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Abstract— One of the main tasks software testing involves
is the generation of the test inputs to be used during the
test. Due to its expensive cost, the automation of this task
has become one of the key issues in the area. Recently, this
generation has been explicitly formulated as the resolution of a
set of constrained optimisation problems. Differential Evolution
(DE) is a population based evolutionary algorithm which has
been successfully applied in a number of domains, including
constrained optimisation. We present a test data generator
employing DE to solve each of the constrained optimisation
problems, and empirically evaluate its performance for several
DE models. With the aim of comparing this technique with
other approaches, we extend the experiments to the Breeder
Genetic Algorithm and face it to DE, and compare different
test data generators in the literature with the DE approach.
The results present DE as a promising solution technique for
this real-world problem.

I. INTRODUCTION

Testing is the primary way used in practice to verify the
correctness of software [1]. Among the problems related
to software testing, the automatic generation of the inputs
to be applied to the programme under test is especially
relevant. Exhaustive testing is generally prohibitive due to
the huge size of the input domain, so tests are designed
with the purpose of fulfilling particular adequacy criteria.
For instance, branch coverage is accepted as a minimum
mandatory criterion [1]. So, in this case, the aim is to
generate a set of inputs exercising every branch in the source
code of the programme.

In recent years, several approaches under the name of
Search Based Software Test Data Generation (SBSTDG)
have been developed, offering promising results [2]. SB-
STDG tackles the test data generation as a search for the
appropriate inputs by formulating an optimisation problem.
This problem is then addressed using search methods. Most
of the SBSTDG approaches follow a dynamic strategy where
the programme is executed and the information available at
run-time is exploited to guide the search of test inputs [3],
[4], [5], [6].

Recently, dynamic SBSTDG for branch coverage has been
explicitly formulated as the resolution of a set of constrained
optimisation problems [7]. This formulation opens the door
to new designs and search strategies that have not been
considered to solve this problem yet. In this work, we focus
on the application of Differential Evolution (DE) [8].
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Considering the search strategy for this approach, we
looked for one to be successful on constrained optimisation
tasks, but without consuming a large number of fitness
function evaluations (which here means programme runs).
An alternative fulfilling such conditions is DE. DE has shown
its effectiveness in a number of benchmark functions [9]
and real-world problems [10], and it has successfully been
applied in constrained optimisation, obtaining good solutions
and also reducing the number of function evaluations [11],
[12], [13], [14]. DE is a population based evolutionary
algorithm which is currently deserving the attention of the
research community. A major characteristic of this algorithm
is that new individuals are obtained by combining one parent
and a trial individual elicited from the vector differential
of two other individuals. Another important feature is that
selection is local, in the sense that only the parent is
considered for replacement, which results in a inherently high
selection pressure.

We build a test data generator which employs DE to solve
the constrained optimisation problems associated to branch
coverage. We then evaluate the performance of different DE
models through experiments over a set of five benchmark
programmes. To the best of our knowledge, this is the first ap-
plication of DE to software testing following the mentioned
constraints based formulation. In order to have an idea of the
performance of this technique compared to other population
based evolutionary algorithms, we also experiment with the
Breeder Genetic Algorithm [15], which is a well-known
technique with a wide track record of successful real-world
applications [16], [17]. Also, we face the DE based generator
with other SBSTDG approaches from the literature [6], [5],
[18], [4], [19], [7].

The remaining sections are arranged as follows. In the next
section, dynamic SBSTDG and the constrained optimisation
formulation are outlined. Then, the standard DE algorithm
and some of its variants are briefly reviewed. We continue
with the empirical evaluation of different DE models. Finally,
we discuss conclusions and some ideas for future work.

II. DYNAMIC SEARCH BASED SOFTWARE TEST DATA

GENERATION

SBSTDG methods obtain test inputs employing search
techniques during the process. The main characteristic of dy-
namic strategies is that they execute an instrumented version
of the programme at hand with an input. The information
gathered during the run time is then used to guide the search
for new inputs. Next, we first discuss classical dynamic
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SBSTDG for branch coverage and afterwards the constrained
optimisation approach we have followed.

