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SUMMARY

When testing from finite state machines, a failure observed in the implementation under test (IUT) is called
a symptom. A symptom could have been caused by an earlier state transfer failure. Transitions that may
be used to explain the observed symptoms are called diagnosing candidates. Finding strategies to generate
an optimal set of diagnosing candidates that could effectively identify faults in the IUT is of great value in
reducing the cost of system development and testing. This paper investigates fault diagnosis when testing
from finite state machines and proposes heuristics for fault isolation and identification. The proposed
heuristics attempt to lead to a symptom being observed in some shorter test sequences, which helps to
reduce the cost of fault isolation and identification. The complexity of the proposed method is analysed.
A case study is presented, which shows how the proposed approach assists in fault diagnosis. Copyright c©
2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Testing is an integral part of system development. Conformance testing aims to check whether the
implementation under test (IUT) is functionally equivalent to its specification. Many approaches have
been proposed for generating an efficient test from a state-based system. These methods are mostly
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based upon traditional finite automata theory and, in particular, they model the system as a finite state
machine (FSM) [1–5].

1.1. Background

In FSM-based testing, a standard test strategy tests a transition in two parts: input/output (I/O) check
and tail state verification. The former part aims to determine whether a transition of an IUT produces
the expected output while the latter checks that the IUT arrives at the specified state when the I/O check
is finished. Unique input/output (UIO) sequence, distinguishing sequence (DS) and characterizing set
(CS) are three commonly used techniques for state verification. Due to their practical characteristics,
UIO-based techniques are often used for test sequence generation [6].

Aho et al. [1] showed how an efficient test sequence may be produced using UIOs for state
verification. Shen et al. [4] extended the method by using multiple UIOs for each state and showed that
this leads to a shorter test sequence. Yang and Ural [5] and Miller and Paul [7] showed that overlap can
be used in conjunction with (multiple) UIOs to further reduce the test sequence length. Hierons [8,9]
represented overlap by invertible sequences.

When testing an FSM, I/O differences exhibited between the IUT and its specification suggest the
existence of faults in the implementation. The first observed faulty I/O pair in an observed I/O sequence
is called a symptom. A symptom could have been caused by either an incorrect output (an output fault)
or an earlier incorrect state transfer (a state transfer fault). Applying strategies to determine the location
of faults is therefore important.

Ghedamsi and von Bochmann [10] and Ghedamsi et al. [11] generated a set of transitions whose
failure could explain the behaviour exhibited. The set is called a conflict set. Transitions in the set
are called candidates. They then produced tests (called distinguishing tests) in order to find the faulty
transitions within this set. However, in their approach, the cost of generating a conflict set was not
considered. Hierons [12] extended the approach to a special case where a state identification process
is known to be correct. Test cost is then analysed by applying statistical methods. As the problem of
optimizing the cost of testing is NP-hard [12], heuristic optimization techniques such as Tabu Search
(TS) and Hill Climbing (HC) are therefore suggested.

1.2. Motivation

This paper investigates fault diagnosis when testing from FSMs. The work was motivated by the
following question. Let ts be a test sequence of length L and suppose that the ith input of ts, 1 ≤ i ≤ L,
executes a faulty transition trf in the IUT. The question is whether it is possible to define the maximum
number of inputs that is needed to reveal the failure (a symptom is exhibited) after trf is executed.
In other words, given a symptom exhibited at the j th input of ts, is it possible to define an interval with
a maximum range dmax, dmax ≥ 0, such that inputs between (j − dmax)th and the j th of ts execute a
sequence of transitions that must contain trf ? If such an interval can be defined, the process of fault
isolation is then reduced to a shorter test sequence.

Obviously, the smaller dmax is, the fewer transitions will be considered when isolating the faulty
transition. It is always preferred that a symptom is observed immediately after a faulty transition is
executed. However, it may require more inputs to exhibit the fault.
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Clearly, the sequence of transitions executed up to the symptom contains the faulty transition that
causes the occurrence of the symptom. However, diagnosing within such a set of candidates might
result in a high cost of fault isolation. Finding ways to define the maximum number of inputs that is
required to exhibit an executed fault is therefore of great value in minimizing the cost of fault isolation
and identification.

In this paper, heuristics are proposed for fault diagnosis, which helps to reduce the cost of fault
isolation and identification. In the proposed method, a set of transitions with minimum size is
constructed to isolate the faulty transition that could explain an observed symptom. The erroneous
final state of the isolated faulty transition is further identified by applying the proposed heuristics.
The heuristics defined in this paper consider the use of the U-method [1]. One can easily extend the
approach to other formal methods such as the W-method [13] and the Wp-method [14].

The rest of this paper is organized as follows. Section 2 presents the basic definitions and notation
of finite state machines and fault diagnosis. Section 3 introduces the detection of a single fault and
the construction of a conflict set. Section 4 investigates the minimization of a conflict set. Section 5
studies fault isolation and identification, a case study is carried out in Section 6 and the complexity of
the proposed approach is analysed in Section 7. Conclusions are finally drawn in Section 8.

2. PRELIMINARIES

In this section, definitions and notation of finite state machines and fault diagnosis are introduced.

2.1. Finite state machines

A deterministic FSM M is defined as a 6-tuple M = (I, O, S, δ, λ, s0), where I , O , and S are finite
and non-empty sets of input symbols, output symbols and states, respectively, s0 is the initial state
of M , δ : S × I −→ S is the state transition function and λ : S × I −→ O is the output function. If the
machine receives an input a ∈ I when in state s ∈ S, it moves to the state δ(s, a) and produces output
λ(s, a). Functions δ and λ can be extended to take input sequences in the usual way [15].

