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Abstract

One of the first issues which has to be taken into
account by software companies is to determine what
should be included in the next release of their prod-
ucts, in such a way that the highest possible number
of customers get satisfied while this entails a mini-
mum cost for the company. This problem is known
as the Next Release Problem (NRP). Since minimizing
the total cost of including new features into a software
package and maximizing the total satisfaction of cus-
tomers are contradictory objectives, the problem has a
multi-objective nature. In this work we study the NRP
problem from the multi-objective point of view, pay-
ing attention to the quality of the obtained solutions,
the number of solutions, the range of solutions covered
by these fronts, and the number of optimal solutions
obtained. Also, we evaluate the performance of two
state-of-the-art multi-objective metaheuristics for solv-
ing NRP: NSGA-II and MOCell. The obtained results
show that MOCell outperforms NSGA-II in terms of
the range of solutions covered, while this latter is able
of obtaining better solutions than MOCell in large in-
stances. Furthermore, we have observed that the op-
timal solutions found are composed of a high percent-
age of low-cost requirements and, also, the requirements
that produce most satisfaction on the customers.

1 Introduction

Nowadays, many software companies are concerned
with the development, maintenance, and enhancement
of large and complex systems. Typically, customers
are interested in buying and using these systems and
each of these customers has its own necessities and/or
preferences. Thus, one of the first issues which has to

be taken into account by software companies is to de-
termine what should be included in the next release of
their products, in such a way that the highest possible
number of customers get satisfied while this entails a
minimum cost for the company. This problem is known
as the Next Release Problem (NRP) [1], and it is a
widely known in Search Based Software Engineering
[8] [9].

In engineering, a requirement is a singular docu-
mented need of what a particular product or service
should be or do: it is a statement that identifies a nec-
essary attribute, capability, characteristic, or quality of
a system in order for it to have value and utility to a
user. Thus, NRP consists in selecting a set among all
the requirements of a software package such that the
cost, in terms of money or resources, of fulfilling these
requirements is minimum and the satisfaction of all the
users of that system is maximum.

Since satisfying the highest number of customers
and spending the lowest amount of money or re-
sources are contradictory objectives, this problem can
be treated as a multi-objective optimization problem
(MOP) [17]. Contrary to single objective optimization,
the solution of a MOP is not a single point, but a set of
solutions known as the Pareto optimal set. This set is
called Pareto front when it is plotted in the objective
space. In these kinds of problems, there are two major
issues to deal with. On the one hand, the solutions con-
tained in the Pareto front should be as close as possible
to the optimal Pareto front of the problem. In the con-
text of NRP, this means to obtain solutions which pro-
duce the highest possible satisfaction of the customers
as well as spending the lowest amount of money. On
the other hand, the Pareto front should cover the maxi-
mum number of different situations, and provide a well
distribution of solutions. In NRP, this means to pro-
vide the software engineer who takes the final decision
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with a set of optimal solutions which contains a high
number of different configurations.

NRP has been shown to be an instance of the Knap-
sack problem, which is NP-hard [15]. As a conse-
quence, it cannot be solved efficiently by using ex-
act optimization techniques for large problem instances
(e.g., an instance with 50 requirements has more than
1015 different configurations). In this situation, we
need to make use of approximated techniques such as
metaheuristics [6]. Although this kind of techniques
does not ensure to find optimal solutions, they are
able to obtain near-optimal solutions in a reasonable
amount of time.

Metaheuristics are a family of approximate tech-
niques which have received an increasing attention in
the last years. Among them, evolutionary algorithms
for solving MOPs are very popular in multi-objective
optimization [2] [3], giving raise to a wide variety of
algorithms, such as NSGA-II [4], and many others.

Despite that NRP can be considered as a MOP, as
of today, most of the related works in the literature
have considered it as a single-objective optimization
problem [1] [7] [11]. One of the few proposals using
a multi-objective formulation of the problem was pro-
posed by Zhang et al. [17]. In this work, NSGA-II
and other multi-objective algorithms (those using the
Pareto dominance concept) were evaluated when solv-
ing NRP. This work showed that NSGA-II was able of
comparable solutions with those obtained by the previ-
ous mono-objective approaches used in the literature,
while in addition a set of non-dominated solutions were
computed in a single run to help the decision maker at
the company. However, this work did not pay special
attention to the range of solutions covered by the re-
sulting front, to the number of obtained solutions, nor
to which algorithm obtained higher number of high
quality solutions. The comparisons between the dif-
ferent evaluated algorithms were done in a visual way
and no statistical analysis of the obtained results was
provided.

