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ABSTRACT
All large–scale projects contain a degree of risk and uncertainty.
Software projects are particularly vulnerable to overruns, due to
the this uncertainty and the inherent difficulty of software project
cost estimation. In this paper we introduce a search based approach
to software project robustness. The approach is to formulate this
problem as a multi objective Search Based Software Engineering
problem, in which robustness and completion time are treated as
two competing objectives. The paper presents the results of the
application of this new approach to four large real–world software
projects, using two different models of uncertainty.

Categories and Subject Descriptors
D [Software]: Miscellaneous; D.2.9 [Software Engineering]: Man-
agement—Time estimation

General Terms
Management, Experimentation, Algorithms

Keywords
Pareto optimality, project planning, software engineering manage-
ment, Multi objective genetic algorithms

1. INTRODUCTION
Project management is an important part of any software project.

In this paper we focus on the software project management activi-
ties of defining different tasks, their duration estimates and depen-
dencies and assigning them to suitably qualified teams of staff. In
this way a road map is constructed before the project is executed.
This road map gives an estimate on the project timeline as well as
serving a as guideline on how it is to be executed. The approach
presented in this paper is to use SBSE techniques to investigate and
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control the impact of uncertainty in project planning. We aim to
provide the decision makers with a decision support tool that al-
lows them to explore the trade off between earliest completion time
and project robustness in the presence of this uncertainty.

It has been known for some time that software project managers
find it hard to construct a robust project plan and to manage the
risks that might arise [5, 16, 19]. In every commercial project
there are unforeseen factors and issues that materialize only after
the project is underway. In particularly severe cases, when dead-
lines are not met or cost becomes too large, these unforeseen factors
may lead to premature termination and abandonment of the entire
project.

Project managers attempt to anticipate such pitfalls and devise
a project plan that can accommodate them, but no one is able to
‘foresee the unforeseeable’. Project managers typically construct
their plans in such a way that they would accommodate possible
pitfalls, without knowing exactly what these pitfalls might be. For
example, this can be done by setting certain additional time aside
for tackling problems. Of course, such an approach, falling on the
side of caution, naturally inflates the overall budget. This conser-
vatism may lead to potentially valuable projects being deemed too
risky and/or too costly.

Worse, the manager is only able to be conservative in their plans,
they are not able to analyze the trade off between risk and reward.
One of the most important rewards for many organisations is early
completion. This is particularly important in software projects,
where time–to–market is often a paramount concern.

In these situations, a manager may face the invidious task of bal-
ancing the risk of project overrun against the risk of over conser-
vatism, leading to a plan that entails an unnecessary lag in time–
to–market with consequent loss of market share. What the soft-
ware project manager needs is an approach to analyze the trade
offs between these two objectives. That is, the manager needs to be
supported by a tool that allows him or her to explore the space of
possible solutions that minimize completion time (ensuring early
time to market), while simultaneously building in robustness (so
that unforeseen problems do not lead to overrun).

Of course, these two goals of robustness and early completion
are in tension; they are naturally contradictory. A highly robust
project is naturally one with a lot of built–in flexibility; ‘slack’ ca-
pacity that can be taken up in an emergency. Such a project will
not have the earliest completion time. Indeed, the more robust the
manager seeks to make their project, the more likely it is that they
will delay completion.

However, in any set of project plans, there will exist potential
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‘sweet spots’ in the solution space. Despite the general trend that
increased robustness results in delayed completion, these sweet
spots will be local regions of the solution space, where the man-
ager can trade small amounts of one objective for a large amount
of another. This makes the problem ripe for a pareto optimal multi
objective search based approach.

This paper introduces such a multi objective solution to robust
project planning. It uses the Multi Objective Genetic Algorithm
(MOGA) SPEA II to search for the pareto front that denotes opti-
mal choices of robustness and completion time. The paper shows
how sweet spots that trade robustness for completion time emerge
in real world software project data. The project data used in this pa-
per is drawn from four different real world software projects, drawn
from three different software companies, from different locations,
including Europe and North America. More specifically, the pri-
mary contributions of the paper are as follows:
1. The paper introduces the concept of robustness in project plan-
ning using an SBSE analysis, showing how MOGAs can be used
to search for optimal solutions that balance the twin objectives of
robustness and early completion.
2. The paper presents results that demonstrate that the MOGA is
well suited to the problem, applying the ‘sanity check’ test that it
performs convincingly better than a random search allocated the
same budget of fitness evaluations.
3. The paper introduces two different models of uncertainty, re-
lating to unexpected additional work packages and to unexpected
delay in existing work packages.

