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Abstract One important issue addressed by software companies is to determine
which features should be included in the next release of their products, in such
a way that the highest possible number of customers get satisfied while entailing
the minimum cost for the company. This problem is known as the Next Release
Problem (NRP). Since minimizing the total cost of including new features into a
software package and maximizing the total satisfaction of customers are contradic-
tory objectives, the problem has a multi-objective nature. In this work, we apply
three state-of-the-art multi-objective metaheuristics (two genetic algorithms, NSGA-
II and MOCell, and one evolutionary strategy, PAES) for solving NRP. Our goal is
twofold: on the one hand, we are interested in analyzing the results obtained by these
metaheuristics over a benchmark composed of six academic problems plus a real
world data set provided by Motorola; on the other hand, we want to provide insight
about the solution to the problem. The obtained results show three different kinds
of conclusions: NSGA-II is the technique computing the highest number of optimal
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solutions, MOCell provides the product manager with the widest range of different
solutions, and PAES is the fastest technique (but with the least accurate results).
Furthermore, we have observed that the best solutions found so far are composed of
a high percentage of low-cost requirements and of those requirements that produce
the largest satisfaction on the customers as well.

Keywords Search based software engineering · Multi-objective optimization ·
Next release · Requirements engineering

1 Introduction

Traditionally, Search Based Software Engineering (SBSE) has been widely used in
Software Testing (Afzal et al. 2009; Harman et al. 2009; Harman 2007; McMinn 2004)
and comparatively less so in other fields of Software Engineering. However, there
is evidence that SBSE techniques are starting to find their way into all aspects of
software engineering activity from the earliest phases of the software development
lifecycle concerned with requirements, management and planning right through to
the post delivery phases of maintenance and re-engieeering (Harman et al. 2009).
This paper focuses on one of these early lifecycle problems, centred on requirements
analysis.

In more traditionally considered areas of SBSE, the goal has tended to be one of
finding the optimal or near optimal solution to the problem in hand, with respect to
a single objective. For example, the very first work on SBSE (Korel 1990; Miller and
Spooner 1976; Xanthakis et al. 1992) concerned itself with finding optimal or near
optimal test sets.

However, more recently it has been realized that SBSE can also be used as
a tool for decision support, using multi-objective approaches. In this mode, the
search based approach can be used to provide insight to the Software Engineer,
allowing him or her to explore the possible space of candidate solutions with certain
properties, revealing structure in the solution space and potential points of attractive
trade off. For example, recent work has considered multi-objective formulations
of problems in testing (Del Grosso et al. 2005; Everson and Fieldsend 2006;
Lakhotia et al. 2007; Walcott et al. 2006; Yoo and Harman 2007), quality assurance
(Khoshgoftaar et al. 2004), refactoring (Harman and Tratt 2007) and project man-
agement (Alba and Chicano 2007) as well as requirements engineering (Finkelstein
et al. 2008; Saliu and Ruhe 2007; Zhang et al. 2007).

This focus on decision support has been technically underpinned by the re-
formulation of many problems in SBSE as multi-objective problems, to which a
Pareto optimal approach can be readily applied. In Pareto optimal approaches, the
outcome of the search is not a single (optimal or near optimal solution). It is a set of
candidate solutions, each of which cannot be improved upon according to one of the
multiple objectives to be optimized without a negative impact on another. This set of
solutions is called a ‘non-dominated’ set of solutions, because each is incomparable;
no one solution dominates any other in terms of meeting the multiple objectives.
In the Pareto optimal approach, all objectives are considered incomparable, so that
weighting the different objectives in order to combine them into a single weighted
sum objective, is impossible.
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Any problem involving some form of cost–benefit analysis can be thought of as
a canonical instance of the general class of problems for which a Pareto optimal
approach is attractive. In any cost–benefit analysis, it will be hard to determine to
what degree a decision maker can yield up a perceived benefit in order to reduce
cost. Likewise, such a decision maker will not be able to readily decide, a priori, how
much cost increase they would be prepared to tolerate for a commensurate increase
in benefit. Cost and benefit simply are not like that; they require subjective human
judgements to be made and depend on circumstances.

In such a potentially vague scenario space, in which the exercise of human
judgement remains paramount, it may, at first, be difficult to see how one might
successfully apply a search based technique. However, the key lies in the manner in
which a Pareto approach presents a Pareto front of non-dominated solutions, each
of which denotes a cost–benefit pair for which no other pair can be found which
improves upon both cost and benefit. The shape of this Pareto front gives insight to
the decision maker. Though he or she may not be able to determine, a priori, the
trade off they are prepared to accept between these two incompatible objectives, the
shape of the front can, a posteriori direct them to points at which the trade off is most
attractive. In this decision support is provided for what has been termed the Next
Release Problem (NRP).

The problem here is not to tell the product manager, who is the decision maker
in this case, what requirement should be in the next release of the software; no self-
respecting software engineer would entirely trust and rely upon an automated tool to
make such a decision. Rather, the problem is to provide decision support, to help the
manager to identify those solutions that best balance the competing concerns of cost
and benefit. The approach we adopt is a Pareto optimal one, in which the product
manager supplies the tool with estimates of cost and assessments of benefit and the
automated part of the analysis uses SBSE to search for a good Pareto front. A ‘good’
Pareto front is one which provides accuracy and diversity, as will be explained more
formally later.

However, there are a number of different algorithms that one may choose to
apply to provide pareto fronts, each with their own characteristics of performance
and quality. Naturally, the value of any NRP approach is entirely dependent upon
these characteristics. That is, the quality of decision support provided to the product
manager is only as good as the quality of the results produced by the algorithm,
and its usability is affected by the time taken to provide such results. The increasing
interest in the problem and in multi objective formulations, indicates that an in-depth
experimental and empirical study of different algorithm performances may add value
to the available literature on the NRP.

In this paper we seek to explore a set of algorithms available, both experimentally
and empirically. We have chosen a set of algorithms that is widely used on related
multi objective problems. The experimental aspect is concerned with a laboratory
controlled set of problem instances. This experimentation allows us to investigate the
degree to which each algorithm performs under variations in problem characteristics
(notably size of problem instance). The empirical study is concerned with the
performance of each algorithm on a real world case study. Obtaining real world
quantitative data on requirements is a challenge. We presently have available to
us, only one such data set, kindly provided by Motorola. Therefore, our empirical
results are restricted to a case study in the present paper. In future work we hope to
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obtain additional real world quantitative requirements data sets on which to perform
a more complete empirical study to augment the experimental study which forms the
primary contribution of the present paper.

The remainder of this work is structured as follows: The next section contains
some background about multi-objective optimization. Section 3 presents the Next
Release Problem formally. The algorithms used in this work are described in
Section 4. Section 5 is devoted to experimentation. We describe the obtained results
in Section 6, and we study the obtained solutions from the point of view of NRP
in Section 7. In Section 8, we describe and analyze the results obtained using a real
world instance of the problem. Section 9 presents related work. Finally, Section 10
draws the main conclusions and lines of future work.

2 Multi-Objective Background

In this section, we provide the definition of some concepts for a better understanding
of this work. In particular, we define the concept of multi-objective optimization
problem (MOP), Pareto dominance and Pareto front. In these definitions we are
assuming, without loss of generality, that minimization is the goal for all the
objectives.

