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Abstract

This paper describes work on the application of opti-
mization techniques in software engineering. These opti-
mization techniques come from the operations research and
metaheuristic computation research communities. The pa-
per briefly reviews widely used optimization techniques and
the key ingredients required for their successful application
to software engineering, providing an overview of existing
results in eight software engineering application domains.
The paper also describes the benefits that are likely to ac-
crue from the growing body of work in this area and pro-
vides a set of open problems, challenges and areas for fu-
ture work.

1. Introduction
Search based optimization techniques have been applied

to a number of software engineering activities, right across
the life-cycle from requirements engineering [5], project
planning and cost estimation [1, 3, 4, 16, 28, 52] through
testing [6, 7, 11, 14, 15, 36, 39, 54, 61, 87], to auto-
mated maintenance [12, 32, 38, 64, 65, 70, 77, 78], service-
oriented software engineering [19], compiler optimization
[24, 25] and quality assessment [13, 49]. The application
of optimization techniques to software testing has recently
witnessed intense activity to the point where, in 2004, there
was sufficient material to warrant a survey paper on this sub-
area of activity [60]. However, as the list of application ar-
eas above indicates, optimization can be applied right across
the spectrum of software engineering activity.

A wide range of different optimization and search tech-
niques can and have been used. The most widely used are
local search (for example [52, 57, 64]), simulated anneal-
ing (for example [13, 41, 64]), genetic algorithms (for ex-
ample [7, 34, 38, 87]) and genetic programming (for ex-
ample [9, 29, 28, 86]). However, no matter what search
technique is employed, it is the fitness function that cap-
tures the crucial information; it differentiates a good so-
lution from a poor one, thereby guiding the search. Sev-

eral studies have concerned the analysis of widely used
fitness functions and the fitness landscapes they denote
[6, 42, 46, 50, 51, 52, 63, 71].

The term SBSE was coined by Harman and Jones in
2001 [40] though there was work on the application of
search techniques to software engineering problems as early
as 1992 [89]. Since the 2001 paper there has been an explo-
sion of activity in this area, with SBSE being increasingly
applied to a wide range of diverse areas within software en-
gineering.

It is natural in the development of new scientific and en-
gineering fields that there is, at first, a ‘gold rush’ of largely
undirected activity. Such activity is characterised by enthu-
siasm, early important results and the excitement that goes
with them. However, in order to develop the mature roots
that allow the field to grow, the second phase of exploration
requires a deeper understanding of problem and solution
characteristics. The field of Search Based Software Engi-
neering (SBSE) is in transition between these two phases.
This FoSE article aims to provide a survey of the existing
work that forms part of the ongoing gold rush, updating the
previous initial survey [22]. It also sets out the goals, ob-
jectives and properties to be expected from this phase tran-
sition.

The rest of the paper is organized as follows: Section 2
summarises the key optimization techniques that are ap-
plied. It is only possible to cover a few widely used tech-
niques in detail, while the rest are summarised with pointers
to the literature. Section 3 draws out the key ingredients for
successful application of optimization techniques to prob-
lems in software engineering and Section 4 illustrates SBSE
in practice, with an overview of previous work on success-
ful applications of optimization in eight areas of software
engineering activity. Section 5 explains the motivation be-
hind metaheuristic approaches to software engineering opti-
mization. Sections 6 and 7 describe open problems and the
potential benefits that are likely to accrue from future work.
Section 8 provides a road map for future work in optimiza-
tion for software engineering. Section 9 summarises.



2. Optimization Techniques
This section provides an overview of optimization tech-

niques, focusing on those that have been most widely ap-
plied on software engineering. Space constraints only per-
mit an overview. For more detail, the reader is referred to
the recent survey of search methodologies edited by Burke
and Kendall [17].

The section starts with classical techniques, distinguish-
ing these from metaheuristic search. Hitherto, classical
techniques have been little used as optimization techniques
for software engineering problems; authors have preferred
to use more sophisticated metaheuristic search techniques.
However, there has been some work using classical tech-
niques. Bagnall et al. [5] applied a branch and bound ap-
proach to a formulation of the next release problem, while
Barreto et al. [8] apply it to project staffing constraint sat-
isfaction problems. Cortellessa et al. [26] use classical op-
timization techniques to address decision making problems
in component sourcing, optimizing properties such as qual-
ity and reliability. Del Grosso et al. [27] use a combination
of classical and metaheuristic techniques to test for buffer
overflow.

2.1. Classic Techniques
Linear programming (LP) is a mathematical optimiza-

tion technique that is guaranteed to locate the global opti-
mum solution. The inputs to a linear programming model
are a set {x1, . . . , xn} of n real, non-negative values, called
the decision variables. The goal is to maximize the value of
some linear expression in these decision variables subject
to a set of constraints, expressed as linear equations in the
decision variables.

That is

Maximize
n∑

i=1

cixi

Where {c1, . . . , cn} is a set of problem–specific coeffi-
cients, subject to a set of m constraints of the form

∑n
i=1 a1ixi ≤ b1

...∑n
i=1 amixi ≤ bm

Where aij and bi are problem determined constants. The
constraints can also be expressed using ≥ and = in place of
≤ and the goal can be minimization rather than maximiza-
tion.

This formulation is typically applied to problems such as
resource and plant allocation. It requires a clear cut deter-
mination of a single objective to be optimized and a set of
well understood constraints that can be captured as a set of
linear equations. If a software engineering problem can be

formulated in this way, then LP is a good choice because
there exist efficient LP optimization algorithms and the so-
lution is guaranteed to be globally optimal.

If some of the decision variables are further constrained
to take on only integer values, then the result is a further
constrained model. Integer programming models can cap-
ture a wider set of possible problem domains, because of
this additional constraint. For example, it now becomes
possible to model situations in which a decision variable
is constrained to be a boolean choice variable; yielding a
value of either 1 or 0. However, the additional constraints
can lead to model formulations that are far harder to solve
than their linear programming counterparts.

One other classical technique for optimization deserves
mention in this section: branch and bound. This is an ap-
proach that seeks to tame the exponential explosion that is
inherent in most search problems, by a simple iterative pro-
cess of branching from a current solution, while simultane-
ously maintaining a set of bounds that prune the possible
search space as it expands through branching.

2.2. Metaheuristic Search
This section provides a brief overview of three meta-

heuristic search techniques that have been most widely ap-
plied to problems in software engineering: hill climbing,
simulated annealing and genetic algorithms.

2.2.1 Hill Climbing
Hill climbing starts from a randomly chosen candidate solu-
tion. At each iteration, the elements of a set of ‘near neigh-
bours’ to the current solution are considered. Just what con-
stitutes a near neighbour is problem specific, but typically
neighbours are a ‘small mutation away’ from the current
solution. A move is made to a neighbour that improves fit-
ness. There are two choices: In next ascent hill climbing,
the move is made to the first neighbour found to have an
improved fitness. In steepest ascent hill climbing, the en-
tire neighbourhood set is examined to find the neighbour
that gives the greatest increase in fitness. If there is no fitter
neighbour, then the search terminates and a (possibly local)
maxima has been found. Figuratively speaking, a ‘hill’ in
the search landscape close to the random starting point has
been climbed.