A. Classical Approaches

Although different works have been developed in the field
to date (see [2] and references therein), the idea underlying
many of them is to solve a number of function optimisation
problems, one for each branch to be covered. Thus, it
is common to follow a two-step iterative process where,
firstly, a branch is selected and marked as an objective, and
secondly, this objective is assigned a function dependent on
the programme input and its optimisation is sought.

1) Selection Step: The objective branch is often deter-
mined with the help of a control flow graph [20] which
reflects the structural characteristics of the programme [3],
[6].

A control flow graph G = (V, U) is defined by a set V
of vertices and a set U ⊆ V × V of arcs. Each vertex in V
represents a code basic block, excepting two vertices labelled
s and e, which refer to the programme entry and exit. A code
basic block is a maximal sequence of code statements such
that if one is executed, then all of them are. An arc (v1, v2) ∈
U , with v1 and v2 distinct from s and e, is such that the
control of the programme can be transferred from block v1 to
v2 without crossing any other block. Analogously, for every
arc (s, v1) ∈ U or (v2, e) ∈ U , it will be possible to transfer
the flow of control from the entry to block v1 and from block
v2 to the exit, respectively. Hence, in this kind of graph, every
vertex v with outdegree(v) > 1 represents a branch in the
source code of the programme. Given a programme input x
, we will call execution path of x to the path starting from
s that represents the flow of the programme’s control when
executed with x.

2) Optimisation Step: In this step an optimisation problem
is tackled. That is, given the search space Ω formed by the
programme inputs and a function f : Ω −→ IR, find x∗ ∈ Ω
such that f(x∗) ≤ f(x) ∀x ∈ Ω.

A measure that is widely used to create f is the so-
called branch distance [2]. Let b be the objective branch
and AOPB an expression of the conditional statement
COND associated with b in the code, with OP denoting
a comparison operator. Only for notation purposes, we also
consider the vertex vc representing COND in the control
flow graph of the programme. The branch distance value for
an input x that reaches COND is determined by

fc(x) = d(Ax,Bx) + K (1)

where Ax and Bx are appropriate representations of the
values taken by A and B in the execution, d is a distance
measurement, and K > 0 is a previously defined constant.
Typically, if A and B are numerical, then Ax and Bx
are their values and d(Ax,Bx) = |Ax − Bx|. In the
case of more complex data types, other representations and
distances have been proposed in the literature [5]. Besides, if
COND involves a compound expression, the overall branch
distance can be obtained by combining the distances at the
subexpressions [6].

A classical objective function based on the branch distance
is defined, keeping the notation above, as follows [3]:

f(x) =

⎧
⎨

⎩

L if COND not reached
fc(x) if COND reached and b not attained
0 otherwise

where L is the largest computable value.
In [6], the gradient of this function was increased for the

inputs not reaching COND by defining a distance between
a vertex in the execution path of the input and COND.

3) Other Elements of a Test Data Generator: Although
the search technique deals with one optimisation problem at
a time, the real goal is to solve a set of problems. Several
works have taken this into account to improve the process.
The alternative suggested by them is to profit from the
good solutions found by not only evaluating an input for
the current objective branch, but also with regard to all the
others. Thus, each branch is assigned a set containing the
best inputs so far. The strategy to select the objective branch
consists then of choosing the branch with a highest quality
set of inputs. Moreover, for the optimisation step, this set is
used to seed the initial phase of the search method [3], [4],
[6]. This way, at each round, we try solve the optimisation
problem with the most promising initial solutions for the
search technique.

B. Dynamic SBSTDG as Constrained Optimisation

Recently, dynamic SBSTDG for branch coverage has been
explicitly formulated as a constrained optimisation problem
[7], so opening the door to techniques not considered so far.
This formulation is based on the notion of critical condition.

Given a control flow graph, we call a vertex v1 a critical
condition of vertex v2 iff outdegree(v1) > 1, a path from
v1 to v2 exists, and a path from v1 to e not containing any
vertex in any path from v1 to v2 exists. Intuitively, a critical
condition v1 has an arc from which it is impossible to attain
v2, so we must follow one of the other arcs. For instance, in
the control flow graph shown in Figure 1, v1, v2 and v4 are
critical conditions of vc, but v3 is not.
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Fig. 1. Example of a control flow graph.

