
Strengthening Inferred Specifications using Search Based Testing

Kamran Ghani, John A. Clark
Department of Computer Science

University of York
YO10 5DD, York, UK

{kamran,jac}@cs.york.ac.uk

Abstract

Software specification is an important element of the
software development process. However, in most cases the
specifications are out-of-date or even missing. One solution
for this kind of problem is to use some process that infers
the specification automatically. Work by Ernst et al [9, 22]
has shown how specifications can be generated using pro-
gram execution traces. These approaches are dependent on
the test suites used to produce the traces, which may lead
to unreliable specifications being inferred. Such specifica-
tion inference is highly useful, however. In this paper we
show how search based testing techniques can challenge
and identify erroneous elements of such inferred specifica-
tions. This leads to a much tighter (accurate) inferred spec-
ifications. Thus, specification inference and search based
test data generation are shown to be complementary.

1 Introduction

The software specification captures the required be-
haviour of a program. It is an important ‘document’ used
throughout the software development lifecycle. Specifi-
cations are informal plain text statements of needs, semi-
formal structured or graphical descriptions, or statements
with mathematical precision (usually referred to as formal
specifications). Specifications may be identifiable docu-
ments in their own right, or else comprise assertion frag-
ments embedded within code (e.g. as in the Design By Con-
tract paradigm).

The extent to which a specification can be useful depends
upon its specific form — each format has its own strengths
and weaknesses. Formal specifications typically facilitate
the automation of a variety of tasks (e.g. test data genera-
tion or proofs of correctness) but generally require a high
level of skill to produce and read. Informal specifications
are usable by a wider audience but may suffer from ambi-
guity.

In many cases we do not have any explicit specification.
This is highly undesirable; specifications are highly use-
ful documents to many stakeholders. Since generating and
maintaining specifications is a tedious job, it can be greatly
beneficial if the process is automated. Work has been done
in this respect, exploring the use of static code analysis tech-
niques (e.g. [4, 28]) and dynamic techniques (most promi-
nently the work of Michael Ernst [9])

An invariant is a property of a program which remains
true for all its executions and hence represents a partial
specification. There are unlimited number of program in-
variants. Some will be fundamental (the set of invariants
defining the program behaviour) and others may be derived
as consequences.

Static analysis techniques for deriving invariants from
program code are sound theoretically, but in practice they
are difficult to implement. One recent approach used to
overcome such problems is dynamic (runtime) analysis [9].
In this approach likely invariants are inferred from the ac-
tual execution traces of the program when exercised by test
cases. Since the inferred invariants are largely dependent on
test cases, they may not be correct. To get around this prob-
lem, many approaches have been proposed [22, 32, 6, 23].
An overview of these approaches is given in the Related
Work section.

In this paper we present the use of Search Based
Test Data Generation (SBTDG) techniques to verify and
‘strengthen’ the inferred putative invariants. An attempt is
made to falsify inferred invariants using the available search
techniques. The result is that an inferred specification can
be iteratively challenged by SBTDG techniques resulting in
a more credible set of invariants.

2 Background

2.1 Dynamic Invariant Generation

Dynamic Invariant Generation techniques have in re-
cent years attracted significant research interest. As stated

above, data is collected from the state and IO execution
traces of programs when test cases are run. Assertions can
be generated over variables of interest. Assertions that are
consistent with all traces are possible invariants. There are,
of course, an infinity of such true statements but Michael
Ernst et al. [9, 25] have demonstrated how useful invariants
can be generated. In particular they have shown how invari-
ants that make up the specification of a program can be gen-
erated. This “specification” is a best effort attempt to cap-
ture abstractly the behaviour of the implemented program.
Daikon [10], their tool framework, uses a multi-step ap-
proach to inferring likely invariants. An instrumented ver-
sion of a program (with code to record state data at program
points during execution) is exercised with test cases. The
likely invariants are detected and can be reported in many
useful formats. The output consists of procedure pre- and
post-conditions and generalized object invariants. Daikon
checks for 75 different types of invariant and the extension
mechanism is simple enough to include more. It also checks
for conditional invariants and implications. A conditional
invariant is only true part of the time. The statement

if (a < b)
return a ;

else
return b;

is an example of a conditional invariant. Support for many
popular programming languages has already been provided
and can be further extended easily to other languages.