In this work we fill the gap, and we advance in the
results obtained in that last work: first, we want to
prove that metaheuristics provide an intelligent guid-
ance of the search. In order to achieve this goal, we
evaluate NSGA-II and another multi-objective algo-
rithm called MOCell [12]. The latter algorithm has
outperformed the former in terms of spread as well as
convergence of solutions in several studies in continu-
ous optimization [13] [14]. We take the same instances
used in [17] and we compare the obtained results by
both techniques with the ones obtained by a random
search (RS) as a sanity check. All the comparisons are

given on the basis of two quality indicators, and the
final number of obtained solutions. The chosen quality
indicators are: Hypervolume [19] and Spread [3]. We
apply a statistical methodology to ensure the signifi-
cance of the results. Our second goal is to analyze the
differences between the best solutions (those computed
by the metaheuristics) and the rest of solutions.

The remainder of this work is structured as fol-
lows. The next section contains some background
about multi-objective optimization. Section 3 presents
the Next Release Problem formally. The algorithms
used in this work are described in Section 4. The next
sections is devoted to experimentation. We describe
the obtained results in section 6, and we analyze them
from the point of view of NRP in Section 7. Finally,
Section 8 draws the main conclusions and lines of fu-
ture work.

2 Multi-Objective Background

In this section we include some background on multi-
objective optimization. We define the concepts of
multi-objective optimization problem (MOP), Pareto
optimality, Pareto dominance, Pareto optimal set, and
Pareto front. In these definitions we are assuming,
without loss of generality, the minimization of all the
objectives. A general MOP can be formally defined as
follows:

Definition 1 (MOP) Find a vector �x∗ =
[x∗1, x

∗
2, . . . , x

∗
n] which satisfies the m inequality

constraints gi (�x) ≥ 0, i = 1, 2, . . . , m, the p equality
constraints hi (�x) = 0, i = 1, 2, . . . , p, and minimizes

the vector function �f (�x) = [f1(�x), f2(�x), . . . , fk(�x)]
T
,

where �x = [x1, x2, . . . , xn]T is the vector of decision
variables.

The set of all values satisfying the constraints defines
the feasible region Ω and any point �x ∈ Ω is a feasible
solution. As mentioned before, we seek for the Pareto
optima. Its formal definition is provided below:

Definition 2 (Pareto Optimality) A point �x∗ ∈ Ω
is Pareto Optimal if for every �x ∈ Ω and I =
{1, 2, . . . , k} either ∀i∈I (fi (�x) = fi(�x

∗)) or there is at
least one i ∈ I such that fi (�x) > fi (�x∗).

This definition states that �x∗ is Pareto optimal if
no other feasible vector �x exists which would improve
some criteria without causing a simultaneous worsen-
ing in at least one other criterion. Other important
definitions associated with Pareto optimality are the
following ones:
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Figure 1. The NSGA-II procedure.

Definition 3 (Pareto Dominance) A vector �u =
(u1, . . . , uk) is said to dominate �v=(v1, . . . , vk) (deno-
ted by �u � �v) if and only if �u is partially less than �v,
i.e., ∀i ∈ {1, . . . , k} , ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui <
vi.

Definition 4 (Pareto Optimal Set) For a given

MOP �f(�x), the Pareto optimal set is defined as P∗ =

{�x ∈ Ω|¬∃�x′ ∈ Ω, �f(�x′) � �f(�x)}.

Definition 5 (Pareto Front) For a given MOP
�f(�x) and its Pareto optimal set P∗, the Pareto front

is defined as PF∗ = {�f(�x), �x ∈ P∗}.

Obtaining the Pareto front of a MOP is the main
goal of multi-objective optimization. In theory, a
Pareto front could contain a large number of points
(even infinite). In practice, a good solution will only
contain a limited number of them; thus, an important
goal is that they should be as close as possible to the
exact Pareto front, as well as they should be uniformly
spread. Otherwise, they would not be very useful to
the decision maker: closeness to the Pareto front en-
sures that we are dealing with optimal solutions, while
a uniform spread of the solutions means that we have
made a good exploration of the search space and no
regions are left unexplored.

