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ABSTRACT

There has recently been a great deal of interest in search–
based test data generation, with many local and global search
algorithms being proposed. However, to date, there has
been no investigation of the relationship between the size
of the input domain (the search space) and performance of
search–based algorithms. Static analysis can be used to re-
move irrelevant variables for a given test data generation
problem, thereby reducing the search space size. This pa-
per studies the effect of this domain reduction, presenting
results from the application of local and global search algo-
rithms to real world examples. This provides evidence to
support the claim that domain reduction has implications
for practical search–based test data generation.

Categories and Subject Descriptors. D.2.5 [Software
Engineering]: Testing and Debugging – Testing Tools; I.2.8
[Artificial Intelligence]: Problem Solving, Control Methods,
and Search – Heuristic Methods

General Terms. Algorithms, Experimentation, Measure-
ment, Performance, Theory

Keywords. Automated test data generation, evolutionary
testing, genetic algorithms, hill climbing, search space re-
duction, input domain reduction

1. INTRODUCTION
The generation of adequate test sets remains one of the

primary cost drivers for software testing. Testing itself is
also widely believed to consume a significant portion of over-
all development effort [2]. This makes the automated con-
struction of adequate test data an important software engi-
neering concern and one in which the level of interest has
remained high for several decades.

The past decade has witnessed a particularly dramatic
increase in activity concerning search–based test data gen-
eration, with many authors proposing both local search [12,
23] and global search [14, 17, 20, 24] algorithms for test data
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generation. Search algorithms are guided by a fitness func-
tion that captures the test adequacy criterion. This makes
the overall approach very general, since many different test
criteria can be captured, simply by changing the fitness func-
tion. The technique has been applied to many test data
generation problems, including criteria for white box struc-
tures [12, 14, 17, 20, 24, 28], functional characteristics [25],
stress–based behaviour [5], integration test ordering [4] and
safety properties and exceptions [22, 23].

Despite this increasingly large literature, there have, hith-
erto, been no published results that explore the relationship
between the size of the search space and the performance
of search–based algorithms. This paper is the first to char-
acterise and empirically explore the search–space/search–
algorithm relationship for search–based test data generation.

The flexibility of the search–based approach leads to many
test data generation application areas, each of which may
lead to a different relationship between search space and
search algorithm. In this paper we chose to study the struc-
tural test data generation paradigm, because this has re-
ceived the most attention from other authors, making it not
only the most mature area of research, but also the most
overdue for a deeper analysis.

The stochastic nature of metaheuristic search algorithms
indicates that any theoretical treatment will always need to
be supported by empirical results. To address this, the paper
provides an analysis of the expected relationship between
search space and algorithm performance, supported by ex-
periments, showing that the predictions made find applica-
tion in real world examples of industrial and open source
test data generation problems.

The results provide evidence to support the claim that
both hill climbing and genetic algorithms for test data gen-
eration have a lot to gain from search space reduction, with
statistically significantly improved results in many cases.
Random search, insofar as it is effective as a test data gen-
eration technique is unaffected by search space reduction.

The primary contributions of the paper are as follows:

1. The paper introduces a theoretical analysis of random,
local and global search, exploring the impact of domain
reduction on search–based algorithm performance.

2. The paper presents the results of verification and vali-
dation experiments designed to test these predictions.

3. The paper evaluates the implications of the work, study-
ing test data generation problems from open source
and industrial applications.
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The rest of the paper is organised as follows. Section 2
overviews search-based test data generation. Section 3 in-
troduces the technique used to reduce the search space. Sec-
tion 4 provides a theoretical analysis of the impact of input
variable removal on the search techniques, whilst Sections 5
and 6 present the empirical study and results. Naturally
there are threats to validity in any empirical study such as
this, and these are detailed in Section 7. Section 8 presents
related work, and Section 9 concludes.

2. SEARCHBASED TESTING
Search–based test data generation uses metaheuristic al-

gorithms to generate test data. This paper focuses on struc-
tural testing, in particular branch coverage. In order to
cover a particular branch in a unit under test, the goal is
to construct an input vector for a function which drives ex-
ecution of the program down the branch of interest. The
search space is formed from the set of possible input vector
parameter–value combinations.

Metaheuristic algorithms require a numerical formulation
of the test goal, from which a fitness function can be derived.
The purpose of the fitness function is to guide the search
into promising, unevaluated areas of the search space. For
coverage of a branch, the fitness function is calculated by
normalizing a ‘branch distance’ measure with another metric
known as the ‘approach level’. The goal of the search is to
find the global minimum of the fitness function, i.e. zero.

When execution of a test case diverges from the target
branch, the branch distance expresses how close an input
came to satisfying the condition of the predicate at which
control flow for the test case went ‘wrong’. For example,
for the coverage of the true branch from node 1 in Fig-
ure 1(a), the branch distance is computed using the formula
|dist-0|. The closer dist is to zero, the ‘closer’ the true
branch is to being taken. This can be seen in a plot of the
fitness landscape (Figure 1(c)).

The approach level calculation comes into effect when
there are several conditions that must be satisfied in order to
execute the target, for example the true branch from node 8.
It is a measure of how many of the target’s control dependen-
cies were not encountered in the path executed by the input
vector. For structured programs, the approach level reflects
the levels of nesting surrounding the target (Figure 1(b)).

The following sections provide a detailed overview along
with the parameters used for the search techniques in this
paper, in order to facilitate replication of the empirical study
which appears in Section 5. The test data searches were
performed using the IGUANA tool [16].

