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Abstract

Brooks’ milestone ‘Mythical Man Month’ established the
observation that there is no simple conversion between peo-
ple and time in large scale software projects. Communica-
tion and training overheads yield a subtle and variable re-
lationship between the person-months required for a project
and the number of people needed to complete the task within
a given time frame.

This paper formalises several instantiations of Brooks’
law and uses these to construct project schedule and staffing
instances — using a search-based project staffing and
scheduling approach — on data from two large real world
maintenance projects. The results reveal the impact of dif-
ferent formulations of Brooks’ law on project completion
time and on staff distribution across teams, and the influ-
ence of other factors such as the presence of dependen-
cies between work packages on the effect of communication
overhead.

Keywords: Search-Based Software Engineering, Soft-
ware Project Management, Software Maintenance.

1 Introduction

Frederick Brooks’ book “The Mythical Man-Month”
[10], first published in 1975 was one of the first texts to
explore the nature of software project management. Brooks
was responsible for the development and maintenance of
the IBM OS/360 operating system. The Mythical Man
Month captured his experiences of software project man-
agement. Brooks’ work has proved to be highly influential,
both within computer since an in the wider world of project
management and economics. In 1999 he was awarded the
ACM Turing prize for this work.

Brooks’ law is often quoted, so much so that it has be-
come something of an aphorism:

“Adding manpower to a late software project
makes it later.”

Less widely quoted is the sentence that precedes the
statement of Brooks’ law in The Mythical Man Month”
[10]:

“Oversimplifying outrageously, we state Brooks’
Law”

As this caveat reveals, Brooks was aware that he was
simplifying a subtle and complex problem. He was mak-
ing an observation: there is no simple linear conversion be-
tween person–months and staff levels. A project of ten per-
son months’ effort, to which two people are assigned will
not necessarily take five months to complete.

The manager of a software maintenance project will need
to make decisions based on their assessment of the likely
impact of Brooks’ law. Unfortunately, as stated, the law
simply warns against adding people to a late project. This
leaves several important questions unanswered: What can
a manager do to improve the completion time of a project?
How can the impact of the communication overhead be ac-
counted for? What is the impact of the communication over-
head on completion time and staffing levels?

This paper aims to explore the relationships between ef-
fort, staff levels, completion time and other project fac-
tors using various formulations of Brooks’ law. The pa-
per formalises these relationships as equations. Previ-
ous work on software engineering estimation has focused
on fitting equations to existing data to attempt to cap-
ture the relationship between effort and completion time
[2, 8, 11, 15, 16, 25, 30].
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This paper uses search-based optimization techniques —
which have recently been applied to software project esti-
mation and planning [4, 5, 7, 12] — to explore the impact of
different formulations of Brooks’ law upon optimal project
allocations, and optimise project attributes such as comple-
tion time. The optimization algorithms are applied to data
from two large scale real world maintenance projects in or-
der to explore the impact of these different formulations.

This work is valuable in software maintenance where
projects may be particularly large and demanding and
where there may be existing case histories upon which to
draw. Furthermore, the paper shows how search-based
staffing can be used to reduce the impact of Brooks’ law,
balancing large teams — able to quickly maintain large
work packages, however suffering more of the communica-
tion overhead — with many smaller teams working in par-
allel with a limited communication overhead.

The primary contributions of this paper can be summa-
rized as follows:

• The paper introduces formal characterizations of
Brooks’ law.

• The paper introduces a search-based optimization ap-
proach to assess the impact of different formulations
of the characterizations on real projects.

• The paper presents the results of application of this ap-
proach to real world data from two large scale com-
mercial software maintenance projects.

• The paper shows that the impact of Brooks’ law is sub-
tle. Tempered by the interplay between the specific
values of project attributes, its full effect can only be
understood by experimentation and modelling. This
motivates the use of the investigative techniques pro-
posed by the paper as a way to explore the impact of
Brooks’ law on a project-by-project basis.