The rest of the paper is organised as follows: In Section 2 the
robustness/time-to-delivery research problem is defined formally,
while Section 3 introduces the search based approach to solving
this problem using multi objective pareto optimal search. Section 4
presents the results of the experiments. Section 6 describes the
context of related work in which the current paper is located, while
Section 7 describes the limitations of the present papers and possi-
ble future work. Section 8 concludes.

2. PROBLEM STATEMENT
When talking about project plan robustness we are essentially

referring to a property of the plan. We are looking to construct a
project plan, given a project definition that consists of a set WPS =

{wp1, . . . ,wpn} of tasks to be performed; a set P = {p1, . . . , pm} of
available resources/staff; a set DEPS = {(wpi,wp j)} : 0 ≤ i ≤ n
and 0 ≤ j ≤ n and j , i of dependencies between tasks, where
wp j requires wpi to be completed first and a set S = {s1, . . . , sn} of
different skills. Each member of the staff in P has a skill associ-
ated and each task in WPS requires a certain skill to be performed.
For example a task called ‘Design Web Front-end’ may require an
‘HTML skill’ that only 3 people in the staff set of 10 may possess.

To solve this optimization problem, we seek an ordering of tasks
in the sequence in which they should be completed without violat-
ing dependency constraints and an assignment of people to teams.
Naturally, for most cases there will be many different ways in which
it is possible to arrange the given input.

In our approach we have three objectives to optimize. These are:
Objective O1: Overall completion time. This is the traditional ob-
jective that forms the focus of single objective approaches to the
Software Project Planning Problem.
Objective O2: Completion time difference in the presence of new
tasks (a measure of robustness). The objective seeks to reduce
project overrun when unexpected new tasks are added. The num-
ber of tasks to be added is pre-defined by an error level: X%. In
the case of adding WPs, we randomly create X% more tasks. We
then pick a random duration ranging from the minimum duration

of all the existing tasks to their overall maximum duration, with
uniform probability distribution. Next, we pick a skill, once again,
randomly (from the ones already existing in the project definition).
Finally, we insert the newly created task at a random position in the
processing queue. This insertion simulates dependencies for the
new task, because it implicitly requires all these tasks that occur
before it in the queue to be completed ahead of it. Of course, the
change is made purely to evaluate the fitness in the presence of this
uncertainty. When fitness evaluation is complete changes in work
packages are undone.
Objective O3: Completion time difference when tasks’ durations
are inflated. This is also governed by an error level: Y%. This
means that we have picked Y% of the tasks at random and inflated
their required time by a randomly chosen value that ranges from 1
person-hour up to double the original duration of the work pack-
age (using a uniform error distribution). It should be noted that all
the random choices are generated every time when we evaluate the
fitness function. This means that at every evaluation, freshly cho-
sen random tasks will become inflated. As with evaluating O2 all
random choices are generated every time an evaluation is needed.

Therefore, each solution has associated with it an optimisation
vector of size 3 : < O1,O2,O3 >. This vector represents the fitness
value of the solution. Due to the definitions of each objective we
will always seek to minimise each vector. Therefore, solutions with
smaller vectors correspond to fitter solutions that will yield closer-
to optimal results. To achieve this we have used a MOGA. How we
obtain these values is described in the following section.

3. THE SOLUTION APPROACH
A solution for the scheduling problem is represented by the order

in which tasks are processed by teams, the assignment of people to
teams and tasks to teams. If dependency constraints exist between
tasks the task processing must respect constraints; violating depen-
dency constraints invalidates the scheduling.

It should be noted that for this paper as in previous works [1, 9,
15] we have disregarded Brook’s law. That means that the amount
of time to complete a task is treq

n , where treq is the estimated person-
hours required to complete the task and n is the number of people in
the team that is assigned to it. Similarly of [1, 9, 15] we also assume
that all tasks form a set of non-overlapping activities with possible
dependency constraints between them. Each task may also have
a skill requirement which means that the task can be completed
only by a set of people that have the needed skill. In addition, all
available staff is distributed into teams consisting of one or more
people. Every person has a skill as well. It should be noted that
people with different skills can be in the same team. However when
this team is assigned to a task only the people with the required
skill can do work while the rest stay idle. This is an impractical
solution and, indeed, such solutions are quickly discarded by our
search algorithm.