Clearly, the problem with the hill climbing approach is
that the hill located by the algorithm may be a local maxima,
and may be far poorer than a global maxima in the search
space. For some landscapes, this is not a problem because
repeatedly restarting the hill climb at a different locations
may produce adequate results (this is known as multiple-
restart hill climbing). Despite the local maxima problem,
hill climbing is a simple technique which is both easy to
implement and surprisingly effective [38, 64].

2



2.2.2 Simulated Annealing
Simulated annealing [62] can be thought of as a variation
of hill climbing that avoids the local maxima problem by
permitting moves to less fit individuals. Simulated anneal-
ing is a simulation of metallurgical annealing, in which a
a highly heated metal is allowed to reduce in temperature
slowly, thereby increasing its strength. As the temperature
decreases the atoms have less freedom of movement. How-
ever, the greater freedom in the earlier (hotter) stages of the
process allow the atoms to ‘explore’ different energy states.

A simulated annealing algorithm will move from some
point x1 to a worse point x′

1 with a probability that is a func-
tion of the drop in fitness and a ‘temperature’ parameter that
(loosely speaking) models the temperature of the metal in
metallurgical annealing. The effect of ‘cooling’ on the sim-
ulation of annealing is that the probability of following an
unfavourable move is reduced. At the end of the simulated
annealing algorithm, the effect is that of pure hill climb-
ing. However, the earlier ‘warmer’ stages allow produc-
tive exploration of the search space, with the hope that the
higher temperature allows the search to escape local max-
ima. The approach has found application in several prob-
lems in search based software engineering [13, 41, 84, 64].

2.2.3 Genetic Algorithms
Genetic algorithms use concepts of population and of re-
combination [47]. Of all optimization algorithms, genetic
algorithms have been the most widely applied search tech-
nique in SBSE, though this has largely been for historical
reasons, rather than as a result of any strong theoretical in-
dications that these approaches are in some way superior.

A generic genetic algorithm [22] is presented in Figure 1.
An iterative process is executed, initialised by a randomly
chosen population. The iterations are called generations and
the members of the population are called chromosomes, be-
cause of their analogs in natural evolution. The process ter-
minates when a population satisfies some pre-determined
condition (or a certain number of generations have been ex-
ceeded). On each generation, some members of the popu-
lation are recombined, crossing over elements of their chro-
mosomes. A fraction of the offspring of this union are mu-
tated and, from the offspring and the original population a
selection process is used to determine the new population.
Crucially, recombination and selection are guided by the fit-
ness function; fitter chromosomes having a greater chance
to be selected and recombined.

There are many variations on this overall process, but the
crucial ingredients are the way in which the fitness guides
the search, the recombinatory and the population based na-
ture of the process. There is an alternative form of evo-
lutionary computation, known as evolution strategies [76],
developed independently of work on Genetic Algorithms.
However, evolution strategies have not been applied often
in work on SBSE. An exception is the work of Alba and

Set generation number, m:= 0
Choose the initial population of candidate solutions, P (0)
Evaluate the fitness for each individual of P (0), F (Pi(0))
loop

Recombine: P (m) := R(P (m))
Mutate : P (m) := M(P (m))
Evaluate: F (P (m))
Select: P (m + 1) := S(P (m))
m := m + 1
exit when goal or stopping condition is satisfied

end loop;

Figure 1. A Generic Genetic Algorithm

Chicano [2], who show that evolution strategies may out-
perform genetic algorithms for some test data generation
problems.

There is also a variation of genetic algorithms, called ge-
netic programming [53], in which the chromosome is not a
list, but a tree. The tree is the abstract syntax tree of a sim-
ple program that is evolved using a similar genetic model
to that employed by a genetic algorithm. Genetic programs
are typically imperfect programs that are, nonetheless, suf-
ficiently good for purpose. Fitness is usually measured us-
ing a testing-based approach that seeks to find a program
best adapted to its specification (expressed as a set of in-
put/output pairs). Genetic programming has been used in
SBSE to form formulæ that capture predictive models of
software projects [29, 28] and in testing [86].

3. Key Ingredients for Application of Opti-
mization Techniques to Software Engineer-
ing

There are only two key ingredients for the application
of search-based optimization to software engineering prob-
lems:

1. The choice of the representation of the problem.

2. The definition of the fitness function.

This simplicity and ready applicability has led to a dra-
matic increase in research in this area. With these two sim-
ple ingredients, it is possible to apply search techniques to a
novel area of software engineering and to obtain interesting
and potentially important results with relative ease.

Typically, a software engineer will have a suitable repre-
sentation for their problem, so the first of the pre-requisites
is easily satisfied. Furthermore, many problems in software
engineering have a rich and varied set of software metrics
associated with them that naturally form good initial candi-
dates for fitness functions [37].
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With these two ingredients it becomes possible to imple-
ment search algorithms. The results from the search algo-
rithms can be compared, using random search to provide as
baseline data. Naturally, the aim is to beat a random search,
though in some areas, such as testing, even a purely random
search has been found to be not without value, even beating
human-directed search in some cases [66].

This is the current state of the art in search based soft-
ware engineering. New areas are regularly being addressed,
formulated as search problems, and attacked using a com-
bination of search algorithms, compared to random search
as a form of ‘sanity check’. This research activity is impor-
tant; it widens the scope of application of these techniques
to cover ever larger areas of software engineering activity.
However, in order that the field does not become merely
broad, but flat, some research effort needs to be directed
towards theory, generalisation and characterisation to aug-
ment this breadth with depth.

4. Existing Applications of Optimization Tech-
niques to Software engineering Applica-
tions

This section provides a brief overview of areas of soft-
ware engineering to which search based optimization tech-
niques have been applied. As the section shows, search
based approaches can be applied right across the software
engineering life cycle in many different ways, using many
different search algorithms.

This should come as no surprise. If software engineer-
ing is truly an engineering discipline, then it would be ex-
pected that optimization techniques (widely applied in all
other engineering disciplines) would also apply in software
engineering. Many of the problems faced by software en-
gineers turn out to have natural counterparts as ‘standard’
optimization problems. Often, of course, there are some
modifications and enhancements that are required and suit-
able representations and fitness functions must be formu-
lated for each problem; therein lies interesting and exciting
research.

4.1. Optimizing the search for accurate cost esti-
mates

Dolado applied genetic programming to the problem of
cost estimation, using a form of ‘symbolic regression’ [28].
The idea was to breed simple mathematical functions that
fit the observed data for project effort in terms of function
points. This has the advantage that the result is not merely
a prediction system, but also a function that explains the
behaviour of the prediction system. These problems are also
addressed in the FoSE on software economics [80].