Two states si and sj are said to be equivalent if and only if for every input sequence α the machine
produces the same output sequence, λ(si , α) = λ(sj , α). Machines M1 and M2 are equivalent if and
only if for every state in M1 there is an equivalent state in M2, and vice versa. A machine M is minimal
(reduced) if and only if no FSM with fewer states than M is equivalent to M . It is assumed that any
FSM being considered is minimal since any (deterministic) FSM can be converted into an equivalent
(deterministic) minimal FSM [15].

A FSM is completely specified if and only if for each state si and input a there is a specified next
state si+1 = δ(si , a) and a specified output oi = λ(si , a); otherwise, the machine is partially specified.
A partially specified FSM can be converted to a completely specified one in two ways [15]. One way
is to define an error state. When a machine is in state s and receives an input a such that there is no
transition from s with input a, it moves to the error state with a given (error) output. The other way is
to add a loop transition. When receiving an undefined input, the state of a machine remains unchanged.
At the same time, the machine produces no output. An FSM is strongly connected if, given any ordered
pair of states (si, sj ), there is a sequence of transitions that moves the FSM from si to sj .

It is assumed throughout this paper that an FSM is deterministic, minimal, completely specified and
strongly connected.
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2.2. Conformance testing

Given a specification FSM M , for which the complete transition diagram is available, and an
implementation M ′, for which only its I/O behaviour can be observed (‘black box’), a test is required to
determine whether the I/O behaviour of M ′ conforms to that of M . This is called conformance testing.
A test sequence that solves this problem is called a checking sequence. An I/O difference between the
specification and implementation can be caused by either an incorrect output (an output fault) or an
earlier incorrect state transfer (a state transfer fault). The latter can be detected by adding a final state
check after a transition. A standard test strategy is:

1. homing: move M ′ to an initial state s;
2. output check: apply an input sequence α and compare the output sequences generated by M and

M ′ separately;
3. tail state verification: use state verification techniques to check the final state.

The first step is known as homing a machine to a desired initial state. The second step checks whether
M ′ produces the desired output sequence. The last step checks whether M ′ is in the expected state
s′ = δ(s, α) after the transition. UIO sequence, DS and CS are three commonly used techniques for
state verification.

A UIO sequence of a state si is an I/O sequence x/y, that may be observed from si , such that the
output sequence produced by the machine in response to x from any other state is different from y,
i.e. λ(si , x) = y and λ(si , x) �= λ(sj , x) for any i �= j . A DS defines a UIO for every state. While not
every FSM has a UIO for each state, some FSMs without a DS have a UIO for each state.

A distinguishing sequence is an input sequence that produces a different output for each state.
Not every FSM has a DS.

A characterizing set W is a set of input sequences with the property that, for every pair of states
(si , sj ), j �= i, there is some w ∈ W such that λ(si , w) �= λ(sj , w). Thus, the output sequences produced
by executing each w ∈ W from sj verify sj .

UIOs are often used for test generation. However, due to the problem of fault masking in UIOs,
a UIO sequence generated from the specification FSM might not be able to uniquely identify the
corresponding state in the IUT [2,16]. Guo et al. [17] studied the problem and proposed a new type
of Unique Input/Output Circuit (UIOC) sequence for state verification, which helps to increase the
robustness of UIOs.

UIOCs are particular types of UIOs where the final states are the same as their initial states.
Guo et al. [17] formalized the fault masking into two basic types and proposed solutions to overcome
them. By checking the final state s of a UIO with the UIO for s, type I of fault masking discussed by
Guo et al. might be avoided; by using overlap or internal state observation schema, the internal states
that a UIO sequence traverses are checked, which helps to overcome type II of fault masking discussed
by Guo et al.

Two advantages can be noted when UIOCs are applied. Firstly, robustness of UIOs is enhanced,
which makes the test more robust, and, secondly, the use of UIOs for test generation can simplify the
test structure, which reduces the complexity of fault analysis.

It is assumed throughout this paper that any test sequence considered has been generated by using a
standard test strategy. This work considers the use of UIOCs for state verification.
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2.3. Fault diagnosis

In testing, a test sequence ts is applied to an IUT M ′. The observed I/O sequence is then compared
with that produced by the specification FSM M . I/O differences exhibited between M and M ′ indicate
the existence of faults in M ′. The first observed faulty I/O pair in an observed I/O sequence is called a
symptom. A symptom could have been caused by either an incorrect output (an output fault) produced
from the transition being tested in M ′ or an earlier incorrect state transfer (a state transfer fault) that
occurs in a transition that has already been executed. It is, therefore, important to define strategies to
guide the construction of test sequences. These test sequences could be used to (effectively) isolate the
faulty transitions in M ′ that explain the symptoms exhibited.

The process of isolating faults from the IUT with regard to the symptoms observed in an I/O
sequence is called fault diagnosis [6].

3. ISOLATING A SINGLE FAULT

This section introduces an approach for detecting a single fault in the IUT and the construction of a
conflict set for fault diagnosis.

