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Abstract

Search Based Software Engineering (SBSE) is an ap-
proach to software engineering in which search based
optimization algorithms are used to identify optimal or
near optimal solutions and to yield insight. SBSE tech-
niques can cater for multiple, possibly competing objec-
tives and/or constraints and applications where the po-
tential solution space is large and complex. Such situa-
tions are common in software engineering, leading to an
increasing interest in SBSE. This paper provides a brief
overview of SBSE, explaining some of the ways in which
it has already been applied to program–comprehension
related activities. The paper also outlines some possi-
ble future applications of and challenges for the further
application of SBSE to Program Comprehension.

1. Introduction

Search Based Software Engineering (SBSE) aims to ap-
ply search based optimization algorithms to problems
drawn from software engineering. This approach to op-
timization is a natural one, because so many engineer-
ing applications are characterised by many complex and
competing objectives in large search spaces. In these sit-
uations, automated optimization techniques are natural
candidates.

Search based optimization techniques are widely used
in other engineering domains, for example mechanical
engineering [46], chemical engineering [12], biomedical
engineering [67, 69, 79], civil engineering [4, 10, 27, 42]
and electronic engineering [9, 22, 63]. Software engineer-
ing is coming of age as a mature engineering discipline.
It is, therefore, natural to ask:

“Why not apply search based optimization to
software engineering?”

This question was posed by Harman and Jones in
2001 [34], in a ‘manifesto paper’ that drew attention
to the huge potential of automated search based opti-
mization for software engineering problems and also in

an initial survey of early work on Search Based Test-
ing, Modularisation and Cost Estimation by Clark et
al. [19]. However, work on search based approaches to
software engineering problems dates back much further,
with work on optimization for testing starting as early
as 1976, when Miller and Spooner [60] used classical op-
timization techniques for test data generation. In 1992,
Xanthakis et al. were the first1 to apply meta heuristic
search to software engineering, when they used search
based optimization for test data generation [81].

Since the 2001 manifesto paper, there has been a
great deal of activity in this area, with SBSE being
increasingly applied to a wide range of diverse areas
within software engineering. There have also been sev-
eral workshops, conferences and special issues on SBSE.

Search based optimization techniques have proved to
be highly applicable in software engineering. For exam-
ple, in the past five years, Search Based Software En-
gineering has been applied to requirements engineering
[5, 82], project planning and cost estimation [2, 3, 44],
testing [6, 7, 13, 16, 33, 48, 58, 78], automated main-
tenance [14, 26, 32, 61, 62, 66, 71, 72], service-oriented
software engineering [18], compiler optimization [20] and
quality assessment [15, 43]. The application of op-
timization techniques to software testing has recently
witnessed intense activity. In 2004 there was sufficient
material to warrant a survey paper on this sub-area of
activity [57]. However, as the list of application areas
above indicates, optimization can be applied right across
the spectrum of software engineering activity.

This paper accompanies the author’s keynote at the
15th International Conference on Program Comprehen-
sion. It explores ways in which SBSE ideas and tech-
niques can be applied to problems in Program Com-
prehension. Following the explosion of work in search
based optimization for software engineering in general,
this paper asks the more specific question:

“Why not apply search based optimization to
Program Comprehension?”

1So far as the author is aware.
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The paper is organised into three principal sections.
Section 2 provides a brief introduction to SBSE to make
the paper self–contained. A more detailed treatment
can be found in the author’s FoSE paper [30]. Sec-
tions 3 and 4 present existing work on SBSE within the
area of program comprehension and possible future ap-
plications of SBSE to Program Comprehension.

2. A Brief Introduction to SBSE

The very simplest search of all is a random ‘search’, in
which solutions are simply generated purely at random.
However, such a search is not really a proper search,
because it is not guided by the fitness function and so
it cannot display any intelligence. The simplest intelli-
gent search techniques are local search techniques, such
as hill climbing. Hill climbing starts with a random
candidate solution and considers simple mutations that
produce similar ‘near neighbour’ solutions, moving to
those that appear to be more promising according to
the fitness function.