We ground our problem and chromosome representation as well
as multi-objective function evaluation on previous works in partic-
ular on the ordering genome [1] and queuing simulation [9]. An
ordering genome consists of two arrays. The first one represents
the task ordering, the order in which tasks are assigned to the first
available team. In other words the order in which tasks arrive in the
incoming queue of the queuing simulator as in [9]. The second one
represents the assignment of people to teams and thus the number
of teams or equivalently the number of servants [15].

The crossover and mutation operator for the staffing array are
fairly simple. For crossover we use a single-point crossover and
the mutation operator simply picks at random two positions in the
array and exchanges their teams.
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Project A Project B SmartPrice Database
Hours 4,287 594 1,569 5,390
WPs 84 120 79 115
Staff 20 20 14 7
Skills 1 1 7 5
Deps No Yes Yes Yes

Table 1: Table of available projects.

The task array manipulation is more complicated. The mutation
operator randomly picks two tasks and exchange their position in
the queue. The crossover operator is a variation of the single-point
crossover, however it was amended to make sure that tasks are not
duplicated.

More details on ordering genome, mutation and crossover and
how task dependencies are handled, and effects of Brook’s law can
be found in [1, 2, 15, 14]

3.1 The SPEA II settings used
The algorithm used is the algorithm SPEA II [21]. To cater for

random effects, the algorithm was run 30 times and the best pareto
front produced was considered. Random search was allocated the
same number of fitness evaluations as the SPEA II for comparison.
The parameter settings were as follows: Elitism of 10, Population
size of 250, 180 Generations for Project A and B, 250 generations
for DataBase and SmartPrice. The number of generations was cho-
sen to allow for stabilization with random search allocated the same
number of fitness evaluations in each case. Mutation probability
was set to 0.1. Crossover probability was set to 0.8. Overall, prob-
lem resolution parameters were selected via trial-and-error.

4. EXPERIMENTAL SETUP
The empirical study consists of four real-world project plans.

Project A comes from a European financial organisation, Project B
comes from a software house. Projects ‘SmartPrice’ and ‘DataBase’
come from a large North American corporation with 51 branches
throughout North America. Statistics for each project can be found
in Table 1.

Project A is a massive maintenance project concerned with fix-
ing the Y2K problem. All tasks in this project are routine ones
and require no special skill or any order of completion. Project B
aimed to deliver the next release of a large data-intensive, multi-
platform software system, written in several languages, including
DB II, SQL and .NET. SmartPrice is a customer-facing enhance-
ment to the sales process of a sales organisation. This feature pro-
vided a more adequate pricing mechanism as well as a method
for discounts, voucher use and price conversion. The enhance-
ment concerned has a potentially significant influence on the or-
ganisation’s revenue stream, so extensive QA was involved. This
project involved the web portion of the company’s infrastructure
with smaller impact on the underlying database and other internal
software. The project concluded with an employee training phase.
Database is a large scale database upgrade, migrating old (but cru-
cial) Oracle–forms–based system to the newest version of Oracle.
The information that was migrated had an estimated value to the
organisation of several million dollars and formed the cornerstone
of the organisation’s operations. About half of the project involved
taking precautions against possible causes of data loss. This project
primarily involved the Database Administration section of the or-
ganisation. However, the Software Application Development sec-
tion was also involved at the end for training and for upgrading the

existing scripts and triggers to make use of the newly available data
base functionality.