3 Problem Statement

This section is aimed at describing the mathematical
model of NRP.

Given a software package, there is a set, C, of m
customers whose requirements have to be considered
in the development of the next release of this system.
Each customer has associated a value, ci, which reflects
its degree of importance as a customer for the software
development company.

There is also a set, R, of n requirements to com-
plete. In order to meet each requirement it is needed

to expend a certain amount of resources, which can be
transformed into an economical cost: the cost of sat-
isfying the requirement. We denote as rj , (1 ≤ j ≤ n)
the economical cost of achieving the requirement j.

We also assume that more than one customer can
be concerned with any requirement, and that all the
requirements are not equally important for all the cus-
tomers. In this way, associated with each customer and
each requirement, there is a value vij , which represents
the importance of the requirement j for the customer i.
All these values can be represented by a matrix. Asso-
ciated with the set R, there is a directed acyclic gaph
G = (R, E), where (ri, rk) ∈ E if and only if ri ∈ R is
a prerequisite of rk ∈ R (i.e., it is mandatory to fulfill
ri before to rk).

G is also transitive; then, if (rk, rj) ∈ E, and
(rj , ri) ∈ E, the requirement rk must be also fulfilled
in order to afford ri. In the special case where no re-
quirement has any prerequisite, E = ∅, we say that the
problem is basic.

The problem faced by the software company is to
find a subset, R′, of requirements which minimizes the
cost and maximizes the total satisfaction of the cus-
tomers with the finally included requirements. Thus
the multi-objective Next Release Problem can be for-
malized as

minimize f1 =
X

ri∈R′

ri (1)

and,

maximize f2 =

nX
i=1

ci

X
rj∈R′

vij . (2)

Since minimizing a given function f is the same as
maximizing (-f), in this work we have considered the
maximization of (-f1) (i.e., the economical cost for com-
panies), and f2 (i.e, the customer satisfaction).

4 Solver Algorithms

In this section we describe the three algorithms
which will be evaluated for solving NRP.

4.1 NSGA-II

NSGA-II, proposed by Deb et al. [4], is the refer-
ence algorithm in multi-objective optimization. It is
based on a ranking procedure, consisting in extracting
the non-dominated solutions from a population and as-
signing them a rank of 1. These solutions are removed
from this population; the next group of non-dominated
solutions have a rank of 2, and so on.
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Figure 2. Measuring the crowding distance of
a non-dominated point.

The algorithm has a current population that is used
to create an auxiliary one (the offspring population);
after that, both populations are combined to obtain
the new current population. The procedure is as fol-
lows: the two populations are sorted according to their
rank, and the best solutions are chosen to create the
new population. In the case of having to select some
individuals with the same rank, a density estimation
based on measuring the crowding distance (see Figure
4) to the surrounding individuals belonging to the same
rank is used to get the most promising solutions. Typ-
ically, both the current and the auxiliary populations
have equal size. The procedure of NSGA-II is depicted
in Figure 1.

4.2 MOCell

MOCell (Multi-Objective Cellular Genetic Algo-
rithm), introduced by Nebro et al. [14], is a cellular ge-
netic algorithm (cGA). In cGAs, the concept of (small)
neighborhood is intensively used; this means that an
individual may only cooperate with its nearby neigh-
bors (see Figure 3) in the breeding loop. The over-
lapped small neighborhoods of cGAs help in exploring
the search space because the induced slow diffusion of
solutions through the population, providing a kind of
exploration (diversification). Exploitation (intensifica-
tion) takes place inside each neighborhood by genetic
operations. MOCell also includes an external archive
to store the non-dominated solutions found so far. This
archive is limited in size and uses the crowding distance
of NSGA-II to keep diversity in the Pareto Front. We
have used here an asynchronous version of MOCell,
called aMOCell4 [13].

4.3 Random Search

We also apply a random search (RS) to NRP. This
is merely a ‘sanity check’; all metaheuristic algorithms
should be capable of comfortably outperforming ran-
dom search for a well-formulated optimization prob-
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Figure 3. The MOCell procedure.

lem. It consist in generating solutions randomly. The
final results is the set of all the non-dominated solu-
tions found.