Previous work on SBSE has gained considerable value
from simple search based optimization techniques such
as hill climbing [44, 51, 61]. Pure hill climbing has no
mechanism to avoid the obvious problem of local max-
ima. That is, the search starts at a randomly chosen
starting point and proceeds to ascend the nearest hill.
However, while the top of this nearby hill is locally max-
imal, there is no guarantee that it will also be globally
maximal. To some extent, this ‘local maxima problem’
can be ameliorated by re–starting the hill climbing pro-
cess many times, thereby climbing many different hills
in the hope that one will be closely approximate the
height of a globally maximal hill.

Other more sophisticated meta heuristic search tech-
niques have also been widely used, such as simulated
annealing [15, 36, 61], genetic algorithms [7, 29, 32, 78]
genetic programming [8, 23, 24, 77] and multi objective
search [35, 38, 43, 66, 73, 82]. These techniques (and
other search based optimization techniques) are likely
to find application in Search Based Program Compre-
hension. This section provides a brief overview of these
meta heuristic search techniques to make the paper self
contained.

2.1. Key Ingredients

There are only two key ingredients [30] for the applica-
tion of search-based optimization to software engineer-
ing problems:

1. The choice of the representation of the problem.

2. The definition of the fitness function.

This simplicity and ready applicability has led to a
dramatic increase in research in this area. With these
two simple ingredients, it is possible to apply search
techniques to a chosen area of software engineering and
to obtain interesting and potentially important results
with relative ease. The two ingredients are also often
found in many software engineering applications; we of-
ten have representations because this is a starting point
for any work on automated software engineering sup-
port. We are also typically able to find plenty of advice
on the choice of fitness function in the form of proposed
software metrics [31].

All of the fitness functions so far considered in the lit-
erature on SBSE have been fully automated. However,
for other branches of engineering, there has been exten-
sive work on fitness functions that incorporate human
judgement [28]. This form of search is known as ‘interac-
tive optimization’. For Program Comprehension, with
its inherent human-centric focus, it would seem likely
that interactive optimization would find many applica-
tions.

2.2. Simulated Annealing

Simulated annealing [59] can be thought of as a varia-
tion of hill climbing that seeks to avoid the local max-
ima problem by permitting moves to less fit individu-
als. Simulated annealing is a simulation of metallurgi-
cal annealing, in which a highly heated metal is allowed
to reduce in temperature slowly, thereby increasing its
strength. As the temperature decreases the atoms have
reduced freedom of movement. However, the greater
freedom in the earlier (hotter) stages of the process al-
lows the atoms to ‘explore’ different energy states.

A simulated annealing algorithm will move from some
point x1 to a worse point x′

1 with a probability that is
a function of the drop in fitness and a ‘temperature’
parameter that models metal temperature in metallur-
gical annealing. The effect of ‘cooling’ on the simulation
of annealing is that the probability of following an un-
favourable move is reduced. In the final stages of the
simulated annealing algorithm, the effect is that of pure
hill climbing.

2.3. Genetic Algorithms and Genetic Program-
ming

A generic genetic algorithm template is presented in
Figure 1. An iterative process is executed, initialised
by a randomly chosen population. The iterations are
called generations and the members of the population
are called chromosomes, because of their analogs in nat-
ural evolution. The process terminates when a popula-
tion satisfies some pre-determined condition.
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Set generation number, m:= 0
Set initial population to random set: P (0)
Calculate F (Pi(0)), the fitness of each Pi(0) ∈ P (0)
loop

Evaluate: F (P (m))
Select: P (m + 1) := S(P (m))
Recombine: P (m) := R(P (m))
Mutate : P (m) := M(P (m))
m := m + 1
exit when goal or stopping condition is satisfied

end loop;

Figure 1. A Generic Genetic Algorithm

At each generation, some members of the population
are recombined, crossing over elements of their chro-
mosomes. A fraction of the offspring of this union are
mutated and, from these offspring and the original pop-
ulation, a selection process is used to determine the new
population. Crucially, recombination and selection are
guided by the fitness function; fitter chromosomes hav-
ing a greater chance to be selected and recombined.

Genetic programming (GP) [45] is a variation of the
evolutionary model of computation embodied in genetic
algorithms. For genetic algorithms, the individuals that
are optimised are lists. For GP, the individuals are trees,
denoting the abstract syntax trees of simple programs.