Kirsopp et al. [52] also used search techniques in soft-
ware project cost estimation. Their approach predicts un-
known project attributes in terms of known project attributes

by seeking a set of near neighbour projects that share similar
values for the known attributes. This approach works well
where the existing base of project data is of consistently
good quality, but can perform badly where some projects
and/or attributes are miss-recorded. Kirsopp at al. showed
that the problem of determining a set of good predictors
can be formulated as a feature subset selection problem, to
which they applied a hill climbing algorithm. This work
was also one of the few in the literature that has considered
the properties of the search landscape (see Section 6.2).

4.2. Optimizing the search for allocations in project
planning

The allocation of teams to work packages in software
project planing can be thought of as an application of a bin
packing problem [23]. Motivated by this observation, An-
toniol et al. [3, 4] and Chicano and Alba [21] applied search
algorithms to software projects. Antoniol et al. applied
genetic algorithms, hill climbing and simulated annealing
to the problem of staff allocation to work packages. They
also considered problems of re-working and abandonment
of projects, which are clearly important aspects of most
software engineering projects. Antoniol et al. applied the
algorithms to real world data from a large Y2K maintenance
project. Chicano and Alba consider the multi objective ver-
sion of the problem applied to synthetic data. The multiple
objectives are combined into a single fitness function using
weights for each of the component objectives.

4.3. Optimizing the search for requirements to form
the next release

Requirements engineering is a vital part of the software
engineering process [20], to which SBSE has also been ap-
plied. Bagnall et al. [5] formulated the ‘Next Release Prob-
lem (NRP)’ as a search problem. In the NRP, the goal is
to find the ideal set of requirements that balance customer
requests, resource constraints, and requirement interdepen-
dencies. This problem, is illustrated in Figure 2, which is
taken from Bagnall et al. [5]. The set of requirements r1

to r7 have dependencies shown by the edges. Different cus-
tomers request different sets of requirements.

Bagnall et al. applied a variety of techniques, including
greedy algorithms and simulated annealing to a set of syn-
thetic data created to model features for the next release and
the relationships between them. The NRP is an example of
a feature subset selection search problem.

Greer and Ruhe proposed a GA-based approach for plan-
ning software releases [35]. Like many problems in soft-
ware engineering, such as project planning, NRP and re-
gression testing, there is a relationship between feature Sub-
set Selection problems and Feature Ordering (Prioritization)
problems. A comparison of approaches (both analytical and
evolutionary) for prioritizing software requirements is pro-
posed in [48].
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Figure 2. The next release problem, taken
from [5]

4.4. Optimizing design decisions
There has been much work on the well-known software

engineering concern of balancing cohesion and coupling.
However, this work belongs more squarely under the head-
ing reverse engineering [18], since the goal is to redraw the
software module boundaries of existing designs in order to
improve cohesion and coupling. Other than this, there has
been only a little work on the application of search based
approaches at the design stage of the software development
life cycle. One notable exception is the work of Lutz [56],
who considered the problem of hierarchical decomposition
of software. The fitness function used by Lutz is based upon
an information-theoretic formulation inspired by Shannon
[79]. The function awards high fitness scores to hierarchies
that can be expressed most simply (in information theoretic
terms), with the aim of rewarding the more ‘understandable’
designs. The paper by Lutz is the only paper of which the
author is aware to use information theoretic measurement
as a fitness mechanism. This novel and innovative approach
to fitness may have wider SBSE applications.

4.5. Optimizing source code
Some prior work has been done in the area of using meta-

heuristic search algorithms to search for optimization se-
quences. Cooper et al. [25] use biased random sampling to
search a space of coarse-grained transformations for com-
piler optimization. The order of application of optimization
steps plays a crucial role in the quality of the results and
so the search problem is to identify the optimal application
order. They compare the results of their experiments with
those obtained using a fixed set of optimizations in a pre-
determined order. Ryan [74] worked on using search tech-
niques to automate parallelization for supercomputers. He
used a genetic algorithm based approach and also a genetic

programming approach in which the program’s correctness
is determined by test cases.

Williams [88] also addressed this problem in two ways:
In one, the set of transformations to apply to the program
formed the chromosome. In the other approach, Williams
applied the transformation steps directly to the program,
as mutation steps, finding that this produced better results.
Nisbet [69] focused on using a GA to find program restruc-
turing transformations for FORTRAN programs to execute
on parallel architectures. Fatiregun et al. [31, 32] showed
how search based transformations could be used to reduce
code size and construct amorphous program slices.

4.6. Optimizing test data generation
An entire FoSE article could be written about the ap-

plication of search techniques to software test data genera-
tion and there is already a FoSE in this volume on Testing
[10]. Fortunately, there is also already an excellent survey
of work on search based testing [60]. Since that survey was
published there has continued to be great interest in search
based testing.

The general idea behind all approaches to search based
test data generation is that the set of possible inputs to the
program forms a search space and the test adequacy crite-
rion is coded as a fitness function. For example, in order to
achieve branch coverage, the fitness function assesses how
close a test input comes to executing an uncovered branch;
in order to find worst case execution time, the fitness is
simply the duration of execution for the test case in ques-
tion. A wide variety of testing goals have been attacked us-
ing search, including structural testing, functional and non
functional testing, safety testing, robustness testing, stress
testing, mutation testing, integration testing and exception
testing.

4.7. Optimizing test data selection and prioritiza-
tion

In test case selection, the aim is to select a set of test
cases that achieve the same (or nearly the same) level of
test adequacy as the entire set. Regression test prioritiza-
tion seeks to order test cases used in regression testing so
that test goals are achieved earlier in the sequence of test
case application. These two related problems are examples
of feature subset selection and prioritization problems for
which search techniques and greedy algorithms have been
shown to be effective.

Rothermel et al. address the prioritization problem us-
ing greedy algorithms [73, 72]. Li et al. [54] provide a
comparison of greedy algorithms with other search tech-
niques, including hill climbing and genetic algorithms find-
ing that greedy algorithms perform best, with genetic algo-
rithms performing well. Walcott et al. [85] applied genetic
algorithms to the problem of time aware regression testing.
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Mansour [68] presents results from the application to
small laboratory programs of five selection algorithms for
regression testing: Simulated Annealing, Reduction, Slic-
ing, Dataflow and Firewall algorithms.

4.8. Optimizing maintenance and reverse engineer-
ing

Mancoridis et al. introduced the concept of software
modularization as a clustering problem for which search is
applicable [59]. This led to the development of a tool called
Bunch [58] which uses a variety of search algorithms in-
cluding hill climbing, simulated annealing and genetic algo-
rithms for search based software modularisation. The goal
of this work was to re-draw the module boundaries to in-
crease cohesion and reduce coupling. Cohesion and cou-
pling are combined into a single fitness function called MQ
(modularization Quality).