A general MOP can be formally defined as follows: find a vector x∗ =[
x∗

1, x∗
2, . . . , x∗

n

]
which satisfies the m inequality constraints gi (x) ≥ 0, i = 1, 2, . . . , m,

the p equality constraints hi (x) = 0, i = 1, 2, . . . , p, and minimizes the vector func-
tion f (x) = [

f1(x), f2(x), . . . , fk(x)
]T , where x = [x1, x2, . . . , xn]T is the vector of

decision variables.
The set of all values satisfying the constraints defines the feasible region � and any

point x ∈ � is a feasible solution.
Taking into account this definition of a MOP, a solution x = [x1, x2, ..., xn] is

said to dominate a solution y = [y1, y2, ..., yn] if and only if fi(x) <= fi(y) for
i = 1, 2, ..., m, and there exist at least one j (1 ≤ j ≤ m) such that fi(x) < fi(y).
Conversely, two points are said to be non-dominated whenever none of them dom-
inates the other. Figure 1 depicts some examples of dominated and non-dominated
solutions. In this figure, A′ dominates to C′ because f1(A′) < f1(C′), and f2(A′) <

f2(C′). Meanwhile, A′ and B′ are non-dominated because A′ is better than B′ in

Fig. 1 Examples of dominated
and non-dominated solutions

A'

C'

B'

f1

f2 A' and B' are non-dominated

A' and B' dominates to C'
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the first objective function ( f1(A′) < f1(B′)), but B′ is better in the other objective
function ( f2(A′) > f2(B′)).

The solution of a given MOP is usually a set of solutions (referred as Pareto
optimal set) satisfying:

– Every two solutions into the set are non-dominated.
– Any other solution, y, is dominated by at least one solution in the set.

The representation of this set in the objective space is referred as Pareto front.
Generating Pareto front is the main goal of multi-objective optimization techniques.

In theory, a Pareto front could contain a large number (or even infinitely many)
points. In practice, a usable approximate solution will only contain a limited number
of them; thus, an important goal is that they should be as close as possible to the
exact Pareto front and uniformly spread, otherwise, they would not be very useful to
the decision maker. Closeness to the Pareto front ensures that we are dealing with
optimal solutions, while a uniform spread of the solutions means that we have made
a good exploration of the search space and no regions are left unexplored.

Figure 2 depicts these issues of convergence and diversity. The uppermost front
depicts an example of good convergence and bad diversity: the approximation
set contains Pareto optimal solutions but there are some unexplored regions of
the optimal front. The approximation set depicted in the middle illustrates poor
convergence but good diversity: it has a diverse set of solutions but they are not
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Fig. 2 Examples of Pareto fronts. From top to bottom, from left to right: a good convergence and bad
diversity, b bad convergence and good diversity, and c good convergence and diversity
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Pareto optimal. Finally, the lowermost front depicts an approximation front with
both good convergence and diversity.

3 Problem Statement

This section formalizes Multi-Objective Next Release Problem.
Given a software package, there is a set, C, of m customers whose requirements

have to be considered in the development of the next release of this system.
Each customer has associated a value, ci, which reflects the customers’ degree of
importance to the software development company.

There is also a set, R, of n requirements to complete. In order to meet each
requirement, resources must be spent, which can be transformed into an economical
cost: the cost of satisfying the requirement. We denote this as r j, (1 ≤ j ≤ n) the
economical cost of achieving the requirement j.

We also assume that more than one customer can be concerned with any require-
ment, and that all the requirements are not equally important for all the customers.
In this way, associated with each customer and each requirement, there is a value vij,
which represents the importance of the requirement j for the customer i. All these
values can be represented by a matrix.

The MONRP problem is to find a subset, R′, of requirements which minimizes the
cost and maximizes the total satisfaction of the customers with the finally included
requirements. Thus the multi-objective Next Release Problem can be formalized as

minimize f1 =
∑

ri∈R′
ri (1)

maximize f2 =
m∑

i=1

ci

∑

r j∈R′
vij. (2)

Since minimizing a given function f is the same as maximizing (− f ), in this
work we have considered the maximization of (− f 1) (i.e., the economical cost for
companies), and f 2 (i.e, the customer satisfaction).

The advantages of considering NRP to be a multi-objective optimization problem,
instead of a weighted single objective one, can be drawn from Fig. 3, which shows an
example of front obtained for NRP. In this figure “Customer Satisfaction” means

Fig. 3 Examples of Pareto
front for NRP
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the total satisfaction of the customers, and “Cost” represents the economical cost
of a requirement set. (Note that a negative cost means an investment made by the
company).

4 Solver Algorithms

In this section we describe the three algorithms which will be evaluated for solving
NRP.

NSGA-II, proposed by Deb et al. (2002), is a genetic algorithm which is the
‘reference algorithm’ in multi-objective optimization (with over 2,500 citations at the
time of writing1). Its pseudocode is presented as Algorithm 1. NSGA-II makes use of
a population (P) of candidate solutions (known as individuals). In each generation,
it works by creating new individuals after applying the genetic operators to P, in
order to create a new population, Q (lines 5 to 8). Then, both the current (P) and
the new population (Q) are joined; the resulting population, R, is ordered according
to a ranking procedure and a density estimator known as crowding distance (line 13)
(for further details, please see Deb et al. 2002). Finally, the population P is updated
with the best individuals in R (line 14). These steps are repeated until a termination
condition is fulfilled.

MOCell (Multi-Objective Cellular Genetic Algorithm), introduced by Nebro et al.
(2009), is a cellular genetic algorithm (cGA) which has proven to outperform NSGA-
II in some studies (Nebro et al. 2007, 2009). In cGAs, the concept of (small)
neighborhood is paramount. This means that an individual may only cooperate

1Data from Google Scholar: 2,616 citations on 20th September 2009.
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with its nearby neighbors in the breeding loop. Overlapped small neighborhoods of
cGAs help in exploring the search space because they induce a slow diffusion of
solutions through the population, providing a kind of exploration (diversification).
Exploitation (intensification) takes place inside each neighborhood by applying the
typical genetic operations (crossover, mutation, and replacement).

MOCell includes an external archive to store the non-dominated solutions found
as the algorithm progresses. This archive is limited in size and uses the crowding
distance of NSGA-II to maintain diversity. The pseudocode of MOCell is presented
as Algorithm 2, which corresponds with the version called aMOCell4, described
in Nebro et al. (2007).

We can observe that, in this version, for each individual we select one parent from
its neighborhood and one from the archive, in order to guide the search towards the
best solutions found (lines 5 to 8). Then a new solution is created by applying the
genetic operators to these parents. The new solution is used to replace the current
solution (line 11), and it is considered for inclusion in the archive (line 12). This
constitutes a single iteration of the algorithm. The overall algorithm iterates until a
termination condition is fulfilled.

PAES is a metaheuristic proposed by Knowles and Corne (1999). The algorithm
is based on a simple (1+1) evolution strategy. To find diverse solutions in the Pareto
optimal set, PAES uses an external archive of nondominated solutions, which is
also used to make decisions about new candidate solutions (Knowles and Corne
1999). An adaptive grid is used as a density estimator in the archive. The most
remarkable characteristic of PAES is that it does not make use of any recombination
operators (crossover). New solutions are generated only by modifying the current
solution. The pseudocode of PAES is presented as Algorithm 3. It commences with a
random solution (line 3). In each iteration, a new solution is produced by modifying
the current solution (line 5). This new solution is included in the archive and it is
considered as a potential replacement for the current solution (lines 7 to 14). These
steps are repeated until the maximum number of evaluations is reached.



Empir Software Eng (2011) 16:29–60 37

We have included PAES in our study because of its simplicity. PAES does not
use any recombination operator, and its only parameter is the number of partitions
of the adaptive grid of the archive. Its relative simplicity makes it attractive since
there are comparatively few parameters that require tuning in order to know that
the algorithm is being applied properly (e.g., population size, crossover probability,
mutation probability).

5 Experimental Method

This section is aimed at presenting the indicators used to measure the quality of the
obtained results and the benchmark problems we have used. It also describes how
the solutions of the problem have been encoded and the genetic operators employed,
the configuration of the algorithms, and the methodology we have followed.

5.1 Quality Indicators

Two different issues are normally taken into account for assessing the quality of the
results computed by a multi-objective optimization algorithm:

1. To minimize the distance of the computed solution set by the proposed algorithm
to the optimal Pareto front (convergence towards the optimal Pareto front).

2. To maximize the spread of solutions found, so that we can have a distribution of
vectors as smooth and uniform as possible (diversity).