• The paper presents empirical evidence from two real
maintenance projects that suggests that the impact of
Brooks’ law may be less pernicious for maintenance
projects where there is a potential flexibility in team
construction.

The remainder of the paper is organised as follows:
Section 2 sets out the problems in terms of the Mythical
Man Month and introduces our characterizations of Brooks’
law. Section 3 explains the search-based approach to opti-
mization of project attributes using the different models of
Brooks’ law. Section 4 presents the results of an empirical
study on the effect of these models of Brooks’ law on two
large scale maintenance projects. Section 5 discusses the
related work, while Section 6 concludes the paper.

2 The Mythical Man-Month

This paper focuses on the problem that people and
months are not perfectly interchangeable. However, it
should be noted that there are ‘perfectly partitionable’ tasks
in which Brooks’ law does not hold, or has minimal effect
(see Figure 1-a). Such situations arise where there is an ab-
sence of communication and highly standardized tasks are
allocated to relatively small teams (up to eight people in one
team according to Hamid [1]). For example, the Y2K main-
tenance project described in reference [3] consisted on the
application, through an automatic tool, of a Y2K patch by
using a windowing mechanism. This proved to be a highly
standardized task with little need for interaction between
teams and practically no training and communication over-
head.

The opposite case is where there is no possibility to par-
tition the task. No matter how many people are added to
the task, the time required will not change (Figure 1-b).
Between these two extremes, we have partitionable tasks
affected by communication overhead (Figure 1-c). On the
one side we have, for each staff member, the need for train-
ing, which can be neither partitioned nor squashed. Such
effort augmentation factors may be considered to vary lin-
early with the number of people.

However, there is also a need for intercommunication be-
tween different team members. Each member of the n–
person team must coordinate her/his activity with n − 1
other team members. This causes effort increase that can
be characterised as some function of n(n − 1)/2 (the num-
ber of pairwise relationships). When relationships are more
complex, i.e., there is the need for example for three, four
or more people to meet and interact, the situation becomes
worse. In some cases, it can happen that the complexity
of communication and the effort required to communicate
are such that adding further staff to the project results in an
increase of completion time (Figure 1-d).

2.1 Characterizing Formal Models of Brooks’
Law

The time required for a team staffed with n people to
maintain a Work Package (WP) for which the estimated ef-
fort is of e people/month will be different depending on the
level of communication considered. For a perfectly parti-
tionable task it will be:

t =
e

n
(1)

The second case we will consider is the presence of com-
plete communication among team members — thus a pes-
simistic case of pair communication — limiting however
our analysis to pairs and excluding, in the present work,
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Figure 1. Relationships between people and months [9]

communication among larger number of people. Let ce be
the average communication effort for a pair of people. The
time needed for communication tc will be:

tc = ce · N(N − 1)/2 (2)

thus the time required to perform the task will be:

t =
e

n
+ ce · N(N − 1)/2 (3)

Equation (3) is only one of the possible communication
overhead models. As mentioned, in case of complex com-
munication involving groups composed up to k people, tc
will be:

tc = ce ·
(
N(N − 1)/2 + N(N − 1)(N − 2)/3!+

+ . . . + N(N − 1) · . . . · (N − k + 1)/k!
)

=

= ce ·
∑k

j=1

(
n
j

)
(4)

Of course, terms of equation (4) accounting for interac-
tions of j people only apply for teams composed of at least
j people (otherwise these terms would bring a negative con-
tribution). In this work we will consider situations for k = 2
(i.e., equation (3)) and k = 3. Finally, the communication
overhead can vary linearly with the number of people com-
posing each team:

tc = ce · N if N > 1 (5)

or even following a logarithmic model:

tc = ce · log(N) (6)

The last two models (for simplicity’s sake we will only
consider the logarithmic model in our analyses) represent
cases where, in presence of large teams, the manager may
decide to follow another Brooks’ lesson i.e., to structure
team communication as to avoid polynomial increase of
the communication overhead. Indeed, a logarithmic model

WP1WP4 WP2....