The research questions that the empirical study aims to investi-
gate are as follows
RQ1: Is our approach better than random search?
Since this is the first attempt to apply SBSE techniques to software
project robustness, a natural first question is whether SBSE tech-
niques can out–perform a random search.
RQ2: What insights into trade offs between objectives can be
found in the pareto fronts of real software projects?
At the heart of our approach is the concept of pareto optimality as
a technique for exploring the inherent tension between the goal of
maximizing robustness while minimizing project completion time.
This research question seeks to explore the degree to which the
pareto fronts for real projects exhibit interesting ‘knee points’, where
a significant improvement in one objective can be obtained at rela-
tively little cost to the other.
RQ3: What is the difference between the two models of uncer-
tainty?
Objectives O2 and O3 represent robustness in the presence of two
different kinds of uncertainty. This research question asks whether
a given project exhibits a similar pattern of trade offs between com-
pletion time and these two objectives. That is: does the problem
change when new tasks are introduced, compared to when task du-
rations are merely inflated or deflated. At first glance, the addition
of a new tasks might seem to be a special case of the application of
inflation to an existing task duration. That is, one might ask: ‘surely
we can simply treat the new task as the inflation of the duration of
an existing task that precedes it’. However, this intuition is sub-
tly misplaced. A new task might require different skills and, even if
not, it may be attacked by an unused team, whereas an existing task,
if extended, cannot be split in this manner. This research question
asks whether this subtle difference has any noticable effects on the
results.

5. RESULTS AND ANALYSIS
Since there are three objectives O1, O2 and O3, the Pareto fronts

are in 3 dimensions. For simplicity and ease of visual reference
and comparison we also have projected each Pareto front onto two
dimensions. The overall completion time (objective one) always
remains on the X axis. For the Y axis we separately project com-
pletion time difference when adding tasks and when inflating tasks.
That is, the Y axis always represents robustness (lower values in-
dicate less change vulnerability and, therefore, higher robustness),
just our interpretation changes.

The projection procedure from three to two dimensions seeks to
preserve as much information as possible about the two projected
dimensions in the projected pareto front. We first of all project out
all values of the 3rd dimension. The result is possibly many value
pairs in two dimensions that dominate one another. Out of these 2
dimensional pairs we form the new 2 dimensional pareto front. The
points on the 2 dimensional front each denote the best achievable
pareto optimal value achievable in two dimensions.

For example, suppose we have the following 3 dimensional triples:
(1, 2, 3), (3, 2, 1) and (2, 3, 1) and we want to project onto the first
two dimensions. Simply removing the third element of each triple
forms the following three pairs: (1, 2), (3, 2) and (2, 3). In the re-
sulting set of pairs the value (1, 2) is dominated by one of the other
elements (in this case by both) so (1, 2) is removed from the set of
pairs to form the resulting 2 dimensional pareto front: (2, 3) and
(3, 2).

The alternative projection strategy would be to fix a value for the
‘projected out’ third dimension and hold it constant, simply select-
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Database

Figure 1: Random Search comparison for different projects un-
der the robustness model in which new tasks are added. That is,
the X axis denotes additional units of time (in person hours) re-
quired for completion of the tasks if new tasks should be added
(objective O3, while the Y axis represents the total units of time
(in person hours) required for the project plan if everything
goes as expected (i.e. the earliest completion time; objective
O1). Space restrictions allow sonly for results to be shown for
the largest project (Database). Results for the other three pro-
jcts are similar.

ing out the corresponding 2 dimensional values for this constant
third parameter. However, this forces a somewhat arbitrary choice
of fixed constant. It also has the disadvantage that it gives a subop-
timal choice of values for the two projected out dimensions.

5.1 RQ1: GA vs Random Search Comparison
Figure 1 shows the comparison between the Pareto fronts pro-

duced by our GA algorithm versus a random search implementa-
tion for the situation where novel tasks may be added. As can be
seen the pareto front for SPEA II dominates the points on the ran-
domly produced pareto front in all four cases. Similar results are
obtained from the study of the other possible choice of uncertainty;
task inflation.

5.2 RQ2: Reading the Pareto fronts
The results for RQ2 are found by inspecting the pareto fronts for

the four real–world projects. These are presented in Figure 2.
In this section we answer RQ2 by considering some of the exam-

ples of the fronts, explaining how they reveal insights into the trade
off between robustness and project completion time that the man-
ager can exploit in balancing their choices when making decisions
about the chosen project plan.

First, consider the first graph of Project B in Figure 2. Here we
can see a Pareto front with no knee points. Each point represents
a different project plan constructed from the project definition of
Project B. The lines connecting the points have been added merely
as an aid to the eye in visualizing the front. We can clearly see the
trade offs between picking the different plans.