A number of quality indicators have been proposed in the literature. Among
them, we can distinguish between Pareto compliant and non Pareto compliant
indicators (Knowles et al. 2006). Given two Pareto fronts, A and B, if A dominates
B, the value of a Pareto compliant quality indicator is higher for A than for B;
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meanwhile, this condition is not fulfilled by the non-compliant indicators. Thus,
the use of Pareto compliant indicators should be preferable; however, non Pareto
compliant indicators can also be used for measuring some particular features of a
front. In this work, we apply an indicator of each type: Hypervolume (Zitzler and
Thiele 1999) (Pareto compliant), which takes into account the convergence as well as
the diversity of the solutions; and Spread (Deb 2001) (non Pareto compliant), which
measures the distribution of solutions into a given front. For further details about
the formulation of these indicators, please refers to Zitzler and Thiele (1999) and
Deb (2001).

To apply these quality indicators, it is usually necessary to know the optimal
Pareto front. Of course, typically, we do not know the location of the optimal front.
Therefore, we employ as a ‘reference Pareto optimal front’ the front composed
of all the non-dominated solutions out of all the executions carried out (i.e., the
best front known for these problems until now). We also consider the number of
solutions that are non-dominated with respect to all the solutions computed by all the
algorithms.

5.2 Test Problems

In this section, we describe the test problems used to evaluate the performance of
NSGA-II, MOCell, and PAES.

The three algorithms were applied to a set composed of six test problems. These
problems have been aimed at covering both ‘typical’ and non ‘typical’ cases of NRP.
Thus, we have generated instances ranging from 2 to 100 customers, and from 20
to 200 requirements. All the values related to each instance have been generated
by sampling a random uniform distribution. We have not considered dependencies
among requirements.

All the instances have the nomenclature c_r, where c is the number of customers,
and r the maximum number of requirements. Specifically, we have considered here
the same instances proposed by Zhang et al. (2007): 15_40, 50_80, 2_200, 100_20,
100_25, and 100_40.

5.3 Solution Encoding and Genetic Operators

As described in Section 3, a solution to the problem consists in selecting a subset of
requirements to be included in the next release of the software package. In this work,
each solution is encoded as a binary string, s, of length n (the maximum number of
requirements), where si = 1 means that the requirement i is included in the next
release of the software.

As to the genetic operators, we have used binary tournament as the selection
scheme. This operator works by randomly choosing two individuals from the pop-
ulation and the one dominating the other is selected; if both solutions are non-
dominated one of them is selected randomly. We also use single point crossover as
crossover operator. It works by creating a new solution in which the binary string
from the beginning of a parent solution to a crossover point, randomly chosen, is
copied from that parent while the rest is copied from other parent. Finally, the
mutation operator used is random mutation using which some random bits of the
string are flipped.
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5.4 Configuration

All approaches were run for a maximum of 25,000 function evaluations, and the
results are analyzed when 5,000, 10,000, and 25,000 evaluations have been performed.

The initial population was set to 100 in NSGA-II and MOCell. In MOCell, the
archive size was also limited to 100 solutions. In both algorithms the probability of the
crossover operator was set to Pc = 0.9 and the probability of the mutation operator
to Pm = 1/n, being n the number or requirements. In PAES, the maximum size of
the archive was also set to 100, and the number of divisions of the adaptive grid to 5.

All the algorithms have been implemented using jMetal (Durillo et al. 2006), a
Java framework aimed at the development, experimentation, and study of meta-
heuristics for solving multi-objective optimization problems.

5.5 Methodology

We have executed 100 independent runs for each algorithm and each problem
instance. Since we are dealing with stochastic algorithms, we need to perform a
statistical analysis of the obtained results to compare them with a certain level of
confidence. Next, we describe the statistical test that we have carried out for assuring
this. First, a Kolmogorov–Smirnov test is performed in order to check whether the
values of the results follow a normal (Gaussian) distribution. If so, the Levene test
checks for the homogeneity of the variances. If samples have equal variance (positive
Levene test), an ANOVA test is performed; otherwise we perform a Welch test.
For non-Gaussian distributions, the non-parametric Kruskal–Wallis test is used to
compare the medians of the algorithms. All the tables include the mean and standard
deviation of the evaluated indicator.

We always consider in this work a confidence level of 95% (i.e., significance level
of 5% or p-value under 0.05) in the statistical tests, which means that the differences
are unlikely to have occurred by chance with a probability of 95%. Those tests in
which the statistical confidence has been achieved are marked with “+” symbols in
the last row in the tables containing the results; conversely, “−” means that we cannot
assure anything about the statistical confidence of the results (p-value > 0.05).

For the sake of a better visual comprehension, the best result for each problem is
depicted with a grey background.

6 Experimental Analysis

In this section we present the obtained results by the three evaluated algorithms. We
start by describing the values of the HV and �, the two quality indicators used. Then
we consider how many of the computed solutions are among the best solutions found
so far. Finally, we have also included the running time of the algorithms.

6.1 Hypervolume Results

Tables 1, 2 and 3 contain the mean and standard deviation for the HV indicator when
5,000, 15,000, and 25,000 function evaluations have been performed, respectively.
For this indicator, the higher the value, the better the quality of the obtained results.
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Table 1 Mean (x̄) and
standard deviation (σ ) of the
results of the HV quality
indicator after 5,000
evaluations

NSGA-II MOCell PAES

 

15_40 0.655 0.0038 0.654 0.0033 0.633 0.0150 +
50_80 0.562 0.0071 0.559 0.0065 0.524 0.0140 +
2_200 0.461 0.0100 0.458 0.0100 0.417 0.0160 +
100_20 0.612 0.0009 0.612 0.0005 0.604 0.0066 +
100_25 0.631 0.0024 0.630 0.0018 0.613 0.0110 +
100_140 0.501 0.0092 0.496 0.0077 0.446e 0.0180 +

Thus, by looking at the tables, we can see that NSGA-II has been the algorithm
computing the best results regarding to this indicator when only 5,000 function eval-
uations have been performed. However, when the number of evaluations increase,
the differences between it and MOCell reduce. After 25,000 evaluations, MOCell
outperforms NSGA-II for half of the problem instances. PAES is the worst algorithm
according to this comparison. In all cases, the difference in the performance of the
best algorithm and that of the others is statistically significant.

As described in Section 5.1, the HV indicator measures the non-dominated area
covered by a front; thus, the higher the HV value, the larger this area, and, hence,
the number of solutions dominated by it. Obviously, the optimal Pareto front has
the highest HV value, and the fronts computed by an algorithm should converge
towards that value. If we analyze the HV obtained by NSGA-II and MOCell when
10,000 and 25,000 evaluations have been performed, we observe that the differences
of the HV value are smaller in the instances with 40 or fewer requirements than in
the instances with more requirements. This means that in the first group of instances
both algorithms have converged towards an optimal (local or global) Pareto front
of the problem. Meanwhile, in the second group, it is still possible to improve the
computed fronts.

Figure 4 clarifies this point. It shows the evolution of the HV of the approximated
fronts computed by NSGA-II over the number of evaluations carried out in the
instances 100_20 and 2_200. In this figure, we can observe that, in the instance with
only 20 requirements, the HV indicator has converged towards a fixed value when
approximately 4,500 evaluations have been carried out. On the other hand, in the
2_200 instance, the HV indicator increases with the number of evaluations and has
not converged towards a fixed value in 25,000 function evaluations; therefore it is
possible to compute better fronts by performing a higher number of evaluations.
This observation suggests that the instances with more requirements need a higher

Table 2 Mean (x̄) and
standard deviation (σ ) of the
results of the HV quality
indicator after 10,000
evaluations

NSGA-II MOCell PAES

 

15_40 0.663 0.0016 0.663 0.0011 0.645 0.0160 +
50_80 0.588 0.0049 0.587 0.0041 0.540 0.0150 +
2_200 0.522 0.0076 0.513 0.0068 0.450 0.0100 +
100_20 0.613 0.0002 0.613 0.0003 0.605 0.0068 +
100_25 0.635 0.0007 0.635 0.0004 0.618 0.0110 +
100_140 0.541 0.0071 0.534 0.0052 0.469 0.0140 +
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Table 3 Mean (x̄) and
standard deviation (σ ) of the
results of the HV quality
indicator after 25,000
evaluations

NSGA-II MOCell PAES

15_40 0.665 0.0004 0.666 0.0001 0.651 0.0170 +
50_80 0.604 0.0014 0.604 0.0012 0.560 0.0100 +
2_200 0.578 0.0033 0.568 0.0038 0.483 0.0120 +
100_20 0.613 0.00004 0.613 0.00005 0.608 0.0056 +
100_25 0.636 0.0001 0.636 0.00009 0.623 0.0110 +
100_140 0.573 0.0032 0.568 0.0031 0.495 0.0130 +

number of evaluations than the smaller instances, in order to converge towards the
optimal Pareto front.

