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Abstract

Recently Search Based Software Engineering (SBSE) has
evolved as a major research field in the software engineering
community. SBSE has been applied successfully to many
software engineering activities ranging from requirement en-
gineering to software maintenance and quality assessment.
One area where SBSE has seen much application is test data
generation. Search based test data generation techniques
have been applied to automatically generate data for testing
functional and non-functional properties of softwares. For
structural testing, most of the time, the criterion used, is
branch coverage. However, this is not enough. For the wider
acceptance of search based test data generation techniques,
much stronger criteria are needed. In this paper we have
proposed an automatic framework that extend search based
testing techniques to more stronger criteria such as multiple
condition and MCDC coverage.

1. Introduction

1.1. Dynamic Testing

Dynamic testing — “the dynamic verification of the
behaviour of a program on a finite set of test cases, suitably
selected from the usually infinite executions domain, against
the expected behaviour” [1] — is used to gain confidence in
almost all developed software. Various static approaches can
be used to gain further confidence but it is generally felt that
only dynamic testing can provide confidence in the correct
functioning of the software in its intended environment.

We cannot perform exhaustive testing because the domain
of program inputs is usually too large and also there are
too many possible execution paths. Therefore, the software
is tested using a suitably selected set of test cases. A
variety of coverage criteria have been proposed to assess
how effective test sets are likely to be. Historically, criteria
exercising aspects of control flow, such as statement and
branch coverage [2], have been the most common. Further
criteria, such as data flow [3], or else more sophisticated
flow criteria such as MC/DC coverage [4] have been adopted
for specific application domains. Many of these criteria

are motivated by general principles (e.g., you cannot have
much confidence in the correctness of a statement without
exercising it); others target specific commonly occurring
fault types (e.g., boundary value coverage).

Finding a set of test data to achieve identified coverage
criteria is typically a labour-intensive activity consuming
a good part of the resources of the software development
process. Automation of this process can greatly reduce the
cost of testing and hence the overall cost of the system.
Many automated test data generation techniques have been
proposed by researchers. We can broadly classify these
techniques into three categories: random, static and dynamic
[5] [6].

Random approaches, though simple but are not very
efficient and may simply fail to generate test data in any
reasonable time-frame for more complex software (or more
sophisticated criteria). Static approaches, on the other hand
still struggle with some important code elements such as
loops, pointers and arrays. Dynamic approaches, to a great
extent, overcome these limitations. One such approach that
has become more popular recently is the use of search
techniques to generate test data. It has been briefly described
in the following section.

1.2. Search Based Test Data Generation

In search based test data generation (SBTDG) achieving
a test requirement is modeled as a numerical function
optimisation problem and some heuristic is used to solve it.
The techniques typically rely on the provision of “guidance”
to the search process via feedback from program executions.
For example, suppose we seek test data to satisfy the
condition X <= 20. We can associate with this predicate
a cost that measures how close we are to satisfying it, e.g.,
cost(X <= 20) = max(X − 20, 0). The value X == 25
clearly comes closer to satisfying the condition than does
X == 50, and this is reflected in the lower cost value
associated with the former. The problem can be seen as
minimising the cost function cost(X <= 20) over the range
of possible values of X .

SBTDG for functional testing generally employs a search/
optimisation technique with the aim of causing assertions



at one or more points in the program to be satisfied. We
may require each of a succession of branch predicates to be
satisfied (or not) to achieve an identified execution path; we
may require the program preconditions to be satisfied but
the postconditions to be falsified (i.e., falsification testing
— finding test data that breaks the specification) [7]; or else
we may simply require a proposed invariant to be falsified
(e.g., breaking some safety condition, or causing a function
to be exercised outside its precondition) [8].

There has been a growing interest in such techniques
and we see more and more applications of these techniques
to software testing. To evaluate the applicability of such
approaches many tools were also developed in the past. For
example, TESTGEN [9], [10], QUEST [11], ADTEST [12],
GADGET [5], tools by Jones et al. [13] and Tracey [14] and
recently IGUANA [15]. However, in most of these tools the
target coverage criterion is branch coverage. We know that
this criterion is not very ‘strong’. To have more confidence
in the testing process and hence wide acceptance of the
search approaches, more specifically in the critical system
domain, we need the application of search techniques to
stronger criteria. In this paper we propose the application of
search techniques to generate test data, to achieve multiple
condition and MC/DC coverage.