2.1 Random Testing (RT)
Random testing (RT) has been shown to be a surprisingly

effective way of generating test data [8]. It is possible to
cover many structural targets using this simple technique,
because there are often several input vectors that can be
selected that are good enough to execute most of the struc-
tures of a program. For example, the false branch from node
1 is easily covered in Figure 1(a), because it is executed by all
input vectors apart from those for which dist is zero. The
chances of executing the alternative true branch at random
however, are significantly lower. For such test targets, more
intelligent techniques are required.

2.2 Hill Climbing (HC)
Hill climbing (HC) is a metaheuristic search technique

that seeks to improve one candidate solution by exploring its
neighbouring search space. The implementation of the HC
algorithm for this paper is based on the ‘alternating variable
method’ introduced by Korel [12]. This method explores the
‘neighbourhood’ of each input variable in the input vector
in turn. If changes in the values of the input variable do
not result in an increased fitness, the search considers the
next input variable, and so on - recommencing from the first
input variable if necessary - until no further improvements
can be made or test data has been found.

Consider the example shown in Figure 1. Suppose the
target is the true branch from node 8, and the initial ran-
dom input is < 1, 50, 1, 1 >. The input reaches node 8 but
takes the false branch. The alternating variable method be-
gins to perform ‘exploratory moves’ on each input variable
by inducing the smallest possible increase, followed by the
smallest possible decrease. Suppose the accuracy of the dou-
ble variables in the example of Figure 1 is set to 0.1 for the
purposes of the search. The moves made around the dist

variable are 0.9 and 1.1. However, no improvement is made
- offset is no closer to becoming 1. The search continues
on to consider the next variable in the input vector, offset.
An increased value of 50.1 moves offset closer to the value
of 1 required at node 8 via the division statement at node 3.
At this point, the search makes accelerated ‘pattern’ moves
in the direction of improvement. In this paper, the value
of the ith move mi made in the direction of improvement,
dir ∈ {−1, 1} is computed using mi = si · accv · dir, where
accv is the accuracy of the vth variable, and s is the repeat

base (s = 2 for experiments in this paper). Successive moves
are made for offset until it overshoots the required value
of 100, and the new value generated represents a decrease in
fitness. At this point, exploratory moves are recommenced
in order to establish a new direction. The search continues
in this fashion until the test data is found, or the current
input vector cannot be improved because local moves do
not offer an improved fitness. The latter case is a common
problem for local search techniques - the tendency to con-
verge prematurely at a sub–optimal solution. This may be,
for example, at the top of locally optimal ‘hills’, or along
ridges or plateaux in the fitness landscape, where there are
no variation in fitness values. When this happens, the search
is restarted at another randomly chosen point in the search
space. The number of restarts is potentially unlimited and
only restricted by the limit on the overall budget allowance
of fitness evaluations permitted.

2.3 Evolutionary Testing (ET)
It is well known that local search techniques can suffer

from the problem of becoming trapped in local optima. To
overcome this problem many authors have considered global
search techniques, most notably genetic algorithms [13, 14,
17, 20, 24], giving rise to the so-called evolutionary test-
ing (ET) approach. The genetic algorithm (GA) used for
evolutionary testing (ET) in this paper is based on the ap-
proach described by Wegener et al. [24]. GAs differ from
local search techniques in that they maintain a population
of candidate solutions, also referred to as ‘individuals’. The
Wegener model splits the overall population of 300 individu-
als into six competing subpopulations, which begin with 50
individuals each.
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double x, double y)
{

double r, rat;

(1) if (dist == 0.0) {
(2) rat = 0.0;

} else {
(3) offset = offset / 100.0;
(4) r = sqrt (x * x + y * y);
(5) rat = r / dist;

(6) if (rat < offset)
(7) rat = 0.0;
(8) else if (offset == 1.0)
(9) rat = (rat >= 1.0) ? 1.0 : 0.0;

// ...
(b) Approach level calculation for the

(a) Code snippet true branch from node 8
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(c) Fitness landscape for true branch from node 1, (d) Fitness landscape for true branch from node 1,
plotted for the dist input variable only plotted for dist and offset input variables only

Figure 1: Code from the gimp open source graphics package and corresponding fitness analysis

A GA is a loop of five main steps: fitness evaluation, selec-
tion, crossover, mutation and reinsertion. For selection, the
Wegener model utilizes linear ranking. Linear ranking [27]
sorts the population into fitness order, assigning a ranked fit-
ness to each individual based on a selection pressure value
Z = 1.7. Ranked fitnesses are allocated such that the cur-
rent best individual in a population has a fitness of Z, the
median individual a fitness of 1.0 and the worst candidate so-
lution a fitness of 2−Z. Once individuals have been assigned
a fitness, a selection operator is applied to the population.
The method used is stochastic universal sampling [1], where
the probability of an individual being selected is proportion-
ate to its fitness value. This type of selection favours ‘fitter’
individuals. Weaker individuals retain a selection chance,
but with a relatively smaller probability. Individuals are
then removed two-by-two at random from the selection pool
for recombination. A discrete recombination [19] strategy
is used to produce new ‘offspring’. Discrete recombination
operates such that offspring individuals receive ‘genes’ (i.e.
input variable values) from either parent with an equal prob-
ability.

The next stage in the GA is to apply a mutation operation
to the offspring, based on the breeder genetic algorithm [19].
Mutation is applied with a probability pm of 1/len, where
len is the length of the input vector. The mutation oper-
ator applies a different mutation step size 10−p, 1 ≤ p ≤ 6
for each of the six subpopulations. A mutation range r is
defined for each input parameter by the product of p and
the domain size of the parameter. The ‘mutated’ value of
an input parameter can thus be computed as vi = xi ± ri · δ.
Addition or subtraction is chosen with an equal probability.
The value of δ is defined to be

P

15

x=0
αx · 2−x, where each

αx is 1 with a probability of 1/16 else 0. If a mutated value
is outside the allowed bounds of a variable, its value is set
to either the minimum or maximum value for that variable.