5 Experimentation

This section is aimed at presenting the indicators
used to measure the quality of the obtained results
and the benchmark problems we have used. It also
describes how the solutions of the problem have been
encoded as well as the genetic operators employed, the
configuration of the algorithms, and the methodology
we have followed.

5.1 Quality Indicators

For assessing the quality of the results obtained by
the algorithms, two different issues are normally taken
into account: (i) to minimize the distance of the Pareto
front generated by the proposed algorithm to the op-
timal Pareto front (convergence), and (ii) to maximize
the spread of solutions found, so that we can have a dis-
tribution of vectors as smooth and uniform as possible
(diversity). To determine these issues it is usually nec-
essary to know the exact location of the optimal Pareto
front. In the case of NRP, we are dealing with a prob-
lem whose optimal Pareto front is unknown. Thus, we
have employed as Pareto optimal front the one com-
posed of the non-dominated solutions out of all the
executions carried out (i.e., the best front known for
these problems until now).

A number of quality indicators have been proposed
to be used for comparative studies among metaheuris-
tics when solving MOPs. We use in this work one in-
dicator which measures the diversity of the solution,
and other one which measures both convergence and
diversity.

• Spread (Δ). The Spread indicator [3] is a di-
versity quality indicator that measures the extent
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Figure 4. Distances from the extreme solu-
tions.

of spread by the set of computed solutions. Δ is
defined as:

Δ =
df + dl +

PN−1

i=1

˛̨
di − d̄

˛̨

df + dl + (N − 1)d̄
, (3)

where di is the Euclidean distance between consec-
utive solutions, d̄ is the mean of these distances,
and df and dl are the Euclidean distances to the
extreme solutions of the optimal Pareto front in
the objective space (see Figure 4 for further de-
tails). This metric takes a zero value for an ideal
distribution, pointing out a perfect spread of the
solutions in the Pareto front. We apply this met-
ric after a normalization of the objective function
values to the range [0..1]. Pareto fronts with a
smaller Δ value are desired.

• Hypervolume (HV). This indicator calculates
the volume (in the objective space) covered by
members of a non-dominated set of solutions Q
(the region enclosed into the discontinuous line in
Figure 5, Q = {A, B, C}) for problems where all
objectives are to be minimized [19]. Mathemati-
cally, for each solution i ∈ Q, a hypercube vi is
constructed with a reference point W and the so-
lution i as the diagonal corners of the hypercube.
The reference point can simply be found by con-
structing a vector of worst objective function val-
ues. Thereafter, a union of all hypercubes is found
and its hypervolume (HV ) is calculated:

HV = volume

0
@
|Q|[
i=1

vi

1
A . (4)

In this case, we also apply this metric after a nor-
malization of the objective function values to the
range [0..1]. A Pareto front with a higher HV than
another one could be due to two things: some so-
lutions in the former front dominate solutions in
the second one, or, solutions in the first front are
better distributed than in the second one. Thus,
algorithms with larger values of HV are desirable.

f1

f2

Pa r e to-o p tim a l front

W

A

B

C

�

�

Figure 5. The hypervolume enclosed by the
non-dominated solutions.

Another important topic when solving real problems
is related to the number of obtained solutions. To this
point, we also consider here the number of obtained
solutions by the evaluated algorithms as well as the
number of them which are Pareto optimal with regard
to all the computed solutions.

5.2 Test Problems

The three algorithms were applied to two test prob-
lem sets, both of them composed of three problems, for
two separate empirical study cases: Empirical Study
1 (ES1) and Empirical Study 2 (ES2). In the ES1
we report results concerning the performance of the
three algorithms for what might be considered ‘typical’
cases, with the number of customers ranging from 15
to 100 and the number of requirements ranging from
40 to 140. In ES2, we are concerned with bounding
NRP. This latter benchmark is composed of three in-
stances: an instance with 20 requirements and 100 cus-
tomers (few requirements, high number of customers),
an instance with 25 requirements and 100 customers,
and other with only 2 customers and 200 requirements
(high number of requirements, few customers). All
the instances have the nomenclature c r, where c is
the number of customers, and r the maximum number
of requirements. We have not considered dependences
among requirements [17].