Thus, in summarizing all these results, some conclusions regarding the HV indica-
tor emerge:

– NSGA-II has been the overall best algorithm.
– NSGA-II has been the fastest algorithm in obtaining an accurate set of solu-

tions (it has obtained the best values taking into account only 5,000 function
evaluations).

– When the number of solutions increases, the differences between NSGA-II and
MOCell reduce, and MOCell matches the effectiveness of NSGA-II.

Fig. 4 Evolution of the HV
indicator over the number of
evaluations in instances 100_20
(top) and 2_200 (bottom)
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Table 4 Mean (x̄) and
standard deviation (σ ) of the
results of the � quality
indicator after 5,000
evaluations

NSGA-II MOCell PAES

15_40 0.628 0.0340 0.511 0.0400 0.950 0.0600 +
50_80 0.591 0.0400 0.568 0.0510 0.935 0.0370 +
2_200 0.769 0.0490 0.724 0.0370 0.960 0.0330 +
100_20 0.823 0.0220 0.625 0.0150 1.090 0.0500 +
100_25 0.660 0.0310 0.639 0.0240 0.966 0.0590 +
100_140 0.667 0.0520 0.649 0.0460 0.948 0.0390 +

 

– PAES has computed the least accurate results in this comparison.
– The higher the number of requirements, the harder the problem, with some ev-

idence that the number of requirements has more bearing on problem difficulty
than the number of customers.

6.2 SpreadIndicator Results

We focus now in analyzing the � quality indicator, whose values when 5,000, 10,000,
and 25,000 evaluations have been performed are included in Tables 4, 5 and 6,
respectively. In this indicator, lower values denote better results. The tables show
that MOCell is the algorithm obtaining the best results in all the cases. After MOCell,
NSGA-II is second best. All result comparisons are statistically significant.

In summary, some observations about the results emerge:

– MOCell was the algorithm computing the fronts with the best distribution of
solutions in all the cases.

– PAES has been again the algorithm obtaining the poorest results in accuracy.

An example of the computed fronts for the instances 15_40 and 2_200 by the
different algorithms is depicted in Fig. 5. In the instance with 40 requirements
(Fig. 5 (top)), we see that the solutions computed by PAES are close to the ones
computed by the other techniques; however, NSGA-II and MOCell cover a large
number of configurations. In the instance 2_200 (Fig. 5 (bottom)), we observe that
the fronts computed by NSGA-II and MOCell dominate the one provided by PAES;
furthermore, in this case we can observe the advantages of a front with a good
diversity: MOCell has produced a better spread of solutions over the entirety of the
Pareto front, while also covering a higher range of different configurations.

Looking again to those figures, we can see that MOCell has been able of comput-
ing non-dominatd solutions in areas where NSGA-II and PAES have not found any

Table 5 Mean (x̄) and
standard deviation (σ ) of the
results of the � quality
indicator after 10,000
evaluations

NSGA-II MOCell PAES

15_40 0.504 0.0360 0.384 0.0350 0.898 0.0600 +
50_80 0.490 0.0380 0.404 0.0310 0.884 0.0460 +
2_200 0.609 0.0330 0.567 0.0380 0.916 0.0310 +
100_20 0.799 0.0110 0.615 0.0054 1.050 0.0480 +
100_25 0.585 0.0260 0.538 0.0190 0.931 0.0670 +
100_140 0.554 0.0350 0.474 0.0350 0.907 0.0360 +
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Table 6 Mean (x̄) and
standard deviation (σ ) of the
results of the � quality
indicator after 25,000
evaluations

NSGA-II MOCell PAES

15_40 0.467 0.0380 0.249 0.0220 0.840 0.0810 +
50_80 0.407 0.0350 0.233 0.0270 0.837 0.0440 +
2_200 0.474 0.0330 0.328 0.0330 0.884 0.0270 +
100_20 0.793 0.0055 0.615 0.0007 1.020 0.0370 +
100_25 0.535 0.0160 0.496 0.0110 0.884 0.0670 +
100_140 0.434 0.0380 0.293 0.0280 0.872 0.0390 +

 

of them (solutions in the extremes of the Pareto front). This is related to a better
exploration of the search space by MOCell. In fact, this is one of the properties of
the cellular GA model, in which MOCell is based in, that has been reported in many
studies on single-objective optimization (see Alba and Dorronsoro 2008).

6.3 Number of Non Dominated Solutions Found

The instances used in this work have been hand-generated, and the optimal solutions
to them are, a priori, unknown. Thus, we cannot be certain that the solutions
computed by the algorithms evaluated in this work are optimal; hereinafter we refer
to the set of all the non dominated solutions found ‘so far’ as final solutions.

Tables 7, 8 and 9 contain the number of final solutions computed by each
algorithm for different degrees of effort (measured in terms of number of fitness eval-
uations ‘so far’). Starting with Table 7, which shows that information when only 5,000
function evaluations have been carried out, we observe that none of the algorithms

Fig. 5 Examples of the
obtained front of solutions in
instances 15_40 (15 customers
and 40 requirements) and
2_200 (2 customers and 200
requirements)
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Table 7 Mean (x̄) and
standard deviation (σ ) of the
number of non dominated
solutions found after 5,000
function evaluations

NSGA-II MOCell PAES

15_40 18.5 5.8 12.5 5.5 3.0 2.4 +
50_80 0.0 0.0 0.0 0.0 0.0 0.0 −
2_200 0.0 0.0 0.0 0.0 0.0 0.0 −
100_20 65.4 2.5 63.9 3.0 33.3 6.8 +
100_25 43.9 5.6 40.9 7.4 11.5 5.0 +
100_140 0.0 0.0 0.0 0.0 0.0 0.0 −

 

has computed final solutions. It is also worth noting that the number of computed
final solutions diminish when the number of requirements increases. Among the
three algorithms, NSGA-II has been the one computing a higher number, followed
by MOCell. The same comments are applicable when 10,000 function evaluations
have been carried out (Table 8). However, in this case some final solutions have been
computed by NSGA-II in the instance with 80 requirements. Statistical confidence
has been found in all the cases where final solutions are obtained.

Finally, consider Table 9, where the number of final solutions found after 25,000
evaluations is included. In this table, we observe that NSGA-II was the only
algorithm computing final solutions to the instances with more than 80 requirements.
Meanwhile, in the instances with 40 or fewer requirements, MOCell has outper-
formed NSGA-II for the first time taking into account this indicator.

6.4 Running Time

We have also analyzed the running time required by the algorithms. All the time
values are included in Tables 10, 11 and 12, which show the time in milliseconds to
perform 5,000, 10,000, and 25,000 function evaluations, respectively. These values
refer to execution on an Intel iQ7 processor at 2.8 GHz, with 6 GB RAM memory,
running linux (kernel version 2.6.28–15) and the Java Virtual Machine provided by
Sun (jdk version 1.6.0_14).

Considering the values shown in these tables, we observe that PAES was the
fastest algorithm in our comparison in practically all the instances; only in the
instance with 140 requirements and 100 customers the running times of PAES and
NSGA-II are comparable. Notwithstanding this, it is important to notice that, in
each case, all values are under one second. Looking at the time in each instance,
we observe that the higher the number of requirements and customers, the higher
the required time. The last column shows that the differences between the results are
statistically significant.

