Search Based Software Engineering for Program Comprehension

Mark Harman
CREST,
King’s College London
Strand, London, WC2R 2LS
United Kingdom

Abstract

Search Based Software Engineering (SBSE) is an approach to software engineering in which search based optimization algorithms are used to identify optimal or near optimal solutions and to yield insight. SBSE techniques can cater for multiple, possibly competing objectives and/or constraints and applications where the potential solution space is large and complex. Such situations are common in software engineering, leading to an increasing interest in SBSE. This paper provides a brief overview of SBSE, explaining some of the ways in which it has already been applied to program-comprehension related activities. The paper also outlines some possible future applications of and challenges for the further application of SBSE to Program Comprehension.

1. Introduction

Search Based Software Engineering (SBSE) aims to apply search based optimization algorithms to problems drawn from software engineering. This approach to optimization is a natural one, because so many engineering applications are characterised by many complex and competing objectives in large search spaces. In these situations, automated optimization techniques are natural candidates.

Search based optimization techniques are widely used in other engineering domains, for example mechanical engineering [46], chemical engineering [12], biomedical engineering [67, 69, 79], civil engineering [4, 10, 27, 42] and electronic engineering [9, 22, 63]. Software engineering is coming of age as a mature engineering discipline. It is, therefore, natural to ask:

“Why not apply search based optimization to software engineering?”

This question was posed by Harman and Jones in 2001 [34], in a ‘manifesto paper’ that drew attention to the huge potential of automated search based optimization for software engineering problems and also in an initial survey of early work on Search Based Testing, Modularisation and Cost Estimation by Clark et al. [19]. However, work on search based approaches to software engineering problems dates back much further, with work on optimization for testing starting as early as 1976, when Miller and Spooner [60] used classical optimization techniques for test data generation. In 1992, Xanthakis et al. were the first1 to apply meta heuristic search to software engineering, when they used search based optimization for test data generation [81].

Since the 2001 manifesto paper, there has been a great deal of activity in this area, with SBSE being increasingly applied to a wide range of diverse areas within software engineering. There have also been several workshops, conferences and special issues on SBSE.

Search based optimization techniques have proved to be highly applicable in software engineering. For example, in the past five years, Search Based Software Engineering has been applied to requirements engineering [5, 82], project planning and cost estimation [2, 3, 44], testing [6, 7, 13, 16, 33, 48, 58, 78], automated maintenance [14, 26, 32, 61, 62, 66, 71, 72], service-oriented software engineering [18], compiler optimization [20] and quality assessment [15, 43]. The application of optimization techniques to software testing has recently witnessed intense activity. In 2004 there was sufficient material to warrant a survey paper on this sub-area of activity [57]. However, as the list of application areas above indicates, optimization can be applied right across the spectrum of software engineering activity.

This paper accompanies the author’s keynote at the 15th International Conference on Program Comprehension. It explores ways in which SBSE ideas and techniques can be applied to problems in Program Comprehension. Following the explosion of work in search based optimization for software engineering in general, this paper asks the more specific question:

“Why not apply search based optimization to Program Comprehension?”

1So far as the author is aware.
The paper is organised into three principal sections. Section 2 provides a brief introduction to SBSE to make the paper self-contained. A more detailed treatment can be found in the author’s FoSE paper [30]. Sections 3 and 4 present existing work on SBSE within the area of program comprehension and possible future applications of SBSE to Program Comprehension.

2. A Brief Introduction to SBSE

The very simplest search of all is a random ‘search’, in which solutions are simply generated purely at random. However, such a search is not really a proper search, because it is not guided by the fitness function and so it cannot display any intelligence. The simplest intelligent search techniques are local search techniques, such as hill climbing. Hill climbing starts with a random candidate solution and considers simple mutations that produce similar ‘near neighbour’ solutions, moving to those that appear to be more promising according to the fitness function.

Previous work on SBSE has gained considerable value from simple search based optimization techniques such as hill climbing [44, 51, 61]. Pure hill climbing has no mechanism to avoid the obvious problem of local maxima. That is, the search starts at a randomly chosen starting point and proceeds to ascend the nearest hill. However, while the top of this nearby hill is locally maximal, there is no guarantee that it will also be globally maximal. To some extent, this ‘local maxima problem’ can be ameliorated by re–starting the hill climbing process many times, thereby climbing many different hills in the hope that one will be closely approximate the height of a globally maximal hill.