3.1. Detecting a single fault

When testing an IUT, a set of tests TC = {tc1, tc2, . . . , tcl} needs to be developed. A test tci consists of
a sequence of expected transitions 〈ti,1, ti,2, . . . , ti,ni 〉, starting at s0, with input 〈xi,1, xi,2, . . . , xi,ni 〉
and the expected output 〈yi,1, yi,2, . . . , yi,ni 〉, where yi,ni is the expected output after input xi,ni .
When executed, tci produces the observed output 〈zi,1, zi,2, . . . , zi,ni 〉. If differences between
yi = 〈yi,1, yi,2, . . . , yi,ni 〉 and zi = 〈zi,1, zi,2, . . . , zi,ni 〉 appear, there must exist at least one faulty
transition in the implementation. The first difference exhibited between yi and zi is called a symptom.
Additional tests are necessary in order to isolate the faulty transitions that cause the observed symptom.

3.2. Generating conflict sets

A conflict set is a set of transitions, each of which could be used to explain a symptom exhibited. Here,
the work focuses on identifying the faulty transition that is responsible for the first exhibited symptom.
The transitions after the symptom are ignored.

Suppose, for a test tci , the sequence of expected transitions is 〈ti,1, ti,2, . . . , ti,ni 〉 where ni is the
number of transitions. When executed with 〈xi,1, xi,2, . . . , xi,ni 〉, a symptom occurs at the input xi,j .
The conflict set of the maximum size is {ti,1, ti,2, . . . , ti,l} where 1 ≤ l ≤ ni .

4. MINIMIZING THE SIZE OF A CONFLICT SET

If the number of transitions in a conflict set is large, the effort required to isolate the fault could be
high. It is therefore useful to reduce the size of a conflict set. Two abstract schema are applied in this
paper:
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1. transition removals using transfer sequences;
2. transition removals using repeated states.

In the first schema, a short transfer sequence is used to remove a segment of inputs from the original
test sequence; this is intended to lead to a symptom being observed in a shorter test sequence. In the
second schema, a segment of inputs is further removed from the original test sequence. These inputs
execute a sequence of transitions where the initial state of the first transition is the final state of the
last transition. By such an operation, a symptom might be observed in a shorter test sequence, which
helps to reduce the cost of fault isolation. The two removal schema are discussed in the following
subsections.

4.1. Estimating a fault location

Once a symptom is observed, the set of transitions executed up to the symptom constitutes a conflict set
Sconflict with the maximum size. A subset of transitions Sr ⊂ Sconflict might be removed to reduce the
size of Sconflict by applying some transfer sequences. Before explaining this in detail, some concepts
are defined.

Definition 1. A UIO sequence generated from the specification FSM is a strong UIO if it can identify
the corresponding state in the IUT; otherwise, it is a weak UIO.

Due to the problem of fault masking in UIOs, a UIO sequence generated from the specification FSM
might lose its property of uniqueness and fail to identify its corresponding state in the IUT [2,16].

Definition 2. When testing an IUT, if the UIOs used for the generation of a test sequence are all strong
UIOs, the test is a strong test and the test sequence is a strong test sequence; otherwise, the test is a
weak test and the test sequence is a weak test sequence.

Definition 3. In a UIO-based test, if there are k weak UIOs in the test sequence, the test is called a
k-degree weak test and the test sequence is a k-degree weak test sequence.

It can be seen that a strong test is a 0-degree weak test.

Definition 4. Let [a, b] be the interval of transitions between the ath and the bth inputs from an input
sequence α. A transition tr is said to be within [a, b] of α if the cth input executes tr when α is applied
to the FSM for some a ≤ c ≤ b.

In FSM-based testing, a complete test sequence should test all transitions in the FSM M . A transition
is tested by checking its I/O behaviour plus the tail state verification. Once a transition test is finished,
M arrives at a state s. If s is not the initial state s′ of the transition selected for the following test,
a transfer sequence is required to move M to s′. This transfer sequence constitutes a linking sequence
in the final test sequence.

Definition 5. A linking sequence in a test sequence for an FSM M is a transfer sequence that moves
M to the initial state of a transition under test after the previous transition test is finished.

Proposition 1. In a UIO-based test, if the test is a strong test and a symptom is observed at the
ath input, then the faulty transition that causes the occurrence of the symptom must be within
[(a − LUIO(max) − LLink(max)), a] of the inputs where LUIO(max) is the maximum length of UIOs and
LLink(max) the maximum length of linking sequences.
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Figure 1. Fault-masked UIO cycling.

Proof. The standard strategy of a transition test in a UIO-based test is formed by a transition I/O test
and tail state verification. Since the test is a strong test, no problem of fault masking exists in the
test sequence. Suppose a faulty transition is executed at the bth input and the fault is unveiled with
an observable symptom at the ath input. If the transition has an I/O error, the fault is detected by the
bth input (a = b); otherwise, if the transition is one under test, the faulty final state is detected by the
following state verification with maximum length LUIO(max) (b ≤ a ≤ b + LUIO(max)), or, if the faulty
transition is an element of a linking sequence, the following inputs move the machine to the initial state
of the next transition under test with the maximum steps of LLink(max). After executing the transition
with one input, the faulty final state can be detected by the forthcoming state verification with the
maximum steps of LUIO(max) (b ≤ a ≤ b + LLink(max) + 1 + LUIO(max)). Therefore, if a symptom is
observed by a strong test sequence at the ath input, the faulty transition that caused the occurrence of
the symptom must be within [(a − LUIO(max) − LLink(max)), a] of the inputs. �

Definition 6. In a weak test, if a UIO sequence fails to identify the corresponding state in the IUT more
than once, the problem is called fault-masked UIO cycling.