2.2 Search Based Test Data Generation

In search based test data generation achieving a test re-
quirement is modelled as a numerical function optimisation
problem and some heuristic is used to solve it. The tech-
niques typically rely on the provision of “guidance” to the
search process via feedback from program executions. The
guidance usually comes in the form of fitness or cost func-
tion, used interchangeably in this text.

For example, suppose we seek test data to satisfy the
condition X <= 20. We can associate with this predicate
a cost that measures how close we are to satisfying it, e.g.
cost(X <= 20) = max(X − 20, 0). The value X = 25
clearly comes closer to satisfying the condition than does
X = 50, and this is reflected in the lower cost value asso-
ciated with the former. The problem can be seen as min-
imising the cost function cost(X <= 20) over the range of
possible values of X .

SBTDG for functional testing generally employs a
search/optimisation technique with the aim of causing as-
sertions at one or more points in the program to be satisfied.
We may require each of a succession of branch predicates to

be satisfied (or not) to achieve an identified execution path
(or other goal); we may require the program preconditions
to be satisfied but the postconditions to be falsified (i.e. fal-
sification testing — finding test data that breaks the spec-
ification) [29] ; or else we may simply require a proposed
invariant to be falsified (e.g. breaking some safety condi-
tion [31] , or causing a function to be exercised outside its
precondition).

There has been a growing interest in such techniques
and we see more and more applications of these techniques
to software testing. Some of the techniques that have
been successfully applied to test data generation are Lo-
cal Search (LS) [21, 16], Simulated Annealing (SA) [29],
Genetic Algorithms (GA) [15, 2, 24], Tabu Search (TS)
[8], Ant Colony Optimisation (ACO) [18], Artificial Im-
mune Systems (AIS)[19], Estimation of Distribution Algo-
rithms (EDA) [26], Scatter Search (SS) [27] and Evolution-
ary Strategies (ES) [3].

2.3 Fitness Function

We use the basic fitness function proposed by [30] for
our work as shown in Table 1. This is a modified form of
the work proposed by [16]. The fitness function is based
on evaluating branch predicates. It gives a value of 0 if the
branch predicate evaluates to the desired value and a posi-
tive value otherwise. The lower the value, the better is the
solution. The table indicates the cost for specific assertions.
Where more than one assertion is of interest (e.g. when a
sequence of branch predicates must be satisfied to follow an
identified path) then the basic costs per predicate are com-
bined in some way. In the table, K represents a failure con-
stant which is added to further punish incorrect test-data.

Table 1. Fitness-Functions
Element Value#1
a = b if abs(a− b) = 0 then 0

else abs(a− b) + K
a 6= b if abs(a− b) 6= 0 then 0

else K
a < b if (a− b) < 0 then 0

else (a− b) + K
a ≤ b if (a− b) ≤ 0 then 0

else (a− b) + K
a > b if (b− a) < 0 then 0

else (b− a) + K
a ≥ b if (b− a) ≥ 0 then 0

else (b− a) + K
a ∨ b min(cost(a), cost(b))
a ∧ b cost(a) + cost(b)

2.4 SBTDG for Invariant Falsification

SBTDG techniques find input data that cause identified
assertions to be true or false (as required). For specifica-
tion strengthening purposes we simply target those asser-
tions generated by dynamic techniques such as Daikon as
fragments of inferred specifications. We need only repre-
sent such assertions in a form that is amenable to search.
This can be readily obtained by representing an invariant
in branch predicate form. Suppose we have a proposed in-
variant inv for some identified point in the program. If we
insert a program statement “if(!inv);” at that point we can
view the falsification of the invariant as a branch reachabil-
ity problem. This enables us to use the standard SBTDG
techniques, where we try to find test data to satisfy this
branch. In this work we have used our own SBTDG tool,
but the overall approach we adopt can readily be used with
any reasonably effective SBTDG tool.