1.3. Optimisation Techniques

Some of the optimisation techniques that have been suc-
cessfully applied to test data generation are Hill Climbing,
Simulated Annealing (SA), Genetic Algorithms (GAs), Tabu
Search (TS), Ant Colony Optimisation (ACO), Artificial Im-
mune Systems (AIS), Estimation of Distribution Algorithms
(EDAs), Scatter Search (SS) and Evolutionary strategies
(ESs). Our framework can incorporate any of these tech-
niques. We evaluate our approach using Simulated Anneal-
ing, one of the most widely used optimisation techniques for
search based testing. In the following paragraphs we give a
brief introduction to this technique.

Simulated annealing is a global optimization heuristic that
is based on the local descent search strategy. The original
algorithm was given by Metropolis et al in 1953 [16]. It was
30 years later that Kirkpatrick [17] suggested its application
to optimisation problems. Since then SA has been applied
in many forms successfully to solve many problems more
efficiently. Our Framework uses the standard SA as shown
in Table 1.

The technique itself, as the name suggests, is inspired
by the annealing process in metals, where the variations in
temperature affect their mechanical properties. In analogy,
each move in the search process, which is a random solution
in the neighbourhood of current solution, is accepted with a
probability depending on a parameter called ‘Temperature’.
Initially the temperature is high and almost all moves are
accepted. Gradually the temperature is lowered. Improving

Select an initial solution testData0;
Select an initial temperature t0 > 0;
Select a temperature reduction function α (=0.9 here);
Repeat

Repeat

Generate a move testData ∈ N(testData0);

Where N(testData0) defines the neighbourhood
of testData0

δ = f(testData)−f(testData0);

If δ < 0

Then testData0 = testData;

Else

Generate random x uniformly
in the range (0, 1);

If x < e−δ/t then testData0 = testData;

Until innerLpCount = maxInnerLpNo or
f(testData0)satisfies the requirement;

Set t = α(t);

Until outerLpCount = maxOuterLpNo or
nonAcceptCount = maxNonAcceptNo or
f(testData0) satisfies the requirement.

testData0 is the desired test-data
if f(testData0) satisfies the requirement.

Table 1. Standard SA algorithm

moves are always accepted. Non-improving moves are ac-
cepted probabilistically. This facilitates escape form local
optima. The worse a move is the less likely it is to be
accepted. Similarly the lower the temperature the less likely
a worsening move will be accepted. As the temperate heads
to zero the search effectively becomes a local hill-climb.

1.4. Control Flow Coverage Criteria

The most common control flow coverage criteria are
statement, branch or decision coverage, condition/decision
coverage, MCDC and multiple condition coverage. We re-
strict ourselves here to the discussion of multiple condition
and MCDC, the subject of this paper.

In the control flow based coverage criteria subsumption
hierarchy as shown in Figure 1 [18], multiple condition
coverage is the strongest criterion. It requires test cases that
cover all the conditions in a decision. For example, consider
the truth table in Table 2. For a decision containing two
conditions as C1 ∧ C2, we need test cases to exercise all



Figure 1. Control Flow Subsumption Hierarchy

Test Case No C1 ∧ C2 outcome
1 TT T
2 TF F
3 FT F
4 FF F

Table 2. Test Case Sequences for Multiple Condition
Coverage.

‘true’ and ‘false’ combination of C1 and C2 i.e., TT , TF ,
FT , and FF . In general, if a decision D contains n number
of conditions C, we require at least 2n test cases to satisfy
multiple condition coverage.

Since the number of tests required to satisfy multiple de-
cision coverage increases exponentially with the number of
conditions, it can become very expensive for decisions with
large number of conditions. There may also be infeasible
combinations of conditions. Filtering out such combinations
further increases the cost of this criterion and hence it may
not be practical to apply it for large and complex systems.

MC/DC on the other hand is a more practical criterion
and hence usually a testing requirement for critical systems
such as those developed in the avionics domain. It is satisfied
when (i) every condition in a decision in a program has
taken all possible outcomes at least once, and (ii) each
condition has been shown to independently affect the deci-
sion’s outcome. A condition is shown to independently affect
a decision’s outcome by varying just that condition while
holding fixed all other possible conditions [4]. Consider
Table 3; requirement (i) is satisfied by test cases 2 and 3
for condition C1 and by test cases 1 and 2 for condition
C2. Requirement (ii) is satisfied by test cases 1 and 2 for
C1 and by 1 and 3 for C2. We can satisfy MCDC for a
decision with a minimal set of n + 1 test cases, where n is

Test case No C1 ∧ C2 outcome
1 TT T
2 TF F
3 FT F

Table 3. Test Case Sequence for MCDC.

the number of conditions in the decision.