The problem is essentially one of finding near cliques in
a graph, the nodes of which denote modules and the edges
of which denote dependence between modules. Mancoridis
et al. [58] call this graph a Module Dependency Graph. The
Bunch tool produces a hierarchical clustering of the graph,
allowing the user to select the granularity of cluster size that
best suits their application. An example of the results of
clustering, using Bunch, is given in Figure 3, which is taken
from Mitchell and Mancoridis [65].

Harman et al. [38], studied the effect of assigning a
particular modularization granularity as part of the fitness
function, while Mahdavi et al. [57] showed that combining
the results from multiple hill climbs can improve on the re-
sults for simple hill climbing and genetic algorithm based
approaches. Harman et al. [42] explored the robustness of
the MQ fitness function in comparison with an alternative
measure of cohesion and coupling used in work on cluster-
ing gene expression data.

Despite several attempts to improve on the basic hill
climbing approach [38, 57, 64], this simple search tech-
nique has been found to be the most effective for this prob-
lem. Mitchell and Mancoridis recently published a survey
of the Bunch project and related work [65].

Clustering is a very general problem to which a number
of algorithms have been applied, not merely search based
algorithms. Clustering is likely to find further application
in software engineering applications, beyond the original
work on software modular structure. For example, Co-
hen [24] recently showed how search based clustering al-
gorithms could be applied to the problem of heap allocation
java program optimization.

5. Motivation for Metaheuristic Search
Precise optimization algorithms such as linear program-

ming, are straightforward deterministic algorithms. How-
ever, these deterministic optimization algorithms are often

Figure 3. A Module Dependency Graph and its
Modularisation using Bunch, taken from [65]

inapplicable in real world software engineering problems,
because the problems have objectives that cannot be charac-
terised by a set of linear equations. Often there are multiple
criteria and complex fitness functions.

Many of the optimization problems that arise from soft-
ware engineering practice are augmented versions of known
NP complete problems and, as such, they are suited to the
application of metaheuristic search techniques. This ac-
knowledgment brings with it all of issues that are associated
with the application of metaheuristic search techniques:

1. Global Optimum. There is no guarantee that the
global optimum will be found.

2. Predictability. Each execution will potentially yield
different results.

3. Computational Expense. A large number of individ-
ual candidate solutions may need to be considered be-
fore an acceptable quality solution is found.

Faced with these problems, it is natural to wonder how
software engineering could ever profit from this application
of such ‘expensive and unpredictable’ algorithms. How-
ever, as the previous section showed, there is a large com-
munity of researchers that has achieved successful results
using SBSE. This section attempts to explain how this can
be possible; how the three apparent daemons can be tamed.

1. Global Optimum
In many applications, there is a threshold, above which
a solution will be ‘good enough’ for purpose. Further-
more, optimization may not seek to find an optimal so-
lution to a problem, but rather, it may seek to improve
upon the current situation. For example, in generating
test data, the goal is to cover more of the uncovered
paths; in re-modularization, the goal is to improve co-
hesion and coupling; in cost estimation the goal is to
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find models better able to predict cost and effort. In all
these applications, a perfect solution, though desirable,
is not essential for progress.

2. Predictability
It is true that each execution of a metaheuristic search
algorithm can yield different results, but all search al-
gorithms are formulated in such a way that repeated
executions can only improve on a ‘best so far’ result,
rather then overturning a previous result. In this way
the algorithms are not merely anytime algorithms they
are also ‘any execution’. The algorithms may be ter-
minated at anytime and also after any number of exe-
cutions to yield a results which are the ‘best so far’.

3. Computational Expense
Hitherto, search based optimization techniques have
not been applied, on-line, to realtime software engi-
neering problems. The kinds of problems to which
search techniques seem to be readily applicable, are
those where the solution is highly complex and where
the software engineer is prepared to wait for an an-
swer. While speedy answers may be attractive, they
are not essential in many applications of SBSE. For
example, in test data generation, the tester is prepared
to wait for a set of test cases that achieve branch cover-
age; they can be otherwise occupied while the search
algorithm seeks to find such a set. In any case, it may
take a trained human several days of painstaking and
potentially error-prone activity to produce such a set.
The search based approach can typically achieve bet-
ter results at lower cost, freeing the human to work
on testing problems that require more imagination and
creativity.

6. Open problems and Challenges in Optimiza-
tion for Software Engineering

This section describes open problems and current work
in search based software engineering. This list of topics
is not exhaustive, but it gives a flavour of the richness and
diversity of on-going work in this area.

6.1. Stopping Criteria
Many of the search algorithms require a stopping crite-

rion. Typically this is taken to be some time or budget con-
straint on computation effort or it may be formulated as a
criterion that must be met (or surpassed) by the proposed
solution. Most previous work has adopted one of these two
possible approaches to determining when to terminate the
search.

However, the population based nature of the genetic al-
gorithm raises a third possibility: terminate the search when
the population has become homogeneous. In such a situa-
tion, where all individuals have very similar chromosomes,

there is little realistic chance of further improvements in fit-
ness. Any improvement that does occur will do so by mu-
tation, and so it will not take advantage of the evolutionary
operators.

This raises the question of how to measure solution sim-
ilarity. Clearly, this is application specific. Metrics are re-
quired that can determine the similarity of a set of candidate
solutions for software engineering problems. This is a chal-
lenge thrown up by SBSE to the software metrics research
community. Furthermore, such metrics will need to deter-
mine similarity cheaply, for they will be applied at regular
intervals during the search and to many individuals.

6.2. Landscape Visualisation
It is common in the search-based algorithm community

to attempt to visualize the fitness landscape [50, 71]. A nat-
ural approach is to use the fitness function values as a mea-
sure of height in a landscape where each individual in the
search space potentially occupies some location on the hor-
izontal plane. However, most search problems involve in-
dividuals made up of more than two components (or genes
in the case of genetic algorithms). Mapping an individual
from the search space into a two dimensional plane is there-
fore non-trivial. Two approaches to visualising the search
space have been used in SBSE work.

If there are only two decision variables or a projection of
the search space onto only two variables is edifying, then
it is possible to take a literal view of the search space. For
example, consider the two search spaces depicted in Fig-
ure 4, taken from work on search based testing [61]. In this
case the goal is to minimize the fitness function (depicted by
height on the z axis). The left hand landscape represents a
search space for which it is hard to find the global optimum,
while the transformed version of this landscape in the right
hand figure denotes a search space far more amenable to
search. In this way visualisation can be used to explore the
properties of search spaces.

In many cases, it is not possible to find a nontrivial search
problem with only two decision variables. In this situation
it is possible to map all n decision variables from a search
space onto a flat plane in such a manner that near neigh-
bours in the n dimensional search space lie close to one
another on the 2D plane. For example consider the plot of
peaks in a landscape depicted in Figure 5, taken from Kir-
sopp et al. [52]. This is a visualisation of the landscape
from a hill climbing approach to feature subset selection.
The features in this instance are software project attributes
used in a case–based software project cost estimation sys-
tem [52, 82]. In this figure, peaks that occur in the best
quartile of the hills are denoted by ‘x’ symbols, those which
occur in the next best quartile are denoted by ‘o’ symbols,
those in the third quartile by ‘+’ symbols and those in the
worst quartile by ‘.’ symbols. The division of peaks in
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Figure 4. Transforming the Search Landscape

Figure 5. Search Space Fitness Landscape
Peak Density Taken from Kirsopp et al.[52]

this way is coarse–grained and approximate, but nonethe-
less revealing: the figure clearly shows that, in this problem,
high peaks tend to cluster together. Although the dimension
squashing makes it impossible to say where this occurs on
the original landscape, the peak clustering suggests a stable
robust rejoin (see Section 7.2).