5.3 Solution Encoding and Genetic Oper-
ators

As described in Section 3, a solution to the problem
consists in selecting a subset of requirements to be in-
cluded in the next release of the software package. In
this work, each solution is encoded as a binary string,
s, of length n (the maximum number of requirements),
where si = 1 means that the requirement i is included
in the next release of the software.

As to the genetic operators, we have used binary
tournament as the selection scheme. This operator
works by randomly choosing two individuals from the
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population and the one dominating the other is se-
lected; if both solutions are non-dominated one of them
is selected randomly. We also use single point crossover
as crossover operator. It works by creating a new solu-
tion in which the binary string from the beginning of
a parent solution to a crossover point, previously cho-
sen, is copied from that parent while the rest is copied
from other parent. Finally, the mutation operator used
is random mutation in which some random bits of the
string are flipped.

5.4 Configuration

All approaches were run for a maximum of 10,000
function evaluations. The initial population was set to
100 in NSGA-II and MOCell. In MOCell, the archive
size is also limited to 100 solutions. In both algorithms
the probability of the crossover operator was set to
Pc = 0.9 and the probability of the mutation opera-
tor to Pm = 1/n, being n the number or requirements.

All the algorithms have been implemented using
jMetal [5], a Java framework aimed at the develop-
ment, experimentation, and study of metaheuristics for
solving multi-objective optimization problems.

5.5 Methodology

To assess the search capabilities of the algorithms,
we have performed 100 independent runs of each exper-
iment, and we show the mean, x̄, and standard devia-
tion, σn, as measures of location (or central tendency)
and statistical dispersion, respectively. Since we are
dealing with stochastic algorithms in order to provide
confident results, we have also included a testing phase
by performing a multiple comparison of samples [10].
We have used the Wilcoxon test for that purpose. We
always consider a confidence level of 95% (i.e., signifi-
cance level of 5% or p-value below 0.05) in the statis-
tical tests.

Table 1. Results of the Δ quality Indicator
NSGA-II MOCell RS

Problem x̄σn x̄σn x̄σn

15 40 4.93e-1±4.2e−2 3.76e-1±3.3e−2 6.91e-1±3.8e−2

50 80 5.00e-1±3.5e−2 4.10e-1±3.9e−2 7.72e-1±2.9e−2

100 140 5.51e-1±3.7e−2 4.85e-1±3.8e−2 8.08e-1±2.4e−2

100 20 7.98e-1±9.1e−3 6.16e-1±4.9e−3 6.09e-1±5.3e−2

100 25 5.79e-1±2.4e−2 5.43e-1±2.6e−2 6.45e-1±4.2e−2

2 200 6.06e-1±3.6e−2 5.60e-1±4.7e−2 8.11e-1±3.2e−2

6 Obtained Results

In this section we present the obtained results by
the three evaluated algorithms. We start by describing

Table 2. Results of the HV quality Indicator
NSGA-II MOCell RS

Problem x̄σn x̄σn x̄σn

15 40 6.63e-1±1.6e−3 6.63e-1±1.2e−3 5.27e-1±7.4e−3

50 80 5.88e-1±4.6e−3 5.85e-1±4.9e−3 4.35e-1±7.0e−3

100 140 5.28e-1±6.4e−3 5.20e-1±5.7e−3 3.65e-1±5.4e−3

100 20 6.13e-1±2.1e−4 6.13e-1±3.0e−4 5.72e-1±4.5e−3

100 25 6.35e-1±6.3e−4 6.35e-1±5.7e−4 5.45e-1±6.2e−3

2 200 5.26e-1±7.6e−3 5.17e-1±7.5e−3 3.02e-1±5.0e−3

the values obtained by the two quality indicators used.
Then, we pay attention to the number of obtained so-
lutions, and how many of these solutions are among
the better solutions found so far.

The obtained values for Δ, HV, number of solutions,
and number of Pareto optimal solutions among all the
solutions found are shown in tables 1, 2, 4, and 5, re-
spectively. In the case of the Δ indicator, the lower the
value the better, while in the rest of indicators used,
the higher the value the better.