The attainment of the objective branch, represented by
arc (vc, vo) in the control flow graph G = (V,U), consists
of finding an input whose execution path contains (vc, vo).
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Although several such paths may be possible, the critical
conditions of vc indicate the arcs we must follow to achieve
vc, i.e. they identify a set of arcs that are common to different
paths from s to vc. We will call this set of arcs a critical set
for vc. For example, in Figure 1, {(v1, v2), (v2, v3), (v4, v5)}
is a critical set for vc.

Let ζ = {(vi, v
′
i), vi, v

′
i ∈ V, ∀i ∈ {1, 2, ..., n}}

be a critical set for vc. The coverage of each branch bi,
represented by (vi, v

′
i) ∈ ζ, is then a constraint we must

fulfil to attain the objective branch. The constraint function
for bi is given by

gi(x) =

{
fi(x)

M if bi not attained
0 otherwise

where f i is the branch distance in Equation 1 and M is a
normalisation term.

Now, we can formulate the coverage of the objective
branch b as a constrained optimisation problem (we keep
the notation)

minimise f(x) =
{

fc(x)
M if b not attained

0 otherwise
s.t. gi(x) = 0, i = 1, 2, ..., n.

(2)

Following this formulation the test data generation is
transformed into the resolution of a set of constrained op-
timisation problems. This view can lead to new designs for
the components of the generator.

1) Selection Step: It is important to notice that dif-
ferent critical sets might exist for vc, e.g., in Figure 1,
{(v1, v2), (v2, v3), (v4, v5)} and {(v1, v2), (v2, v3)} are both
critical sets for vc. This implies several constrained optimi-
sation problems might exist for the same objective branch.

In order to maximise the number of branches covered
when the objective branch is attained, the strategy proposed
in [7] is to choose as objective the branch with the largest
critical set. The constrained optimisation problem is then
given by this set. In case of tie among branches, the one with
a highest quality set of inputs is selected (i.e., the strategy
described in II-A.3 is adopted). The quality of a set is taken to
be the mean objective function value of the inputs in the set.
Analogously, if different critical sets with equal cardinality
exist for the same branch, we can keep one set of inputs for
each of them. Then, we can choose the critical set with the
highest quality set of inputs associated.

2) Optimisation Step: A large amount of classical SB-
STDG generators [3], [4], [5], [6] implicitly conform to
a constraint-handling approach [7]. However, all of them
handle the constraints in the order naturally imposed by this
problem: the value of gi(x) is unknown unless gi−1(x) = 0.
Therefore, the search points are encouraged to pursue the
optimal regions defined by constraints in this particular order.
Depending on the topology of these regions and the functions
encoded by the constraints, this demarcation of the path to
the optimum may hinder the search. Additionally, such a
restrictive way of achieving each constraint might lead to a
lack of diversity [21].

If we were able to overcome the restriction of following
the order naturally given by the problem we would dramati-
cally open the range of search techniques that can be applied
to the test data generator.

Actually, this can be achieved through the testability
transformation presented in [22]. Such a transformation is a
controlled modification of the source code of the programme
which aims at improving some aspect of a test data generator.
The testability transformation proposed in [22] consists of a
particular instrumentation of the source code that allows to
obtain the branch distance value for every critical condition
associated to the objective branch. The main idea to achieve
this is to remove the conditional statements corresponding to
the critical conditions of the objective branch, and to compute
the branch distance instead. This way, we can calculate the
value for any constraint gi and for the objective function
f in Equation 2. Figure 2 gives an example of the type of
instrumentation presented in [22]. Only one critical condition
is considered, which corresponds to the branch distance f2.

It is worth to remark, however, that this instrumentation
might pose some issues for certain conditional statements.
For instance, it might be the case the branch distance is not
defined (has no value) for the input at hand. In this situation,
we could choose to return the worst possible value for that
condition. Further issues are discussed in [22].

Having a means to calculate any of the values in Equation
2 for any programme input, we can use the techniques
developed in the field of constrained optimisation. However,
the general problem of meeting a set of constraints is known
to be NP-complete [23], which has motivated the widespread
use of approximation algorithms. Since virtually any function
may be encoded in a condition and, hence, in the branch
distance (Equation 1), we may assume the same complexity
for the general case of branch coverage when following
the formulation in Equation 2. In the next sections, we
concentrate on the evaluation of Differential Evolution to
solve this problem.