For example, consider the right hand pareto front for the smallest
of the projects: Project B. This is the pareto front for the situation
in which tasks may become inflated as the project proceeds. From
these results, the project manager can be reasonably certain that
the project can be completed in 35 person hours if things go as
expected (this is a small highly parallelizable project). However, if
during execution of the plan, about 30% more tasks are added to
the project we can expect to go over our deadline by about one day
(6 hours, or 20% of the best achievable completion time).

If we want the project to be robust to these unforeseen additions
then we need to budget the extra 6 days potential overrun. In this

case there seems to be no way to re-organise the project plan to
cater for possible new tasks without simply factoring in the overrun
that such additional tasks might yield.

The results for Project B are simple and relatively uninteresting.
However, Project B is both very small in overall time required and
also its dependencies make the project highly parallelizable, with
the consequence that many of the project’s 594 total person hours
can be allocated in parallel, allowing the project to complete in a
mere one week duration. Such very simple projects are unlikely to
benefit significantly from an SBSE approach. Nonetheless, as the
foregoing discussion illustrates, even for such simple projects, there
is a potential for search to reveal some basic relationships between
robustness and completion time that may add value for the decision
maker.

Now consider the results for Project A in the case where tasks
may be inflated during the progress of the project. This situation is
captured by the right hand pareto front for Project A in Figure 2.
In this case, the pareto front is not linear as it was for Project B. In
project A, slight increases in expected completion time can yield
a significant increase in robustness. That is, the best completion
time available is 220 hours. However, to aim for such an optimal
completion time in the project plan leads to a ‘fragile’ plan; in the
presence of novel work packages, the overrun might be as much
as 52 hours. However, by delaying expected completion by only 5
hours to 225 hours, we obtain a far more robust plan that is much
less fragile. The exposure to overrun is reduced from 52 hours to
only 17. The initial part of the pareto front reveals this dramatic
trade off in completion time for robustness. The middle section of
the pareto front reveals a completely different trade off. That is, in
order to achieve even a tiny improvement in robustness, it will be
necessary to increase expected completion time from 225 hours to
almost 250. This trade off is denoted by the almost flat from 225
to 250 on the X axis. In this way, the pareto front obtained from
the estimates of work packages and their interactions for Project A
has the potential to give significant insight to the project manager.
The manager knows that there would be little point in targeting a
completion time between 225 and 250 hours since this cannot allow
much increase in robustness. However, the manager would be wise
to consider relaxing the best possible completion time from 220
hours to 225, because this would give a greater degree of robust-
ness. Finally, as the last portion of the pareto front reveals, the cost
of a really robust project would be a planned–for delay of about 35
hours to 255.

The largest project is ‘DataBase’; this project lasts about one
year and involves about 3.5 person years’ worth of total effort. It
also reveals some interesting insights. For instance, if the man-
ager believes that novel tasks are likely to arrive then there is an
increased robustness that can be gained for a very small increase
in expected completion time. This is indicated by the rapid drop
between the first two data points on the left hand pareto front for
DataBase in Figure 2. However, attempts to further improve robust-
ness come at a high cost in completion time. Though the pareto
front shows some interesting knee points, the overall trade off in
increased robustness can only be achieved by building in sufficient
‘project slack’ to cater for the full expected overrun. Furthermore,
the ‘long flat tail’ of the pareto front indicates that the last small
improvement in robustness can only be achieved by building in
an enormous amount of project slack. The pareto front allows the
manager to asses the variability in likely result and to alert the stake
holders in the project to the high degree of uncertainty with which
all involved must be prepared to live. If the manager turns to con-
sider the situation in which tasks may become inflated, a similar
picture emerges; there is a large increase in robustness that can be
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Project: A

Project: B

Project: DataBase

Project: SmartPrice

Figure 2: Inflaton of existing tasks vs. addition of unexpected new tasks. The left column shows the results of pareto fronts found for
the four projects studied in the situation in which tasks may be added after the project commences. The right hand column presents
the results of pareto fronts for the four projects, in the situation in which tasks may become inflated as the project proceeds.
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obtained from a little re-planning that involves only a small delay
to the earliest possible completion time. However, further robust-
ness increases are unlikely to be rewarding and the final reduction
in robustness to eliminate risk due to this uncertainty comes at far
too high a price in completion time. That is, removing the risk of a
275 hour overrun can only be achieved by budgeting for a 300 hour
delay in completion (from 1149 hours to 1449 hours).