3 Related Work

Nimmer et al. [22] proposed a combination of dynamic
and static analysis techniques to generate specifications and
prove their correctness. They used Daikon with ESC/Java
[7, 17]. Their work shows that specifications generated
from program execution are reasonably accurate. However,
due to limitations of the tools spurious inferred invariants
may remain.

Harder et al. [14] proposed the Operational Difference
(OD) technique for generating, augmenting, and minimiz-
ing the test suites. The main idea is to generate an oper-
ational abstraction (OA), an abstraction of the program’s
runtime behaviour, from program executions and then try
to improve it. The technique starts with an empty test suite
and empty OA. Test cases are generated and evaluated by
means of the change that it brings in the OA. A test case
that improves the OA can be added to a test suite and a test
case that doesn’t can be removed. They also proposed op-
erational coverage as a measure of difference between the
OA and the correct specification. This is a relative term and
requires the presence of an oracle to be computed. The tech-
nique developed fault revealing test suites, however, it is not
guaranteed that the change brought by a test case in the OA
is correct. For example, consider a variable A >= 0. A test
case, say A = 5, may cause the OA to include A ! = 0 un-
less and until another test case A = 0 is executed. Thus ele-
ments of the OA may be untrue. Our technique on the other
hand searches for such “missing” or revealing test cases and
hence increases the quality of the OA.

Gupta [11] proposed modelling the invariant detection
problem as a test data generation problem in a manner sim-
ilar to our approach. However, they did not apply search
based techniques. They [12] further proposed an invariant

coverage criterion based on a set of definition-use chains of
variables of an invariant property.

Hangal [13] and Xie [32] used specification violation ap-
proaches to improve their inferred specifications. Hangal’s
work [13] was mainly aimed at detecting bugs. It is im-
plemented in the DIDUCE tool, which continually checks
the program’s behaviour against the invariants during pro-
gram execution and reports all detected violations at the
end. Xie’s [32] approach uses Daikon with ParaSoft JTest
[1] with the intention of improving the test suites for unit
testing of Java programs.

Pacheco [23] proposed a technique that selects from a
large test set, a small subset of test inputs that are likely to
reveal faults in the software under test. Their technique in-
fers an operational model of the software’s operation from
the correct execution of a program using the Daikon invari-
ants detector. The program is then executed using randomly
generated ‘candidate’ inputs with provided inferred invari-
ants monitored to see if they are satisfied, A classifier sys-
tem labels candidate input as illegal, normal operation or
fault-revealing. The interesting ones are the fault-revealing
inputs which may indicate a fault in the program. If more
than one input violates the same property then only one in-
put is selected from that set. The technique has been im-
plemented in a tool called as Eclat. The technique was
tested with some sample programs and compared with an-
other tool, JCrasher [5], Eclat yields good results. The tech-
nique is effective and revealed previously unknown faults.
However, it requires a priori correct test suites which may
not be available. It also sometimes classifies an input as
fault-revealing, though it may not be so.

4 Our Approach

One limitation of many dynamic invariant inference ap-
proaches is that they are at the mercy of the test data. Test
suites may not be wholly appropriate for the purposes of
inference. We may also get spurious or ‘not interesting’
[11] invariants. Though some approaches [11, 14, 32] have
been proposed to modify test suites, they do not completely
preclude the generation of spurious invariants. This is es-
pecially the case when the domain of input data is large or
the program is complex. We may have a test suite satisfying
a certain structural criterion, but due to lack of enough test
cases, we may get erroneous specifications. Figure 1 is an
example of such a program. In order to refine the specifica-
tion for such programs we adopt a systematic approach.

Our approach is similar to that of [13, 32]. However,
we propose a Search Based Test Data Generation approach
and unlike previous approaches, our domain of application
is more ‘procedural’ in nature.

Figure 1. A simple program with a large input
space

4.1 High Level Model

Figure 2 shows a high level model of our approach. We
can divide our model into three main steps.

Invariant Inference: Invariants are generated from a ran-
domly generated test suite containing ‘enough’ test cases to
allow a reasonably succinct set of invariants to be inferred.