Project

WP1 WP2 WP3 WP4

Project WBS

WP Ordering

People
Distribution

Queuing model
 of the maintenance

 process

Figure 2. Project scheduling: the queuing
model

mimics the common strategy to organize team members ac-
cording to some form of network to ensure communication
but reduce the related overhead. To the extreme limit of
a hierarchical structure, criticized by Brooks, the overhead
will be exactly described by a logarithmic function.

3 The Search-based Staffing Approach

This section summarises our previous work on search-
based optimization for project planning in order to make
the paper self–contained. To apply the proposed search-
based approach to project planning, the software mainte-
nance process needs to be modelled as a queuing network
[3]. In such a model, each stage of the maintenance pro-
cess is thought of as a queue with a number of servants (i.e.,
maintenance teams). Different stages are interconnected,
forming a queuing system.

Scheduling a software project under the presence of con-
straints means to determine i) the distribution of the avail-
able staff across teams (servants) and ii) the assignment
of WPs to teams, with the objective of i) minimizing the
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project completion time and ii) satisfying precedence con-
straints between WPs. In addition, the resulting sched-
ule should seek to maximize the team member usage over
the project life span; in other words personnel idle periods
should be avoided or, at least, limited.

Once the queuing system configuration has been deter-
mined (included the size of each server), the WP assign-
ment to teams is defined by the order the WPs enter into
the system. Figure 2 depicts the scheduling scenario (i.e.,
determining WP ordering and people assignment to teams)
represented as a queuing-problem. Let us consider, for sim-
plicity’s sake, a project modelled as a single-node queuing
system. Given this, a solution to the project planning prob-
lem can be represented in a 2–array data structure as shown
in Figure 3. The first array represents the WP ordering in the
incoming queue; it is a N -sized array (where N is the num-
ber of WPs), and the value of an entry indicates the position
of the WP in the incoming queue, for a single-queue/multi-
server queuing system. The second array is an array of size
S, where S is the number of people available for the project.
Each value of the array indicates the team that a program-
mer is assigned to. In case of a model composed of multiple
(j) queues, the solution will be composed of 1 + j arrays,
where the first array encodes the WP ordering and the others
j encode the people allocation across teams for each main-
tenance/development phase.

The quality of a solution is quantified as the time to
finish, estimated by the queuing simulator. The comple-
tion time depends upon the particular queuing configuration
(determined by varying the distribution of people across
servers) and the given WP ordering. Given the estimated
effort for a WP and the staffing level of the team main-
taining the WP, the queuing simulator will simulate the WP
maintenance determining the working time according to the
different models described in Section 2.1.

For many software projects, the search algorithm must
be able to handle precedence constraints between WPs.
Among the available techniques for handling constraints

[13, 26], we choose to repair solutions that yield a good
fitness but violate some precedence constraint. Repair at-
tempts to locate a near-neighbour solution that does not vi-
olate the constraint in question. Every time a new solution
is generated, the process execution is simulated as follows:

1. WPs are seeded into the queue in the order specified
by the first line of the chromosome.

2. Every time a server is available, the dispatcher tries to
assign it the WP in front of the queue. In case such
a WP cannot be handled yet because of a precedence
constraint, the schedule searches back in the queue un-
til it finds a WP that can be handled.

3. If the dispatcher is able to find a WP, it will be as-
signed to the available server. If not, this means that
no assignment is currently possible, because one of the
WPs currently under work needs to be completed be-
fore any of the waiting WPs can be assigned. In that
case, simulation proceeds leaving the available server
“idle”.

The WP ordering obtained according to the process
above described is updated as part of the current solution, so
to be used as starting point to generate new solutions (e.g.,
using crossover and mutation operators when using Genetic
Algorithms, as described below).