2. Framework for Refined Test Data Genera-
tion

This section describes how search based techniques have
been applied to generate test data for multiple condition
coverage and MCDC. We propose a framework. Figure 2
shows the high level architecture of the framework. The
framework can be broadly classified into three parts: the
Instrumentor; Fitness Function Calculator; and Optimisation
rig.

The Instrumentor takes the class under test (CUT) as input
and produces an instrumented version. Paths and branches,
for which data are to be generated, are identified. Based
on coverage criteria, we select a fitness function and then
using the selected optimisation technique, we search for the
desired data.

Figure 2. High Level Architecture of the Framework

The Instrumentor is an important component of the frame-
work. We used ANTLR [19] for Java parser generation using
the Java grammar [20]. The Abstract Syntax Tree (AST) is
generated, walked and instrumented at desired locations in
the code. We used the Java emitter by [21], which walks
the modified AST to generate the instrumented code. The
instrumentation scheme is devised in such away to capture
the required information preserving the semantics of the
program. The following lines explain the instrumentation
scheme. Our tools assume that all conditions are in disjunc-
tive normal form (DNF).

If during parsing a control structure of the form

c00 ∧ c01..c0n ∨ c10 ∧ c11..c1n ∨ ..cn0 ∧ cn1..cnn

is encountered, the instrumentor annotates the code with
the respective decision number, conjunct number and clause
number.

Here
cij represents jth conjunct of ith clause of the form



(expr)relop(expr).

relop can be any of the relational operators:
≤,≥, <, >, ==, ! =

For example consider the following if-branch, the
condition portion of which consists of two clauses and each
clause consists of two conjuncts

if((x1 < 15 ∧ x2 > 10) ∨ (y1 > z1 ∧ z1 < 35))

The instrumentor replaces it by the following structure.

if(data.complex(dec#,
data.basic(x1, ” < ”, 15, dec#, clause0, conjunct0) ∧
data.basic(x2, ” > ”, 10, dec#, clause0, conjunt1) ∨
data.basic(y1, ” < ”, z1, dec#, clause1, conjunct0) ∧
data.basic(z1, ” < ”, 35, dec#, clause1, conjunct0)))

The instrumented code can then be compiled by any
standard Java compiler. data.basic() and data.complex()
are method calls to the object of a Data class which contains
data structures to gather information from all instrumented
branches during execution of program.

The advantage of this kind of instrumentation is that we
can store the information about input decision variables
as well as the decision itself separately. This help us to
manipulate it in a flexible way for our purpose i.e., we
can incorporate different cost functions and hence coverage
criteria. One problem that usually occurs with traditional
source code instrumentation is that of undesirable side
effects, which can alter the program’s intended behaviour
during run time. However, the suggested instrumentation
scheme also avoids this problem.

3. Cost Function

The proposed framework can use any of the cost functions
for test data generation, however, to start with, the cost
function that we chose is similar to the one proposed by
Tracey et al [14]. The cost function has been shown in Table
4. This is a modified form of the work proposed by Korel [9].
The cost function is based on evaluating branch predicates.
It gives a value of 0 if the branch predicate evaluates to the
desired value and a positive value otherwise. The lower the
value, the better is the solution.

The framework can calculate cost function for many
different criteria. Currently it provides cost calculation for:

• For any decision it reaches.
• For any conjunct in the decision.
• For a series of specific conjunct assignments for each

decision and
• For any identified series of branches (a path).

In evolutionary testing literature, as stated earlier, we
usually find test data generation for branch coverage only.
However, The ability of our framework to calculate cost
functions for a series of specific conjunct assignment in
a flexible way helped us to achieve stronger coverage
criteria such as MCDC and decision/condition coverage.
The framework automatically generates test case sequences
for multiple condition coverage and MCDC. In the case of
MCDC, we generate minimal set of test case sequences,
using the technique described by Mathure [22]. We modified
the technique slightly to generate test sequences for com-
pound decisions containing both conjuncts and disjuncts.