Table 8 Mean (x̄) and
standard deviation (σ ) of the
number of non dominated
solutions found after 10,000
function evaluations

NSGA-II MOCell PAES

15_40 43.8 5.5 36.5 6.9 7.98 3.8 +
50_80 0.2 0.6 0.0 0.0 0.0 0.0 +
2_200 0.0 0.0 0.0 0.0 0.0 0.0 −
100_20 68.0 1.7 72.6 1.7 39.9 6.1 +
100_25 62.2 4.8 65.9 4.7 18.4 5.3 +
100_140 0.0 0.0 0.0 0.0 0.0 0.0 −
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Table 9 Mean (x̄) and
standard deviation (σ ) of the
number of non dominated
solutions found after 25,000
function evaluations

NSGA-II MOCell PAES

15_40 48.3 4.6 59.8 4.7 15.3 4.4 +
50_80 1.9 3.4 0.8 1.1 0.0 0.0 +
2_200 1.02 8.9 0.0 0.0 0.0 0.0 +
100_20 68.3 1.5 74.9 0.2 44.5 4.3 +
100_25 72.8 3.3 82.7 3.9 27.2 6.1 +
100_140 1.0 3.2 0.0 0.0 0.0 0.0 +

Table 10 Mean (x̄) and
standard deviation (σ ) of the
running time after 5,000
function evaluations (ms)

NSGA-II MOCell PAES

15_40 457 33 501 26 236 19 +
50_80 617 27 784 33 470 19 +
2_200 1,160 28 1,400 43 1,010 21 +
100_20 472 37 507 16 244 18 +
100_25 510 37 592 34 299 27 +
100_140 1,250 59 1,410 45 1,160 46 +

Table 11 Mean (x̄) and
standard deviation (σ ) of the
running time after 10,000
function evaluations (ms)

NSGA-II MOCell PAES

15_40 621 26 754 30 343 20 +
50_80 1,010 45 1,230 44 822 41 +
2_200 2,200 48 2,580 53 2,010 32 +
100_20 649 32 690 35 380 35 +
100_25 736 42 863 38 482 40 +
100_140 2,220 72 2,570 70 2,230 130 +

Table 12 Mean (x̄) and
standard deviation (σ ) of the
running time after 25,000
function evaluations (ms)

NSGA-II MOCell PAES

15_40 1,000 33 1,160 26 619 34 +
50_80 2,060 80 2,380 77 1,820 81 +
2_200 5,180 57 5,870 72 4,920 48 +
100_20 1,100 54 1,110 44 759 57 +
100_25 1,310 56 1,460 62 974 77 +
100_140 5,160 170 6,010 210 5,160 260 +
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7 Studying the Computed Solutions

In the previous section, we have analyzed the quality of the solutions obtained when
three different multi-objective optimizers are applied for solving NRP; in this section,
we are interested in analyzing which requirements are included in the best solutions
found by these algorithms.

Let us suppose that a requirements engineer has to select a subset of requirements
to be included in the next release of a software package and only wants to optimize
the cost of fulfilling these requirements. In this situation, it is clear that the software
engineer should include, in this set, those requirements that are cheaper. Something
similar happens if the interest is only to maximize the satisfaction of the users of
that system. Those requirements which satisfy the customer the most should be
selected. But which requirements should be considered if the goal is to optimize both
objectives? Intuitively, in this case, the optimal Pareto front should be composed of
a set of solutions with different numbers of requirements, where those requirements
offering a higher ratio of satisfaction per unit cost are more likely to be the candidate
solutions found on the final Pareto front.

To analyze which requirements are included in the best solutions found by each
algorithm, we have proceeded as follows. First, we sorted all the requirements by the
ratio of satisfaction per unit cost (i.e., the satisfaction that each requirement provides
to the customers divided by the cost of implementing it). Then, for each requirement
we computed the mean of the times that it is included by each algorithm in each
solution. Finally, we plotted this information in Fig. 6. The horizontal axis represents,
in descending order, the requirements sorted by means of the ratio satisfaction by
unit cost. The vertical axis represents the percentage of solutions which implement
the requirement represented by the horizontal axis.

Let us start by analyzing the instance with the lowest number of requirements,
i.e., that one known as 100_20. Figure 6d shows the information related to this
instance. Although there are some exceptions, there is also a clear tendency to
include those requirements with a higher ratio of satisfaction per unit cost with more
probability. Considering the differences between the algorithms, we make two fur-
ther observations. On the one hand, NSGA-II and MOCell appear to have adopted
consistently different design strategies. That is, each requirement appears in a higher
number of configurations in NSGA-II than in MOCell. However, considering the
results of the previous section, both have obtained very accurate results. On the
other hand, NSGA-II and PAES have included each requirement the same number
of times but, as Section 5 showed, NSGA-II has obtained fronts of better quality
than PAES.

Figure 6a, b and e present the information belonging to the instances 100_25, 5_40,
and 50_80, respectively. The requirements offering a higher ratio of satisfaction by
unit cost are included in a higher number of solutions. Furthermore, NSGA-II and
MOCell include each of these requirements as part of a solution more times than
PAES. The requirements with the highest ratio have been used more by MOCell
than by the other two algorithms, and the requirements with the smallest ratios were
more used by NSGA-II.

Finally, the results for instances 100_140, and 2_200 are depicted in Fig. 6c and f,
respectively. We observe that there is also a tendency to use those requirements with
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(a) 15 customers; 40 requirements (d) 100 customers; 20 requirements

(b) 50 customers; 80 requirements (e) 100 customers; 25 requirements

(c) 2 customers; 200 requirements (f) 100 customers; 140 requirements

Fig. 6 Percentage of solutions which include each requirement (horizontal axis). Requirements are
sorted by means of the ratio satisfaction provided by unit cost. In these graphics, the x-axis represents
the requirements order by mean of ratio of provided customer satisfaction per unit cost; meanwhile,
the y-axis represent the percentage of use of each requirements in the computed solutions

a better ratio of satisfaction/cost in a higher number of solutions. However, we also
see that these figures present many oscillations. These oscillations could potentially
indicate that the algorithms have yet to fully converge, as we stated in Section 5.

Thus, in all the instances, the best solutions found so far by each algorithm are
composed by those requirements which more satisfy the customers by unit cost.
This fact corroborates the observations we made in the conference version of this
paper (Durillo et al. 2009), where we stated that the better solutions found were
composed of a high percentage of the cheapest requirements, and those which more
satisfy the customers are generally those providing the higher ratio satisfaction per
unit cost.
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8 A Case Study: The Motorola Data Set

This section is aimed at solving a real world instance of NRP problem provided by
a large international company, Motorola. We start by presenting the problem. After
that, we analyze the obtained results in terms of the quality of the computed fronts,
and also in terms of the composition of the solutions. Finally, we deep in the analysis
of the obtained results.

8.1 Obtained Results

The Motorola data set concerns a set of 35 requirements for hand held communica-
tion devices. The stakeholders are four mobile telephony service providers, each of
which has a different set of priorities with respect to the features that they believe
ought to be included in each handset. Motorola also maintain cost data in the
form of the estimated cost of implementation of each requirement. Each of these
stakeholders is equally important for the company (i.e., the value ci is the same for
i = 1..4). There exists a main difference between this problem and the test instances
studied in this work; each requirement is only desired by one customer.

Table 13 includes the results of the HV, when 5,000, 10,000, and 25,000 function
evaluations have been performed. As happened with the test problems, NSGA-II
and MOCell computed the best fronts regarding this indicator. Actually, although
the results are quite similar, when 25000 evaluations have been performed MOCell
has been able to compute better fronts than NSGA-II. In fact, if we show the
boxplot distribution of the HV values obtained for both algorithms (see Fig. 7), we
can see that the values obtained by MOCell have been higher (then better) than
the ones obtained by NSGA-II. Furthermore, the non-overlapped notches in each
box means that there is statistical significance between the obtained HV by both
algorithms. Additionally, as the last column in the table indicates, the differences in
the distributions of results have been statistically significant in all the cases.