6.3. Characterizing the Software Engineering
Search Spaces

The existing work on SBSE has produced some very
valuable results, that have beaten previously available algo-
rithms and approaches. However, the work has been some-
what ad hoc. All authors (the present one included) have

tended to apply a rather arbitrary selection of search algo-
rithms (typically employing a local and a global search, to-
gether with a random search as a baseline). This is natural
for a new subject, in which the possibilities and parameters
are still being explored.

What is now needed is a more concerted effort to char-
acterise the difficulty of each of the software engineering
problems for which search has already produced good re-
sults. This characterisation will help to determine the most
suitable search technique to apply. It will also shed light on
the nature of the search problem denoted by the software
engineering application.

For new areas of software engineering that have yet to
be attacked using search based approaches it remains ac-
ceptable, important even, for authors to continue to exper-
iment with a variety of search algorithms in order to ob-
tain baseline data and to validate the application of search.
However, for the more widely visited software engineering
problems such as test data generation and modularization, it
will be important to build on this initial algorithmic exper-
imentation with some more deep analysis of the nature of
the search problem involved.

6.4. Human Competitive Results
Within the search optimization community, there is a

great interest in results that can be said to be human compet-
itive. The Genetic and Evolutionary Computation Confer-
ence (GECCO) recognised eight criteria (defined by Koza),
that characterize the nature of human competitiveness. A
result obtained by automatic computation is said to be hu-
man competitive if it meets any of the eight criteria, many
of which refer to patents and existing results.

Often, SBSE is applied in areas where there is no ex-
isting best solution, for example in test data generation and
modularization. In either of these fields it would seem likely
that existing solutions could beat human competitors in a
fair competition. One of the eight criteria is

8



The result holds its own or wins a regulated com-
petition involving human contestants (in the form
of either live human players or human-written
computer programs).

Such experiments have not been tried in SBSE research
(perhaps because the outcome is not in doubt). Nonetheless,
in order to champion the field of SBSE research, it would
be very attractive to have convincing examples of human
competitive results, and these are sure to accrue from the
growing interest and activity within this area.

7. Future Benefits to be Expected from Opti-
mization in Software Engineering

This section briefly reviews some of the benefits that can
be expected to come from further development of the field
of search based software engineering. These benefits are
pervading, though often implicit, themes in SBSE research.
To borrow the nomenclature of Aspect Oriented Software
Development, these are the ‘cross cutting concerns’ of the
SBSE world; advantages that can be derived from almost all
applications at various points in their use.

7.1. Scalability
One of the biggest problems facing software engineers

is that of scalability of results. Many approaches that are
attractive and elegant in the laboratory, turn out to be inap-
plicable in the field, because they lack scalability. However,
while it is easy to ask that a proposed solution should be
scalable, it is far less easy to construct a scalable solution in
many cases.

One of the attractions of the search based model of opti-
mization is that it is naturally parallelizable. Hill climbing
can be performed in parallel, with each climb starting at
a different point [57]. Genetic algorithms, being population
based, are also naturally parallel; the fitness of each individ-
ual can be computed in parallel, with minimal overheads.
Search algorithms in general and SBSE in particular, there-
fore offer a ‘killer application’ for the emergent paradigm
of ubiquitous user–level parallel computing.

Notwithstanding a breakthrough in quantum computa-
tion technology, it seems likely that future improvements
in processing speed are likely to be based on increasing
parallelism. Already, limited parallelism is widely used in
desktop computing and the importance of the drive toward
super-fast parallel computers is recognised at the highest
levels. In 2003, the Defense Advanced Research Projects
Agency committed $150M to the High Productivity Com-
puter Systems program, in which leading hardware manu-
facturers are now in competition to build a super-fast com-
puter by 2010.

This trend towards greater parallelism, the need for scal-
able software engineering and the natural parallelism of

many SBSE techniques all point to a likely significant de-
velopment of parallel SBSE to address the issue of software
engineering scale.

7.2. Robustness

In some software engineering applications, solution ro-
bustness may be as important as solution functionality. For
example, it may be better to locate an area of the search
space that is rich in fit solutions, rather than identifying an
even fitter solution that is surrounded by a set of far less fit
solutions.

In this way, the search seeks stable and fruitful areas of
the landscape, such that near neighbours of the proposed
solution are also highly fit according to the fitness function.
This would have advantages where the solution needs to be
not merely ‘good enough’ but also ‘strong enough’ to with-
stand small changes in problem character.

Hitherto, research on SBSE has tended to focus on the
production of the fittest possible results. However, many ap-
plication areas require solutions in a search space that may
be subject to change. This makes robustness a natural ‘sec-
ond order property’ to which the research community could
and should turn its attention. For instance, in project plan-
ning, one may seek an allocation of teams to work packages
that produces an early completion time, even when some of
the estimates for work package duration turn out to be over-
optimistic. Such an approach may produce a suboptimal so-
lution in terms of the earliest completion time for the stated
estimates of work package duration. However, this ‘subop-
timal’ solution may, nonetheless, be optimally robust. This
issue of robustness is related to the assessment of data sen-
sitivity discussed in Section 8.3.

7.3. Feedback and Insight

False intuition is often the cause of major error in soft-
ware engineering, leading to misunderstood specifications,
poor communication of requirements and implicit assump-
tions in designs. Search based software engineering can ad-
dress this problem. Unlike human–based search, automated
search techniques carry with them no bias. They automati-
cally scour the search space for the solutions that best fit the
(stated) human assumptions in the fitness function.

This is one of the central strengths of the search based
approach. It has been widely observed that search tech-
niques are good at producing unexpected answers. For ex-
ample, evolutionary algorithms have led to patented designs
for digital filters [75] and the discovery of patented antenna
designs [55]. Automated search techniques will effectively
work in tandem with the human, in an iterative process of
refinement, leading to better fitness functions and thereby,
better encapsulation of human assumptions and intuition.
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8. A Road-map for Future Work
This section provides a set of possible topic areas that the

author believes are important for the development of search
based software engineering research and practice. Natu-
rally, this is a personal set of topics and is not intended to be
exclusive. However, each of the topics described in this sec-
tion has yet to receive widespread attention from the SBSE
research community and, for each, there is the potential to
reap great rewards.