The final stage of the GA cycle is the reinsertion process.
An elitist reinsertion strategy is used. The top 10% of the
current generation is retained and the remaining individuals
discarded and replaced by the best offspring.

Subpopulations compete with one another for a slice of
individuals. A progress value, p, is computed for each pop-
ulation at the end of a generation. This value is obtained
using the formula 0.9 · p + 0.1 · rank. The average fitness
rank for a population is obtained by linearly ranking its
individuals as well as the populations amongst themselves
(again with Z = 1.7). After every 4 generations, the pop-
ulations are ranked according to their progress value and a
new slice of the overall population is computed for each, with
weaker subpopulations transferring individuals to stronger
ones. However, no subpopulation can lose its last 5 indi-
viduals, preventing it from dying out. Finally, a general
migration of individuals takes place after every 20th genera-
tion, where subpopulations randomly exchange 10% of their
individuals with one another.

3. INPUT DOMAIN REDUCTION
For search-based test data generation, the search space is

the input domain of the test object under consideration. The
input domain includes global variables and the formal pa-
rameters to the function containing the structure of interest.
Each uncovered branch is taken in turn as the search target.
As such, it is possible that not every input variable will be
responsible for determining whether each branch will be cov-
ered or not. This information can be determined through
static analysis. For example, in Figure 1, only the input
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variable dist is relevant for the predicate at node 1. Thus,
when attempting to cover branches from this node, search
effort on the values of the other variables - offset, x and y

is wasted, since these variables cannot influence coverage of
the branch. Removing these variables from the search space
could potentially improve the performance of the search.

In some instances, no reduction is possible, because all in-
put variables can potentially play a part in deciding whether
the target branch is traversed. For example, the predicate at
node 6, rat < offset, is dependent on all input values. The
variable rat is assigned using the input variable dist and
the internal variable r at node 5. The internal variable r is
previously assigned using the input values of x and y at node
4. Elsewhere in the program, node 8 is control dependent on
the outcome at node 6. Thus it is automatically dependent
on all the input variables that node 6 is dependent upon -
i.e. the entire input vector. In order to remove irrelevant in-
put variables from the search, the variable dependence tool
VADA [3, 9] was used.

4. THEORETICAL ANALYSIS
The following sections lay theoretical foundations for the

impact of input domain reduction via irrelevant input vari-
able removal on each of the search techniques.

4.1 Random Testing
The basis for the analysis of RT is the probability of gen-

erating an input for a target. This can be expressed as the
cardinality of the set of input vectors which will execute
the target, card(E), divided by the cardinality of the in-
put domain card(D). This can be illustrated for the true
branch from node 1 of Figure 1. Suppose each variable
has the range 0.0 to 999.9 (with an accuracy of 0.1). The
value of 0.0 must be found for dist, but any value can
be chosen from the domain of the other input variables.
Thus card(E) = 1 × 10000 × 10000 × 10000, or 1012. With
card(D) = 1016, the probability of generating test data in
one trial is 1/10000. On average then, 10000 trials will be
required to find the desired input.

Perhaps surprisingly, input domain reduction, in the form
of irrelevant input variable exclusion, will not affect the
probability of coverage of a target using random search. Be-
cause excluded input variables cannot affect whether the
target is covered, any of their values can be selected. Thus
removing them reduces card(D) and card(E) in equal pro-
portion. Therefore, input variable exclusion will not have
any significant effect on the performance of random search.
To illustrate, reconsider the true branch from node 1 of Fig-
ure 1, for which dist is the only relevant variable. If the ir-
relevant input variables are ignored, card(D) is only 10000,
but there is only one value of dist which will execute the
target. Thus the probability of generating test data in a
single trial remains at 1/10000.

4.2 Hill Climbing
HC begins with a randomly generated starting point. As

established in the previous section, this initial solution is no
more likely to have hit the target with or without irrelevant
input variable exclusion from the search space.

Furthermore, it can be shown that the randomly gener-
ated starting point will be no nearer the required test data
than it would have been under normal circumstances. Fig-
ure 1(c) plots the fitness landscape for the true branch of the

gimp function for the relevant variable dist only. Contrast
this with the fitness landscape in Figure 1(d), plotted for
dist and an irrelevant input variable to the branch predi-
cate - offset. The irrelevant variable simply introduces an
extra dimension in the landscape with no variation in fitness
when the value of the relevant input is fixed.

However, a performance increase is possible for HC as the
search commences from its initial position. HC performs
exploratory moves on each input variable in turn. Thus,
the exclusion of irrelevant variables will save these wasteful
moves - moves that cannot result in an improvement in fit-
ness. Two moves will be saved per irrelevant variable - the
increase and decrease moves described in Section 2.2. If a
‘cycle’ c of the HC search is defined as a complete sweep
of moves through all the variables of the input vector, and
irrelevant is the set of irrelevant variables for the current
branch, the expected performance improvement per cycle i
can be defined as card(irrelevant) ∗ 2. Thus it is possible
to place bounds on the overall improvement, in terms of the
number of required fitness evaluations, on the basis of the
number of times the input vector has been cycled through,
c, in the test data search: i ∗ (c− 1) ≤ improvement ≤ i ∗ c.

