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Abstract— Search Based Software Engineering (SBSE) is an
evolving field where meta-heuristic techniques are applied to
solve many software engineering problems. One area of SBSE,
where considerable research is underway, is software testing.
We see much application of meta-heuristics search techniques
for generating input test data. But most of the work in this
area is concentrated on test data generation from source code.
We see very little application of such techniques to testing from
other sources such as requirement and design models.

Zhan and Clark applied such techniques to generate test data
for Simulink models. This paper extends the work of Zhan and
Clark by investigating the application of Genetic Algorithms
(GAs) to Simulink models and then statistically compares the
results to the existing work, which is mainly based on Simulated
Annealing (SA).

I. INTRODUCTION
A. Dynamic Testing

Dynamic testing — “the dynamic verification of the be-
haviour of a program on a finite set of test cases, suitably
selected from the usually infinite executions domain, against
the expected behaviour” [1] — is used to gain confidence in
almost all developed software. Various static approaches can
be used to gain further confidence but it is generally felt that
only dynamic testing can provide confidence in the correct
functioning of the software in its intended environment.

We cannot perform exhaustive testing because the domain
of program inputs is usually too large and also there are too
many possible execution paths. Therefore, the software is
tested using a suitably selected set of test cases. A variety of
coverage criteria have been proposed to assess how effective
test sets are likely to be. Historically, criteria exercising as-
pects of control flow, such as statement and branch coverage
[2], have been the most common. Further criteria, such as
data flow [3], or else sophisticated condition-oriented criteria
such as MC/DC coverage [4] have been adopted for specific
application domains. Many of these criteria are motivated by
general principles (e.g. you cannot have much confidence in
the correctness of a statement without exercising it); others
target specific commonly occuring fault types (e.g. boundary
value coverage).

Finding a set of test data to achieve identified coverage
criteria is typically a labour-intensive activity consuming
a good part of the resources of the software development
process. Automation of this process can greatly reduce the
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cost of testing and hence the overall cost of the system.
Many automated test data generation techniques have been
proposed by researchers. We can broadly classify these tech-
niques into three categories: random, static and dynamic[5]
[6].

Random approaches generate test input vectors with el-
ements randomly chosen from appropriate domains. Input
vectors are generated until some identified criterion has been
satisfied. Random testing may be an effective means of
gaining an adequate test set for simple programs but may
simply fail to generate appropriate data in any reasonable
time-frame for more complex software (or more sophisticated
criteria).

With static techniques an enabling condition is typically
generated that is satisfied by test data achieving the identified
goal. For example, symbolic execution can be used to extract
an appropriate path traversal condition for an identified path.
Such enabling conditions are solved by constraint solving
techniques. However, current application of static code anal-
ysis techniques to generate data is not widespread. Despite
much research, these approaches do not scale well, and are
problematic for some important code elements, such as loops,
arrays and pointers[7].

Recently a new approach to test data generation has
emerged: the use of guided search techniques to home in on
test data that satisfies identified test criteria. This is discussed
in the following section.

II. BACKGROUND
A. Search Based Test Data Generation

In search based test data generation (SBTDG) achieving
a test requirement is modeled as a numerical function opti-
misation problem and some heuristic is used to solve it. The
techniques typically rely on the provision of “guidance” to
the search process via feedback from program executions.
For example, suppose we seek test data to satisfy the
condition X <= 20. We can associate with this predicate
a cost that measures how close we are to satisfying it, e.g.
cost(X <= 20) = maz(X — 20,0). The value X == 25
clearly comes closer to satisfying the condition than does
X == 50, and this is reflected in the lower cost value
associated with the former. The problem can be seen as
minimising the cost function cost(X <= 20) over the range
of possible values of X.

SBTDG for functional testing generally employs a
search/optimisation technique with the aim of causing as-
sertions at one or more points in the program to be satisfied.
We may require each of a succession of branch predicates to



be satisfied (or not) to achieve an identified execution path;
we may require the program preconditions to be satisfied but
the postconditions to be falsified (i.e. falsification testing —
finding test data that breaks the specification) [8]; or else we
may simply require a proposed invariant to be falsified (e.g.
breaking some safety condition, or causing a function to be
exercised outside its precondition)[9].