We now consider the � values, presented in Tables 14. We observe that MOCell
is the algorithm computing the fronts with the best value for this indicator; NSGA-II
has obtained the second best values.

Thus, the values obtained by the algorithms in both indicators lead us to conclude
that MOCell has been the most remarkable technique for solving this problem.

Figure 8 shows examples of fronts computed by NSGA-II and MOCell after 25,000
evaluations. As we can observe, both algorithms have converged towards the same
front. However, it is possible to see at a glance that MOCell has obtained a better
distribution of solutions. These observations verify the results obtained by the quality
indicators: both algorithms have obtained similar values of HV, but MOCell has
outperformed to NSGA-II in the � indicator.

Table 13 Mean (x̄) and
standard deviation (σ ) of the
results of the HV quality
indicator in the problem
provided by Motorola

Number NSGA-II MOCell PAES

of evaluations

5,000 0.778 0.0021 0.777 0.0026 0.745 0.0350 +
10,000 0.783 0.0005 0.782 0.0006 0.752 0.0350 +
25,000 0.784 0.0001 0.784 0.0001 0.762 0.0220 +
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Fig. 7 Distribution of the HV
value of the fronts computed
by NSGA-II and MOCell
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Considering the shape of the fronts depicted in that figure, some conclusions can
be drawn. On the one hand, we observe that by increasing the investment from 5 to
1,000 cost units (vertical axis) it is possible to obtain a customer satisfaction between
0 and 50 satisfaction units. On the other hand, there is a section of the front along
which an increase in customer satisfaction would require a much larger investment by
the company. For example, increasing the customer satisfaction from 50 to 80 units
requires an increase in investment of 700%.

With regard to the number of final solutions found by the algorithms, Table 15
summarizes the number of them found after performing 5,000, 10,000, and 25,000
evaluations. Also in this indicator, the algorithms behave in a similar manner to that
in which they did for the test instances: when less than 10.000 function evaluations
have been carried out, NSGA-II is the algorithm which finds the highest number
of final solutions; however, when the number of evaluations increases MOCell
outperforms to NSGA-II.

The running times of the algorithms are presented in Table 16. In all the cases,
the time required by PAES is less than half the time required by the other two
algorithms. However, as we can see, all the times are under one second.

Considering the composition of the computed solutions, Fig. 9 shows the distribu-
tion of the requirements used by each algorithm. We can see that those requirements
with the better ratio satisfaction by unit cost are included in a higher number of

Table 14 Mean (x̄) and
standard deviation (σ ) of the
results of the � quality
indicator in the problem
provided by Motorola

Number NSGA-II MOCell PAES

of evaluations

5,000 0.910 0.0430 0.546 0.0310 1.100 0.0620 +
10,000 0.842 0.0330 0.502 0.0230 1.070 0.0630 +
25,000 0.812 0.0204 0.473 0.0067 1.050 0.0640 +
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Fig. 8 Examples of fronts
computed by NSGA-II (top)
and MOCell (bottom) in the
problem provided by Motorola
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solutions. This replicates the results observed for the test instances of the MONRP
presented earlier.

Thus, the obtained results in this instance confirm the algorithm behavior ob-
served in the previous test instances in terms of the quality of the solutions found,
diversity of solutions and the composition of those solutions.

8.2 Post-analysis of the Motorola Problem Results

In the last section, we focused on computing the Pareto front of solutions for the
Motorola Problem and on analyzing the composition (in terms of the implemented
requirements) of that front. In this section, we go an step forward on the analysis of
the solutions computed by the most outstanding algorithm for that instance: MOCell.
In particular, we want to analyze two different issues: on the one hand, we want
to figure out if is there any relationship between a requirement and the cost and
provided satisfaction of a solution which implements it; and, on the other hand, we
are also interested in the fairness (i.e., to what extent can a solution be shown to be

Table 15 Mean (x̄) and
standard deviation (σ ) of the
number of non dominated
solutions found in the problem
provided by Motorola

Number NSGA-II MOCell PAES

of evaluations

5,000 25.6 4.8 20.2 5.5 9.2 4.1 +
10,000 42.6 3.2 37.5 4.4 15.9 5.1 +
25,000 48.8 2.8 53.9 3.0 24.4 7.2 +
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Table 16 Mean (x̄) and
standard deviation (σ ) of the
running time in the problem
provided by Motorola (time is
given in ms)

Number NSGA-II MOCell PAES

of evaluations

5,000 353 15 371 5.9 168 8.1 +
10,000 481 6.3 496 6.3 242 9.4 +
25,000 800 5.7 801 16 437 14 +

a fair allocation of resources) of each solution into the computed Pareto front. We
make use of the best front found so far by MOCell as the reference Pareto front.

The fairness of an allocation of resources has been previously studied in the SBSE
field. Concretely, in Finkelstein et al. (2008), a multi-objective algorithm has been
used for computing solutions which maximizes the final satisfaction of customers,
minimizes the cost, while maximizing the mean of fulfilled requirement for each
customer, i.e., a new objective function is considered for measuring the fairness. The
approach followed here is different: we compute the Pareto front of solutions only in
terms of cost and satisfaction of the customers, and once it has been computed, we
analyze how fair are those solutions.

Thus, summarizing, this section is aimed at answering to the next two questions,
respectively:

– Does a requirement determine the place into the Pareto front where a solution
implementing it is located?

– Can a given solution into the Pareto front benefiting a customer while damaging
other ones?

For answering the first of the above suggested questions, we need to study if the
implementation of a requirement and the objective functions (cost and provided
customer satisfaction) are correlated. To come with this issue, we have made use
of the Spearman’s correlation coefficient.

The Spearman Rank Correlation (Kendall and Gibbons 1990) statistical analysis
test assess whether two measurement variables are correlated. The test consist in
calculating the, so called, correlation coefficient, rs, which can take value between
−1 and +1. A coefficient rs = −1 means two variables have a perfect negative
correlation (as one increases, the other decreases). Accordingly, rs = +1 means two
variables have a perfect positive correlation (as one increases, so does the other);

Fig. 9 Distribution of the use
of requirements in the
Motorola problem. Again, in
this graphic, the x-axis
represents the requirements
order by mean of ratio of
provided customer satisfaction
per unit cost, and the y-axis
represent the percentage of
use of each requirements in
the computed solutions
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rs = 0 means two variables are entirely independent; there is no correlation between
them.

In our problem, a requirement can only have two states: it is implemented or not.
As a consequence, to determine the correlation between each requirement and the
objectives functions may have not sense. Thus, in order to study this issue we have
group the requirements attending to the ratio of provided satisfaction by unit cost,
and after that what we have done is to study the correlation between each group
and the objective functions. This way, we can obtain insight knowledge about the
relationship between each requirement and the objectives functions by means of its
ratio.

Thus, taking into account the above, we have proceed as follows. First, we
have sorted all the requirement by means of the ratio satisfaction per unit cost,
and we have normalized the ratio to the interval [0, 1]; then, we have classify all
the requirements in four different groups attending to the value of its ratio; this
classification is based on the information provided by the instance and can be done
before computing the optimal solutions. In particular, for this instance, we have
computed the following groups: the first group, that we have called very good, consist
of requirements having a ratio between 0.5 and 1; the second group, good, consist of
requirements having a ratio between 0.1 and 0.5. The third group (poor) consist of
those requirements whose ratio is lower than 0.1, and finally, the last group, that we
have called very poor, consist of those requirements with a very small ratio.

Once the groups have been determined, we have computed the correlation
coefficient between each group and the solutions obtained. The obtained results are
summarized in Table 17.

Attending to that table, we can observe that for the requirements classified as very
good, the correlation coefficient with the cost and provided satisfaction are 0.19 and
0.4, respectively. This means that the use of requirements belonging to this group
are very weakly correlated with cost and provided satisfaction, and hence, they can
be part of whatever solution regardless of them. In that table, it is also possible to
observe that the correlation coefficient increases when the ratio value of a group is
decreased. This indicates that the lowest the ratio, the stronger the correlation. As
a consequence, a requirement with a small ratio of satisfaction by unit cost will be
rarely present on solutions of low cost; meanwhile, they will be found more often in
those solutions of higher cost and provided satisfaction.