However, since the number of cycles undertaken in a search
is dependent on the starting position and the underlying
shape of the fitness landscape for a branch, it is impossible
to predict the number of cycles that will be undertaken by
the search in advance. Thus although the theory suggests
that HC will be subject to an improved performance as a re-
sult of search space reduction, the gain can only be assessed
via an empirical study.

4.3 Evolutionary Testing
GAs begin with a random population of solutions. As de-

scribed for RT and HC, randomly generated solutions are
neither more likely to execute the target nor to be nearer
the target in the search space as a result of input variable
exclusion. Thus the population aspect of GAs yields no im-
provement with respect to the form of search space reduction
considered here.

GAs make progress towards a solution using mutation and
crossover. As established in the last section and throughout
this paper, changing the value of an irrelevant input variable
can never result in fitness improvement. Thus, exclusion of
irrelevant variables can result in performance improvements
for GAs because the mutation operator will be concentrating
its effort on relevant variables only.

The average number of mutations per individual is the
mutation probability pm, which is 1/len, where len is the
length of the input vector. Thus the number of wasted muta-
tions w is on average 1/(len− card(irrelevant)). Therefore
the average improvement for a search as a result of irrele-
vant variable removal can be stated as g ∗ p ∗ w, where g is
the number of generations undertaken by the search, and p
is the size of the population.

Unfortunately however, the number of generations required
to reach a solution is as hard, if not harder, to predict than
the number of cycles for HC. Not only must the underlying
fitness landscape be taken into consideration, but also prob-
abilistic effects of mutation, mutation size, crossover, and
also competition and migration between subpopulations.
Therefore, as for HC, although the theory suggests search
improvement from irrelevant input variable exclusion, only
an empirical study can establish the extent of its benefit.
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Table 1: Details of the test objects
Test Object / Function Lines No. of Approx.

of Branches Domain
Code Size (10x)

defroster
Defroster main 250 56 69
f2
F2 418 24 81
gimp-2.2.4
gradient calc radial factor 6 21
gradient calc square factor 6 21
gradient calc conical sym factor 8 31
gradient calc conical asym factor 6 31
gradient calc bilinear factor 6 34
gradient calc spiral factor 8 37
gradient calc linear factor 8 31
Total 867
spice
cliparc 64 44
clip to circle 42 30
Total 269
tiff-3.8.2
TIFF SetSample 14 10
TIFF GetSourceSamples 18 15
PlaceImage 16 38
Total 182
synthetic
synthetic example 138 78 126
Grand Total 2,124 360

5. EMPIRICAL STUDY
The empirical study in this paper analyses the impact

of removing irrelevant variables from the search space for
each search technique. The four research questions to be
addressed by the empirical study are as follows:

Research Question 1 - Impact on RT. The theoretical
analysis of Section 4 predicts there will be no effect on re-
moving irrelevant input variables on the performance of the
search. Does this hypothesis hold?

Research Question 2 - Impact on HC. It is predicted
that removing irrelevant input variables will have an impact
on search performance. Is this the case, and what is the
performance increase?

Research Question 3 - Impact on ET. Similarly, it is
predicted that removing irrelevant input variables will have
an impact on search performance for the GA. Is this true,
and if so, what is the performance increase?

Research Question 4 - Relative Impact. What is the
relative impact of irrelevant input variable removal from the
search space for HC compared to ET?

The empirical study was performed on 360 branches, drawn
from 6 different programs, two of which were provided by
DaimlerChrysler, while the other four are open source. De-
tails of the subjects used in the empirical study can be seen
in Table 1.

The minimum and maximum values of the input variables,
along with their accuracy in the case of floating point vari-
ables, were specified for the search process. From this infor-
mation, the input domain size - the search space size where
reduction is not performed - can be computed. Input do-
mains ranged from approximately 1010 to 1081 for the real
world examples. Each separate branch denotes a separate
search problem, for which the size of the search space is one
of the more important factors in determining the difficultly
of the problem. These are large search problems; 1080 is
widely believed to be the approximate size of the observable
universe in cubic metres.

The programs f2 and defroster are industrial case stud-
ies provided by DaimlerChrysler. An S–Class Mercedes car
has over 80 such embedded controllers, which, taken to-
gether represent approximately 0.5GB of object code. The
two systems used in this study are production code for en-
gine and rear window defroster control systems. The code
is machine generated from a design model of the desired be-
haviour. As such, it is not optimized for human-readability,
making manual determination of search space non–trivial.
The test objects are therefore ideal candidates for automated
search-space reduction strategies.

To complement the industrial examples, three open-source
case studies were selected. Seven functions were selected
from gimp-2.2.4, a graphics manipulation package. spice

is an open source general purpose analogue circuit simula-
tor. Two functions were tested, which were clipping routines
for the graphical front-end. tiff-3.8.2 is a library for ma-
nipulating images in the Tag Image File Format (TIFF).
The functions tested comprised routines for placing images
on pages, and the building of ‘overview’ compressed sample
images. Finally, synthetic was a test problem especially de-
signed for the experiments. It contains 20 input variables.
There are 39 decision nodes, the first using the first input
variable, the second using the first two input variables, and
so on up to the twentieth node, which uses the entire vector.
The remaining 19 nodes also incrementally include variables
from the input space, but this time starting from the end of
the vector - node 21 requires only the last variable, whilst
node 39 uses the last 19. For synthetic, the search space
ranges up to 10126. This synthetic program is included to
allow experiments with a range of search space sizes of the
same program.

The test data generation experiments were performed 60
times for each combination of branch and search method,
with and without irrelevant input variable removal. If test
data was not found to cover a branch after 100,000 fitness
evaluations, the search was terminated.