There has been a growing interest in such techniques and
we see more and more applications of these techniques to
software testing. Some of the techniques that have been
successfully applied to test data generation are Hill Climbing
(HC) [10], [11], Simulated Annealing (SA) [12], Genetic
Algorithms (GAs) [13], [14], [15], [9], Tabu Search (TS)
[6], Ant Colony Optimisation (ACO) [16], Artificial Immune
Systems (AIS)[17], Estimation of Distribution Algorithms
(EDAs) [18], Scatter Search (SS) [19] and Evolutionary
strategies (ESs) [20].

In this work we have compared SA and GA for Simulink
models. We used Standard SA, as given in appendix A,
for this work and used Genetic and Direct Search Toolbox
(GADS) [21] for the GA.

B. Simulink

Simulink is a software package for modelling, simulating,
and analysing system-level designs of dynamic systems.
Simulink models/systems are made up of blocks connected
by lines. Each block implements some function on its inputs
and outputs the results. Outputs of blocks form inputs to other
blocks (represented by lines joining the relevant input/output
ports). Models can be hierarchical. Each block can be a
subsystem comprising other blocks and lines.

Simulink models have their special way of forming
branches compared to programs. Blocks such as ‘if-else’,
and ‘Switch’ are used to form branches. We have used
only ‘Switch’ blocks in our work for branching structure.
However, the work can be easily extended to include other
blocks as well. A ‘Switch’ block has three ‘in’ ports, one
‘out’ port and a control parameter ‘Threshold’. When the
value of the second ‘in’ port is greater than or equal to the
threshold parameter, the output will equal to the value carried
on the first ‘in’ port, otherwise the value carried on the third
‘in’ port will be channelled through to the output. Therefore
a ‘Switch’ block can map to an ‘if-then-else’ branching
structure in code.

Two other important blocks that need to be introduced here
are LogicalOperator and RelationalOperator blocks.

A LogicalOperator block has two parameters: operator
parameter (which can be ‘AND’, ‘OR’, ‘NAND’, ‘NOR’,
‘XOR’, or ‘NOT’) and input-number parameter (which can
be any integer number except that when the operator param-
eter is ‘NOT’, in which case, the input-number must be ‘1’).

A RelationalOperator block has two inputs. There is a
parameter defining the desired relation between the two
inputs. If the relation is TRUE, the output will be °1’;
otherwise, the output will be ‘0’. There are six options for the
relational parameter: ==, ~=, <, <=, >=, and >. Figure
1. is an example of a Simulink model showing the above

mentioned blocks. This model has three input variables; ‘IN-
A’, ‘IN-B’ and ‘IN-C’. The ‘Product’ block multiplies all its
inputs. The model calculates if an equation of the form:

ar’ +br+c=0

is a quadratic equation and if it has real-valued solution(s).
If it is a quadratic equation and it has one or two real-valued
roots, ’1° is output; otherwise, the output is ’-1’
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Fig. 1. A Simulink Model for the Quadratic Equation.

Simulink models execute (calculate the outputs of) all
branches of the models, whether the branches are selected
or not, while for programs, only the selected branches are
executed. For example, the following code matches the model
in Figure 2.

{

program calculation;
input x,y;

output z;

begin

if x>=y

Z=X"Ys

else

Z=y—X;

end

}

In the Simulink model, both ‘x-y” and ‘y-x’ are calculated
although only one of these results is channelled through to
the output by the ‘Switch’ block. However, in the code, only
one of them will be executed depending on the evaluation of
the predicate ‘x < y’.

C. SBTDG for Simulink Models

Simulink has been popularly used as a higher level sys-
tem prototyping or design tool in many domains, including
aerospace, automobile and electronics systems. This facili-
tates investigation (e.g. for both verification and validation
purposes as well as optimisation) of the system under con-
sideration at an early stage of development. Code can then be
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Fig. 2. A Simple Simulink Model

generated either manually or automatically. Simulink plays
an increasingly important role in system engineering, and the
verification and validation of Simulink models is becoming
vital to users. SBTDG techniques have seen little application
to Simulink models, which is surprising since the execution
model of Simulink would seem to allow analogous SBTDG
techniques to be applied as for code. Here we build on earlier
work by Zhan and Clark [22].

D. Existing Work

Zhan and Clark [23] proposed search based techniques for
generating test data for Simulink models. They successfully
generated input test data for structural and mutation testing
[24]. They also proposed a technique to address the state
problem in search based testing [25].