Once the project planning problem has been modelled, a
representation provided and a fitness function described, we
can use different search heuristics to solve it. Our previous
work showed how Genetic Algorithms (GAs) and Simu-
lated Annealing outperformed other techniques such as Hill
Climbing and were in every case significantly better than
random search [5]. Building on this finding, we chose to use
the GA approach to implement the search based approach
reported upon in this paper.

4 Empirical Study

The objective of this study is to analyze the effect of
different communication overhead models on the comple-
tion time and on the resource assignment to teams when
staffing and scheduling a software maintenance project us-
ing a search-based approach.

The context of our case studies is two real world main-
tenance projects, hereby referred as Project A and Project
B. Project A is a massive maintenance project concerned
with fixing the Y2K problem in a large financial software
system from a European financial organisation. According
to its Work-Breakdown Structure, the application was de-
composed into WPs, i.e., loosely coupled, elementary units
(from one to nine for each application) subject to mainte-
nance activities; each WP was managed by a WP leader
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Figure 4. Histograms of WP efforts (person
days) for the two projects

and assigned to a maintenance team. No WP dependency
was documented and thus no constraint has to be satisfied
in Project A scheduling. Overall, the entire system was de-
composed in 84 WPs, each one composed, on average, of
300 COBOL and JCL files. Further details can be found
in reference [3]. Project A can be considered as represen-
tative of massive maintenance projects related to highly-
standardized task such as currency conversion, change of
social security numbering, etc.

Project B aimed to deliver the next release of a large
data-intensive, multi-platform software system, written in
several languages, including DB II, SQL, and .NET. The
project is composed of 108 WPs for which WP inter-
dependence information is available (in total, there are 102
WP inter-dependencies). In this case, the presence of de-
pendencies between the project’s WPs considerably com-
plicates the problems of project management.

Figure 4 shows, for the two projects, histograms of ef-
forts at WP grain-level. For Project A efforts were estimated
using using an analogy estimation approach [30], while for
Project B we are using actual efforts to analyze how the
project completion time could have been changed in pres-
ence of communication overhead.

4.1 Research Questions

The research questions this study aims to investigate are
the following:

1. RQ1: what is the effect of different communication
overhead models and levels on the project completion
time?

2. RQ2: what is the effect of different communication
overhead models and levels on the allocation of re-
sources into teams?

3. RQ3: what is the effect of different communication
overhead models when varying the project staffing?

4.2 Empirical study settings and analysis method

In order to facilitate replication of our work, this section
reports the details of the parameter settings used in our sim-
ulations.

GA simulations were run considering the following pa-
rameters: (i) simple, non-overlapping GA with elitism of
two individuals; (ii) population composed of 50 individu-
als; (iii) 500 generations; (iv) mutation probability 0.1, and
crossover probability 0.7. To reduce the bias of randomness,
each GA run was repeated 10 times. Though we report plots
for average values, differences were always tested using sta-
tistical tests, i.e., the Kruskal-Wallis test for multiple means
comparison and the Mann-Whitney test for two means com-
parison. The simulator was implemented in C++, relying on
the GA Library Galib1.

We considered three communication overhead models,
i.e., a logarithmic model (Equation 6 of Section 2.1), a
quadratic model (Equation 3 of Section 2.1), and a cubic
model (Equation 4 of Section 2.1, for k = 3), a communi-
cation effort coefficient ce varying between 0% and 10% of
each WP effort. The staffing level considered was the one
estimated in reference [3] for Project A (46 people) and the
actual one (20 people) for Project B. To answer RQ3, these
staffing levels were varied between 35 and 55 and between
10 and 35 respectively.

4.3 Empirical Study Results

This section reports results for the simulation of differ-
ent communication overhead models and levels over data
from the two projects, discussing and answering the re-
search questions outlined in Section 4.1.