Invariants’ Class: The invariants generated are then ‘im-
ported’ into an intermediate class. It contains all the invari-
ants in a format suitable to apply our search based test data
generation techniques.

Invariant Falsification: A test data generation tool at-
tempts to falsify the invariants.

Figure 2. High Level Model of our Approach

These are further elaborated below.

4.2 Invariant Inference:

In this step we use Daikon to infer likely invariants. To
begin with, a test suite of ‘reasonably’ large set of test cases
is given as input to Daikon. Daikon dynamically infers a
list of invariants based on the execution of test cases. The
test suite is either generated randomly or by our test data

generation tool, described later. We can ensure that identi-
fied structural criteria are satisfied, whichever approach is
adopted. Though the inferred invariants are affected by the
number of test cases in a test suite, there is no direct correla-
tion between the size of test suite and the invariant inference
process [14]. Therefore, we chose a test suite of arbitrary
size, ensuring at the same to include enough test cases that
may satisfy the structural criteria many times. The reason
for this is to get a list of generalized likely invariants and to
eliminate the less interesting ones e.g. invariants peculiar to
a specific test set used, such as “x is one of {4, 8, 9}”.

Consider the running example in Figure 1. We used
Daikon to infer invariants using 15000 randomly chosen
values of “a” between -100 and 100000. The output from
Daikon is shown in Figure 3. The invariant a! = 0 is
not necessarily true, but since the probability of randomly
choosing a = 0 as an input is 1/101000, we can see why a
random process is unlikely to generate such a case (even
with 15000 trials). 15000 trials would generate at most
15000 distinct values of “a” and the range of “a” comprises
101000 of which 0 is but one element. Thus in random test
generation techniques, which seem to be the choice for in-
variants falsification in previous

¯
approaches [13, 32], we

are very likely to get the spurious invariants. Note that
stronger coverage criteria, such as Invariant Coverage are
also not effective here as a single test case, e.g. a = 2 may
give us the coverage for all these criteria.

4.3 Intermediate Invariants’ Class

For counter-example generation purposes we insert ad-
ditional fragments into the program. At point P in the pro-
gram if an invariant such as (a! = x) is proposed then we
insert a code fragment if (a == x);. In test data generation
terms breaking the invariant corresponds to reaching the
true branch of the inserted fragment. Thus we model break-
ing invariants as path satisfaction problems. Fragments are
inserted for each invariant we want to falsify.

4.4 Test Data Generation Framework

The generated class is then given as an input to the
test data generation framework, which searches data to fal-
sify the invariants. The test data generation framework is
a research tool developed to investigate the application of
search based techniques to software testing. We can use
any search based technique such as hill climbing, simulated
annealing (SA) or evolutionary search techniques. We used
SA here to falsify the invariants.

If an invariant can not be falsified even after exhausting
the search criteria, the search is terminated for that invari-
ant and the invariant is assumed correct. Here we use the
tool’s abilities to target branch conditions. We terminate the

search process when either a solution is found or a maxi-
mum numbers of trials have been made. If a test case is
found that falsifies the invariant, it is added to the existing
test suite. The process continues until test data to falsify all
the invariants have been searched for. A report is then gen-
erated, which shows the invariants that have been falsified
and the respective test data. Figure 4 shows such a report
for the example program. The modified test suite is again
executed by Daikon and a modified list of invariants is gen-
erated. The process is repeated and if no further invariant
is falsified in the following iteration, the process is termi-
nated. For the example program, all the falsified invariants
were found in the first iteration thus giving us more refined
specifications. as shown in figure 5.

Figure 3. Initial Output from Daikon.

5 Case studies

For further experiments we used four programs, i.e, Mid-
dle, WrapRoundCounter and BubbleSort from [29]. These
programs were used for specification conformance and were
originally written in Ada. The fourth program, CalDate, is
taken from [19]. These programs have been given in the
appendix. Details of the input domains, test cases and num-
bers of falsified invariants are shown in the Table 2.