8.1. Multi Objective Optimization
Software engineering problems are typically multi ob-

jective problems. The objectives that have to be met are
often competing and somewhat contradictory. For exam-
ple, in project planning, seeking earliest completion time at
the cheapest overall cost will lead to some conflict of ob-
jectives. However, there does not necessarily exist a simple
tradeoff between the two, making it desirable to find ‘sweet
spots’ that optimize both.

Suppose a problem is to be solved that has n fitness func-
tion, f1, . . . , fn that take some vector of parameters x. One
simple–minded way to optimize these multiple objectives is
to combine them into a single aggregated fitness, F , accord-
ing to a set of coefficients, ci, . . . , cn:

F =
n∑

i=1

cifi(x)

This approach works when the values of the coefficients
determine precisely how much each element of fitness mat-
ters. For example, if two fitness functions, f1 and f2 are
combined using

F = 2 · f1(x) + f2(x)

then the coefficients c1 = 2, c2 = 1 explicitly capture
the belief that the property denoted by fitness function f 1

is twice as important as that denoted by fitness function f2.
The consequence is that the search may be justified in re-
jecting a solution that produces a marked improvement in
f2, if it also produces a smaller reduction in the value of f1.

Most work on SBSE uses software metrics in one form
or another as fitness functions [37]. However, the metrics
used are often those that are measured on an ordinal scale
[81]. As such, it is not sensible to combine these metrics
into an aggregate fitness in the manner described above.

The use of Pareto optimality is an alternative to aggre-
gated fitness. It is superior in many ways. Using Pareto
optimality, it is not possible to measure ‘how much’ better
one solution is than another, merely to determine whether
one solution is better than another. In this way, Pareto opti-
mality combines a set of measurements into a single ordinal
scale metrics, as follows:

Fitness 2

Fitness 1

Initial Pareto Front

True Pareto Front

Improved Approximations

Figure 6. Pareto Optimality and Pareto Fronts

F (x1) ≥ F (x2) ⇔ ∀i.fi(x1) ≥ fi(x2)

and, for strict inequality:

F (x1) > F (x2)
⇔

∀i.fi(x1) ≥ fi(x2) ∧ ∃i.fi(x1) > fi(x2)

Thus, under Pareto optimality, one solution is better than
another if it is better according to at least one of the indi-
vidual fitness functions and no worse according to all of the
others. Under the Pareto interpretation of combined fitness,
no overall fitness improvement occurs no matter how much
almost all of the fitness functions improve, should they do
so at the slightest expense of any one of their number.

When searching for solutions to a problem using Pareto
optimality, the search yields a set of solutions that are non–
dominated. That is, each member of the non-dominated set
is no worse than any of the others in the set, but also cannot
be said to be better. Any set of non–dominated solutions
forms a Pareto front. Consider Figure 6, which depicts the
computation of Pareto optimality for two imaginary fitness
functions. The longer the search algorithm is run the better
the approximation becomes to the real Pareto front.

Pareto optimality has many advantages. Should a single
solution be required, then coefficients can be re–introduced
in order to distinguish among the non–dominated set at
the current Pareto front. However, by refusing to conflate
the individual fitness functions into a single aggregate, the
search is less constrained. It can consider solutions that may
be overlooked by search guided by aggregate fitness.

The approximation of the Pareto front is also a useful
analysis tool in itself. For example, it may contain knee
points, where a small change in one fitness is accompanied
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by a large change in another. These knee points denote in-
teresting parts of the solution space that warrant closer in-
vestigation.

Often there are several candidate metrics that may be
used to measure some attribute of interest. The software
engineer may not be sure which is best, or even whether the
metrics truly measure the same attribute. Using a Pareto op-
timal search algorithm, the software engineer can examine
the Pareto front to see where the metrics are in agreement
and where they differ. The points of difference allow the
software engineer to gain insights into the behaviour of the
metrics.

Current work on software metrics and measurement is
rather static; viewing metrics as a mere passive measures
of attributes of interest. However, SBSE opens up the pos-
sibility of a more active, dynamic approach, in which the
metrics are the basis for optimization. For example, search
could be used to aggressively seek out points of disagree-
ment between a set of metrics, by defining fitness in terms
of the level of disagreement. This technique uses SBSE as
a means to validate software metrics. It allows all the tools
and techniques associated with SBSE to be used to explore
the search spaces implicitly denoted by metrics.

8.2. Interactive Optimization

All of the fitness functions so far considered in the lit-
erature on SBSE have been fully automated. This seems
to be a pre-requisite; fast fitness computation is needed for
repeated evaluation during the progress of the search. How-
ever, outside the SBSE domain of application, there has
been extensive work on fitness functions that incorporate
human judgement [33]. This form of search is known as
interactive optimization.

In software engineering, interactive optimization could
be used in a number of ways. Many problems may natu-
rally benefit from human evaluation of fitness. For exam-
ple, in design problems, the constraints that govern the de-
sign process may be ill–defined or subjective. It may also
be possible to use a search based approach to explore the
implicit assumptions in human assessment of solutions. For
example, by identifying the building blocks that make up
a good solution according to a human fitness evaluation, it
may be possible to capture otherwise implicit design con-
straints and desirable features.

The key problem with any interactive approach to opti-
mization lies in the requirement to repeatedly revert to the
human for an assessment of fitness, thereby giving rise to
possible fatigue and learning–effect bias. If this fatigue
problem can be overcome in the software engineering do-
main (as it has in other application domains) then interactive
optimization offers great potential benefits to SBSE.

8.3. Sensitivity Analysis
Many of the attributes that define the properties of a soft-

ware engineering problem can only be estimated. For exam-
ple, in the next release problem and in project planning, cus-
tomer desirability and work package effort and duration are
likely to be estimated. It would be surprising and quixotic
to base an approach to software engineering upon a founda-
tion that required perfect and accurate estimates.

SBSE has a role to play here too. In many software en-
gineering applications, search can be used to explore the
sensitivity of the solution space to the inputs. Instead of
seeking to find the global optimum, one can instead ask
questions such as

Which input values perturb the shape of the
search landscape most?

and

Which input values contribute most to the loca-
tion of known search space peaks?

This approach was used by Yoo [90], who introduced
a pseudo–exhaustive search algorithm for software compo-
nent selection (an instance of the feature subset selection
problem). Yoo’s algorithm partitions the search space into
as set of equivalence classes that can be searched exhaus-
tively, guaranteeing to locate the global optimum. Based on
this algorithm, Yoo was able to measure sensitivity changes
produced by inaccuracies in estimates of component cost.
He implemented this in a tool called Mosaic, which visual-
izes this sensitivity information.

8.4. Hybrid Optimization Algorithms
Many problems have unpredictable landscapes. These

can respond well to hybrid approaches. Though there has
been work on the combination of existing non-search based
algorithms [39], there has been little work on combinations
of search algorithms [27, 57].

A better understanding of search landscapes may suggest
the application of hybrid search techniques, which combine
the best aspects of existing search algorithms. Hybrids are
natural in search. For example, it is well known that, for
any search application, it makes sense to conclude a run of
a genetic algorithm with a simple hill climb from each so-
lution found. After all, hill climbing is cheap and effective
at locating the nearest local optima; why not apply it to the
final population?