Other more sophisticated meta heuristic search techniques have also been widely used, such as simulated annealing [15, 36, 61], genetic algorithms [7, 29, 32, 78] genetic programming [8, 23, 24, 77] and multi objective search [35, 38, 43, 66, 73, 82]. These techniques (and other search based optimization techniques) are likely to find application in Search Based Program Comprehension. This section provides a brief overview of these meta heuristic search techniques to make the paper self contained.

2.1. Key Ingredients

There are only two key ingredients [30] for the application of search-based optimization to software engineering problems:

1. The choice of the representation of the problem.

2. The definition of the fitness function.

This simplicity and ready applicability has led to a dramatic increase in research in this area. With these two simple ingredients, it is possible to apply search techniques to a chosen area of software engineering and to obtain interesting and potentially important results with relative ease. The two ingredients are also often found in many software engineering applications; we often have representations because this is a starting point for any work on automated software engineering support. We are also typically able to find plenty of advice on the choice of fitness function in the form of proposed software metrics [31].

All of the fitness functions so far considered in the literature on SBSE have been fully automated. However, for other branches of engineering, there has been extensive work on fitness functions that incorporate human judgement [28]. This form of search is known as ‘interactive optimization’. For Program Comprehension, with its inherent human-centric focus, it would seem likely that interactive optimization would find many applications.

2.2. Simulated Annealing

Simulated annealing [59] can be thought of as a variation of hill climbing that seeks to avoid the local maxima problem by permitting moves to less fit individuals. Simulated annealing is a simulation of metallurgical annealing, in which a highly heated metal is allowed to reduce in temperature slowly, thereby increasing its strength. As the temperature decreases the atoms have reduced freedom of movement. However, the greater freedom in the earlier (hotter) stages of the process allows the atoms to ‘explore’ different energy states.

A simulated annealing algorithm will move from some point x_1 to a worse point x'_1 with a probability that is a function of the drop in fitness and a ‘temperature’ parameter that models metal temperature in metallurgical annealing. The effect of ‘cooling’ on the simulation of annealing is that the probability of following an unfavourable move is reduced. In the final stages of the simulated annealing algorithm, the effect is that of pure hill climbing.

2.3. Genetic Algorithms and Genetic Programming

A generic genetic algorithm template is presented in Figure 1. An iterative process is executed, initialised by a randomly chosen population. The iterations are called generations and the members of the population are called chromosomes, because of their analogs in natural evolution. The process terminates when a population satisfies some pre-determined condition.
likely to find application in Program Comprehension. This trend will continue as the area matures. Program comprehension is a direction of multi objective search and it is likely that Pareto optimal formulations of SBSE problems are to be optimised. In this situation, it is valuable to be able to explore the tradeoffs between multiple objectives. More recent work on SBSE has moved in the direction of multi objective search and it is likely that Pareto optimal formulations of SBSE problems are to be measured. In software engineering problems it is not uncommon to find that there are several objectives to be optimised. In this situation, it is valuable to consider the concept of Pareto optimality, which can be used to explore the tradeoffs between multiple objectives. More recent work on SBSE has moved in the direction of multi objective search and it is likely that this trend will continue as the area matures. Program Comprehension research is often characterised by the need to balance competing objectives and so it is likely that Pareto optimal formulations of SBSE problems are likely to find application in Program Comprehension.

To see how Pareto optimality works, suppose a problem is to be solved that has n fitness functions, f_1, \ldots, f_n that take some vector of parameters π. Using Pareto optimality, the fitness functions are combined to form an aggregated fitness F as follows:

$$F(\pi) > F(\bar{\pi}) \iff \forall i. f_i(\pi) \geq f_i(\bar{\pi}) \land \exists i. f_i(\pi) > f_i(\bar{\pi})$$

Using Pareto optimality, one solution is better than another if it is better according to at least one of the individual fitness functions and no worse according to all of the others. Under the Pareto interpretation of combined fitness, “no overall fitness improvement occurs no matter how much almost all of the fitness functions improve, should they do so at the slightest expense of any one of their number” [30].