This last observation may initially seem counter intuitive. How
can we need 300 hours to increase slack in order to cater for only
250 hours of possible overrun due to uncertainty? Surely we need
no more than a maximum of x hours delay in expected completion
time in order to avoid an overrun of x hours? The answer to this
question illustrates the extremely high price of full robustness. To
aim for full robustness, we have to have teams of suitably qualified
staff available to cater for any unexpected event(s). In the specific
example of the database project, this does not mean simply allow-
ing one team to be free for 250 hours at the end of the project to pick
up the maximum likely overrun; we have to able to handle expected
inflation of any tasks at any point. This might come from several
different tasks that might be inflected by a small amount each, with
et overall effect of changing the critical path of the project dramati-
cally. Alternatively, perhaps one task on the critical path is inflated
by a large amount.

Notice that in seeking robustness, we are not designing a project
plan to handle a particular unexpected event; we are designing a
single project plan that is capable of dealing with a range of unex-
pected events. This is why the cost of avoiding any overrun from 1
to x hours may cost more than x hours in completion time; indeed
it usually will in all but the simplest projects.

Returning to RQ2, the results indicate that these ‘knee points’
are seen in several of the pareto fronts, both for the case where
new tasks may be added to the project and also the case in which
tasks become inflated during the progress of the project. Since
these are real software projects, there is some encouraging evi-
dence to believe that useful insight can be gained from the anal-
ysis of pareto fronts, thereby answering RQ2. In each case, these
knee points provide important insights for the decision maker. They
allow the project manager to make informed decisions about the
likely ‘sweet spots’ where a degree of valuable additional robust-
ness can be achieved at little cost to the overall completion time.
Conversely, they also show situations in which a less risk averse
manager could choose to trade some robustness for a large reduc-
tion in the expected duration of the project.

Notice that these graphs provide useful insight to a project man-
ager who exhibits any and every form of decision making predilec-
tion; the pareto fronts are equally useful to risk–averse managers
as they are to managers who seek to take bold risks. Whatever the
decision maker’s temperament, these pareto fronts can be used to
support their decision making and to inform them of the potential
consequences of their decisions.

5.3 RQ3: Inflating existing tasks vs. adding
new tasks

In the final research question considered in this paper, we explore
the difference between the two primary ways in which a project can
suffer ‘unexpected events’. That is, the project may have task du-
rations that become inflated. Inflation is quite common in software
projects, due to the inherent difficulties in estimation and the un-
avoidable tendency to estimate zero duration for any unexpected
activities [16].

Perhaps it is less likely that a project will suffer task addition
than it is that tasks will be inflated, but this other form of uncer-
tainty remains a concern for many project managers and cannot be

ignored. For this reason we chose to study these two types of uncer-
tainty in isolation to explore the question of whether their impact
on a project is different.

From the graphs in Figure 2, it can be seen that the projects do,
indeed, react in different ways to these two different forms of uncer-
tainty. For instance, there is a pronounced knee point in the pareto
front for Project A for the situation where tasks may become in-
flated, but this knee point is far less evident in the pareto front for
the same project under the uncertainty that tasks may be added.

Interestingly, despite these clear differences, there does appear
to be some tantalising evidence to suggest that projects have what
might be termed an ‘inherent uncertainty profile’ in the presence
of both types of uncertainty. That is, Project B exhibits a linear
pareto front, while the Database and SmartPrice projects show a
similar pattern in the pareto fronts for each kind of uncertainty.
More research is required to consider this question in more detail.
There are simply too few projects here to allow us to confidently
generalize.

6. RELATED WORK
SBSE has previously been applied successfully to project schedul-

ing by Davis [13]. A survey of the application of GAs to solve
scheduling problems has been presented by Hart et al. [7]. A gen-
eral introduction and survey of recent achievements in Search Based
Software Engineering can be found in the survey by Harman [10].
The mathematical problem encountered is an instance of the bin
packing or shop-bag problem which are known to be NP-hard. A
survey of approximated approaches for the bin packing problem is
presented by Coffman et al. [12]. More recently Falkenauer pub-
lished a book devoted to the GA and grouping problems [8].