The success or failure of each search was recorded, along
with the number of test data evaluations required to find the
test data, if the search was successful. From this the ‘success
rate’ of each branch can be calculated - the percentage of
the 60 runs for which test data to execute the branch was
found. The 60 runs were performed using an identical list of
fixed seeds for random number generation, so as to provide
a basis for assessment with tests for statistical significance
using paired t-tests. A confidence level of 99% was applied.
Such tests are necessary to provide robust results in the
presence of the inherently stochastic behaviour of the search
algorithms.

6. RESULTS

Research Question 1 - Impact on RT. The results pro-
vide evidence to support the claim that RT is unaffected
by the removal of irrelevant variables from the search space.
Although the results of the empirical study for RT exhibit
variation before and after the application of search space
reduction, no obvious relationship was found between input
domain size and the performance of RT. The variation is
merely a result of the shortened input vector lengths, which
result in different input vectors being generated from the
same sequence of random numbers.
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Figure 2: Average Improvement for RT

In particular, no branches were found for which there was
a statistically significant difference in the numbers for fitness
evaluations before and after reduction. There is, therefore,
no evidence to suggest that the effort required for random
testing is reduced by removing irrelevant variables. The lack
of improvement for RT contrasts strongly with those for HC
and ET, as can be seen by comparing Figure 2 for RT with
Figures 3 and 5 for HC and ET. These figures show the
percentage difference between average numbers of test data
evaluations for each branch recorded before and after search
space reduction. The branches are ordered along the x−axis
according to the proportion of the input vector removed as a
result of irrelevant variable analysis. Some x−values appear
more than once along the x−axis simply because several
branches share the same proportion of irrelevant variables.
In Figure 2, no trend exists to suggest an increased (or even
decreased) performance of RT as the percentage of irrelevant
variables increases and the search space becomes smaller.
Further inspection of the results showed that the existence
of spikes in the graph is because of the comparison of a
small number of successful trials between the reduced and
unreduced versions of the experiments.

In terms of the achievement of branch coverage, RT suc-
cessfully found test data for 281 distinct branches in at
least one of the sixty runs before reduction, and 271 af-
terwards. However, deeper inspection of the results showed
that the ten additional branches in the unreduced search
space had been covered with an extremely low success rate
(corresponding to a successful search in at most 2 of the 60
runs).

Table 2 records branches for which the success rates fluc-
tuate by +/- 5% (equivalent to 3 runs). This table also sup-
ports the observation that removal of irrelevant variables has
little or no impact upon the effectiveness of RT; the table
shows that success rate is improved by 5% or more for four
branches. However, performance is also worsened by 5% or
more for a further four branches.

In conclusion, no relationship is found between input vari-
able reduction and the performance of RT. This empirical
finding supports the hypothesis for RT set out in Section 5.

Research Question 2 - Impact on HC. The effort re-
quired to find test data using HC was found to be signifi-
cantly reduced by the removal of irrelevant variables from
the search space. However, though effort was reduced, ef-
fectiveness was not; the search did not find test data where
it previously could not.

In total, 82 branches were found for which the two sets of
numbers of test data evaluations (before and after reduction)

were found to be significantly different. For all of these
branches, the performance was improved with reduction. 38
of these branches were never covered by random search and
appear in Table 3.

Figure 3 shows the performance difference with HC against
search space size for all branches considered in this exper-
iment. Although there are a number of cases of improve-
ment, some branches exhibited no improvement at all, sim-
ply because the test data was easily found by random search.
Search space reduction is superfluous in such instances. There
are some spikes where HC appears to have performed worse
with reduction. Again, a deeper inspection of the results
showed that the existence of these spikes is due to the com-
parison of a small number of successful trials between the
reduced and unreduced versions of the experiment. Overall,
the graph shows the existence of a general trend showing
the improvement of HC performance as the percentage of
irrelevant variables removed from the search increases. In
some cases, the relative improvement is as much as 80%.

However, despite the decrease in effort occasioned by search
space reduction, there is no improvement in effectiveness.
That is, only a single extra branch was covered after reduc-
tion (i.e. an extra branch for which test data was found in
at least one of the sixty runs), compared to the 354 branches
covered originally. Furthermore, there was also little change
in the success rate for each branch. Table 2 shows that the
success rate was improved for two branches but worsened
for two others.

Figure 4 shows the results for the synthetic example. This
figure shows the range and mean value of the number of
fitness evaluations (on the y−axis) against the increasing
ability to remove irrelevant variables (on the x−axis). Note
that the figure uses a logarithmic scale. Because of the order
of consideration of variables by the local search algorithm,
there is an inter-play between the location of irrelevant vari-
ables in the input vector and the effect of removing these
variables on the number of fitness evaluations required to
cover the branch. If irrelevant variables appear at the end
of the input vector (left hand side of Figure 4), then they
will remain unencountered during at least one cycle of ex-
ploratory moves through the input vector. Thus, the impact
of their removal from the search is much less pronounced.
However, with irrelevant variables appearing at the begin-
ning of the vector the improvement is very noticeable (right
hand side of Figure 4).

In conclusion, the results, in particular the significant im-
proved performance for 82 branches, provide evidence to
support the hypothesis that removing irrelevant input vari-
ables from the search space has a positive impact on the
effort required for test data generation using HC.

Research Question 3 - Impact on ET. As for HC, the
results for ET support the claim that the search is improved
by removing from the search space input variables that are
irrelevant to each branch. Effectiveness, however, is not sig-
nificantly altered.