The search techniques that were applied for test data
generation are random testing, which has been the choice for
some of the existing tools for Simulink models, and Simu-
lated Annealing. Various models were used for experiments.
Results showed that SA was more efficient than random
search in finding input test data. The work that we propose
in this paper is the extension of the above work. We suggest
using GAs for test data generation as our results show that it
is more efficient in generating test data for Simulink models
than SA.

E. GAs for test data generation of Simulink Models

SA can be a useful technique for generating test data
as suggested by existing work [9]. The existing work for
Simulink models is in agreement with this. However, there
are situations where Simulated Annealing may not be effi-
cient in finding the test data e.g. where the search space is
complex and the input domain is very large. In such situations
there is a need to apply a more generalized search technique.
That is why we see that GAs have been the most common
choice in SBTDG techniques.

We believe that GAs will also be more successful in
case of Simulink models. However, before making any such
claim, we need to have some foundation, either theoretical
or empirical. The work presented below is an empirical
comparative study of SA and GA. We used the existing
prototype tool by Zhan [22] with some modification for SA
and incorporated the Genetic Algorithm and Direct Search

toolbox (GADS) by The MathWorks, inc. [21] for GA in the
same tool.

F. Cost Function

As stated above the main component to guide the search
is the fitness function. In the work by Zhan [22], the cost
function proposed by Tracey et al. [12] is used with the
modification proposed by Bottaci [26]. Table I shows this
cost function.

TABLE I
COST FUNCTION

Predicate Value of Cost Function F
Boolean if TRUE then 0, else K
FE1 < E2 if F1 — F2 < 0then 0, else 1 — Fs + K
E1 < Ey if By — Eo < O0then 0, else £1 — F2 + K
E1 > E> if E2 — E1 < O0then 0, else B2 — E1 + K
EleQ ifEl—EQSO(henO,elseEQ—E1+K
FE1 = E> if abs(E1 — E2) = 0 then 0, else Abs(E1—
Ey)+ K
E1 # Eo> if abs(E1 — E2) # 0 then 0, else K
E\V Ey (Eq (cost (E1) x cost (E2))/ (cost (E7)+cost
unsatisfied, Fo unsatisfied (E2))
Eq1V Eo (El 0
unsatisfied, F> satisfied
FE1V Eo (El 0
satisfied, /o unsatisfied
FE1V Eo (El 0
satisfied, Fo satisfied
Ei NEy (Eq cost(E1 )+cost(E2)
unsatisfied, F> unsatisfied
FE1 N Eo (El COSt(El)
unsatisfied, Fo satisfied
FE1 N Eo (El COS[(EQ)
satisfied, F'> unsatisfied
F1 N Eo (El 0

satisfied, F> satisfied

We have adapted the same cost function for our work.

III. EXPERIMENTATION

We performed two sets of Experiments. In the first set,
we considered the ‘all-paths-coverage’ criterion of models as
proposed by Zhan and Clark [23], where a path comprises
an identified combination of switch blocks. Fulfillment of the
structural adequacy criterion will require a test set to exercise
all such combinations of switch predicates. For example, if
a model contains two switch blocks S; and S,, then the
satisfaction of the above criterion will require finding test
data for four ‘paths’, i.e. S1 —true Se —true, S —true



So— false,
So — false.

The ‘all-path-coverage’ criterion, however, in most cases,
may not be practical, where the number of branching blocks
is high. For example a model which contains 15 branching
blocks may require to satisfy 32768 such ‘paths’, which may
be computationally very expensive as well as impractical in a
reasonable amount of time. Moreover, many such paths may
be infeasible. Therefore, in the second set of experiments, we
considered a more practical criterion of ‘branch coverage’
for three different Simulink blocks; Relational, Conditional
and Switch [22]. The branch coverage criterion requires
all conditional behaviours of the blocks to be executed
at least once. For example, a LogicalOperator block has
two conditional behaviours: being evaluated to ‘TRUE’ or
‘FLASE’. Therefore, in the model in figure 1, where there are
four branching blocks (RO~=, RO>=, Logical AN D and
Switch), we have eight such branch coverage requirements.

For the first set of experiments, we used the models from
[23]. Whereas for the second set, we used the models from
[22]. The properties of the models have been summarised in
table II and table III. The models are given in appendix C.