Accordingly, the answer to the first question is that, for requirements with a high
ratio it is not possible to determine a priori the cost and customer satisfaction of a
solution implementing it; meanwhile, for requirements with a small ratio it is possible
to estimate them. This result was somehow expected because, from the last section,
we have that requirements with higher ratio than others are implemented in a higher
number of solutions. Furthermore, it is reasonable that a good requirement (in terms

Table 17 Spearman’s rank
correlation between
requirements and cost of
implementing

Group Correlation coefficient Correlation coefficient
with cost with customer satisfaction

Very good 0.19 0.4
Good 0.53 0.83
Poor 0.86 0.94
Very poor 0.92 0.66
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of its ratio) should be taken in many different configurations, while a bad one (also
in terms of its ratio) should be implemented in those solutions which maximize the
provided satisfaction (regardless of the cost).

We turn now to analyze the fairness of the computed solutions. The idea here
is to determine the correlation between the satisfaction achieved for the different
customers. Thus, if the satisfaction of two customers, A and B, are correlated, we can
argue that whenever A gets satisfied, B also achieves a high grade of satisfaction.

For computing the correlation coefficient between the different customers we
have proceed as follows. First, for each solution into the Pareto front, we have
computed the number of implemented requirements targeted by each customer.
Then, we have normalized those values to the [0, 1] interval. These values give
us a measure of how many requirements have been implemented satisfying each
customer in each solution. After that, we have computed the correlation coefficient
between each pair of customers. Table 18 summarizes the computed values for the
correlation coefficient.

Looking at this table, we see that the coefficient correlation is higher than 0.84 in
practically all the cases. Actually, the values under 0.91 involves a comparison with
customer 4, which is the most difficult to satisfy due to it is only interested in one
out of the 35 requirements. This means that there is a strong correlation between the
satisfaction achieved for each pair of customers. As a consequence, the interpretation
of those results is that each solution into the Pareto front try to satisfy the customers
the same.

The answer to the second proposed question is that the solutions computed by
MOCell are not only good solutions in terms of the objective functions, but in
addition they seem to be fair in terms of the satisfaction provided to each customer.
This is desirable but unexpected result due to neither of the three algorithms
employed in this work makes use of any information about the fairness of a solution.

In addition, the product manager is provided with a set of non-dominated solu-
tions (all the solutions are equally important a priori) instead of a single solution.
This allows the product manager to choose the best solution, depending on different
situations and taking into account factors about which only he or she may be
aware. For example, in difficult economic periods the product manager would select
solutions involving a lower cost for the company (solutions in the left part of the
front); on the one hand, in times of high competition with other companies, the
choice could be to select a solution which provides a high degree of customer
satisfaction (solutions in the right part of the front). Meanwhile, in a single objective
formulation of the problem, dealing with changes on these external situations may
require a redefiniton of the considered weights, and to recompute the solution. Of
course, these are relatively over-simplified scenarios, intended merely for illustrative
purposes.

Moreover, the shape of the Pareto front could help the product manager in
working out relationships between the objectives. These relationships may yield

Table 18 Spearman’s rank
correlation between the
satisfaction of different
customers

Customer 2 Customer 3 Customer 4

Customer 1 0.95 0.95 0.85
Customer 2 0.91 0.84
Customer 3 0.85
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insights into the nature of the problem, and also it can give a number of choices
to select the most adequate solutions.

In practice, the product manager will bring to the scenario a complex interwoven
set of managerial, technical, sociological, economic and political concerns, for which
it would be impractical to seek any machine-readable formulation. Nevertheless,
the search based approach can complement this rich human domain knowledge,
by setting out the best choices available, based solely on the cost–benefit analysis
information provided. In this way, the machine and human work hand-in-hand.
The machine focuses on what it does best (unbiased consideration of an enormous
number of potential solutions, guided by cost–benefit data supplied by the human).
The human considers the range of options selected in this purely mechanistic manner
and uses the shape of the Pareto front to locate interesting locations in the solution
space to which to direct further attention and consideration.

9 Related Work

From the industry point of view, many companies feel that they cannot control the
release planning challenge, because many of them may only rely on the product or
project manager to investigate the implicit characteristics of requirements and study
the competing interests of the stakeholders.

In the literature, Yeh and Ng (1990) argued that a target system benefited directly
from ranking and prioritising requirements in 1990. Karlsson (1996) adopted two
types of techniques for selecting and prioritising software requirements: Quality
Function Deployment (QFD) (Sullivan 1986) and Analytical Hierarchy Process
(AHP) (Saaty 1980) in 1996. In QFD the stakeholders prioritize the requirements
on an ordinal scale (using a numerical assignment). The drawback of this is that
there is no clear and obvious definition of the distinction among the absolute number
assigned to each requirement. Moreover, relationships between requirements are
not supported by QFD. The most serious drawback is that QFD cannot manage
functional requirements, because there is no degree of fulfilment for functional
requirements.

In 1997, Karlsson and Ryan (1997) proposed a cost-value approach, using AHP,
applying it to compare all the candidate requirements in order to determine which
of the two is of higher priority and to what extent its priority is higher. More-
over, in 1998, they evaluated six different methods for selecting and prioritising
requirements (Karlsson et al. 1998) and found that AHP is the most promising
method. However, the disadvantage of using a pairwise comparison technique is the
huge number of required pairwise comparisons. The method becomes laborious and
inefficient as the scale of the project increases. In addition, this prioritizing process
has a lack of support for requirement interdependencies.

AHP caters for human judgements that may be both partial and inconsistent in
order to arrive at a robust requirement prioritization. The prioritization problem
is clearly related to the Next Release Problem (NRP), because one could select
a subset simply as a prefix of the prioritized sequence. However, such a subset
selection cannot, by definition, be better than that which can be located by selection
of requirements within the same budget and is less amenable to multi-objective
generalization.
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This is a motivation for the consideration of the separate, but related problem
of requirements selection. Compared with priority-based methods, we can provide
more than one (usually many) optimal alternative solutions within a certain criterion
(such as under specific project budget). As such, the requirements engineer has the
opportunity to observe the impact of including or excluding certain requirements,
and can use this to choose the best from the different alternatives, without affecting
the quality of solutions. An analogous choice between prioritization and selection
formulations can be found in SBSE approaches to regression test case selection and
prioritization (Harman et al. 2009).

The work of Karlsson et al. has had an enormous impact in the field of require-
ments engineering and is now the underpinning of the popular tool FocalPoint,
marketed by TeleLogic, which is now subsidiary of IBM.

Within the SBSE community, a recent trend has emerged in which search-
based optimization techniques have been used to solve requirements selection and
optimization problems. This would seem to be a natural and realistic extension of the
initial work on SBSE.

The NRP was first formulated as a single-objective SBSE problem by Bagnall
et al. (2001). The paper described various metaheuristic optimization algorithms,
including greedy algorithms, branch and bound, simulated annealing and hill
climbing. The authors did not give any value property to each requirement. They
only used an associated cost. The task of the work was to find a subset of stake-
holders, whose requirements are to be satisfied. The objective was to maximize the
cumulative measure of the stakeholder’s importance to the company under resource
constraints.

Feather and Menzies (2002) built an iterative model to seek the near-optimal
attainment of requirements. The authors proposed a Defect Detection and Pre-
vention (DDP) process based on a real-world instance: a NASA pilot study. The
DDP combined the requirements interaction model with the summarization tool to
provide and navigate the near-optimal solutions in the risk mitigation/cost trade-
off space. The paper was one of the first to use Pareto optimality in SBSE for
requirements, though, unlike the work in our paper, the Pareto fronts were not pro-
duced using multi-objective optimization techniques (as with more recent work), but
were produced using the iterative application of a weighting based single objective
formulation by applying simulated annealing.

