: single test data, Science of
Computer Programming 48 (2003) 119–161.
[44] R.J. Lipton, F.G. Sayward, The status of research on program mutation, in:
Digest for the Workshop on Software Testing and Test Documentation, 1978,
pp. 355–373.

[45] M. Polo, M. Piattini, I.G. Rodriguez, Decreasing the cost of mutation testing
with second-order mutants, Software Testing, Verification and Reliability 234
(2008) 234.

	Higher Order Mutation Testing
	Introduction
	Higher order mutant classification
	Advantages of Higher Order Mutation Testing
	Increased subtlety
	Reduced test effort
	Reduced number of equivalent mutants

	Algorithms
	Representation
	Fitness function
	Greedy algorithm
	Genetic algorithm
	Hill climbing algorithm

	Experiment set up
	Research questions
	Subject programs
	Mutation operators
	Experiment tool: MiLu
	Experimental procedure

	Results and analysis
	Answer to RQ1
	Answer to RQ2
	Answer to RQ3
	Answer to RQ4
	Answer to RQ5

	Myths of Mutation Testing
	Real Fault Representation Myth (RFR)
	The misconception underlying this myth

	How Higher Order Mutation Testing challenges the RFR Myth
	Unscalability of Mutation Testing Myth (UMT)
	The misconception underlying this myth

	All Mutants are Equal (AME)
	The misconception underlying this myth

	How Higher Order Mutation Testing challenges the UMT and AME Myths
	Global Mutant Operator Myth (GMO)
	The misconception underlying this myth

	How Higher Order Mutation Testing challenges the GMO Myth
	Competent Programmer Hypothesis Myth (CPH)
	The Syntactic Semantic Size Myth (SSS)
	The misconception underlying this myth

	How Higher Order Mutation Testing challenges the CPO and SSS Myths
	Coupling Hypothesis Extension Myth (CHE)
	The misconception underlying this myth

	How Higher Order Mutation Testing challenges the CHE Myth

	Threats to Validity and Limitations
	Related work
	Conclusion
	Acknowledgement
	References