4.3.1 RQ1: what is the effect of different communica-
tion overhead models and levels on the project
completion time?

Figure 5 shows, for the two projects, the project completion
time (averaged over the 10 runs of the GA) for different
communication overhead levels and models. For Project
A, the figure shows how, as the communication overhead
increases, the four models behave differently. The Kruskal-
Wallis test indicates, for all the percentages of communi-
cation overhead, a significant difference (p-values< 0.01).
Overall, we found that the logarithmic model always intro-
duces a significantly lower overhead than other models. For
a communication overhead greater or equal to 4%, the cu-
bic model introduces a significantly higher overhead than
the quadratic model (p-value=0.004). At 9% such a dif-
ference is not significant anymore (p-value=0.36), indicat-
ing that, as also showed in the figure when the communi-

1http://lancet.mit.edu/ga/
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Figure 5. How completion time varies with
communication overhead

cation overhead increases, the cubic and quadratic mod-
els tend to converge. Results are confirmed for Project
B, where, according to the Kruskal-Wallis test, the dif-
ference among communication models is significantly dif-
ferent (p-value< 0.0002) mainly because of the smaller
communication overhead introduced with the logarithmic
model. A detailed analysis shows that the cubic model in-
troduces a significantly higher overhead than the quadratic
model, for overhead percentages greater or equal than 2%
(p-value=0.008), while the difference is not significant for
percentages over 8% (p-value=0.7).

These results are encouraging. By using a re-balancing
of project team allocations, the manager is able to find ways
of minimizing the impact of communication overheads on
the project completion time. This is only possible with a
project in which staff can be thought of as equally well
skilled at all tasks required. Fortunately, this is true of many
project maintenance tasks, including those in which a re-
peated action is to be applied (such as corrective mainte-
nance).
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Figure 6. How the average team size varies
with communication overhead

4.3.2 RQ2: what is the effect of different communica-
tion overhead models and levels on the allocation
of resources into teams?

For Project A, it can be noted how, when the communica-
tion overhead increases, the search-based staffing approach
tends, on average, to reduce the team size (Figure 6-a), in-
creasing, instead, the number of teams (Figure 7-a). As
shown in the figures, this is more evident for the quadratic
and cubic models. In other words, instead of preferring
large teams — that would have worked better in case of
low communication overhead — the approach tends to par-
allelize the work among many smaller teams, each one af-
fected by a small communication overhead. This also ex-
plains why quadratic and cubic models tend to converge in
terms of completion time (Figure 5): the search-based ap-
proach tend to limit the number of large teams causing dif-
ferences between the two models. Different models exhibit
significant differences in terms of allocated teams (the log-
arithmic model allocated a significantly smaller number of
teams) only for communication overhead percentages be-
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Figure 7. How the number of teams varies with
communication overhead

tween 6% (p-value=0.005) and 8% (p-value=0.002). Also
for the average team size, differences are significant be-
tween the logarithmic model and other models for percent-
ages of communication overhead above 6%. Table 1 shows
an example of staff allocation for Project A, considering the
cubic model and different percentages of communication
overhead. It can be noted how an increase of the commu-
nication overhead tends to favour configurations with many
smaller teams instead of few larger ones.

For Project B, the Kruskal-Wallis test does not reveal any
significant difference among the different models both in
terms of teams allocated and in terms of average team size.
Also in this case, the differences between the two projects
can be explained by the presence of WP dependencies in
Project B. While for Project A the search-based scheduling
approach was able to mitigate the effect of communication
overhead favouring more small teams instead of few large
teams, this was not possible for Project B, since the work
could not be parallelized because of the high number of de-
pendencies. This was visible both in terms of a large effect

Table 1. Project A: example of staff allocation
for the cubic model

Overhead Size 1 Size 2 Size 3 Size 4
(%) Teams Teams Teams Teams

0 6 11 6 0
1 18 8 4 0
2 9 14 3 0
3 15 11 3 0
4 19 9 3 0
5 9 14 3 0
6 14 13 2 0
7 17 13 1 0
8 20 11 0 1
9 22 12 0 0

10 24 11 0 0

of the communication overhead on the completion time, but
also in terms of a smaller variation of the number of teams
and of the average team size.