There is a widely held misunderstanding that the goal
of GP is to evolve realistic large scale programs. While
this would be extremely attractive, as software engi-
neers, we know only too well what a demanding, and
perhaps utopian, goal this would be. However, it should
be noted that the applications of GP gain considerable
value from comparatively simple programs that, despite
their simplicity, capture important and insightful com-
putational processes.

2.4. Multi Objective Search Based Software Engi-
neering

A natural approach to many problems starts with the
consideration of the objectives to optimise and how they
are to be measured. In software engineering problems
it is not uncommon to find that there are several objec-
tives to be optimised. In this situation, it is valuable
to consider the concept of Pareto optimality, which can
be used to explore the tradeoffs between multiple ob-
jectives. More recent work on SBSE has moved in the
direction of multi objective search and it is likely that
this trend will continue as the area matures. Program
Comprehension research is often characterised by the
need to balance competing objectives and so it is likely
that Pareto optimal formulations of SBSE problems are
likely to find application in Program Comprehension.

To see how Pareto optimality works, suppose a
problem is to be solved that has n fitness functions,
f1, . . . , fn that take some vector of parameters x. Using
Pareto optimality, the fitness functions are combined to
form an aggregated fitness F as follows:

F (x1) > F (x2)
⇔

∀i.fi(x1) ≥ fi(x2) ∧ ∃i.fi(x1) > fi(x2)

Using Pareto optimality, one solution is better than
another if it is better according to at least one of the
individual fitness functions and no worse according to
all of the others. Under the Pareto interpretation of
combined fitness, “no overall fitness improvement occurs
no matter how much almost all of the fitness functions
improve, should they do so at the slightest expense of
any one of their number” [30].

When searching for solutions to a problem using
Pareto optimality, the search yields a set of solutions
that are non–dominated. That is, each member of the
non-dominated set is no worse than any of the others in
the set, but also cannot be said to be better. Any set
of non–dominated solutions forms a Pareto front. As-
suming convergence, the longer the search algorithm is
run, the better the approximation becomes to the real
Pareto front. The Pareto front can be used to improve
understanding of the problem at hand. For instance,
the nature of the trade offs between objectives are rep-
resented by the shape of the front. This allows the engi-
neer to identify ‘sweet spots’ in which a little reduction
on the value of one objective can yield a significant im-
provement in others.

3. Previous SBSE work Relevant to Program
Comprehension

This section briefly reviews previous work on SBSE at
the code level and the design level which have an appli-
cation to Program Comprehension.

3.1. Optimising Source Code for Comprehension

SBSE techniques have been applied to the problem of
optimising code. Sometimes, the goal is to improve ex-
ecution time by re-ordering compiler optimizations [21]
or finding transformations that optimise for parallel ex-
ecution [65, 68, 80]. However, there has also been work
on transformation to improve source code from a pro-
gram comprehension point–of–view.

For example, Fatiregun et al. [25, 26] showed
how search based transformations could be used to re-
duce code size and to construct amorphous program
slices. Several authors have also considered the prob-
lem of refactoring object oriented code to improve met-
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rics [38, 66, 73], using the approach that ‘metrics are fit-
ness functions too’ [31]. The search considers a search
space of, either all possible refactored versions of the
program, or all possible sequences of refactoring steps.

This is a naturally multi objective problem; there
are typically many candidate metrics that can be ap-
plied and not all of these metrics will be sympathetic
to one another. Using weighted multi objective search,
the several differing metrics are combined into a sin-
gle agglomerated super-metric that aims to combine the
relative strengths of each. However, where the metrics
are in conflict, the alternative Pareto optimal approach
allows the engineer to consider the trade offs, without
forcing potentially arbitrary choices of weights.

Search based approaches have also been applied to
the concept assignment problem [11, 52, 55]. In this
problem, the goal is to identify sections of code that
correspond to high–level domain concepts. Gold et al.
[29] showed that search techniques are well suited to
scenarios in which boundaries between concept bindings
are not sharp. They used a fitness function to optimise
the ‘signal to noise’ ratio in bindings, while allowing
overlapping concept boundaries within the code.