There are also other possible combinations of search al-
gorithms that have been studied in applications to other en-
gineering areas, for example simulated annealing and ge-
netic algorithms have been combined to produce an anneal-
ing GA [83]. Estimation of Distribution Algorithms (EDAs)
[67] are another form of hybrid search, in which the algo-
rithm’s behaviour is adapted as the search proceeds.
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8.5. On Line Optimization
All applications of SBSE of which the author is aware

concern what might be termed ‘static’ or ‘offline’ optimiza-
tion problems. That is, problems where the algorithm is
executed off line in order to find a solution to the problem
in hand. This is to be contrasted with ‘dynamic’ or ‘on line’
SBSE, in which the solutions are repeatedly generated in
real time and applied during the lifetime of the execution of
the system to which the solution applies.

The static nature of the search problems studied in the
existing literature on SBSE has tended to delimit the choice
of algorithms and the methodology within which the use of
search is applied. Particle Swarm Optimization [91] and
Ant Colony Optimization [30] techniques have not been
used in the SBSE literature. These techniques work well
in situations where the problem is rapidly changing and the
current best solution must be continually adapted.

For example, the paradigm of application for Ant Colony
Optimization is dynamic network routing, in which paths
are to be found in a network, the topology of which is sub-
ject to continual change. The ants lay and respond to a pher-
amone trail that allows them quickly to adapt to network
connection changes.

It seems likely that the ever changing and dynamic na-
ture of many software engineering problems would suggest
possible application areas for Ant Colony Optimization and
Particle Swarm Optimization techniques. It is somewhat
surprising that highly adaptive search techniques like Ant
Colony Optimization have yet to be applied in SBSE. How-
ever, these highly dynamic software engineering application
areas have yet to be identified. Perhaps Service Oriented
and Agent Oriented Software Engineering paradigms will
provide candidate application areas for ant colony and par-
ticle swarm optimization.

9. Summary
This paper has provided an overview of the area of soft-

ware engineering activity that has come to be known as
Search Based Software Engineering (SBSE). In SBSE the
goal is to use search based optimization algorithms to auto-
mate the construction of solutions to software engineering
problems. SBSE also aims to better understand these prob-
lems by exploration of software engineering fitness func-
tions and search spaces that they denote.

The first papers that applied search based optimization
to software engineering problems can be traced back to the
early 1990s. However, the past five years have witnessed a
particularly dramatic increase in SBSE activity, with many
new applications being addressed. This paper seeks to pro-
vide a brief survey of these application areas and the main
results achieved so far. The paper also provides a set of top-
ics for future research in SBSE and a description of some of
the benefits that may accrue from its wider application.

10. Acknowledgements
This FoSE arose as a result of recent work undertaken

by the author in collaboration with many other colleagues
in the growing Search Based Software Engineering (SBSE)
community. The discussions within this community have
helped to form the ideas presented in this paper. Harman’s
work is currently funded by the EPSRC project, SEBASE
(2006-2011), for which the other principal investigators are
John Clark (University of York) and Xin Yao (University
of Birmingham) and industrialists from DaimlerChrysler
Berlin, Motorola UK and IBM UK. He is also supported
by the EU Specific Targeted Research Project: EvoTest
(2006-2009). This paper draws on these projects and from
keynotes and tutorials on SBSE prepared in collaboration
with Joachim Wegener at DaimlerChrysler [43, 44, 45].
Figures 2, 3, 4 and 5 are included by kind permission of
Vic Rayward Smith, Spiros Mancoridis, Phil McMinn and
Martin Shepperd respectively.

References

[1] J. Aguilar-Ruiz, I. Ramos, J. C. Riquelme, and M. Toro.
An evolutionary approach to estimating software devel-
opment projects. Information and Software Technology,
43(14):875–882, Dec. 2001.

[2] E. Alba and J. F. Chicano. Observations in using parallel
and sequential evolutionary algorithms for automatic soft-
ware testing. Computers and Operations Research (COR)
focused issue on Search Based Software Engineeering. to
appear.

[3] G. Antoniol, M. Di Penta, and M. Harman. A robust search–
based approach to project management in the presence of
abandonment, rework, error and uncertainty. In 10th In-
ternational Software Metrics Symposium (METRICS 2004),
pages 172–183, Los Alamitos, California, USA, Sept. 2004.
IEEE Computer Society Press.

[4] G. Antoniol, M. D. Penta, and M. Harman. Search-based
techniques applied to optimization of project planning for a
massive maintenance project. In 21st IEEE International
Conference on Software Maintenance, pages 240–249, Los
Alamitos, California, USA, 2005. IEEE Computer Society
Press.

[5] A. Bagnall, V. Rayward-Smith, and I. Whittley. The next
release problem. Information and Software Technology,
43(14):883–890, Dec. 2001.

[6] A. Baresel, D. W. Binkley, M. Harman, and B. Korel. Evo-
lutionary testing in the presence of loop–assigned flags: A
testability transformation approach. In International Sympo-
sium on Software Testing and Analysis (ISSTA 2004), pages
108–118, Omni Parker House Hotel, Boston, Massachusetts,
July 2004. Appears in Software Engineering Notes, Volume
29, Number 4.

[7] A. Baresel, H. Sthamer, and M. Schmidt. Fitness func-
tion design to improve evolutionary structural testing. In
GECCO 2002: Proceedings of the Genetic and Evolution-
ary Computation Conference, pages 1329–1336, San Fran-

12



cisco, CA 94104, USA, 9-13 July 2002. Morgan Kaufmann
Publishers.

[8] A. Barreto, M. Barros, and C. Werner. Staffing a sowftare
project: A constraint satisfaction and optimization based ap-
proach. Computers and Operations Research (COR) focused
issue on Search Based Software Engineeering.

[9] T. V. Belle and D. H. Ackley. Code factoring and the
evolution of evolvability. In GECCO 2002: Proceedings
of the Genetic and Evolutionary Computation Conference,
pages 1383–1390, San Francisco, CA 94104, USA, 9-13
July 2002. Morgan Kaufmann Publishers.

[10] A. Bertolino. Software testing research: Achievements,
challenges, dreams. In L. Briand and A. Wolf, editors, Fu-
ture of Software Engineering 2007, Los Alamitos, Califor-
nia, USA, 2007. IEEE Computer Society Press. This vol-
ume.

[11] L. Bottaci. Instrumenting programs with flag variables for
test data search by genetic algorithms. In GECCO 2002:
Proceedings of the Genetic and Evolutionary Computation
Conference, pages 1337–1342, New York, 9-13 July 2002.
Morgan Kaufmann Publishers.

[12] S. Bouktif, G. Antoniol, E. Merlo, and M. Neteler. A novel
approach to optimize clone refactoring activity. In GECCO
2006: Proceedings of the 8th annual conference on Genetic
and evolutionary computation, volume 2, pages 1885–1892,
Seattle, Washington, USA, 8-12 July 2006. ACM Press.