4.3.3 RQ3: what is the effect of different communica-
tion overhead models when varying the project
staffing?

Figure 8 shows how the completion time varies when the
staffing level increases, for different communication over-
head models, and for a communication overhead percentage
fixed to 5%. The Kruskal-Wallis test indicated a significant
difference among different models for all the staffing levels
(p-value < 1.7 · 10−7). All the models are able to signifi-
cantly benefit of a staffing increase for staffing levels up to
46 people (p-value=6.2 · 10−5 for the cubic model, 0.0001
for the quadratic and for the logarithmic model), although
the gain is more evident for the logarithmic model (22 days)
than for the quadratic model (16 days) and for the cubic
model (10 days). Noticeably 46 was the optimal staffing
level determined in reference [3]. Further staffing increases
do not cause any significant improvement for the quadratic
and cubic model (on the contrary, a slight completion time
increase was observed as suggested by the famous Brooks
aphorism). The logarithmic model does not benefit from a
further staffing increase (up to 50 people). However, when
increasing the staff to 55 people, the completion time sig-
nificantly decreased from 133 to 126 days (p-value=0.05).

This provides further evidence of the way in which the
effect of Brooks’ law is not uniform and cannot be predicted
without recourse to project-specific data. That is, the effect
of the law, when applied to a real project is strongly in-
fluenced by the particular project data that pertains to the
project: the effort required, the staff available, the distri-
bution of tasks to teams in the initial plan, and the WP in-
terdependencies. This observation provides an additional
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Figure 8. How completion time varies when
staffing increases

motivation for the approach adopted in this paper.
For Project B, it can be noted that the logarithmic model,

and of course the model with absence of overhead, ex-
hibit decreasing completion time when the staffing level in-
creases. When increasing the staffing above 20 people, such
an improvement is less evident, and it can also be noted
an increase of completion time (although not statistically
significant) for the logarithmic model when increasing the
staffing from 30 to 35 people. The quadratic model is able
to ensure a completion time reduction for a staffing level
up to 15 people, then it produces an increase from 437 to
443 days and, subsequently, exhibits oscillations when the
staffing level increases. The same happens for the cubic
model, which first reacts with a completion time increase
for staffing level up to 20 people. Then it is able to reduce
the completion time to 468 days (staffing of 30 people) and
then starts to increase again for a staffing level of 35 people.

4.4 Threats to Validity

Construct validity threats may be due to the kind of com-

munication overhead models considered. We considered
pessimistic cases of communication involving two or three
people, while wider communications were not considered
also due to the size of teams created by the search-based
approach (almost always less than four people). We also
considered a logarithmic model, representative of projects
with a limited communication overhead effect. Other mod-
els will be investigated in future work. Other threats could
potentially arise from the simplifications made on the main-
tenance process modelled (as a single queue model), to the
assumptions made in Section 4.2. However, the effect of
these threats is limited because the applicability of search-
based approaches to deal with project staffing is not influ-
enced by the maintenance process topology. In other words,
as discussed in Section 3, the approach would still be appli-
cable if the maintenance process has to be modelled with a
more complex queuing network instead of as a single node.

Internal validity threats, in our case study, can be due
to the inherent randomness of the search-based algorithms.
This was limited by repeating each simulation 10 times and
using statistical tests to check for the presence of significant
differences.

With regards to External validity, threats can be due to
the fact that (i) results are limited to data from the two
projects and (ii) this is a post-mortem study on real-project
data, rather than a case study on running projects. Regard-
ing the fact that this is a post-mortem study, our aim was
mainly to analyze the effect of communication overhead
and to provide managers with a tool able to model such an
effect, rather than empirically assessing the model against
actual project data.