Figure 4. Output from Test Data Generation
Framework

5.1 Middle Program

Middle program takes 3 input variables and returns a
variable having a value between the other two. If two vari-
ables have same value then the third one is reported as mid-
dle. We tried programs with different input domains. Usu-
ally, if we keep the input domain small, we don’t expect
spurious invariants to be generated. However, in this case
even though we kept the input domain very small, still a
spurious invariant was nevertheless inferred. By further in-
creasing the input space, Daikon inferred a set containing
no spurious invariant. However, when the domain of in-
put values was further increased more spurious invariants
were inferred by Daikon. In each case the search based test
data generation framework successfully generated test data
to falsify these spurious invariants and the final lists in all
cases contained the same invariants.

5.2 WrapRoundCounter

WrapRoundCounter is a simple program which counts
from 0 to 10 and then wrap-around back to 0 again. This
program was included to investigate conditional invariants
as well. No inferred invariant was falsified by the search
tool in this case as the program was simple enough for the
Daikon to infer correct invariants. Also there was no effect
changing the input domain because of the nature of pro-
gram.

5.3 BubbleSort

This program sorts the elements of an array in ascend-
ing order. This is an example of program where the in-
put domain does not have an effect on the inferred invari-

Figure 5. Final Output from Daikon.

ants. Daikon inferred a correct set of invariants in this case.
Additionally , the manual instrumentation of the code with
Daikon invariants was very tedious.

5.4 CalDate

This program converts the date given as day, month and
year into a Julian date (not including the fractional time
part). The Julian date is then calculated as the number of
days from the 1st January, 4713 B.C. If the date to be con-
verted is after 15th October 1582, which is the date of in-
troduction of the Gregorian calender, then the Julian date
is adjusted. The Julian date is then returned. In this case
we changed the number of test cases rather than the do-
main as the domain needs to remain fixed. The search tool
was able to eliminate the spurious inferred invariants in each
case. However, as expected, the number of spurious invari-
ants decreases with the test suite size. Again the final set of
invariants were identical in each case.

6 Conclusion and future work

Specifications are important. In many cases, they will
not exist or (often even worse) be out of date. Specification
synthesis tools such as Daikon offer a promising solution to
this problem. However, Daikon, and indeed other dynamic
inference tools, make inferences based on the traces of the
program when executed with a given test set. Inferred spec-
ifications may differ between test sets used; this presents
a problem. Coverage criteria may be postulated but there

Table 2. Case Studies
Program Input # of # of

Domain Test Falsified
cases Invariants

Middle -10 — 10 15000 1
Middle -100 — 100 15000 0
Middle -500 — 500 15000 1
Middle -1000 — 1000 15000 2
Middle -5000 — 5000 15000 2

BubbleSort -100 — 100 15000 0
BubbleSort -1000 — 1000 15000 0

WrapRound- 0 — 11 100 0
Counter

WrapRound- 0 — 100 100 0
Counter

WrapRound- 0 — 11 100 0
Counter

(conditional)
Example- -1000 — 15000 8
Program 100000
CalDate various 500 3
CalDate various 1000 3
CalDate various 15000 1

would appear to be no clear candidate. In many cases users
resort to random testing whilst in others structural criteria
are used. These often allow erroneous invariants to be in-
ferred. Our work shows that extant search based software
test data generation approaches can be used to stress each
inferred invariant with a view to falsifying it. Test data that
falsifies inferred invariants can be added to the test suite
and the inference tool can be rerun. This leads to more ac-
curate inferred specifications. Currently the search for test
data is carried out automatically by our tool. Instrument-
ing the program with the Daikon invariants to be falsified
is at present a manual process though this should shortly be
automated.

Our technique uses our own Java search based test data
generation tool but we think the approach can clearly be
adopted with any other search based test data generation
tool. The approach shows that search based test data genera-
tion and specification inference are complementary. (Search
based test data generation techniques can also be used to
generate the initial test suite itself.) Our approach is a prag-
matic way to enable the important task of specification in-
ference to be improved.

References

[1] Jtest, ParaSoft Corportation, http://www.parasoft.com.

[2] J. Alander, T. Mantere, and P. Turunen. Genetic algorithm
based software testing. In Artificial Neural Nets and Genetic
Algorithms, pages 325–328, Wien, Austria, 1998. Springer-
Verlag.