In total, 86 branches were found for which the removal of
irrelevant variables resulted in a statistically significant re-
duction in effort. 37 of these branches were never covered by
random search. Details appear in Table 3. Figure 5 shows
the performance difference with ET against search space size
for all branches considered in this experiment. The figure
suggests the existence of a trend: as the percentage of ir-
relevant variables increases, and the search space becomes
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Table 2: Success rate fluctuation before and after irrelevant variable removal from the search space. Branches
are only listed if a +/-5% change was experienced for either RT, HC or ET. The ‘Irrel. Vars’ column expresses
the percentage of variables of the program’s input vector that are irrelevant for the branch

Test Object Function (Branch ID) Irrel. Vars RT Before/After HC Before/After ET Before/After

defroster Defroster main (12T) 85% 48%/55% (6%) 100%/100% (0%) 100%/100% (0%)
Defroster main (14T) 90% 48%/60% (11%) 100%/100% (0%) 100%/100% (0%)
Defroster main (16T) 80% 36%/28% (-8%) 100%/100% (0%) 100%/100% (0%)
Defroster main (20T) 80% 36%/28% (-8%) 100%/100% (0%) 100%/100% (0%)
Defroster main (31F) 65% 25%/33% (8%) 100%/100% (0%) 100%/100% (0%)
Defroster main (36F) 60% 15%/21% (6%) 100%/100% (0%) 100%/100% (0%)
Defroster main (49F) 65% 0%/0% (0%) 100%/100% (0%) 90%/100% (10%)
Defroster main (68T) 80% 75%/68% (-6%) 100%/100% (0%) 100%/100% (0%)

f2 F2 (11F) 82% 0%/0% (0%) 100%/100% (0%) 63%/86% (23%)
F2 (15T) 94% 90%/85% (-5%) 100%/100% (0%) 30%/56% (26%)
F2 (32T) 94% 80%/85% (5%) 8%/78% (70%) 0%/16% (16%)

gimpdrawableblend gradient calc spiral factor (1T) 85% 31%/40% (8%) 100%/100% (0%) 100%/100% (0%)
spice clip to circle (36T) 14% 0%/0% (0%) 63%/53% (-10%) 3%/1% (-1%)

cliparc (22T) 33% 0%/0% (0%) 11%/5% (-6%) 0%/0% (0%)
cliparc (67T) 11% 98%/90% (-8%) 98%/100% (1%) 100%/100% (0%)

tiff PlaceImage (16T) 54% 1%/3% (1%) 8%/18% (10%) 38%/43% (5%)
PlaceImage (20T) 54% 0%/0% (0%) 1%/1% (0%) 15%/35% (20%)
TIFF GetSourceSamples (15T) 33% 10%/1% (-8%) 100%/100% (0%) 100%/100% (0%)

synthetic synthetic example (23T) 85% 1%/1% (0%) 100%/100% (0%) 90%/100% (10%)
synthetic example (24T) 80% 3%/3% (0%) 100%/100% (0%) 93%/100% (6%)
synthetic example (4T) 80% 3%/3% (0%) 100%/100% (0%) 90%/100% (10%)

10

100

1000

10000

0 10 20 30 40 50 60 70 80 90

Irrelevant input variables (% of input vector)

F
it

n
e
s
s
 e

v
a
lu

a
ti

o
n

s

Before reduction After reduction

10

100

1000

10000

100000

0 10 20 30 40 50 60 70 80 90

Irrelevant input variables (% of input vector)

F
it

n
e
s
s
 e

v
a
lu

a
ti

o
n

s

Before reduction After reduction

Figure 4: Average fitness evaluations for HC and the synthetic example. Left: irrelevant input variables
featuring at the start of input vector. Right: irrelevant variables featuring at the end
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Figure 3: Average Improvement for HC

smaller, the performance of ET improves. Furthermore, for
the synthetic example, the results also point to a reduction
in effort with increased ability to remove irrelevant variables
(Figure 6).

Table 2 shows that success rate was improved for several
branches by more than 5%. However, the results did not
suggest a major difference in terms of coverage: test data
was found for 349 branches by at least one of the sixty runs
before reduction, whilst 350 branches were covered after re-
duction.

In conclusion, the results provide evidence to support the
hypothesis that removing irrelevant input variables from the
search space has a positive impact on ET.

Research Question 4 - Relative Impact. The empirical
study showed no evidence for a relationship between input
variable reduction and performance of RT, but did show an
increase in performance for HC and ET. Figure 7 compares
improvement for HC and ET. First the change in average
performance was found for each branch using each technique
by subtracting average performance without reduction from
average performance with reduction. The average perfor-
mance difference for HC was then subtracted from that of
ET for each branch.

The bar chart shows that most of the branches appear on
the positive y−axis, indicating that ET tended to benefit
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Figure 5: Average Improvement for ET
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Figure 6: Average fitness evaluations for ET

more from the reduced search space compared to HC. The
difference in the number of evaluations can also be observed
for significant branches in Table 3, which portrays an order
of magnitude difference. Since HC is more efficient in cover-
ing test targets for which it can generate test data, improve-
ment in terms of the actual number of evaluations is lower.
Figures 3 and 5 both show, however, that in terms of relative
improvement, both techniques can experience performance
increases up to a level of at least 80%. A further statistical
test was devised for branches for which that ET and HC
had performed with significantly with irrelevant variable re-
moval. The improvement with reduction, in terms of fitness
evaluations, was calculated and normalized for both HC and
ET. At a confidence level of 99%, paired t-tests were applied
to the two sets of normalized improvement values for each
branch and each technique. 33 branches were found to be
significant. 9 of these branches, which were never covered by
RT, appear in boldface in Table 3. To conclude, therefore,
the evidence suggests that ET has more to gain from reduc-
tion of the search space than HC, in terms of both actual
and relative performance.