3.2. Optimising Designs for Comprehension

Mancoridis et al. introduced the concept of software
modularization as a search based clustering problem
[53, 54]. The goal of this work is to re-draw module
boundaries to increase cohesion and reduce coupling. In
so doing, the work effectively improves the understand-
ability of the design, based on the widely studied soft-
ware engineering factors of cohesion and coupling. The
seminal work of Mancoridis et al. led to several other
studies of search based approaches to software modu-
larisation [32, 37, 51], and to the application of search
based clustering in other areas of software engineering
[20]. A recent survey of work on search–based modular-
isation is presented by Mitchell and Mancoridis [62].

With the exception of the work of Lutz [50], work on
this problem has used a weighted combination of cohe-
sion and coupling as a fitness function. Lutz adopted
a different approach that may well find further appli-
cation in Program Comprehension. He considered the
problem of hierarchical decomposition of software, using
a fitness function based upon an information-theoretic
formulation inspired by Shannon [74]. The goal was to
reduce the amount of information used to describe the
software design. The conjecture was that reducing the
information content denoted by a design would make it
easier to understand.

4. Possible Future Applications of SBSE in
Program Comprehension

This section introduces some possible applications of
SBSE in Program Comprehension. In each case the goal
is to capture some aspect of interest with a fitness func-
tion so that a search based approach can be used to
optimise the property of interest. In each case, the na-
ture of the problem tends to suggest a certain form of
search based approach. The aim of this section is to
provide a set of challenges for the wider extension of
SBSE research to Program Comprehension.

By tackling problems in Program Comprehension,
SBSE researchers will be addressing some of the most
complicated (but potentially rewarding) aspects of soft-
ware engineering. Achieving the full potential of SBSE
for comprehension raises the issues of human involve-
ment in fitness computation (interactive optimisation),
multi objective search and complex fitness functions.
This set of demanding, but nonetheless achievable, goals
will provide a further impetus and stimulus to research
on SBSE. The techniques developed to address these
problems are also likely to find application in other ar-
eas of software engineering, and possibly to other engi-
neering domains.

4.1. Optimised Semantic Pretty Printing

Pretty printing [17] produces code that is more readable,
by performing lexical transformations to improve lay-
out. This may be one of the first published approaches
to Program Comprehension [56]. A more semantic ap-
proach to pretty printing transforms the program into a
style most suited to the programmer reading the code.
For example, tail recursion can be transformed to it-
eration, while loops with compile time bounds to for
loops, and nested conditionals to case statements.

As with lexical pretty printing, the developer of such
a semantic pretty printer may believe they know best;
“surely it is obvious that recursion should be removed
— many students find it hard to understand”. How-
ever, there is no guarantee that all programmers follow
the same cognitive model. Indeed, there is much ev-
idence from the Program Comprehension literature to
show that programmers have different cognitive styles
[47, 64, 76].

Using a search based approach, it would be possible
to use human performance in cognitive tasks to guide
a fitness function that would tailor the pretty printer
to the cognitive style of the programmer. Such a flex-
ible approach would provide a ‘semantic lens’ through
which the programmer could view the software in order
to make its algorithmic structure clearer.
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The version of the program executed can be the most
efficient. However, the version viewed by each program-
mer can be adapted to suit their individual cognitive
style. All versions of the program would, of course,
be semantically equivalent, but their structures may be
very different. This approach may have wider benefits
than merely re-writing programs to tailor them to indi-
vidual programmer taste. By performing the transfor-
mations, one may be able to gain insight into different
cognitive styles and, thereby, to identify programmers
who can work well together and those who, perhaps,
would not work well together.

4.2. Tailored Refactoring

Developing the idea of the previous section a little fur-
ther, one could imagine a search based refactoring sys-
tem that seeks to evolve a set of transformation rules
(refactoring rules) that capture the cognitive preferences
of a particular programmer. Such a set of rules could
be evolved by a process of genetic programming. It is
unlikely that the genetic program produced would be
sufficiently powerful and (more importantly) sufficiently
trusted that the programmer would simply apply it to
code before reading it. However, it is likely that such
an approach would yield insight into programmers’ cog-
nitive models. It may also capture aspects of the kind
of transformation algorithms that would be required in
order to improve understandability.