Some of the closest related work to that presented here is due
to Chicano and Alba [6], who used a weighted multi objective GA
to combine various project attributes into a single objective search.
Their results are obtained using synthetic project data, rather than
using real project data, so they are able to explore specifically gen-
erated instances, but not the behaviour of their approach for real-
world scenarios. Their model was also fundamentally different in
two ways; they used weighted fitness aggregation rather than pareto
optimality and they did not consider the question of robustness.

Recently, multi-objective approaches to find solutions for the
next release problem have been proposed [18, 20]. This previ-
ous work on requirements has also considered multiple objectives.
In the case of Zhang et al. [20] the two objectives are cost and
value, which are naturally in tension. In the case of Saliu and
Ruhe [18] the objectives are conceptual and implementation based,
where there is a tension between levels of abstraction. In both
cases, the authors adopt a Pareto optimal approach, like that adopted
in the present paper, reflecting a more general migration from weighted
optimal aggregated fitness functions to more sophisticated multi-
objective approaches [10].

The next release problem is related to the project management
problem because both concern the early phases of the project life-
cycle. Indeed, requirements analysis can be thought of as a pre-
cursor to project planning, though perhaps a better approach would
be to combine both activities to simultaneously optimize both. In
that way we would be able to choose sets of requirements that best
suited the customers, developers and manager(s), treating each as
an objective. However this synthesis of early lifecyle software en-
gineering optimization problems remains a task for future work.

The present work differs from previous contributions since we
are studying a multi-objective problem where the manager is seek-
ing to produce a robust schedule thus minimizing the risks of project
delay or failure due to unexpected events. In particular, we model
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unexpected events such as adding activities and inflating task ef-
forts.

We ground our multi-objective approach on the use of queuing
simulations previously proposed in Antoniol et al. [9]) to imple-
ment the objective function. In other words, rather than consider-
ing a fixed ordering of WPs and a uniform allocation of developers
across teams, we use heuristics to determine the developers distri-
bution and the WPs ordering (and thus their allocation to teams),
with the (multiple) objective of minimizing completion time, re-
duce the effect of inflation of activities and the effect of added tasks
thus producing Pareto front representative of robust schedules.

Queuing theory was also applied by Ramaswamy [17] to model
software maintenance projects. Simulations of a software main-
tenance process were performed by Podnar and Mikac [11] with
the purpose of evaluating different process strategies rather than
staffing the system. Recently, Bertolino et al. [4] proposed the use
a performance engineering technique, based on the use of queuing
models and UML performance profiles, to aid project managers for
decision making related to the organization of teams and tasks. We
share with them the idea of using queuing networks to model soft-
ware processes and to support managers in their choices. However,
our goal is to suggest to managers a robust schedule able to mini-
mize the completion time and the risk of the project to be late due
to wrong effort estimates and unexpected activities. Our work can
also be viewed as an attempt to implicitly maximize resource usage,
also considered an important issue by Bertolino et al.

Other than search-based techniques, there are alternative approaches
for project scheduling. Recently Barreto et al. [3] have applied con-
straint satisfaction to staff software projects. However, their focus
was different from ours: they aimed at assigning maintenance re-
quests to the most qualified team in terms of skills, or to the cheap-
est team, or to the team having the highest productivity.

7. LIMITATIONS AND FUTURE WORK
This section sets out some of the limitations of the present work

and the extent to which we were able to cater for them in our experi-
ments. Some possible directions for future work are also discussed.

In an assessment of software project planning, it is important
to be able to assess the impact of chosen solutions on real world
software projects. Obtaining data from real world projects is hard,
because often this data is not retained and is only constructed in an
informal manner. Where the data is achieved, it is often considered
to be among the most sensitive data possessed by a company and
so there is a natural reticence to make such commercially sensitive
data available for academic research.

In the case of the work presented here, we have not been able
to reveal the companies involved, nor are we able to make the data
available to other researchers. However, to try to provide some de-
gree of replicatability, we have given a description of the projects
for which project management data has been obtained. To try to
achieve a measure of coverage we have drawn data from three dif-
ferent companies, and for a variety of types of projects. However,
with four case studies there is still a degree of caution required in
generalizing on the results we have been able to obtain. This cau-
tion is reflected in our choice of research questions. The primary
research question (RQ2) simply asks whether there exist interesting
pareto fronts in real world projects. It does not seek to claim that
such fronts are always present, nor even that they are likely; there
simply is insufficient data to allow such a strong claim.