7. THREATS TO VALIDITY
Naturally there are threats to validity in any empirical

study such as this. This section briefly outlines the poten-
tial threats to validity and how they were addressed. The
hypotheses studied in this paper concerned relationships be-
tween the size of the search space and the performance of
search algorithms employed for branch coverage. Therefore,
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Figure 7: Difference in improvement for HC and ET

one issue to address is the so-called internal validity, i.e.,
to check whether there has been a bias in the experimen-
tal design which could affect the causal relationship under
study.

For determining the appropriate size of the search space
by eliminating contributions due to irrelevant variables, the
VADA tool was used. VADA has been used and tested by
DaimlerChrysler as part of their Evolutionary Testing Sys-
tem (ETS) - an industrial application for test data genera-
tion. However, VADA is, nonetheless a research prototype
tool. Therefore, a manual check was performed on results
obtained to ensure that the tool had correctly identified the
variables that could potentially affect the predicates of in-
terest.

Another potential source of bias comes from the inherent
stochastic behaviour of the metaheuristic search algorithms
under study. The most reliable (and widely used) technique
for overcoming this source of variability is to perform tests
for statistical significance on a sufficiently large sample of
result data. Such a test is required whenever one wishes to
make the claim that one technique produces superior results
to another. A set of results are obtained from a set of runs
(essentially sampling from the population of random number
seeds).

To show that one technique is superior to another, a test
to see if there is a statistical significant difference in the
means is performed. For the results reported upon here, the
t–test was used with the confidence level set at 99%. In order
to ensure normality of the sample means, an assumption of
this statistical test, it is important to have a sample size of
at least 30. To ensure that this constraint was comfortably
achieved, each experiment was repeated 60 times.

Another source of bias comes from the selection of the
programs to be studied. This impacts upon the external va-

lidity of the empirical study. That is, the extent to which it
is possible to generalise from the results obtained. Naturally,
it is impossible to sample a sufficiently large set of programs
such that the full diversity of all possible programs could be
captured. The rich and diverse nature of programs makes
this an unrealistic goal. However, where possible, a vari-
ety of programming styles and sources have been used. The
study draws upon code from real world programs, both from
industrial production code and from open source. Further-
more, it should be noted that the number of test problems
considered is 360, providing a relatively large pool of results
from which to make observations.
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Table 3: Branches for which the two sets of test data trials (before and after irrelevant variable removal
from the search space) differed significantly using paired t-tests with a confidence level of 99%. Input domain
reduction is expressed as the percentage of variables of the program’s input vector that are irrelevant for
the branch (‘Irrel. Input Vars’). AE refers to the average number of test data evaluations for the branch,
whilst SD is the standard deviation. ‘Obs. Sig.’ is the observed significance level (p-value). Entries shown in
boldface are statistically significant. ‘Imp. Obs. Sig.’ is the significance level observed after comparing the
sample means of the normalized average improvement for HC and ET in applying irrelevant variable removal

Test Object / Function Irrel. HC ET Imp.
(Branch ID) Input Before After Obs. Before After Obs. Obs.