4.3. Balancing Multiple Architectural Require-
ments

Software architectures have to be constructed to meet a
variety of different requirements. Many developers may
work on a software system. Each may have their own
view concerning choices of architectural constructions
and decisions as to which will be best for comprehension
and on-going development. One might suppose that it
would be possible to adopt an ‘architectural transforma-
tion’ approach to produce a kind of ‘architectural pretty
printer’, following the approach outlined in the previous
section. However, what may work at the code level may
be simply too complex to achieve at the architectural
level.

In such a situation, we may be faced with a familiar
engineering compromise; choose the architecture that
most suits most engineers. This is a classic example of a
multi objective optimization problem, in which the pref-
erences of each engineer denote one of many individual
objectives and where the objectives may be in conflict.
Balancing such a set of objectives may be difficult when
there are many possible candidate solutions.

Even where the search space is small, the decision
maker may be guided by biases and hidden (possible

erroneous) assumptions. A search based approach can
explore the multi dimensional space of candidate solu-
tions to identify ‘sweet spots’ where good quality solu-
tions can be found. Such a search based solution cannot
solve the unsolvable; it will not please all the people all
of the time. However, it may allow the decision maker
to locate interesting and important areas of the solution
space in which, for example, displeasing one engineer a
little may result in a solution that pleases many a lot.
These sweet spots are very hard to find by hand in multi
dimensional search spaces.

4.4. Evolving Visualisations

Different visualisation approaches work for different
people [75]. If the components of a visualisation can
be represented as atomic entries that can be combined,
hierarchically, into ever larger components then it would
be possible to consider the evolution of visualisations to
actively search for better visualizations. A programmer
could even use a visualisation that is evolving as they
use it. The construction of a fitness function for such
a dynamically evolving visualisation could be achieved
in one of two possible ways. As the system is used,
the users could click on a ‘radio bar’ to indicate how
helpful they find the visualisation at any given point.
This would provide constant feedback to the system,
enabling it to guide the visualization towards solutions
found more attractive to the engineer.

Alternatively, the engineer may be evaluated for the
performance of cognitive tasks by the system as they use
it and in this way the visualisation would be attempting
to evolve to meet the needs of the engineer rather than
their stated desires. Of course an interesting experi-
ment, would be to try both approaches and to explore
the differences. That is, to what extent do we engineers
know what is good for us, cognitively speaking?

This approach is not likely to yield a practical vi-
sualisation tool for widespread application. Rather, it
would provide a tool for Program Comprehension re-
search, by allowing researchers to explore the space of
visualisations and their relationship to the visualisation
users’ stated desires versus their cognitive needs.

4.5. Co Evolutionary Comprehension

Co evolution is an exciting form of evolutionary opti-
misation in which two or more populations are evolved
in parallel. The fitness function for one population is
influenced by the behaviour of the others. Co evolution
has been used in SBSE to attempt to evolve program
mutants and test cases in parallel [1]. Fitness for the
mutants is determined by their ability to avoid being
killed, while fitness for the test data is determined by
its ability to kill the mutants. It seems likely that co–

15th IEEE International Conference on Program Comprehension (ICPC'07)
0-7695-2860-0/07 $20.00  © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 30, 2008 at 12:47 from IEEE Xplore.  Restrictions apply.



evolution will find applications in Program Comprehen-
sion research.

Applying the ideas of co-evolution to Program Com-
prehension may produce several interesting models of
optimization. One natural choice would be to attempt
to evolve a model of program comprehension (as a set
of rules) together with a description of the structure of
a system. The fitness for the cognitive model could be
the ability to quickly locate important items of informa-
tion within the structure of the system. The fitness of
the system could be determined by the extent to which
it can hide information from the cognitive model. In
this way, we gain insight into ways in which systems
might be constructed to be harmful to comprehension
and ways in which the human may adopt strategies to
overcome this.

Of course, one can play this kind of game in reverse.
The fitness function for the human could be strategies
that expend a lot of effort in order to find useful in-
formation, while the fitness of the system could be the
speed at which even such a näıve cognitive model can
find information with ease. In this formulation of the
‘co evolution game’, the approach may yield insight into
programming structures that make certain forms of in-
formation very readily available.

4.6. Information Theoretic Fitness Functions

Rudi Lutz [50] introduced the idea of using a measure of
information content as a fitness function in software en-
gineering. This idea has a clear resonance with work on
Program Comprehension. One might speculate that by
measuring the information content of a representation
of code, one would be achieving some measure of under-
standability. If this be the case, then by optimising a
representation for information content, one may thereby
reduce the cognitive effort required for comprehension.