We start by analyzing the Δ quality indicator (Ta-
ble 1). If we focus on the instances belonging to the
first problem set, ES1 (i.e., 15 40, 50 80, and 100 140),
we see that MOCell is the algorithm which has ob-
tained the better values of the indicator. As to the
ES2 benchmark (i.e., 100 20, 100 25, and 2 200), the
results observed in ES1 hold the same for the instances
with more than 20 requirements. As a general conclu-
sion from the obtained values by this indicator, MOCell
has performed better than the other techniques.

In most of the instances the results obtained by the
RS are far from those obtained by MOCell and NSGA-
II. However, it is remarkable the obtained results by
RS in the instance 100 20 (the one with the smallest
number of requirements).

Proceeding as before, we analyze the results ob-
tained for the HV quality indicator, whose values are
included in Table 2. Considering the instances belong-
ing to ES1, the obtained results by MOCell and NSGA-
II has been quite similar in the instances with 40 and
80 requirements. However, in the instance with the
highest number of requirements, NSGA-II has outper-
formed MOCell. Concerning ES2, MOCell and NSGA-

Table 3. Comparison NSGA-II vs MOCell: Δ
and HV Indicators

NSGA-II vs MOCell
Problem Δ Indicator HV Indicator
15 40 MOCell •
50 80 MOCell NSGA-II
100 140 MOCell NSGA-II
100 20 MOCell •
100 25 MOCell •
2 200 MOCell NSGA-II
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II have obtained similar results in the instances with
20 and 25 requirements, whereas in the instance with
the highest number of requirements (200) NSGA-II has
performed better than MOCell.

For this indicator, all the results obtained by RS has
been significantly worse than the obtained by MOCell
and NSGA-II.

In Table 3, we summarize the comparison between
MOCell and NSGA-II, considering Δ and HV. The sec-
ond and third column show the name of the algorithm
which has been significantly better in each indicator,
respectively; a “•” symbol means that no statistical
differences have been found between them. As general
conclusion for the Δ indicator, we have that MOCell
has outperformed the results obtained by NSGA-II in
all the instances. As to the HV indicator, both al-
gorithms, MOCell and NSGA-II, have behaved in a
similar way in the instances with the smaller number
of requirements (until 40 requirements); however, as
the number of requirements increases NSGA-II has ob-
tained better figures than MOCell.

Regarding to the number of obtained solutions (Ta-
ble 4), we observe that NSGA-II, and MOCell have per-
formed similarly: only in the instance with the smallest
number of requirements of the ES2 benchmark, NSGA-
II has obtained more solutions than MOCell clearly. As
to how many of the obtained solutions are Pareto opti-
mal among all those obtained (Table 5), NSGA-II has
outperformed MOCell in all the cases. Thus, focus-
ing in NSGA-II, we observe that in the instances with
20, 25, and 40 requirements, it has obtained from 42
to 20 Pareto optimal solutions, respectively. In the in-
stances with 80 and 140 requirements, it has only found
less than five Pareto optimal solutions, and, in the in-
stance with the 200 requirements and only 2 customers,
it has obtained around 50 Pareto optimal solutions per
execution.

Finally, we see that RS has obtained a fewer number
of solutions than NSGA-II and MOCell in practically
all the instances. Nevertheless, it is remarkable that
RS has found some optimal solutions in the instance
with the highest number of requirements.

In Table 6 we summarize the comparison between
NSGA-II and MOCell according to the number of
found solutions. As commented above, the algorithm
which obtains a higher number of solutions and Pareto
optimal solutions is NSGA-II. In this case, all the re-
sults but two are given with statical confidence.

An example of the obtained fronts in the different
instances is depicted in Figure 6. In this figure “Cus-
tomer Satisfaction” means the total satisfaction of the