An example of fault-masked UIO cycling is illustrated in Figure 1 where a state transfer error occurs
in t1(si → sj ) first, leading to an erroneous final state sx . Owing to fault masking, the UIO of sj fails to
find the error, moving the FSM to sz. Suppose, according to the test order, t2(sk → sj ) is tested after t1.
When responding to the input, the IUT produces the same output as defined in the specification and
arrives at sx . When applying the UIO of sj , it again fails to find the fault. The UIO of sj appears in the
test twice, in both cases, failing to exhibit an incorrect final state in the observed I/O sequence.

Proposition 2. In a k-degree weak test, if the problem of fault-masked UIO cycling does not exist and
a symptom is observed at the ath input, then the faulty transition that causes the occurrence of the
symptom must be within [(a + 1 − (k + 1) × (LUIO(max) + LLink(max) + 1)), a] of the inputs where
LUIO(max) is the maximum length of UIOs and LLink(max) the maximum length of linking sequences.

Proof. In a similar way to Proposition 1, a proof can be obtained by considering the test structure.
Since no problem of fault-masked UIO cycling exists in the test, if there are k weak UIOs in
the test, the faulty final state of a faulty transition can be detected with the maximum steps of
(k + 1) × (LUIO(max) + LLink(max) + 1). �

Testing can be simplified if UIOC sequences are applied for state verification. When UIOCs are
used, no linking sequence is required, namely, LLink(max) = 0.
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Figure 2. Reducing the size of a conflict set by applying a transfer sequence.

4.2. Reducing the size of a conflict set using transfer sequences

4.2.1. Making a hypothesis

Once a conflict set Sconflict is defined, it can be refined. A subset of transitions Sr in Sconflict can
be removed according to Propositions 1 and 2. Figure 2 demonstrates a paradigm. Let LUIO(max)

= 2. Suppose a symptom is observed at the ith input where it executes the transition t7 (sf → sg).
The conflict set with the maximum size is then Sconflict = {t1, t2, t3, t4, t5, t6, t7}. If the test is a strong
test, the faulty transition must be within [(i − 2), i] of the inputs, namely, it must be in the subset of
transitions Sf = {t5, t6, t7} where Sconflict = Sf ∪ Sr and Sr = {t1, t2, t3, t4}.

4.2.2. Verifying the hypothesis

To verify the hypothesis, a new test sequence is constructed by concatenating a shortest transfer
sequence with the inputs that execute t5, t6 and t7 from the original test. The transfer sequence moves
the FSM from s0 to sd , removing Sr from Sconflict. In order to increase confidence that the IUT arrives
at an expected final state, the final state is verified by its UIOC sequence.

When the new test sequence is applied to the system, two observations need to be made: (1) have any
failures been observed from applying the transfer sequence in the new test sequence? (2) if no failure
is exhibited by the transfer sequence, the I/O pairs observed afterwards in the new test sequence need
to be compared to those observed after sd in the original test to check if there exist any differences.
If a failure is observed by applying the transfer sequence, transitions executed by the transfer sequence
constitute a new conflict set S′

conflict and additional tests need to be developed to isolate the fault.
Since the transfer sequence traverses the shortest path from s0 to sd , |S′

conflict| ≤ |Sconflict|.
Let tr′

f be the faulty transition that is identified in S′
conflict. If tr′

f ∈ Sconflict, tr′
f is defined as the

principal faulty transition that causes the occurrence of the observed symptom in the original test.
The process of isolating the faulty transition for the observed symptom is then complete. More faults
might exist in Sconflict, and these faults can be isolated by constructing some new test sequences where
tr′

f is not executed or is executed as late as possible; otherwise, if tr′
f /∈ Sconflict, one more fault is

detected. tr′
f needs to be further processed as described in Section 5.2. Meanwhile, a new transfer

sequence needs to be constructed until no failure is exhibited by this sequence.
Suppose, after applying the transfer sequence, no I/O change is found when the sequence of

transitions in Sf is executed; this provides evidence that both the transfer sequence and the input

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 17:41–57
DOI: 10.1002/stvr



HEURISTICS FOR FAULT DIAGNOSIS 49

Figure 3. Reducing the size of a conflict set by considering the repeated states.

sequence that executes Sr in the original test make the FSM arrive at the same state scom. Since the final
state of the transfer sequence is verified by its UIOC sequence, evidence that scom = sd is provided as
well. This further suggests that Sf contains the faulty transition that causes the symptom. Additional
tests need to be developed to identify the faulty transition.

Having tested all transitions in Sconflict, if no faulty transition is defined, this implies that at least one
UIO fails to identify the corresponding state. The test is a weak test. Proposition 2 can be applied to
estimate the input interval in which the faulty transition might fall. The process starts by considering
[(i + 1 − (k + 1) × (LUIO(max) + LLink(max) + 1)), i]|k=1 first. By removing a set of transitions, if the
faulty transition is still not isolated, k is increased by 1. The process is repeated until the faulty transition
is isolated.

The above considers the situation where no problem of fault-masked UIO cycling exists in a test
sequence. The existence of such a problem in a test makes the estimation of fault location harder.
Fault maskings can be caused either by two different faulty UIOs or a cycled faulty UIO as shown in
Figure 1. To simplify the estimation, here, a cycled faulty UIO is treated as two or more independent
faulty UIOs depending on the number of times this UIO reoccurs. For example, in Figure 1, two faulty
UIOs are counted for the computation (UIO of sj appears twice). By such an operation, a k-degree
weak test becomes a (k + c)-degree weak test where c is the sum of times that the cycled faulty UIOs
reoccur.