When searching for solutions to a problem using Pareto optimality, the search yields a set of solutions that are non-dominated. That is, each member of the non-dominated set is no worse than any of the others in the set, but also cannot be said to be better. Any set of non-dominated solutions forms a Pareto front. Assuming convergence, the longer the search algorithm is run, the better the approximation becomes to the real Pareto front. The Pareto front can be used to improve understanding of the problem at hand. For instance, the nature of the tradeoffs between objectives are represented by the shape of the front. This allows the engineer to identify ‘sweet spots’ in which a little reduction on the value of one objective can yield a significant improvement in others.

3. Previous SBSE work Relevant to Program Comprehension

This section briefly reviews previous work on SBSE at the code level and the design level which have an application to Program Comprehension.

3.1. Optimising Source Code for Comprehension

SBSE techniques have been applied to the problem of optimising code. Sometimes, the goal is to improve execution time by re-ordering compiler optimizations [21] or finding transformations that optimise for parallel execution [65, 68, 80]. However, there has also been work on transformation to improve source code from a program comprehension point–of–view.

For example, Fatiregun et al. [25, 26] showed how search based transformations could be used to reduce code size and to construct amorphous program slices. Several authors have also considered the problem of refactoring object oriented code to improve met-

Figure 1. A Generic Genetic Algorithm

At each generation, some members of the population are recombined, crossing over elements of their chromosomes. A fraction of the offspring of this union are mutated and, from these offspring and the original population, a selection process is used to determine the new population. Crucially, recombination and selection are guided by the fitness function: fitter chromosomes having a greater chance to be selected and recombined.

Genetic programming (GP) [45] is a variation of the evolutionary model of computation embodied in genetic algorithms. For genetic algorithms, the individuals that are optimised are lists. For GP, the individuals are trees, denoting the abstract syntax trees of simple programs.

There is a widely held misunderstanding that the goal of GP is to evolve realistic large scale programs. While this would be extremely attractive, as software engineers, we know only too well what a demanding, and perhaps utopian, goal this would be. However, it should be noted that the applications of GP gain considerable value from comparatively simple programs that, despite their simplicity, capture important and insightful computational processes.

2.4. Multi Objective Search Based Software Engineering

A natural approach to many problems starts with the consideration of the objectives to optimise and how they are to be measured. In software engineering problems it is not uncommon to find that there are several objectives to be optimised. In this situation, it is valuable to consider the concept of Pareto optimality, which can be used to explore the tradeoffs between multiple objectives. More recent work on SBSE has moved in the direction of multi objective search and it is likely that this trend will continue as the area matures. Program Comprehension research is often characterised by the need to balance competing objectives and so it is likely that Pareto optimal formulations of SBSE problems are likely to find application in Program Comprehension.
rics [38, 66, 73], using the approach that ‘metrics are fitness functions too’ [31]. The search considers a search space of, either all possible refactored versions of the program, or all possible sequences of refactoring steps.

This is a naturally multi objective problem; there are typically many candidate metrics that can be applied and not all of these metrics will be sympathetic to one another. Using weighted multi objective search, the several differing metrics are combined into a single agglomerated super-metric that aims to combine the relative strengths of each. However, where the metrics are in conflict, the alternative Pareto optimal approach allows the engineer to consider the trade offs, without forcing potentially arbitrary choices of weights.

Search based approaches have also been applied to the concept assignment problem [11, 52, 55]. In this problem, the goal is to identify sections of code that correspond to high–level domain concepts. Gold et al. [29] showed that search techniques are well suited to scenarios in which boundaries between concept bindings are not sharp. They used a fitness function to optimise the ‘signal to noise’ ratio in bindings, while allowing overlapping concept boundaries within the code.