Table 4. Results of the Number of Obtained
Solutions

NSGA-II MOCell RS
Problem x̄σn x̄σn x̄σn

15 40 1.00e+2±0.0e+0 9.99e+1±3.4e−1 3.34e+1±3.7e+0

50 80 1.00e+2±0.0e+0 1.00e+2±1.4e−1 4.08e+1±4.5e+0

100 140 1.00e+2±0.0e+0 9.99e+1±3.4e−1 4.12e+1±5.5e+0

100 20 1.00e+2±0.0e+0 7.71e+1±1.0e+0 3.78e+1±4.2e+0

100 25 1.00e+2±0.0e+0 1.00e+2±2.2e−1 3.61e+1±3.9e+0

2 200 1.00e+2±0.0e+0 9.93e+1±1.8e+0 2.89e-1±4.2e+0

Table 5. Results of the Number of Solutions
Contained in the Best Front Found

NSGA-II MOCell RS
Problem x̄σn x̄σn x̄σn

15 40 1.98e+1±4.4e+0 1.39e+1±4.5e+0 3.40e-1±8.1e−1

50 80 2.11e+0±2.9e+0 8.00e-2±3.1e−1 0.0e+0±0.0e+0

100 140 1.19e+0±2.5e+0 2.00e-2±1.4e−1 0.0e+0±0.0e+0

100 20 4.23e+1±1.6e+0 3.03e+1±9.6e−1 9.20e-1±1.1e+0

100 25 3.77e+1±3.7e+0 3.32e+1±4.0e+0 3.00e-2±1.7e−1

2 200 4.90e+1±2.8e+0 0.0e+0±0.0e+0 1.30e+1±5.4e−1

customers, and “-cost” represents the economical cost
for companies. In all the cases the metaheuristic tech-
niques have outperformed RS. In the instance with the
smaller number of requirements (Figure 6.b), we see
that the results of RS are closer to the results of the
other techniques than in the other instances. It is also
worth mentioning how MOCell is able to obtain a front
which covers a high range of different solutions; how-
ever, NSGA-II have obtained solutions which dominate
those obtained by the other techniques, specially in the
instances with the higher number of requirements.

The advantages of using metaheuristic techniques
can be easily drawn from Figure 6. Comparing the
obtained results by these techniques against RS, we
observe the benefits of using them for a software com-
pany. On the one hand, the cost is reduced; NSGA-II
as well as MOCell have obtained solutions with less
economical cost and also higher satisfaction of their
customers. On the other hand, multi-objective meta-
heuristics provide the software engineer with a set of

Table 6. Comparison NSGA-II vs MOCell:
Number of Solutions and Pareto Optimal So-
lutions

NSGA-II vs MOCell
Problem Solutions Pareto Optimal Solutions
15 40 NSGA-II NSGA-II
50 80 • NSGA-II
100 140 NSGA-II NSGA-II
100 20 NSGA-II NSGA-II
100 25 • NSGA-II
2 200 NSGA-II NSGA-II
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trade off optimal configurations instead a single one al-
lowing him (or her) to choose the most appropriated
solution in each different situation.

7. Analysis

Previous section has shown that multi-objective op-
timization algorithms are suitable techniques for solv-
ing NRP; in this section, we are interested in analyzing
the obtained solutions from the point of view of the
problem.

Let us suppose that a software engineer has to select
a subset of requirements to including in the next release
of a software package and he only wants to optimize the
cost of fulfilling these requirements; in this situation,
it is clear that he should include, in this set, those
requirements which are cheaper of implementing than
others. Something similar happens if he only wants to
maximize the satisfaction of the users of that system:
he should consider those requirements which satisfy the
customer the most. But, what requirements should he
consider if he wants to optimize both objectives?

We have analyzed which requirements are included
in each solution. Thus, for each point in a front of
solutions, we have computed the percentage of included
requirements which are cheaper or equal expensive of
implementing than all the requirements not included
by this point. Similarly, we have also calculated the
percentage of requirements included which satisfy the
customers more or equal than all the requirements not
included by this point. Let us call these percentages as
P1 and P2, respectively. They can be formalized as

P1 =
‖ri ∈ R′, ri ≤ rj , ∀rj ∈

`
R− R′

´
‖

‖R′‖
(5)

and,

P2 =
‖ri ∈ R′,

Pn
j=1

cj ∗ vji ≥
Pn

j=1
cj ∗ vjk , ∀rk ∈

`
R − R′

´
‖

‖R′‖
(6)

.
The mean and standard deviation of P1 and P2 in

all the solutions in all the executions carried out are
included in Tables 7 and 8, respectively. Regarding
to Table 7, we observe that the computed solutions
by the metaheuristic techniques, NSGA-II and MO-
Cell, are composed of a higher percentage of cheapest
requirements than the solutions computed by RS. For
example, in the instance 15 40 the percentage of cheap-
est requirements in the solutions found by NSGA-II
and MOCell are 78.9% and 77.2%, respectively, while
in the solutions found by RS this percentage has only
been of 23.4%. The same holds with the percentage

of requirements which most satisfy the customers (Ta-
ble 8): this percentage is higher in the solutions found
by the metaheuristic techniques than in the solutions
found by RS. Thus, the better solutions are composed
of a high number of low cost requirements, and also
those requirements which most satisfy the customers.