S1— false Sy—true, and S1—false

TABLE II
EXPERIMENTAL OBJECTS1

Model No of No of No of
Input Var ~ Switch Blocks  Paths
SmplSw 2 2 4
Quadratic v1 2 3 8
RandMdl 3 4 16
CombineMdl 5 7 128
TABLE III
EXPERIMENTAL OBJECTS2
Model No of No of No of
Input Var  Blocks  Branches
Tiny 3 4 8
Quadratic v2 3 3 6
ClacStart 3 25 50

A. Experimental Setup

We used the following SA and GA configuration for both
set of experiments.

Simulated Annealing Configuration : We used the
standard SA algorithm with the following parameters. The
parameters values are based on the existing work by [24],
where the parameters were optimized after a number of
experiments.

« Move strategy: Fixed-strategy with a parameter of 0.02
« Geometric temperature decrease rate: 0.9

o Number of inner loop iterations: 100

« Maximum number of outer loop iterations: 300

o Stopping criterion: Either a solution is found or max
number of iterations is reached.

Genetic Algorithm Configuration : We used the GADS
toolbox [21], mostly, in its default configuration. Following
is a summary of these parameters.

o Initial population size=100 (50 for SmplSW and
Quadratic V1).

¢ Maximum number of generations: 300

o Selection: Stochastic uniform which chooses the parents
using roulette wheel and uniform sampling [21].

« Elite count: 2

o Crossover rate: 0.8

e Mutation function: Gaussian which creates the mu-
tated children using Gaussian distribution (scale=.5,
shrink=0.75).

o Stopping criterion: Either a solution is found, a stall
limit of 100 generations is reached, or the maximum
number of generations limit is reached.

B. Analysis

Table II shows the number of paths (combinations) for
each model. For analysis we didn’t consider trivial combi-
nations. We defined a trivial path or branch as the one for
which both the algorithms found required data easily, i.e,
SA took less than 100 executions whereas GA took 3 or
fewer generations to find the test data. We run each algorithm
30 times for all the models to obtain statistically significant
results.

Our hypothesis is that neither of the algorithms is better
than the other. We tested our hypothesis using success rate
and number of executions each algorithm took to find the
input test data. Table IV gives the results of experiments.

Both algorithms achieved 100% coverage for all the
branches for both experiments. However, when compared for
success rate, in experiment 1, GA performed much better
than SA. GA achieved a much higher success rate in more
complex models. In experiment 2, the performance of both
the algorithms was not much different.

In experiment 1, GA required less number of cost function
evaluations to find a solution for simple models but SA
performed much better than the GA for more complex
models. In experiment 2, however, GA performed much
better for more complex models.

The last two columns of the table IV gives a comparison
of means. i.e. how many times each algorithm was better
than the other when their means were compared. The results
are very similar for experiment No 1. In case of experiment
2, GA performed much better for the more complex model,
Calc-Start-Progress.

The above results, though, give GA an edge over SA, but
when compared using the means of the number of cost func-
tion executions, we found that the number of paths/branches
for which SA performed better than GA was almost the same
as the number of paths/branches for which GA performed
better. Only in the case of Calc-Start-Progress did the GA
outperform SA. Still, however, this doesn’t give us much



TABLE IV
RESULTS OF EXPERIMENTS

Coverage Mean success rate per 30 runs | Mean No of Fitness Evaluations | Mean Comparison

SA~ ] GA T SA ] GA [ SA ] GA [ SA ] GA
SmplSw 2/2 2/2 30 30 377 133 0 1
Quadratic v1 8/8 8/8 30 28 745 497 4 4
RandMdl 16/16 16/16 15 25 443 675 8 8
CombineMdl 128/128 | 128/128 17 27 1128 1288 63 63
Quadratic v2 6/6 6/6 30 30 143 169 2 2
Tiny 8/8 8/8 28.5 30 2271 721 2 2
Calc-Start-Progress 50/50 50/50 29.7 30 2236 1799 8 17

information about statistically significant differences between
the two algorithms in terms of performance. We further
conducted the Mann-Whitney non parametric test for the
number of fitness function evaluations. Table V summarizes
the results of Mann-Whitney test for both experiments. Col-
umn 2 in table V gives the total number of paths or branches
considered for analysis. Column 3 gives the number of paths
of respective models for which SA performed significantly
better than the GA. Column 4 gives the same for the GA.
Column 5 gives us the number of branches for which there
wasn’t a significant difference between the two algorithms.