We have chosen the approach level with branch distance
strategy to reach the desired goal [15]. In this strategy,
the cost function is devised in such a way to consider the
path leading to the target. Thus the cost function is given as;

CurrentBranchCost+
K ∗NumberOfRemainingBranches

Where K is constant and can be given any value just
greater than the highest branch cost of any of the branches.
The advantage of this value is that, it helps the search to be
guided for a complete path.

When the current branch is the one directly leading to
the the target without any other branches in between then
the BranchCost is the summation of costs of individual
conditions in the MCDC test case under consideration. For
all other branches, leading to this branch, only the cost for
branch coverage is calculated. e.g., Consider the following
branch statement;

if (a == b) ∧ (b == c)
{

statement/s;
target reached

}

The Minimal MCDC sequence require three test cases i.e.,
TT , TF and FT . Consider the test case under consideration
is TT . Let the current values of variables be a = 551, b =
382 and c = 168, then the cost of the current branch is
calculated as abs(551− 382) + abs(382− 168).

During the execution of instrumented program, the frame-
work also stores the minimum and maximum value of cost
function for a condition. This is particularly helpful for
storing information about loop predicates as well as the
branches inside a loop. For example, consider the following
code segment;

public void loopTest(int x){
for (int i=0;i<10; i++){
if (x>50){

target statement;
}
else{



statements;
}

x++;
}

}

The target is executed only when the value of x is greater
than 40. When the value is less than 40, the minimum cost
value help us to guide the search to select a more closer
value until the goal is reached. If a false outcome of the
branch to be taken, then any value of x less than 50 will
reach the goal. However, if a value of 49 is taken, after the
loop is executed, the value of x will be 59. If we do cost
function calculation after the loop is executed, we wont be
given a solution until the value of x less than 40 is chosen.
However, by keeping the minimum and maximum values,
the framework avoids this problem.

Table 4. Cost-Functions

Element Value#1
a = b if abs(a− b) = 0 then 0

else abs(a− b)+K
a 6= b if abs(a− b) 6= 0 then 0

else K
a < b if (a− b) < 0 then 0

else (a− b)+K
a ≤ b if (a− b) ≤ 0 then 0

else (a− b)+K
a > b if (b− a) < 0 then 0

else (b− a)+K
a ≥ b if (b− a) ≥ 0 then 0

else (b− a)+K
a ∨ b min(cost(a), cost(b))
a ∧ b cost(a) + cost(b)

The framework can be used with different search based
optimization techniques. Currently the framework is im-
plemented with Simulated Annealing and integrated with
genetic algorithm through an open source API JGAP[23].
However in this work we have restricted our experimentation
with SA only.

4. Experimentation

We performed experiments with small programs which
are taken mostly from current software testing literature.
Triangle is a benchmark program and has been used many
times in many works related to software testing. We used
a variant of this program that contains more complex
branching structures. CalDate is taken from May’s PhD
thesis [24]. This program converts the specified date (given
as three arguments: day, month,year) into a Julian date.
The Quadratic program determines the root of a quadratic
equation. Complex is a custom written program with difficult
branching structures. Expint, Exponential Integral Program,
is taken from [25]. The program is translated in Java to be
used with our tool.

We used the following parameters for Simulated Anneal-
ing. The parameter were optimized through a small set of
experiments.

Move strategy: fixed
Geometric Temperature decrease rate: 0.9
Number of iteration in inner loop: 100
Maximum number of iteratoin in outer loop: 500
Stopping criteria: Either a solution is found or maximum

number of iterations are reached.
Table 5 summarises the results for Multiple Condition

Coverage whereas Table 6 summarises the result for MCDC.
The results are averaged over thirty runs of each program.
Column three gives the average number of execution taken
to search input data for all branches. Success rate calculated
by dividing the number of times the data was found to the
total number of runs. Coverage is calculated by dividing
the number of combinations covered to the total number of
feasible combinations.

The search tool successfully obtained hundred percent
coverage in all programs but one. In case of Expint, it
achieved coverage for both criteria in 21 branches. A further
identified branch for which data could not be found was
actually unachievable.

5. Conclusion and Future Work

In this paper we demonstrated how search based test data
techniques can be used to generate test data at the lowest
level of branch predicate. To the best of our knowledge,
this is the first work of its kind. The generation of test
data at the lowest level enabled us to target more practical
coverage criteria such as MCDC. We believe that this work
is important for the wide acceptance of SBTDG techniques,
especially at industrial level.

We developed a flexible prototype tool. The tool can be
further extended to include other search based algorithms.
This is particularly useful for comparative studies of these
techniques.
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