3.2. Optimising Designs for Comprehension

Mancoridis et al. introduced the concept of software modularization as a search based clustering problem [53, 54]. The goal of this work is to re-draw module boundaries to increase cohesion and reduce coupling. In so doing, the work effectively improves the understandability of the design, based on the widely studied software engineering factors of cohesion and coupling. The seminal work of Mancoridis et al. led to several other studies of search based approaches to software modularisation [32, 37, 51], and to the application of search based clustering in other areas of software engineering [20]. A recent survey of work on search–based modularisation is presented by Mitchell and Mancoridis [62].

With the exception of the work of Lutz [50], work on this problem has used a weighted combination of cohesion and coupling as a fitness function. Lutz adopted a different approach that may well find further application in Program Comprehension. He considered the problem of hierarchical decomposition of software, using a fitness function based upon an information-theoretic formulation inspired by Shannon [74]. The goal was to reduce the amount of information used to describe the software design. The conjecture was that reducing the information content denoted by a design would make it easier to understand.

4. Possible Future Applications of SBSE in Program Comprehension

This section introduces some possible applications of SBSE in Program Comprehension. In each case the goal is to capture some aspect of interest with a fitness function so that a search based approach can be used to optimise the property of interest. In each case, the nature of the problem tends to suggest a certain form of search based approach. The aim of this section is to provide a set of challenges for the wider extension of SBSE research to Program Comprehension.

By tackling problems in Program Comprehension, SBSE researchers will be addressing some of the most complicated (but potentially rewarding) aspects of software engineering. Achieving the full potential of SBSE for comprehension raises the issues of human involvement in fitness computation (interactive optimisation), multi objective search and complex fitness functions. This set of demanding, but nonetheless achievable, goals will provide a further impetus and stimulus to research on SBSE. The techniques developed to address these problems are also likely to find application in other areas of software engineering, and possibly to other engineering domains.

4.1. Optimised Semantic Pretty Printing

Pretty printing [17] produces code that is more readable, by performing lexical transformations to improve layout. This may be one of the first published approaches to Program Comprehension [56]. A more semantic approach to pretty printing transforms the program into a style most suited to the programmer reading the code. For example, tail recursion can be transformed to iteration, while loops with compile time bounds to for loops, and nested conditionals to case statements.

As with lexical pretty printing, the developer of such a semantic pretty printer may believe they know best; “surely it is obvious that recursion should be removed — many students find it hard to understand”. However, there is no guarantee that all programmers follow the same cognitive model. Indeed, there is much evidence from the Program Comprehension literature to show that programmers have different cognitive styles [47, 64, 76].

Using a search based approach, it would be possible to use human performance in cognitive tasks to guide a fitness function that would tailor the pretty printer to the cognitive style of the programmer. Such a flexible approach would provide a ‘semantic lens’ through which the programmer could view the software in order to make its algorithmic structure clearer.
The version of the program executed can be the most efficient. However, the version viewed by each programmer can be adapted to suit their individual cognitive style. All versions of the program would, of course, be semantically equivalent, but their structures may be very different. This approach may have wider benefits than merely re-writing programs to tailor them to individual programmer taste. By performing the transformations, one may be able to gain insight into different cognitive styles and, thereby, to identify programmers who can work well together and those who, perhaps, would not work well together.

4.2. Tailored Refactoring

Developing the idea of the previous section a little further, one could imagine a search based refactoring system that seeks to evolve a set of transformation rules (refactoring rules) that capture the cognitive preferences of a particular programmer. Such a set of rules could be evolved by a process of genetic programming. It is unlikely that the genetic program produced would be sufficiently powerful and (more importantly) sufficiently trusted that the programmer would simply apply it to code before reading it. However, it is likely that such an approach would yield insight into programmers' cognitive models. It may also capture aspects of the kind of transformation algorithms that would be required in order to improve understandability.

4.3. Balancing Multiple Architectural Requirements

Software architectures have to be constructed to meet a variety of different requirements. Many developers may work on a software system. Each may have their own view concerning choices of architectural constructions and decisions as to which will be best for comprehension and on-going development. One might suppose that it would be possible to adopt an 'architectural transformation' approach to produce a kind of 'architectural pretty printer', following the approach outlined in the previous section. However, what may work at the code level may be simply too complex to achieve at the architectural level.