III. DIFFERENTIAL EVOLUTION

Differential Evolution (DE) is a recently developed evolu-
tionary algorithm originally proposed by Price and Storn [8],
whose main design emphasis is real parameter optimisation,
but that has been applied successfully to mixed integer
problems [10]. DE is based on a mutation operator, which
adds an amount obtained by the difference of two individuals
randomly chosen from the current population, in contrast
with most evolutionary algorithms, in which mutation is
performed through a random variable.

The basic algorithm is shown in Algorithm 1, which
presents the most widely adopted variant of DE; xi,j is
the i-th variable of the j-th individual in the population, F
and CR are parameters given by the user (called difference
and recombination constants, respectively), and U(a, b) is
a realisation of a uniformly distributed random variable
between a and b. The function isbetter(xa,xb) returns
true if xa is better than xb, considering a given criterion
(commonly, the value of the objective function).
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void example (int a, int b)
(1){
(2) if (a<b)
(3) if (a*a-b+5==0)
(4) // objective branch
(5)}

void example transformed (int a, int b)
(1){
(2) compute bd(a<b); ← returns f2(a, b)
(3) compute bd(a*a-b+5==0); ← returns f3(a, b)
(4) if (a*a-b+5==0)
(5) // objective branch
(6)}

Fig. 2. Example of the type of instrumentation proposed in [22]. Original programme to the left and transformed programme to the right.

Algorithm 1 Differential Evolution (DE/rand/1/bin version)
initialise(P = {x1, . . . , xM})
evaluate(P )
repeat

for j = 0 to M do
Let r1, r2 and r3 be three random integers in [1, M ], with r1 �=
r2 �= r3

Let irand be a random integer in (1, n)
for i = 1 to n do

x′
i,j =

⎧
⎨

⎩

xi,r3 + F · (xi,r1 − xi,r2) if U(0, 1) < CR
or i = irand

xi,j otherwise
end for
evaluate(x′

j)
if isbetter(x′

j , xj) then
xj = x′

j
end if

end for
until the termination condition is achieved

The algorithm’s main component is the variation operator.
Another important part of DE is the selection operator, which
performs the selection progressively during the generation
of children, making only local comparisons. The function
isbetter is adopted to test the condition for replacement of
the parent xj for the child x′

j . These local comparisons make
the algorithm more efficient, avoiding the need of sorting or
ranking the population.

The DE approach has been adopted several times to
solve mixed integer and continuous parameter problems, with
encouraging results (for example, in [10]). The modification
most frequently used is very simple, and it do not interfere
with the algorithm’s internal functioning. Such modification
is made by truncating the real parameter before evaluating the
individual. It is important to mention that the upper bound for
domain constrained variables must be extended to the next
integer. That is, if the original integer variable i has domains
intervals [li, ui], then the bounds for the continuous variable
must be [li, ui + 1).

A. Differential Evolution Variants

As mentioned above, Algorithm 1 shows the variant called
rand/1/bin, which is the most commonly adopted. There exist
other variants of differential evolution, some with better per-
formance in certain domains [24]. However, two approaches
appear more frequently in literature, perhaps because they
are useful in a wide range of problems [9], [25], [24]. They
are DE/rand/1/bin and DE/best/1/bin (for details on this
notation, please refer to [9]).

To obtain the DE/best/1/bin variant, only a simple change
is needed in the mutation step of the algorithm. Change the
differential expression xi,r3+F ·(xi,r1−xi,r2) in Algorithm 1

for xi,best+F ·(xi,r1−xi,r2) where xi,best is the i-th variable
of the best individual found so far. This variant is more
greedy, but it can accelerate convergence, and provide good
results if the search space is not too complex.

Other notable modifications proposed for the DE, are
regarding the parameter F . Some authors have noted that as-
signing the F a random value may improve the convergence
[26]; this process, called dithering, is usually regarded as a
form of self-adaptation for F . In more recent proposals for
self-adaptation in DE, some authors have adopted other ran-
dom distributions, besides the uniform one, such as Gaussian
and Cauchy distributions [25].