4.3. Reducing the size of a conflict set using repeated states

In a conflict set Sconflict, a state that is the initial state of a transition tra ∈ Sconflict may also be the final
state of another transition trb ∈ Sconflict where trb is executed after tra . This leads to the repetition of a
state when the sequence of transitions in Sconflict is executed successively. Transitions between repeated
states can be removed to check whether they are responsible for the symptom. Figure 3 illustrates the
removal schema.

In the figure, Sconflict = {t1, t2, t3, t4, t5, t6, t7}. It can be noted that s2 appears twice. A subset of
transitions between the repeated state is defined as Scycle = {t3, t4, t5}. Sconflict is then split into two
subsets Scycle and Sremain = {t1, t2, t6, t7} so that Sconflict = Scycle ∪ Sremain. Based on the original test
sequence, a new test sequence is constructed removing the inputs that execute Scycle.

Applying the new test sequence to the system, if, when compared to the original test, the rest of the
I/O behaviour remains unchanged, the symptom is then observed in a shorter sequence. The conflict
set is consequently reduced to Sremain. Additional tests can then be devised to verify the hypothesis.
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If, compared to the corresponding I/O segment in the original test sequence, the new test sequence
behaves differently, no conclusion can be drawn and, in this situation, the removal schema of using
repeated states does not reduce the size of Sconflict.

5. IDENTIFYING THE FAULTY TRANSITION

Having reduced the size of a conflict set, further tests need to be devised to identify the fault. Here, the
process intends not only to locate the faulty transition, but also to determine its faulty final state.

5.1. Isolating the faulty transition

After a conflict set Sconflict has been minimized, in order to locate the faulty transition, transitions in
Sconflict need to be tested individually. Each transition tri ∈ Sconflict is tested by moving the FSM to the
head state of tri , executing tri and then verifying tri ’s tail state. In order to increase the reliability, this
process should avoid using other untested candidates in Sconflict.

If, when testing a transition tri ∈ Sconflict, the use of another untested candidate trj ∈ Sconflict is
inevitable, one might verify trj ’s tail state as well when it is executed and then apply a transfer sequence
to move the IUT back to the tail state of trj . If there exists a UIOC sequence for the tail state of trj , the
UIOC sequence can be applied. Through such an operation, two transitions are tested simultaneously.

The test process described above assumes that the UIOs or UIOCs used for state verification are
strong UIOs. This, however, might not be true. In order to increase test confidence, one might use a
set of test sequences to test a transition tri ∈ Sconflict, each of which uses a different UIO sequence to
verify the final state of tri . This, however, requires more test effort.

5.2. Identifying the faulty final state

Once a faulty transition has been located, the faulty final state needs to be identified. This helps to
reduce the fault correction effort. A set of estimated erroneous final states SEndState is then constructed.

Let n be the number of states in the FSM. Suppose transition trf : si → sj is identified as being
faulty. It can be noted that, in terms of the alternative final states for trf , there are n − 1 possible
mutants. Therefore, SEndState with the maximum size is SEndState = {s1, . . . , sj−1, sj+1, . . . , sn} and
|SEndState| = n − 1.

The size of SEndState might be reduced by comparing the I/O behaviour exhibited after the faulty
transition in the IUT to that defined in the specification.

Definition 7. Let MS = (I, O, S, δ, λ, s0) be a specification FSM and MI = (I, O, S, δ′, λ′, s0) be
an implementation FSM of MS . Let xv ∈ I be an input that executes a transition tr from sa to sb in
MI and zv be the observed output, zv = λ′(sa, xv). SVDIS ⊆ S is called the valid defined initial state
(VDIS) set of xv/zv if zv ∈ O , for all sv ∈ SVDIS, λ(sv, xv) = zv and for all sv /∈ SVDIS, λ(sv, xv) �= zv .

Let xv be the input that executes the transition following the isolated faulty transition trf in the IUT
and zv be the observed output. The set SVDIS of xv/zv is constructed by applying xv to each state in
the specification FSM and comparing the corresponding output with zv . Let yv(i) be the response from
the specification FSM when the machine is in si ∈ S and receives xv . By comparing yv(i) to zv , S can
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be divided into two subsets SVDIS and S̄VDIS where for all sj ∈ SVDIS, λ(sj , xv) = yv(j)
= zv and for

all sk ∈ S̄VDIS, λ(sk, xv) = yv(k)
�= zv . If S̄VDIS �= ∅, this indicates that there exists a non-empty set of

states S̄VDIS such that for all sk ∈ S̄VDIS, λ(sk, xv) �= zv , which suggests that the erroneous final state
of trf is less likely to be in S̄VDIS. SEndState is then reduced to SVDIS.

The size of the estimated faulty final state set might be further reduced by using a set of faulty final
state identification test sequences.

Definition 8. Let I = {a1, . . . , ak} be the input set of a specification FSM MS and MI be an IUT
of MS . Let an isolated faulty transition trf of MI be executed by a test sequence tv = x1, . . . , xv at
the vth input xv . TS = {ts1, . . . , tsk} is called the set of faulty final state identification test sequences
(FFSITSs) of trf where‡ tsl = tv · al , al ∈ I .

For each tsj ∈ TS, a set SVDIS can be constructed when aj is applied to the IUT, denoted by S
j

VDIS.
The final estimated faulty final state set SEndState can then be reduced to SEndState = S1

VDIS ∩ · · · ∩
Sk

VDIS.
The complexity of faulty final state identification is determined by the number of states in SEndState.

This is discussed in Section 7.2. If the size of SEndState is reduced, the effort involved in identifying the
faulty final state is thus reduced.