Many Program Comprehension applications have ei-
ther an implicit or an explicit notion of information
content. One of the primary goals of comprehension
research is to explore the interface between the human,
information from the real world and its software abstrac-
tions with which the human has to reason. The work
of Lutz provides a hint of what may be possible when
this information content can be measured and used as
a basis for fitness evaluation and optimization.

4.7. Linguistic Evolution

Many hours are spent, often late into the night, arguing
over which syntactic formulation is the best in order to
represent a certain programming idea. The subject can
evoke considerable passion among programmers. Using
evolution, it would be possible to evolve the grammar of
a language to express certain programming constructs

in a manner considered suitable for comprehension. For
example, guidelines for good program comprehension
could be coded as constraints in the search. Another
possibility, would be the formulation of a fitness func-
tion that takes account for programmer performance
at comprehension based tasks. A further possibility is
to explore Shannon style information–theoretic formu-
lations of fitness that capture the information content of
the syntactic productions, as discussed in the previous
section.

4.8. Revealing Hidden Assumptions

Humans have hidden assumptions about what makes
some representation of code more easy to understand
than another. These assumptions may be difficult to
identify. They may even be unknown to the human
who possess them. Furthermore, the assumptions upon
which a human rests their belief about which forms of
code presentation suit them may be misplaced.

It is not uncommon for humans to state their assump-
tions only to break them. For instance, when looking
for a suitable house, a client might tell an estate agent
that the house must have 3 bedrooms and that this is
an absolute requirement that cannot be broken. Upon
speculatively showing the client a house with only two
rooms the estate agent is surprised that the client is very
interested. “What about the three bedroom require-
ment?” asks the agent. The client responds that the
existing study can be converted to a bedroom and that
this is more than adequate for their requirements. The
‘three bedroom’ requirement was a misplaced assump-
tion. The ‘prepared to do without a study’ observation
was an implicit assumption.

With software, an engineer may, initially, believe that
high coupling is ‘always bad’. Using a re-modularization
tool, the same engineer may be surprised to find that
library modules become artificially refactored, by migra-
tion into clustered modules together with the code that
most uses them. Mancoridis et al. [62] call such highly
coupled modules ‘omnipresent’. They are removed from
consideration by the Bunch tool to prevent this form of
artificial refactoring.

The software engineer starts with the assumption
that high coupling is always bad, but subsequent search
based optimization reveals a further degree of subtlety;
‘high coupling is OK for a library module’. In this way
search can be used to reveal hidden assumptions. The
engineer formulates a fitness function. The search algo-
rithm is guided solely by the fitness function and there-
fore considers solutions that a human would consider to
be ‘ridiculous’. By locating such solutions the search
process reveal the hidden assumptions.
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In the past, search based approaches to engineer-
ing design have proved remarkably good at reveal-
ing assumptions and confounding intuition, occasion-
ally yielding results that are superior to those found by
the human. For example, evolutionary algorithms have
led to patented designs for digital filters [70] and the
discovery of patented antenna designs [49]. There is ev-
ery reason to hope that these search based approaches
may be equally good at revealing insights into hidden
assumptions that explain aspects of Program Compre-
hension.

4.9. GP Models of Human Comprehension

Genetic programming has proved to be good at cap-
turing models of behaviour that can be expressed com-
putationally. It is tempting to model human compre-
hension behaviour as a computational process, in which
the human considers code in a certain order, or re-
sponds to stimuli from the program development en-
vironment in a certain well defined manner. For such
a model of comprehension behaviour it is possible to
use genetic programming to attempt to capture aspects
of behaviour. Different engineers comprehension styles
will be reflected by differently evolved genetic programs,
each of which may yield insights into the engineer’s com-
prehension model.

5. Summary

This paper has presented the Search Based Software
Engineering approach and shown how it has been ap-
plied to problems closely related to Program Compre-
hension at the source code and design levels of abstrac-
tion. The paper has also explored some of the possible
ways in which SBSE techniques may be applied to Pro-
gram Comprehension in the future. It is hoped that
the set of challenges in Section 4 will serve to stimulate
further research in this area.
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