[3] E. Alba and J. Chicano. Software testing with evolutionary
strategies. LNCS 3943, 169(2):50–65., September 2005.

[4] P. Cousot and N. Halbwachs. Automatic discovery of lin-
ear restraints among variables of a program. In Proceedings
of the 5th ACM Symposium on Principles of Programming
Languages POPL’78, Tuscan, Arizona United States, Jan-
uary, 1978.

[5] C. Csallner and Y. Smaragdakis. JCrasher: an automatic
robustness tester for java. Software Practice and Experience,
34(11):1025–1050, Sept. 2004.

[6] T. Denmat, A. Gotlieb, and M. Ducass. Proving or dis-
proving likely invariants with constraint reasoning. In Pro-
ceedings of the 15th Workshop on Logic-based Methods in
Programming Environments (WLPE’05), Sitges Barcelona,
Spain, October 5 2005.

[7] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Ex-
tended static checking. SRC Research Report 159 SRC-RR-
159, Compaq Systems Research Center, December 1998.

[8] E. Diaz, J. Tuya, and R. Blanco. Automated software test-
ing using a metaheuristic technique based on tabu search.
In Proceedings of the 18th IEEE International Conference
on Automated Software Engineering (ASE’03), pages 310 –
313, Oct. 2003.

[9] M. D. Ernst. Dynamically Discovering Likely Program In-
variants. PhD thesis, Department of Computer Science and
Engineering, University of Washington, Seattle, Washing-
ton, August 2000.

[10] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon sys-
tem for dynamic detection of likely invariants. Science of
Computer Programming, 69:35–45, 2007.

[11] N. Gupta. Generating test data for dynamically discover-
ing likely program invariants. In Proceedings of Workshop
on Dynamic Analysis (WODA 2003), pages 21–24, Portland,
Oregon, May 9, 2003.

[12] N. Gupta and Z. V. Heidepriem. A new structural coverage
criterion for dynamic detection of program invariants. In
ASE 2003: Proceedings of the 18th Annual International
Conference on Automated Software Engineering, pages 49–
58, Montreal, Canada, October 8-10, 2003.

[13] S. Hangal and M. S. Lam. Tracking down software bugs
using automatic anomaly detection. In Proceedings of the
International Conference on Software Engineering, pages
291–301, May 2002.

[14] M. Harder, J. Mellen, and M. D. Ernst. Improving test suites
via operational abstraction. In Proceedings of the 25th Inter-
national Conference on Software Engineering, pages 60–71,
2003.

[15] B. F. Jones, H. H. Sthamer, and D. E. Eyres. Automatic
structural testing using genetic algorithms. Software Engi-
neering Journal, 11(5):299–306, September 1996.

[16] B. Korel. Automated software test data generation. IEEE
Transactions on Software Engineering, 16:8:870–879, 1990.

[17] K. R. M. Leino, G. Nelson, and J. B. Saxe. ESC/java users
manual. Technical report 2000-002, Compaq Systems Re-
search Center, Palo Alto, California, October 12 2000.

[18] H. Li and C. P. Lam. Software test data generation us-
ing ant colony optimization. In Proceedings of the Inter-
national Conference on Computational Intelligence, pages
1–4, 2004.

[19] P. May. An Artficial Immune System Approach to Mutation
Testing Test Data Generation. PhD thesis, The University of
Kent at Canterbury, 2007.

[20] H. M.Deitel and P. J. Deitel. Java How to Program 6/e.
Prentice Hall, 2005.

[21] W. Miller and D. Spooner. Automatic generation of floating
point test data. IEEE Transactions on Software Engineering,
2(3):223226, September 1976.

[22] J. W. Nimmer and M. D. Ernst. Automatic generation of
program specifications. In Proceedings of the 2002 Interna-
tional Symposium on Software Testing and Analysis, pages
232–242, Rome, Italy, July 22-24, 2002.

[23] C. Pacheco and M. D. Ernst. Eclat: Automatic genera-
tion and classification of test inputs. In Proceedings of the
ECOOP 2005 19th European Conference Object-Oriented
Programming., pages 504–527, Glasgow, Scotland, July 27-
29, 2005.