Once the size of SEndState is reduced, each state si ∈ SEndState needs to be tested to identify the
faulty final state. State si is checked by moving the IUT from s0 to si with a transfer sequence
Seq(transfer), and then applying UIOsi for si . In order to increase test confidence, a set of test sequences,
TV = {tv1, tv2, . . . , tvr }, can be applied where tvi ∈ TV is constructed by concatenating Seq(transfer)
with a different UIO sequence for si .

6. A CASE STUDY

A case study is designed to evaluate the effectiveness of the proposed method. A reduced, completely
specified and strongly connected specification FSM M is defined in Table I where the machine has
five states. The input set is I = {a, b, c, d} and the output set is O = {x, y}. In order to simplify the
analysis, a set of UIOCs (shown in Table II) is used for state verification. For each state, the first
UIOC sequence is used for the generation of the test sequence. The rest of the UIOCs are used to
verify hypotheses when diagnosing faults. The maximum length§ of UIOCs, LUIO(max), is 4. In the
implementation M ′, two faults are injected. They are listed in Table III.

Based upon the rural Chinese postman algorithm and UIOCs for state verification, a test sequence ts
is generated from M; ts is then applied to M ′ for fault detection.

After ts is applied to M ′, a symptom is observed at the 17th input where, according to M ,

t8 : s1
b/x−−→ s4 should have been executed (see Figure 4). The sequence of transitions, 〈t1, t8, t19, t10, t6,

t9, t1, t6, t11, t14, t8, t20, t16, t17, t2, t10, t8〉, executed by the first 17 inputs constitutes the conflict set
of the maximum size, this being Sconflict = {t1, t8, t19, t10, t6, t9, t11, t14, t20, t16, t17, t2}.

‡The notation ‘·’ implies the concatenation of two sequences.
§Here, LUIO(max) refers to the maximum length of UIOCs that are used for the test generation.
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Table I. The specification finite state machine used
in the case study.

Number Transition Number Transition

t1 s0
a/x−−→ s1 t11 s2

c/x−−→ s3

t2 s0
d/y−−→ s2 t12 s2

b/y−−→ s4

t3 s0
c/x−−→ s3 t13 s3

a/x−−→ s0

t4 s0
b/y−−→ s4 t14 s3

b/y−−→ s1

t5 s1
d/y−−→ s0 t15 s3

c/x−−→ s2

t6 s1
a/y−−→ s2 t16 s3

d/y−−→ s4

t7 s1
c/x−−→ s3 t17 s4

b/x−−→ s0

t8 s1
b/x−−→ s4 t18 s4

d/y−−→ s1

t9 s2
d/x−−→ s0 t19 s4

c/x−−→ s2

t10 s2
a/y−−→ s1 t20 s4

a/y−−→ s3

Table II. Unique I/O circuit
sequences for each state of the
finite state machine shown in

Table I.

State UIOC sequence

s0 dd/yx
daad/yyyx

s1 bca/xxy
baca/xyxy

s2 daa/xxy
dadd/xxyy

s3 bba/yxy
dada/yyyy

s4 bdab/xyyx
aaab/yxxx

The size of Sconflict is then reduced by applying the proposed heuristics. At first it is assumed that ts
is a strong test sequence. The removal schema is then determined by Proposition 1. As LLink(max) = 0
and LUIO(max) = 4, according to Proposition 1, the faulty transition that causes this symptom must
be within the set of transitions that are executed by those inputs between the 13th and the 17th.
This hypothesis reduces Sconflict to {t16, t17, t2, t10, t8}.

To verify the hypothesis, a shortest transfer sequence, c/x, is applied to move M ′ from s0 to
s3, removing the inputs in the original test sequence that successively execute 〈t1, t8, t19, t10, t6,
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Table III. Injected faults.

Number Transition Mutant

t3 s0
c/x−−→ s3 s0

c/x−−→ s0

t17 s4
b/x−−→ s0 s4

b/x−−→ s4

Figure 4. Fault detection and identification in M ′.

t9, t1, t6, t11, t14, t8, t20〉. The final state of the transfer sequence s3 is then verified by its UIOC
sequence. In order to increase test confidence, two UIOC sequences dada/yyyy and bba/yxy for
s3 are applied. After applying cbba and cdada to M ′, xyxy and xyyyx (xyyyx �= xyyyy) are received
respectively. These results imply that (1) t3 is faulty—it is detected by dada/yyyy but masked by
bba/yxy; or (2) t3 is correctly implemented but dada/yyyy traverses a faulty transition, leading to a
failure being observed.

To further check the hypothesis, two additional tests tv1 = (c/x) · (aaba/xxxy) and tv2 = (c/x) ·
(abdba/xyyxy) are devised where aaba/xxxy and abdba/xyyxy are two different UIOC sequences
for s3. After applying caaba and cabdba to M ′, xxyyy and xxxyxy are received; xxyyy �= xxxxy and
xxxyxy �= xxyyxy, which suggests t3 is faulty and bba/yxy is a weak UIO for s3.

The erroneous final state of t3 is further identified as described in Section 5. A set of estimated faulty
final states for t3 is constructed by applying a set of faulty final state identification test sequences to
M ′, each test sequence in the set being used to construct the corresponding SVDIS.

Let S
g/h

VDIS be the SVDIS of g/h, where g/h indicates that, when applying g to M ′, h is observed.
After all elements in the input set have been applied, a set of SVDIS can then be obtained.
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Table IV. Tests devised to check VT.