Greer and Ruhe (2004), Ruhe and Greer (2003) and Ruhe and Ngo-The (2004)
proposed the genetic algorithm based approaches known as the EVOLVE family
which aimed to maximize the benefits of delivering requirements in an incremental
software release planning process. Their approaches balance the required and avail-
able resources; assessing and optimizing the extent to which the ordering conflicts
with stakeholder priorities. They also took requirement changes and two types of
requirements interaction relationship into account and provided candidate solutions
for the next release in an iterative manner. As with previous work, this piece of
work still adopted a single objective formulation, taking the resource budget as
a constraint.

Using search-based techniques in order to choose components to include in
different releases of a system was studied by Baker et al. (2006), Harman et al.
(2006). The work considered requirements problems as feature (component) subset
selection problems, like Feather et al., presenting results for a single objective
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formulation applied to a real world data set: the Motorola Data Set. The work of
AlBourae et al. (2006) was focused more on the requirements change handling. That
is, re-planning of the product release. A greedy replan algorithm was adopted to
reduce risks and increase the number of requirements achieved in the search space
under change.

In addition, Cortellessa et al. (2006, 2008a, b) described an optimization frame-
work to provide decision support for COTS and in-house components selection.
The Integer Linear Programming (LINGO model solver) based optimization models
(CODER, DEER) were proposed to automatically satisfy the requirements while
minimizing the cost.

The aforementioned work on this problem has tended to treat the requirements
selection and optimization as a single objective problem formulation, in which
the various constraints and objectives that characterize the requirements analysis
problem are combined into a single objective fitness function. Single objective
formulations have the drawback that the maximization of one concern may be
achieved at the expense of the potential maximization of another resulting in a bias
guiding the search to a certain part of the solution space.

More recently, there has been work on multi-objective formulations of the prob-
lem. Zhang et al. (2007) proposed a multi-objective formulation of the next release
problem (NRP) to optimise value and cost, upon which we base the formulation in
the present paper. This was the first paper to use a Pareto optimal, multi-objective
approach to the NRP, migrating it from NRP to MONRP. Independently, at the same
time, Saliu and Ruhe (2007) also adopted a Pareto optimal multi-objective approach
to the related problem of balancing implementation objectives and requirements ob-
jectives. This was the first work to establish and study the link between requirements
optimization and the corresponding tension with the implementation. All previous
work had considered requirements in isolation, independent from the architectural
constraints that choices of requirements impose upon the implementation of the
chosen requirement set.

Finkelstein et al. (2008, 2009) considered the problem of fairness analysis in
requirements optimization. This was the first paper to introduce techniques for
analysis of the trade-offs between different stakeholders’ notions of fairness in
requirements allocation, where there are multiple stakeholders with potentially
conflicting requirement priorities and also possibly different views of what would
constitute fair and equitable solution.

As can be seen, the field of multi-objective requirements analysis is growing and
developing into a well-defined subfield of activity within the overall areas of SBSE. A
position paper on recent trends in requirements analysis optimization can be found
in the work of Zhang et al. (2008).

Much of the previous work has been concerned with development of new models,
formulations and frameworks for search based requirements. This previous work
suggests that requirement analysis can be transformed from a purely qualitative
process of human value judgement to a decision support environment in which
human judgement is informed by quantitative assessments of choices, optimized
using metaheuristic techniques. This growing interest in SBSE for requirement
necessitates a more detailed empirical and experimental analysis of the algorithmic
choices available to engineers seeking to use SBSE techniques in requirements
analysis.
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The present paper seeks to take a step toward the provision of this detailed
experimental analysis. In the conference version of this paper (Durillo et al. 2009),
we provided an initial set of experimental results to investigate the effectiveness of
NSGA-II and MOCell for the MONRP. In the present journal version of the paper,
we extend these previous results in the following ways:

– We broaden the scope to include another multi-objective optimizer, PAES
(Knowles and Corne 1999).

– We analyze the development of Pareto fronts as the algorithms progress. Since
all the algorithms are essentially ‘anytime’ algorithms, this analysis explores how
quickly the algorithms converge to a final Pareto front and the increase in Pareto
front quality as the algorithms progress.

– We extend the study to consider the efficiency (run time performance) of each
of the algorithms studied.

– We consider, additionally, a real world case study of the MONRP, to see whether
the experimental results suggested by the detailed study of different problem
instances are borne out in practice.

– We further analyze the obtained fronts, not only in terms of the composition of
each solution but also considering the fairness of each point into the Pareto front.

10 Conclusions and Future Work

In this paper we have studied the Next Release Problem, with the intention of
analyzing the performance of three different multi-objective algorithms, and the
solutions they have provided over both test cases and a real instance of the problem.

To come with those issues, we have evaluated three state-of-the-art multi-
objective optimization algorithms: NSGA-II, MOCell, and PAES. This comparison
has been done on the basis of two quality indicators, HV and �, the number of non-
dominated solutions obtained by those algorithms, and running time.

In terms of convergence towards the optimal Pareto front, NSGA-II and MOCell
have been the best solvers in our comparison. The former algorithm has obtained the
best results, performing a lower number of evaluations. Furthermore, it has obtained
the best fronts in the two instances with the highest number of requirements.
Regarding the distribution of solutions contained in the fronts computed by the
algorithms, MOCell has been the most outstanding algorithm in our comparison.

As to the number of obtained solutions, NSGA-II is also the algorithm which has
shown the best performance; it is the technique computing the best non-dominated
solutions found so far in the two biggest instances. If we attend to the composition
of those solutions, we have observe that they are composed in a high percentage of
those requirements offering the highest ratio of customer satisfaction by unit cost.

The simplest algorithm in our comparison, PAES, has been the fastest algorithm
in our comparison. However, it has obtained the least accurate results according to
all the indicators. This highlights the importance of both a population and the use of
a recombination operator in order to better explore the search space of MONRP.

The best solutions found so far by the algorithms are composed by those require-
ments which more satisfy the customers by unit cost. Furthermore, we have observed
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that algorithms using the same number of times the same requirements can provide
the software engineer with solutions of different quality.

Additionally, we have also made use of the computed front as a tool for analyzing
the fairness of the obtained solutions. Specifically, we have analyzed the satisfaction
of customers provided by each solution into the Pareto fronts computed by MOCell,
the best algorithm for that instance. The results have shown that solutions into those
fronts try to satisfy the customers the same.

Thus, by considering a multi-objective approach, it is possible to allow the
software engineers to use Pareto front evaluation as a comparative tool for a number
of objectives. First of all, the analyst can pick up the best solutions on the Pareto front
in different circumstances based on their priorities. For example, at a specific budget
level for a project, one or more optimal solutions might be found when moving along
the Pareto front. Meanwhile, the stakeholders’ satisfaction can also be concerned.
Each satisfaction level has its own corresponding cost (resource allocation, spending)
according to the Pareto front. This can help the analyst make rough estimates and
adjustments for a project budget.

Moreover, the Pareto front not only gives solutions themselves, but also may yield
interesting insights into the nature of the problem. The shape of the Pareto front
(concave, convex, discontinuous, knee point, nadir point, etc.) reflects the structure
of data in an intuitive way, and provides the analyst with very valuable information
about the trade-off among the different objectives and helps fully understand the
problem and reach practical solutions. Particularly, in the real instance we have
identified areas of the fronts where a small increment in customers satisfaction
demanded a huge one in the investment.

Future work will verify these findings by applying search techniques to a larger
number of real word problems. This will provide valuable feedback to researchers
and practitioners in search techniques and in software engineering communities.
Other formulations of the problem considering different sets of objectives and
constraints and the design of techniques which assist software engineers in the
decision making are also issues to study. This, in turn, may give rise to the need
for the development of more efficient solution techniques. It is also interesting to
investigate how these techniques scale when the number of requirements and/or
customer increases. In order to reach this goal, a procedure will be needed which
allows the systematic creation of instances with the desired features; in this sense, we
plan to design a problem generator for MONRP instances.
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