From the analysis results we can see that GA performed
slightly better than SA when compared using the number of
executions it took to find test data. However, for a significant
amount of time there wasn’t any statistically significant
difference between the two.

TABLE V
MANN-WHITNEY ANALYSIS OF EXPERIMENTS

No of
Model Paths/ SA | GA No
Analyzed Branches Difference
Analyzed
Smplsw 1 0 1 0
Quadratic v1 8 0 3 5
RandMdl 15 3 3 9
CombineMdl 126 34 42 50
Tiny 4 2 0 2
Quadratic v2 4 2 1 1
Calc-Start-Progress 25 6 6 13

IV. CONCLUSIONS AND FUTURE WORK

In this paper we presented the work for an empirical
comparison of simulated annealing and genetic algorithms
for Simulink models. To the best of our knowledge, this
is the first study of the type for the Simulink models.
Surprisingly, we also do not see much work of the kind for
code based systems. The only work that came to the best of
our knowledge is from Nashat et al [27] and Tracey et al [9].
In [27], results show that SA performed better than GA and,
therefore, they suggested using SA for generating test data
for path testing. In the work of Tracey et al. SA was more
efficient for simpler code segments but performed similar
to the GA for more complex programs. However, our results
show contrary to this. GA performed slightly better than SA,
when compared for the fitness function evaluation. But for
the most part, there was not much ’statistically significant’
difference between the two. But when it comes to the success
rate, the performance of the GA was much better than SA,
thus making it a more attractive choice for the test data
generation for Simulink models.

Current work does not consider state-based testing. Zhan
and Clark [25] also suggested a technique for such testing.
They further suggested techniques for search based mutation
testing of Simulink models [24]. In our future work we want
to extend our work to such models as well.

SBTDG is the most addressed field within search-based
software engineering. Indeed, it could be said that SBSE
grew out of work in SBTDG. However, we believe that the
full potential of SBTDG will only be revealed when its tech-
niques can be routinely applied across system descriptions of
varying degrees of abstraction. There has been a great deal of
work at the code level, and work generating test data from
specifications, but surprisingly little in the middle ground
of design. Our work here provides an initial comparison of
search approaches to systems expressed in one such design
notation and does so with experimental rigour. Longer term,
it is clear that a rigorous mapping is needed between system
complexity (however measured) and efficacy of the various



search techniques. This is a valuable long-term strategic goal
and we encourage researchers to address this issue.

APPENDIX
A. Simulated Annealing

Simulated annealing is a global optimization heuristic that
is based on the local descent search strategy. The original
algorithm was given by Metropolis et al in 1953 [28]. It was
30 years later that Kirkpatrick [29] suggested its application
to the optimisation problems. Since then SA has been applied
in many forms successfully to solve many problems more
efficiently. We applied the standard SA in our work, which
is shown below.

Select an initial solution testDatag;

Select an initial temperature £y > 0;

Select a temperature reduction function « (=0.9 here);

Repeat

Repeat
Generate a move testData € N (testDatag);

Where N (testDatag) defines the neighbourhood
of testDatay

0 = f(testData)— f (testDatay);
Iféd<0
Then testDatag = testData;
Else
Generate random z uniformly in the range (0, 1);
If < e=%/t then testDatao = testData;

Until inner LpCount = maxInnerLpNo or
f(testDatag)satisfies the requirement;

Set t = a(t);

Until outer LpCount = maxQOuter LpNo or
nonAcceptCount = maxNonAcceptNo or
f(testDatay) satisfies the requirement.

testDatag is the desired test-data
if f(testDatag) satisfies the requirement.

B. Genetic Algorithm

Genetic Algorithms were developed in 1960s and 1970s
by Holland and his associates [30]. These, as evident from
the name, are bio-inspired search techniques, which define
processes taking inspiration from the principle of natural
selection to find near optimal solutions to many computing
problems.

In natural selection processes, a species evolves by three
main processes, i.e. selection, crossover and mutation over a
long period of time. These processes are simulated in GAs.
The basic GA algorithm is given as follows:

« Initialise a population of individuals (chromosomes).

o Calculate fitness of each individual in the population
(relative to some objective function).

o Select prospective parent (using selection methods).

e Create new individual by mating parents (using
Crossover).

o Mutate some of the individuals to introduce diversity.

o Evaluate the new members and insert them into the
population.

o Repeat stage 2 until some termination condition is
reached.

o Return the best individual as the solution.

C. Models used for experiments
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