Table 7. Percentage of Included Require-
ments with Cost Fewer of Equal that all the
Requirements not Included

NSGA-II MOCell RS
Problem x̄σn x̄σn x̄σn

15 40 7.89e+1±1.8e+0 7.72e+1±2.1e+0 2.34e+1±1.8e+0

50 80 7.22e+1±3.9e+0 6.55e+1±5.3e+0 1.18e+1±1.5e+0

100 140 5.48e+1±6.1e+0 4.45e+1±6.5e+0 7.85e+0±7.6e−1

100 20 8.18e+1±6.0e−1 8.07e+1±5.0e−1 5.35e+1±4.1e+0

100 25 8.15e+1±1.3e+0 8.10e+1±1.4e+0 3.40e+1±2.9e+0

2 200 2.04e+1±4.3e+0 1.87e+1±3.4e+0 1.12e+1±3.7e−1

Table 8. Percentage of Included Require-
ments with Customer Satisfaction Bigger of
Equal that all the Requirements not Included

NSGA-II MOCell RS
Problem x̄σn x̄σn x̄σn

15 40 4.80e+1±2.6e+0 4.50e+1±2.6e+0 1.27e+1±2.0e+0

50 80 1.54e+1±3.1e+0 1.39e+1±3.1e+0 4.51e+0±6.5e−1

100 140 3.42e+0±1.4e+0 3.42e+0±1.9e+0 1.44e+0±3.0e−1

100 20 4.85e+1±8.4e−1 4.79e+1±6.1e−1 2.99e+1±2.8e+0

100 25 3.41e+1±1.9e+0 3.28e+1±1.7e+0 1.64e+1±1.9e+0

2 200 1.19e+1±3.4e+0 1.05e+1±3.3e+0 2.49e+0±4.3e−1

8 Conclusions and Future Work

In this paper we have studied the Next Release Prob-
lem, with the intention of analyzing the performance of
different multi-objective algorithms, and the solutions
they have provide. We have evaluated two state-of-the-
art multi-objective optimization algorithms and com-
pared them against a random search. This comparison
has been done in the basis of two quality indicators,
HV and Δ, and the number of solutions obtained by
those algorithms.

In the case of the Δ indicator, which measures how
uniform is the distribution of computed solutions, MO-
Cell is the algorithm which has worked out the better
results in instances with more than 20 requirements.
The random search algorithm has obtained the worst
results in practically all the instances.

Regarding to the HV indicator, which measures the
convergence and distribution of the fronts obtained by
the algorithms, NSGA-II and MOCell have both shown
a similar performance in instances with a small and
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Figure 6. Examples of the Obtained Front of Solutions in each Instance.

medium number of requirements, i.e., from 20 to 40 re-
quirements. As the number of requirements increases,
NSGA-II provides better results than MOCell. The
random search has obtained the worst results in all the
instances.

As to the number of obtained solutions, NSGA-II
is also the algorithm which has shown the best perfor-
mance, and it is also the technique which computes the
highest number of solutions which are contained in the
best front known for each instance.

Concerning the solutions of the problem, we have

observe that the best solutions are composed of a high
percentage of low-cost requirements, and also, of re-
quirements which most satisfy the customers.

The future work will verify these findings by apply-
ing search techniques to real world problems. This will
provide valuable feedback to researchers and practi-
tioners in search techniques and in software engineering
communities. Other reformulations of the problem con-
sidering different sets of objectives and constraints in-
cluding dependency relationship between requirements
will be experimented with. This in turn may give rise
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to the need for the development of more efficient so-
lution techniques. It is also interesting to investigate
how these techniques scale when the number of require-
ments and/or customer increases. In order to come
to this goal, it is also needed to develop a procedure
which allows the systematic creation of instances with
the desired features; in this sense, we plan to design a
problem generator for NRP instances.
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