Transition Test set

t16 vtt16 = {(ac/xx) · (d/y) · (bdab/xyyx), (ac/xx) · (d/y) · (aaab/yxxx)}
t17 vtt17 = {(b/y) · (b/x) · (dd/yx), (b/y) · (b/x) · (daad/yyyx)}
t2 vtt2 = {(a/x) · (c/x) · (daa/xxy), (a/x) · (c/x) · (dadd/xxyy)}
t10 vtt10 = {(d/y) · (a/x) · (bca/xxy), (d/y) · (a/x) · (baca/xyxy)}
t8 vtt8 = {(a/x) · (b/x) · (bdab/xyyx), (a/x) · (b/x) · (aaab/yxxx)}

The elements in the set are S
a/x

VDIS = {s0, s3}, S
b/y

VDIS = {s0, s2, s3}, S
c/x

VDIS = {s0, s1, s2, s3, s4} and

S
d/y

VDIS = {s0, s1, s3, s4}. The final estimated faulty final state set is SEndState = S
a/x

VDIS ∩ S
b/y

VDIS ∩
S

c/x

VDIS ∩ S
d/y

VDIS = {s0, s3}. Additional tests can now be added to verify the hypothesis.
In order to increase test confidence, two test sets tvs0 = {(c/x) · (dd/yx), (c/x) · (daad/yyyx)} and

tvs3 = {(c/x) · (aaba/xxxy), (c/x) · (dada/yyyy)} are devised where s0 and s3 are tested, respectively.
In both tests, two different UIOC sequences are used to verify the corresponding final state. The test
results suggest that the erroneous final state of t3 is s0.

Since t3 /∈ Sconflict, a new transfer sequence needs to be constructed to isolate the fault that causes the
failure observed in the original test. Still, the Sconflict is assumed to be {t16, t17, t7, t10, t8}. The transfer
sequence dc/yx is applied, moving M ′ from s0 to s3. In order to increase test confidence, two UIOC
sequences, aaba/xxxy and dada/yyyy, are used to verify s3.

After dcaaba and dcdada are applied to M ′, yxxxxy and yxyyyy are received, respectively.
This provides evidence that the current state is s3. One continues applying those inputs in the original
test sequence after the 17th input. By comparing the behaviour to the original test, it is found that the
outputs remain unchanged. This increases confidence that the conflict set Sconflict = {t16, t17, t7, t10, t8}
contains the faulty transition that caused the observed symptom. Additional tests are required to check
each transition in Sconflict.

When constructing a test sequence, the traversing of t3 needs to be avoided since it has been found
to be faulty.

A set of tests, VT = {vtt16, vtt17 , vtt2, vtt10 , vtt8}, is devised where vtt16 , vtt17 , vtt2 , vtt10 and vtt8 ,
check t16, t17, t2, t10 and t8, respectively. In order to increase test confidence, each test in VT is
comprised of two test sequences where two different UIOCs are used to verify the corresponding tail
state. These tests are as given in Table IV.

When applying vtt2 and vtt10 to M ′ no failure is observed, which suggests t2 and t10 are correctly
implemented. When applying vtt17 to M ′ both test sequences exhibit a failure which suggests t17 is
faulty.

When applying vtt16 and vtt8 to M ′, in both tests, one test sequence exhibits a failure while the other
shows no error. The test results are {(ac/xx) · (d/y) · (bdab/xyyy), (ac/xx) · (d/y) · (aaab/yxxx)}
and {(a/x) · (b/x) · (bdab/xyyy), (a/x) · (b/x) · (aaab/yxxx)}. Through these observations, two
hypotheses can be made: (1) t8 and t16 are faulty, and aaab/yxxx is a weak UIO sequence for s4—
a fault is exhibited by bdab/xyyx but masked by aaab/yxxx; (2) t8 and t16 are correctly implemented,
but bdab/xyyx traverses at least one faulty transition, leading to a failure being observed.
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By examining the structure of bdab/xyyx, it is found that bdab/xyyx traverses t17 which is found
to be faulty. It is likely that the second hypothesis is true. To verify the hypothesis, vtt16 and vtt8
are replaced with {(ac/xx) · (d/y) · (abdb/yyyy), (ac/xx) · (d/y) · (acab/yxyy)} and {(a/x) · (b/x) ·
(abdb/yyyy), (a/x) · (b/x) · (acab/yxyy)}. In the tests, (abdb/yyyy) and (acab/yxyy) are two UIOC
sequences for s4 where, according to M , t17 is not traversed. After applying acdabdb, acdacab, ababdb
and abacab to M ′, xxyyyyy, xxyyxyy, xxyyyy and xxyxyy are received, respectively. These results suggest
that t8 and t16 have been correctly implemented.

The faulty final state of t17 is then identified. After all elements in the input set are applied, a
set of SVDIS is obtained, this being S

a/y

VDIS = {s1, s2, s4}, S
b/x

VDIS = {s1, s4}, S
c/x

VDIS = {s0, s1, s2, s3, s4}
and S

d/y

VDIS = {s0, s1, s3, s4}. The final estimated faulty final state set is SEndState = S0
VDIS ∩ S1

VDIS ∩
S2

VDIS ∩ S3
VDIS = {s1, s4}. Additional tests are then devised to verify the hypothesis.

Two test sequences ts1 = (a/x) · (baca/xyxy) and ts2 = (b/y) · (aaab/yxxx) are devised where ts1
tests s1 while ts2 checks s4. It is concluded that the faulty final state of t17 is s4.