These observations would typically be characterised as ‘external’
threats to validity of the findings, because they affect the degree to
which one is able to generalize from our findings. There are also
threats to the internal validity of the experiments we conducted that

must be consider. The primary threat here comes form the inherent
stochastic nature of the algorithms we use. The standard approach
to overcoming this stochastic nature, is to repeat the application
of the algorithms many times before considering results. In our
experiments, we repeated each application of SPEA II thirty times,
collecting data from all runs and plotting the pareto front from the
best of all thirty runs.

However, there is a further way in which the randomness of the
algorithms can impact on our solutions. This lies at the heart of our
approach. In order to assess fitness, we create uniformly random
instances of the occurrence of unexpected random events. In this
way, our fitness function is calculated from a very simple form of
simulation. This means that different evaluations of fitness for the
same individual can yield different results.

Clearly this introduces an extra degree of randomness into the
algorithms. Our hope is that this will be stable at the macro level
even though it may fluctuate at the micro level. That is, we hope
that the overall results will be stable due to the large number of
samples of the search space and the repetition of fitness calculation
for both individuals and the exponentially large number of schema
within them.

In order to check whether this hope was justified, and to explore
the impact of this possible internal threat to validity, we repeated
the entire experiment for two of the projects. That is, we con-
structed ten different pareto fronts using the entire overall approach
for projects A and B. We plotted these together to assess the degree
of variability of the results. The results are shown in Figure 3. As
can be seen the pareto fronts are very similar, and so there is reason
to believe that stability is reasonable.

Future work will consider alternative ways of assessing fitness.
Essentially, we seek a way of assessing, either a worst case or a typ-
ical case for the impact of uncertainty on a particular project plan.
Unfortunately this is, in itself, an optimization problem. Treating it
as one, would potentially lead to a fitness function that was much
more stable, but only at the expense of an enormous increase in
computational cost for the overall approach.

Another limitation of the work comes form our attempt to ex-
plore the effects of three different objectives at once and to give
insight to the manager form the pareto fronts obtained. We are not
expecting the manager to possess any expertise in optimization al-
gorithms nor Search Based Software Engineering. Therefore, we
need a visualization that is intuitive and from which the manager
can draw broad conclusions without any need for an understanding
of the underlying algorithms. To achieve this, we chose to draw two
dimensional projections of the three objectives, since these have
a natural intuitive character, showing a tradeoff between two at-
tributes.

We also experimented with ways for drawing all three objectives.
These provide interesting pareto planes, which may be useful to re-
searchers in software project management, However, they may not
yield such directly exploitable insight for the practicing software
project manager. They also do not show the real solution points
so clearly. Rather they can only be used to notice general trends.
Figure 4 shows the three dimensional pareto fronts we obtained
from the unprojected pareto optimal solutions found for the project
SmartPrice as an illustration.

8. CONCLUSION
This paper showed how the problem of accommodating degree

of robustness within a software project plan can be formulated as a
multi objective Search Based Software Engineering problem. The
paper introduced two different models of robustness, with respect
to uncertainty about work package cost estimates and uncertainty
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Project: A

Project: B

Figure 3: Results of repeating the entire experiment ten times
for two of the projects considered. Each pareto front is ob-
tained from 30 runs of SPEA II on the project data. The differ-
ent pareto fronts give an assessment of the variability of results
due to the random nature of the algorithms used and the fitness
computation.
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Figure 4: Three dimensional plot of the interpolated pareto sur-
face for all three objectives for the project SmartPrice. The x
axis shows (**) the y axis shows (**) and the z axis shows (**).
The pareto front is interpolated to connect the 3 dimensional
solution points found.

about whether all work packages had been properly accounted for.
The paper presented the results of a study of robustness optimiza-
tion with respect to four real world projects, the results indicate that
the search–based approach successfully passes the ‘base line san-
ity check’; it can comfortably out–perform a random search. The
results also reveal that real world projects have interesting and po-
tentially insight–yielding pareto fronts and that the two different
forms of uncertainty give rise to very different kinds of pareto front
(at least in the examples studied herein).
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