5 Related Work

Brooks initiated the study of project planning, following
his seminal work on the outcomes of the IBM OS/360 de-
velopment and maintenance project [10]. Boehm [8] devel-
oped a theory of Software Engineering Economics based on
fitting models to sets of data from projects on which he had
worked in the 1970s and 1980s. This lead him to formulate
three models of the relationship between effort and project
duration, based on an observed partition of the data into
three categories; the organic model (in which Brooks’ law
has a minimal effect), the semi-detached model (in which
Brooks’ law applies), and the embedded model (in which
Brooks’ law is strongly felt).

Boehm’s work was widely used in the 1990s by soft-
ware managers as a prediction mechanism for estimating
software effort. Recently other authors have considered the
software effort prediction problem, using a variety of tech-
niques including Case Based Reasoning [25, 30, 31], Neu-
ral Networks [32] and Search-Based Software Engineering
[15, 25]. A recent survey of work on Software Engineering
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Economics can be found in a paper by Shepperd [29].
The work in the present paper differs from previous work

on estimation of software project effort because we do not
aim to fit a predictive model to a set of existing software
data. Rather, we seek to experiment with various models of
Brooks’ law to explore the effect it has on important project
attributes, such as staffing levels and completion times. Our
approach can be used by a manager to assess the impact of
different models of communication on their existing soft-
ware project estimates and plans.

As such, our work is similar to previous work because
it is concerned with providing quantifiable insight into soft-
ware maintenance economics and decision support to soft-
ware maintenance engineers and their managers. However,
it differs in the approach taken to the provision of this in-
sight and decision support. Our work shows that the effect
of Brooks’ law is subtle and also potentially less pernicious
for maintenance projects compared to other projects.

Search-based techniques have previously been applied to
scheduling problems [14, 23]. More recently, several au-
thors have applied search based optimization techniques to
software project planning [4, 5, 7, 12] and cost estimation
[2, 11, 15, 16, 25]. However, the present paper is the first to
provide a formal characterization of models of Brooks’ law
and to use these to investigate the impact of these models
on optimal completion times for real world software main-
tenance projects.

Search Based Software Engineering (SBSE) techniques
are increasingly finding application to problems associated
with software maintenance such as modularisation [20, 27],
refactoring [22, 28], program comprehension [19], or next
release planning [6, 17, 21, 24, 33]. A survey of SBSE can
be found in a paper by Harman [18].

6 Conclusion

Communication overhead is a factor that project man-
agers must carefully consider when making their staffing
and scheduling decisions. In this paper we analyzed how
project completion time and resource allocation varied for
different communication overhead models and levels. To
this aim, we simulated (near) optimal project manager de-
cisions by relying on a search-based project staffing and
scheduling approach. In other words, the search-based ap-
proach simulated how the manager could have done her/his
best to allocate project resources in presence of communi-
cation overhead.

The results show that the effect of Brooks law is sub-
tle, because it is affected by the particular values of project
attributes. This makes it important to have a technique to
analyse the effect of the law on project completion times
and staff allocation plans. This paper provides such an ap-
proach. The results are also a source of cautious optimism

for the software maintenance community: a proper project
scheduling — that can be achieved for instance with the
help of search-based optimization techniques — makes the
impact of Brooks law less harmful to project completion
time.

There are a number of issues to be addressed in fu-
ture work. First, we need to build empirical evidence of
how the different models fit actual project data, in case of
projects where the communication overhead was not neg-
ligible. Then, it would be useful to consider further com-
munication overhead models, accounting for different de-
velopment paradigms, e.g., pair programming. Finally, we
will investigate the effect of communication overhead on
dynamic project restaffing, i.e., on what happens when re-
sources are added during the project as a response to a pre-
diction indicating a possible deadline violation.
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