7. COMPLEXITY

In this section, the complexity of the proposed approach is analysed. The analysis is comprised of two
parts: the complexity of fault isolation and the complexity of fault identification. It is shown that the
proposed approach can isolate and identify a single fault in low-order polynomial time.

7.1. Complexity of fault isolation

The complexity of fault isolation is determined by the strength of the UIOs used for the generation
of test sequences. The strength of a UIO is its capability to resist fault maskings when required for
state verification in the IUT [16]. If a symptom is exhibited by a strong test sequence, the conflict set
Sconflict is of the maximum number |Sconflict|max = LUIO(max) + LLink(max) + 1; otherwise, if the test is
a k-degree weak test, |Sconflict|max = (k + 1) × (LUIO(max) + LLink(max) + 1), k ≥ 0¶. If there exists the
problem of fault-masked UIO cycling, the test is treated as a (k + c)-degree weak test as discussed in
the previous sections.

After the conflict set Sconflict is constructed, in order to isolate the faulty transitions, each transition
tri ∈ Sconflict needs to be tested. Let TrS be a set of transfer sequences where trsi ∈ TrS is used to
move the IUT from s0 to the initial state of tri ∈ Sconflict. Let LTrS(max) be the maximum length of the
transfer sequences in TrS. The maximum number of steps required for isolating a faulty transition is of
O(|Sconflict| × (LTrS(max) + LUIO(max) + 1)).

The process of fault isolation from Sconflict considers the use of one UIO sequence for state
verification when testing a transition tri ∈ Sconflict and assumes this UIO sequence is a strong UIO.
However, this might not be true. In order to increase test confidence, a set of test sequences TSi might
be used for the test of a transition tri in Sconflict, each of which uses a different UIO sequence to verify
the final state of tri .

¶k = 0 is equivalent to the case where the test is a strong test.
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Let |TSi |max = m, m ≥ 1. The maximum number of steps required to isolate a faulty transition
is then of O(|Sconflict| × m × (LTrS(max) + LUIO(max) + 1)). Therefore, the maximum number of
steps required to isolate a single fault is of O((k + c + 1) × (LUIO(max) + LLink(max) + 1) × m ×
(LTrS(max) + LUIO(max) + 1)) where k is the number of faulty UIOs in the test sequence and c is the
sum of times that the cycled faulty UIOs reoccur.

7.2. Complexity of fault identification

7.2.1. Construction of SEndState

When identifying the faulty final state of an isolated faulty transition (if the transition holds a state
transfer error), a set of estimated faulty final states SEndState needs to be constructed by applying a
set of faulty final state identification test sequences. Suppose, in the original test, the faulty transition
and the sequence of transitions before this transition are executed by a test segment of length Lsg.
The number of steps required to construct SEndState is of O((|I | − 1) × (Lsg + 1)), where I is the
input set of the FSM. In order for the faulty final state to be identified, each state in SEndState needs to
be tested.

7.2.2. Determining the faulty final state

Let trsshortest with length Ltrs be the shortest transfer sequence that moves the IUT from s0 to
the initial state of trf . Let |SEndState| = q , 1 ≤ q ≤ |S| − 1. si ∈ SEndState is checked by applying
trsshortest, executing trf with the corresponding input and applying UIOsi . The length of UIOsi is
less than or equal to LUIO(max). The maximum number of steps required to test si ∈ SEndState is of
O(Ltrs + LUIO(max) + 1). All states in SEndState need to be tested. Therefore, the maximum number of
steps required to identify the faulty final state in SEndState is of O(q × (Ltrs + LUIO(max) + 1)).

Again, the process of faulty final state estimation considers the use of one UIO sequence
to verify the corresponding state and assumes this UIO sequence is a strong UIO. In order to
increase test confidence, a set of distinct UIOs, MUIOi , may be used to verify state si in SEndState.
Let |MUIOi |max = p, p ≥ 1. The maximum number of steps required to identify the faulty final state
in SEndState is then of O(q × p × (Ltrs + LUIO(max) + 1)).

By considering the process of the construction of SEndState together, the maximum number of
steps required to identify the faulty final state is of O((|I | − 1) × (Lsg + 1) + q × p × (Ltrs +
LUIO(max) + 1)). In the worst case where q = |S| − 1, the maximum number of steps is of
O((|I | − 1) × (Lsg + 1) + p × (|S| − 1) × (Ltrs + LUIO(max) + 1)), while in the best case where q =
1 the maximum number of steps is of O((|I | − 1) × (Lsg + 1) + p × (Ltrs + LUIO(max) + 1)).

8. CONCLUSIONS AND FUTURE WORK

This paper has investigated fault diagnosis when testing from finite state machines and proposed
heuristics to optimize the process of fault isolation and identification. In the proposed approach, a
test sequence is first constructed for fault detection. Once a symptom is observed, additional tests are
designed to identify the faults that are responsible for the occurrence of the observed symptom.
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Based upon the original test, the proposed heuristics are applied in order to lead to the detected
symptom being observed in some shorter test sequences. These shorter test sequences are then used for
the construction of a set of diagnosing candidates that is of minimal size. The minimal set of candidates
helps to reduce the cost of fault isolation and identification.

The complexity of the proposed approach has been described. A case study was used to demonstrate
the application of the approach. In the case study, two state transfer faults were injected into the
implementation. These faults were isolated and identified after applying the proposed heuristics.

The case study used in this paper considered the use of a comparatively simple example for fault
isolation and identification. The paper shows how more complicated testing problems such as k-degree
weak test and fault-masked UIO cycling can be catered for. However, more work is required to evaluate
these approaches experimentally. This remains a topic for future work.
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