In such a situation, we may be faced with a familiar engineering compromise: choose the architecture that most suits most engineers. This is a classic example of a multi objective optimization problem, in which the preferences of each engineer denote one of many individual objectives and where the objectives may be in conflict. Balancing such a set of objectives may be difficult when there are many possible candidate solutions.

Even where the search space is small, the decision maker may be guided by biases and hidden (possible erroneous) assumptions. A search based approach can explore the multi dimensional space of candidate solutions to identify 'sweet spots' where good quality solutions can be found. Such a search based solution cannot solve the unsolvable; it will not please all the people all of the time. However, it may allow the decision maker to locate interesting and important areas of the solution space in which, for example, displeasing one engineer a little may result in a solution that pleases many a lot. These sweet spots are very hard to find by hand in multi dimensional search spaces.

4.4. Evolving Visualisations

Different visualisation approaches work for different people [75]. If the components of a visualisation can be represented as atomic entries that can be combined, hierarchically, into ever larger components then it would be possible to consider the evolution of visualisations to actively search for better visualizations. A programmer could even use a visualisation that is evolving as they use it. The construction of a fitness function for such a dynamically evolving visualisation could be achieved in one of two possible ways. As the system is used, the users could click on a ‘radio bar’ to indicate how helpful they find the visualisation at any given point. This would provide constant feedback to the system, enabling it to guide the visualization towards solutions found more attractive to the engineer.

Alternatively, the engineer may be evaluated for the performance of cognitive tasks by the system as they use it and in this way the visualisation would be attempting to evolve to meet the needs of the engineer rather than their stated desires. Of course an interesting experiment, would be to try both approaches and to explore the differences. That is, to what extent do we engineers know what is good for us, cognitively speaking?

This approach is not likely to yield a practical visualisation tool for widespread application. Rather, it would provide a tool for Program Comprehension research, by allowing researchers to explore the space of visualisations and their relationship to the visualisation users’ stated desires versus their cognitive needs.

4.5. Co Evolutionary Comprehension

Co evolution is an exciting form of evolutionary optimisation in which two or more populations are evolved in parallel. The fitness function for one population is influenced by the behaviour of the others. Co evolution has been used in SBSE to attempt to evolve program mutants and test cases in parallel [1]. Fitness for the mutants is determined by their ability to avoid being killed, while fitness for the test data is determined by its ability to kill the mutants. It seems likely that co-
evolution will find applications in Program Comprehension research.

Applying the ideas of co-evolution to Program Comprehension may produce several interesting models of optimization. One natural choice would be to attempt to evolve a model of program comprehension (as a set of rules) together with a description of the structure of a system. The fitness for the cognitive model could be the ability to quickly locate important items of information within the structure of the system. The fitness of the system could be determined by the extent to which it can hide information from the cognitive model. In this way, we gain insight into ways in which systems might be constructed to be harmful to comprehension and ways in which the human may adopt strategies to overcome this.

Of course, one can play this kind of game in reverse. The fitness function for the human could be strategies that expend a lot of effort in order to find useful information, while the fitness of the system could be the speed at which even such a naive cognitive model can find information with ease. In this formulation of the ‘co evolution game’, the approach may yield insight into programming structures that make certain forms of information very readily available.

4.6. Information Theoretic Fitness Functions

Rudi Lutz [50] introduced the idea of using a measure of information content as a fitness function in software engineering. This idea has a clear resonance with work on Program Comprehension. One might speculate that by measuring the information content of a representation of code, one would be achieving some measure of understandability. If this be the case, then by optimising a representation for information content, one may thereby reduce the cognitive effort required for comprehension.

Many Program Comprehension applications have either an implicit or an explicit notion of information content. One of the primary goals of comprehension research is to explore the interface between the human, information from the real world and its software abstractions with which the human has to reason. The work of Lutz provides a hint of what may be possible when this information content can be measured and used as a basis for fitness evaluation and optimization.