Vars AE/SD AE/SD Sig. AE/SD AE/SD Sig. Sig.
defroster
Defroster main (12F) 85% 281 / 56 82 / 17 0.000 16331/4141 8738/2408 0.000 0.000
Defroster main (14F) 90% 64 / 2 36 / 2 0.000 9687/4248 3682/1502 0.000 0.002
Defroster main (16F) 80% 71 / 12 40 / 4 0.000 9688/4810 4200/1763 0.000 0.487
Defroster main (18F) 75% 91 / 12 60 / 5 0.000 18849/7621 9700/3399 0.000 0.185
Defroster main (18T) 75% 71 / 12 44 / 5 0.000 9688/4810 5001/2109 0.000 0.962
Defroster main (20F) 80% 69 / 12 40 / 4 0.000 9453/4021 4200/1763 0.000 0.286
Defroster main (22F) 75% 92 / 13 60 / 5 0.000 17913/7927 9700/3399 0.000 0.921
Defroster main (22T) 75% 69 / 12 44 / 5 0.000 9453/4021 5001/2109 0.000 0.952
Defroster main (24F) 70% 114 / 13 84 / 7 0.000 28413/11671 15854/5237 0.000 0.120
Defroster main (24T) 70% 92 / 13 68 / 6 0.000 17913/7927 10549/3739 0.000 0.277
Defroster main (30F) 80% 71 / 12 40 / 4 0.000 8895/3962 4448/2033 0.000 0.777
Defroster main (35F) 60% 64 / 12 45 / 6 0.000 9413/3526 6596/2455 0.000 0.240
Defroster main (39F) 55% 80 / 12 66 / 9 0.000 17483/6677 13135/4419 0.000 0.898
Defroster main (39T) 55% 64 / 12 49 / 9 0.000 9413/3526 6876/2349 0.000 0.621
Defroster main (40F) 55% 94 / 44 60 / 20 0.000 10199/4320 7794/2543 0.000 0.004
Defroster main (40T) 55% 74 / 19 58 / 13 0.000 9958/3507 7322/2662 0.000 0.631
Defroster main (44F) 75% 94 / 12 62 / 5 0.000 17399/7595 9879/3508 0.000 0.829
Defroster main (44T) 75% 71 / 12 46 / 5 0.000 8895/3962 5059/2319 0.000 0.538
Defroster main (45F) 70% 81 / 19 51 / 7 0.000 9645/4070 5788/2252 0.000 0.363
Defroster main (45T) 70% 86 / 16 52 / 8 0.000 9568/4056 6134/2454 0.000 0.042
Defroster main (48F) 70% 116 / 12 83 / 6 0.000 28181/12233 16252/6150 0.000 0.663
Defroster main (48T) 70% 94 / 12 67 / 6 0.000 17426/7602 10586/4341 0.000 0.561
Defroster main (49F) 65% 110 / 16 74 / 9 0.000 17337/6958 12050/8754 0.003 0.171
Defroster main (49T) 65% 104 / 18 74 / 9 0.000 19223/10255 11074/4551 0.000 0.846
Defroster main (55F) 80% 73 / 12 40 / 4 0.000 9484/4118 4448/2033 0.000 0.809
Defroster main (60F) 75% 93 / 12 62 / 5 0.000 17506/6391 9879/3508 0.000 0.804
Defroster main (60T) 75% 73 / 12 46 / 5 0.000 9484/4118 5059/2319 0.000 0.739
Defroster main (61F) 25% 78 / 16 80 / 16 0.159 9844/4248 7243/3097 0.000 0.086
Defroster main (61T) 25% 93 / 19 91 / 20 0.344 11487/7682 8356/3712 0.008 0.648
Defroster main (63F) 20% 81 / 19 84 / 20 0.275 9926/4244 7812/3218 0.000 0.042
f2
F2 (11F) 82% 1452 / 1195 875 / 619 0.000 62606/12635 38712/8528 0.000 0.213
gimp-2.2.4
gradient calc conical asym factor (3F) 50% 238 / 36 164 / 27 0.000 20691/4775 16350/3792 0.000 0.007
gradient calc conical sym factor (3F) 50% 238 / 36 164 / 27 0.000 20691/4775 16350/3792 0.000 0.007
gradient calc spiral factor (3F) 57% 238 / 36 164 / 27 0.000 21729/4464 16350/3792 0.000 0.068
spice
clip to circle (4F) 42% 137 / 21 99 / 16 0.000 11943/2896 11220/2420 0.158 0.000
tiff-3.8.2
TIFF GetSourceSamples (7T) 33% 79 / 41 84 / 57 0.375 11624/3268 9233/2984 0.000 0.011
synthetic
synthetic example (25T) 75% 985 / 879 257 / 203 0.000 13515/10769 9111/2450 0.003 0.000
synthetic example (28T) 60% 1607 / 1481 451 / 416 0.000 12221/5665 11943/3707 0.533 0.040
synthetic example (29T) 55% 1693 / 1710 536 / 487 0.000 14367/6848 12527/3318 0.104 0.744
synthetic example (30T) 50% 1962 / 2093 560 / 591 0.000 16011/10343 15134/10028 0.707 0.000
synthetic example (32T) 40% 1993 / 2111 909 / 831 0.000 17077/8346 15329/4157 0.136 0.703
synthetic example (33T) 35% 2048 / 2092 922 / 847 0.000 16347/6247 16443/5315 0.973 0.774
synthetic example (3T) 85% 214 / 163 201 / 143 0.534 11674/11686 6831/1851 0.003 0.000

Nonetheless, caution is required before making any claims
as to whether these results would be observed on other pro-
grams, possibly from different sources and in different pro-
gramming languages. As with all such experimental soft-
ware engineering, further experiments are required in order
to replicate the results contained here. However, the re-
sults show that there do indeed exist cases where there is a
statistically significant relationship between search space re-
duction and improved performance of search algorithms for
test data generation. They also provide evidence to support
the claim that the more sophisticated genetic algorithm has
more to gain from such search–based reduction than simpler
hill climbing and that random search is unaffected.

8. RELATED WORK
Although the search space reduction question has been

asked and answered for other search problems [6, 21] it has
never been answered before for search-based test data gen-
eration. The question is a highly timely one, as the last
ten years have experienced an explosion in work in the area,
resulting in a survey by McMinn in 2004 [15]. The field
began in 1976 with the work of Miller and Spooner [18],
who applied numerical maximization techniques to generate
floating point test data for paths. Korel was the first to ap-
ply the technique referred to as HC in this paper [12], whilst
Xanthakis et al. were the first to apply GAs [28]. Harman
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and McMinn [10] applied a theoretical analysis and empiri-
cal comparison of RT, HC and ET for branch coverage. The
present paper is the first to consider search space reduction
for any of these techniques.

Korel proposed a method [12] closely related to the search
space reduction technique proposed here, but for path cov-
erage. In his approach, each input variable in the search
underwent a risk analysis using an influences graph con-
structed using dynamic data-flow information. The value of
an input variable would remain fixed if it was highly likely
that changes would impact current segments of the path
that were currently being traversed correctly, or, if the in-
put variable did not affect the path at all. Unfortunately,
however, the method was not empirically evaluated.

The VADA tool used in our experiments to reduce the
search space produces dependence information as a by-product
of static program slicing [26]. Source code analysis tech-
niques such as symbolic execution [11] or abstract interpre-
tation [7] could further support search space reduction by
finding constraints or defining ranges on the input variables
relevant to the branch under investigation. However, this
remains a topic for future work.

9. CONCLUSIONS
This paper has theoretically and empirically evaluated

the impact of removing irrelevant input variables from the
search for test data for the coverage of individual program
branches. The theoretical analysis predicted that this form
of search space reduction would not have a significant effect
on random testing, but could enhance the performance of
more intelligent search techniques, such as hill climbing and
genetic algorithms. An empirical study, performed on 360
branches from open source code and embedded controller
production code supplied by DaimlerChrysler, was found to
support these claims.
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