[24] R. Pargas, M.J.Harrold, and R.Peck. Test data generation
using genetic algorithm. Journal of Software Testing, Verifi-
cation, and Reliability, 9(3):263–282, September 1999.

[25] J. H. Perkins and M. D. Ernst. Efficient incremental al-
gorithms for dynamic detection of likely invariants. In
SIGSOFT ’04/FSE-12: Proceedings of the 12th ACM SIG-
SOFT twelfth international symposium on Foundations of
software engineering, pages 23–32, New York, NY, USA,
2004. ACM.

[26] J. L. Sagarna. On the performance of estimation of distribu-
tion algorithms applied to software testing. Applied Artifi-
cial Intelligence., 19(5):457–489., 2005.

[27] J. L. Sagarna. Scatter search in software testing, comparison
and collaboration with estimation of distribution algorithms.
European Journal of Operational Research, 169(2):392–
412., 2006.

[28] P. H. Schmitt and B. Wei. Inferring invariants by symbolic
execution. In Proceedings of the 4th International Verifica-
tion Workshop (VERIFY’07), Bremen, Germany, 2007.

[29] N. Tracey, J. Clark, and K. Mander. Automated program
flaw finding using simulated annealing’. In Proceedings of
the 1998 ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, pages 73 – 81, Clearwater Beach,
Florida, United States, 1998.

[30] N. Tracey, J. Clark, K. Mander, and J. A. McDermid.
An automated framework for structural test-data genera-
tion. In Proceedings of the Automated Software Engineering
(ASE’98), pages 285–288, 1998.

[31] N. J. Tracey. A Search-Based Automated Test-data Gener-
ation Framework for safety-critical Softwares. PhD thesis,
The University of York, 2000.

[32] T. Xie and D. Notkin. Tool-assisted unit test selection based
on operational violations. In ASE 2003: Proceedings of the
18th Annual International Conference on Automated Soft-
ware Engineering, pages 49–58, Montreal, Canada, October
8-10 2003.

A Programs used for experimentation

A.1 Middle

public class Middle {
public int findMiddle(int a, int b,

int c){

if((a<b && b<c)|| (c<b && b<a)){

return b;
}
else if((a<c && c<b)||(b<c
&& c<a)){

return c;
}

else if((b < a && a <c) ||
(c<a && a<b)){

return a;
}
else if (b==c){

return a;
}

else if (b==a){

return c;

}
else {

return b;
}

}

}

A.2 WrapRoundCounter

public class WrapRoundCounter {

public int wrap_inc(int n){
if (n>10)
{

n=0;
return n;
}
else
{

n=n+1;
return n;
}

}

}

A.3 BubbleSort

//Modified form of program taken
//from chapter 7 of [20]

public class BubbleSort{

public void sort(int ar[])
{

for(int i=1;i<ar.length;i++) {
for (int element = 0;

element < ar.length-1;
element++) {

if (ar[element]>ar[element+1])
swap(ar,element,element+1);

}
}

}

public void swap(int ar[], int first,
int second)

{
int hold;
hold = ar[first];
ar[first] = ar[second];
ar[second] = hold;

}
}

A.4 CalDate

import java.lang.Math;
import java.io.*;
public class CalDate {

public double toJulian (int day ,
int month , int year) {

int JGREG = 15+31*(10+12*1582);
double HALFSECOND = 0.5;
int julianYear = year;
if (year <0){

julianYear = julianYear+1;
}

int julianMonth = month;
if (month>2){

julianMonth = julianMonth+1;
} else {

julianYear = julianYear-1;
julianMonth = julianMonth+13;

}
double t = Math.floor(365.25*
julianYear);

double s = Math.floor (30.6001*
julianMonth);

double julian = t+s+day+1720995.0;
int temp = day+31*(month+12*year);
if (temp>=JGREG){
int ja = (int) (0.01*julianYear);
julian = julian+2-ja +(0.25*ja);

}
System.out.println(julian);
return Math.floor(julian);
}

}