4.7. Linguistic Evolution

Many hours are spent, often late into the night, arguing over which syntactic formulation is the best in order to represent a certain programming idea. The subject can evoke considerable passion among programmers. Using evolution, it would be possible to evolve the grammar of a language to express certain programming constructs in a manner considered suitable for comprehension. For example, guidelines for good program comprehension could be coded as constraints in the search. Another possibility, would be the formulation of a fitness function that takes account for programmer performance at comprehension based tasks. A further possibility is to explore Shannon style information-theoretic formulations of fitness that capture the information content of the syntactic productions, as discussed in the previous section.

4.8. Revealing Hidden Assumptions

Humans have hidden assumptions about what makes some representation of code more easy to understand than another. These assumptions may be difficult to identify. They may even be unknown to the human who possess them. Furthermore, the assumptions upon which a human rests their belief about which forms of code presentation suit them may be misplaced.

It is not uncommon for humans to state their assumptions only to break them. For instance, when looking for a suitable house, a client might tell an estate agent that the house must have 3 bedrooms and that this is an absolute requirement that cannot be broken. Upon speculatively showing the client a house with only two rooms the estate agent is surprised that the client is very interested. “What about the three bedroom requirement?” asks the agent. The client responds that the existing study can be converted to a bedroom and that this is more than adequate for their requirements. The ‘three bedroom’ requirement was a misplaced assumption. The ‘prepared to do without a study’ observation was an implicit assumption.

With software, an engineer may, initially, believe that high coupling is ‘always bad’. Using a re-modularization tool, the same engineer may be surprised to find that library modules become artificially refactored, by migration into clustered modules together with the code that most uses them. Mancoridis et al. [62] call such highly coupled modules ‘omnipresent’. They are removed from consideration by the Bunch tool to prevent this form of artificial refactoring.

The software engineer starts with the assumption that high coupling is always bad, but subsequent search based optimization reveals a further degree of subtlety; ‘high coupling is OK for a library module’. In this way search can be used to reveal hidden assumptions. The engineer formulates a fitness function. The search algorithm is guided solely by the fitness function and therefore considers solutions that a human would consider to be ‘ridiculous’. By locating such solutions the search process reveal the hidden assumptions.
In the past, search based approaches to engineering design have proved remarkably good at revealing assumptions and confounding intuition, occasionally yielding results that are superior to those found by the human. For example, evolutionary algorithms have led to patented designs for digital filters [70] and the discovery of patented antenna designs [49]. There is every reason to hope that these search based approaches may be equally good at revealing insights into hidden assumptions that explain aspects of Program Comprehension.

4.9. GP Models of Human Comprehension

Genetic programming has proved to be good at capturing models of behaviour that can be expressed computationally. It is tempting to model human comprehension behaviour as a computational process, in which the human considers code in a certain order, or responds to stimuli from the program development environment in a certain well defined manner. For such a model of comprehension behaviour it is possible to use genetic programming to attempt to capture aspects of behaviour. Different engineers comprehension styles will be reflected by differently evolved genetic programs, each of which may yield insights into the engineer’s comprehension model.

5. Summary

This paper has presented the Search Based Software Engineering approach and shown how it has been applied to problems closely related to Program Comprehension at the source code and design levels of abstraction. The paper has also explored some of the possible ways in which SBSE techniques may be applied to Program Comprehension in the future. It is hoped that the set of challenges in Section 4 will serve to stimulate further research in this area.

6. Acknowledgements

This paper has drawn on the author’s work within the Search Based Software Engineering (SBSE) community. The discussions within this community have helped to form the ideas presented in this paper. Harman’s work is currently funded by the EPSRC project, SEBASE (2006-2011), for which the other principal investigators are John Clark (University of York) and Xin Yao (University of Birmingham) and industrialists from DaimlerChrysler Berlin, Motorola and IBM. He is also supported by the EU Specific Targeted Research Project: EvoTest (2006-2009). His work on Program Comprehension is supported by EPSRC project, ConTRACTS (2005-2008). This paper draws on these projects and from other keynotes and tutorials on SBSE prepared in collaboration with Joachim Wegener [30, 39, 40, 41].

References

W. M. Jenkins. The genetic algorithm—or can we improve design by breeding. In IEEE Colloquium on Artificial Intelligence in Civil Engineering, pages 1/1–4, London, UK, Jan. 16, 1992. IEEE.