[13] S. Bouktif, H. Sahraoui, and G. Antoniol. Simulated anneal-
ing for improving software quality prediction. In GECCO
2006: Proceedings of the 8th annual conference on Genetic
and evolutionary computation, volume 2, pages 1893–1900,
Seattle, Washington, USA, 8-12 July 2006. ACM Press.

[14] L. C. Briand, J. Feng, and Y. Labiche. Using genetic algo-
rithms and coupling measures to devise optimal integration
test orders. In SEKE, pages 43–50, 2002.

[15] L. C. Briand, Y. Labiche, and M. Shousha. Stress testing
real-time systems with genetic algorithms. In Genetic and
Evolutionary Computation Conference, GECCO 2005, Pro-
ceedings, Washington DC, USA, June 25-29, 2005, pages
1021–1028. ACM, 2005.

[16] C. J. Burgess and M. Lefley. Can genetic programming
improve software effort estimation? A comparative evalu-
ation. Information and Software Technology, 43(14):863–
873, Dec. 2001.

[17] E. Burke and G. Kendall. Search Methodologies. Intro-
ductory tutorials in optimization and decision support tech-
niques. Springer, 2005.

[18] G. Canfora and M. Di Penta. New frontiers in reverse en-
gineering. In L. Briand and A. Wolf, editors, Future of
Software Engineering 2007, Los Alamitos, California, USA,
2007. IEEE Computer Society Press. This volume.

[19] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani. An
approach for qoS-aware service composition based on ge-
netic algorithms. In H.-G. Beyer and U.-M. O’Reilly, ed-
itors, Genetic and Evolutionary Computation Conference,
GECCO 2005, Proceedings, Washington DC, USA, June 25-
29, 2005, pages 1069–1075. ACM, 2005.

[20] B. Cheng and J. Atlee. From state of the art to the future
of requirements engineering. In L. Briand and A. Wolf, ed-
itors, Future of Software Engineering 2007, Los Alamitos,

California, USA, 2007. IEEE Computer Society Press. This
volume.

[21] F. Chicano and E. Alba. Management of software projects
with gas. In 6th Metaheuristics International Conference
(MIC2005), Vienna, Austria, Aug. 2005.

[22] J. Clark, J. J. Dolado, M. Harman, R. M. Hierons, B. Jones,
M. Lumkin, B. Mitchell, S. Mancoridis, K. Rees, M. Roper,
and M. Shepperd. Reformulating software engineering as a
search problem. IEE Proceedings — Software, 150(3):161–
175, 2003.

[23] E. J. Coffman, M. Garey, and D. Johnson. Approximation
algorithms for bin-packing. In Algorithm Design for Com-
puter System Design, 1984.

[24] M. Cohen, S. B. Kooi, and W. Srisa-an. Clustering the
heap in multi-threaded applications for improved garbage
collection. In GECCO 2006: Proceedings of the 8th annual
conference on Genetic and evolutionary computation, vol-
ume 2, pages 1901–1908, Seattle, Washington, USA, 8-12
July 2006. ACM Press.

[25] K. D. Cooper, P. J. Schielke, and D. Subramanian. Optimiz-
ing for reduced code space using genetic algorithms. In Pro-
ceedings of the ACM Sigplan 1999 Workshop on Languages,
Compilers and Tools for Embedded Systems (LCTES‘99),
volume 34.7 of ACM Sigplan Notices, pages 1–9, NY, May 5
1999. ACM Press.

[26] V. Cortellessa, F. Marinelli, and P. Potena. An optimization
framework for “build–or–buy” decisions in sowftare archi-
tecture. Computers and Operations Research (COR) focused
issue on Search Based Software Engineeering.

[27] C. Del Grosso, G. Antoniol, E. Merlo, and P. Galinier. De-
tecting buffer overflow via automatic test input data gener-
ation. Computers and Operations Research (COR) focused
issue on Search Based Software Engineeering.

[28] J. J. Dolado. A validation of the component-based method
for software size estimation. IEEE Transactions on Software
Engineering, 26(10):1006–1021, 2000.

[29] J. J. Dolado. On the problem of the software cost func-
tion. Information and Software Technology, 43(1):61–72,
Jan. 2001.

[30] M. Dorigo and C. Blum. Ant colony optimization theory: A
survey. Theoretical Computer Science, 344(2-3):243–278,
2005.

[31] D. Fatiregun, M. Harman, and R. Hierons. Evolving trans-
formation sequences using genetic algorithms. In 4th Inter-
national Workshop on Source Code Analysis and Manipu-
lation (SCAM 04), pages 65–74, Los Alamitos, California,
USA, Sept. 2004. IEEE Computer Society Press.

[32] D. Fatiregun, M. Harman, and R. Hierons. Search-based
amorphous slicing. In 12th International Working Con-
ference on Reverse Engineering (WCRE 05), pages 3–
12, Carnegie Mellon University, Pittsburgh, Pennsylvania,
USA, Nov. 2005.

[33] P. Funes, E. Bonabeau, J. Herve, and Y. Morieux. Interactive
multi-participant task allocation. In Proceedings of the 2004
IEEE Congress on Evolutionary Computation, pages 1699–
1705, Portland, Oregon, 20-23 June 2004. IEEE Press.

[34] N. Gold, M. Harman, Z. Li, and K. Mahdavi. A search based
approach to overlapping concept boundaries. In 22nd Inter-
national Conference on Software Maintenance (ICSM 06),
Philadelphia, Pennsylvania, USA, Sept. 2006. To appear.

13



[35] D. Greer and G. Ruhe. Software release planning: an evo-
lutionary and iterative approach. Information & Software
Technology, 46(4):243–253, 2004.

[36] Q. Guo, R. M. Hierons, M. Harman, and K. Derderian. Con-
structing multiple unique input/output sequences using evo-
lutionary optimisation techniques. IEE Proceedings — Soft-
ware, 152(3):127–140, 2005.

[37] M. Harman and J. Clark. Metrics are fitness functions too. In
10th International Software Metrics Symposium (METRICS
2004), pages 58–69, Los Alamitos, California, USA, Sept.
2004. IEEE Computer Society Press.

[38] M. Harman, R. Hierons, and M. Proctor. A new represen-
tation and crossover operator for search-based optimization
of software modularization. In GECCO 2002: Proceedings
of the Genetic and Evolutionary Computation Conference,
pages 1351–1358, San Francisco, CA 94104, USA, 9-13
July 2002. Morgan Kaufmann Publishers.

[39] M. Harman, L. Hu, R. M. Hierons, J. Wegener, H. Sthamer,
A. Baresel, and M. Roper. Testability transformation. IEEE
Transactions on Software Engineering, 30(1):3–16, Jan.
2004.

[40] M. Harman and B. F. Jones. Search based software engineer-
ing. Information and Software Technology, 43(14):833–839,
Dec. 2001.
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