IV. EXPERIMENTS

The generation of test data following the constraints-
handling formulation can be arbitrarily complex (Section II-
B). Nonetheless, this problem can be especially challenging
since all the constraints are equalities that cannot be relaxed
(otherwise we would not cover the objective branch).

In practice, DE has been found to be very robust, partic-
ularly in constrained optimisation, obtaining good results in
a wide variety of problems, and requiring a relatively low
number of function evaluations. For example, it is worth
mentioning that during the special session on constrained
optimisation held at CEC 2006 [27], the best approach was
based on DE [14], as were three of the top five approaches.
Also, there are reported works which focus on keeping low
the number of evaluations, with approaches based on DE
[11], [12], [13]. With the aim of evaluating the performance
of DE in the present problem, we applied different models
over a set of benchmark programmes.

We also faced the DE based approach against others. On
the one hand, in order to compare DE with other well-
known evolutionary algorithms under equal conditions, we
ran experiments for the Breeder Genetic Algorithm (BGA)
[15]. The BGA has been theoretically studied in a number
of works [15], [28], so there are available some guidelines
for parameter tuning, and it has been successfully applied
to a wide range of real world problems, with different
domains [16], [17]. So, we considered BGA as a well-
established technique, and therefore suitable for comparisons
as a reference approach. On the other hand, we compared the
performance of the DE approach with results of other test
data generators in the literature over the same programmes.

A. Experimental Setup

All the DE models we have evaluated, as well as the
BGA, were embedded in a test data generator following the
selection step described in Section II-B.1.
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For the evaluation of a solution, the constraint handling
mechanism adopted here is that of superiority of feasible
points [29]. That is, a feasible solution will always be prefer-
able than an infeasible one. If both solutions are infeasible,
that with a lower violation of constraints wins. Finally, if
both solutions are feasible, the one with better value in the
objective function will win. This is a simple and efficient
mechanism in which other works have been based [11], [13].

Independently of the stopping criterion of each algorithm,
every execution was halted as soon as a 100000 evaluations
were detected. Each experiment was repeated 50 times.

1) Benchmark Programmes: All the programmes we have
selected but one are typical case studies used in some
other work in the literature [6], [5], [18], [4], [19], [7];
namely, we had access to the source codes of triangle1,
atof and remainder, which take integer parameters, and
triangle2, which is the continuous parameters version of
triangle1. In order to expand the comparison with real-
valued domains, we added sncndn to the benchmark, which
is a numerical calculus function extracted from [30].

Table I presents some of the programmes’ characteristics;
these are the number of parameters composing an input, the
type of the parameters, the bounds for the values a parameter
can take, the number of branches in the source code and the
maximum number of critical conditions (constraints) for a
branch. In the case of atof we codify each character as an
integer following the ASCII encoding.

TABLE I

CHARACTERISTICS OF THE PROGRAMMES USED IN THE EXPERIMENTS.

programme parameters type bounds branches critical
triangle1 3 integer [−12500, 12500] 26 6
atof 10 character [0, 127] 30 8
remainder 2 integer [−33000, 33000] 18 4
triangle2 3 real [−12500, 12500] 26 6
sncndn 2 real [−500, 500] 16 2

2) DE Models: With the aim of comparing the perfor-
mance of typical DE variants, we adopted DE/rand/1/bin
and DE/best/1/bin, with both a fixed value of F , and
dithering.

The superiority of feasible points mechanism [29] is
applied directly in the binary comparisons of the selection
operator.

The performed experiments involved variations in the fol-
lowing parameters: G, the maximum number of generations
that a single optimisation can perform; M , the population
size; and F , the differential constant for mutation. The
values for each parameter were: G = 100, 200, because
(according to our tests) for some not-so-difficult problems
100 generations are enough, but others required more than
that to reach optimal values; M = 10, 20, 30, because DE
requires smaller populations in order to obtain competitive
results compared with other techniques (this is consistent
with our results); and F = 0.25, 0.5, 0.75, to allow DE
perform from a fine coarse search with a small F , to a
standard search with an F closer to 1.. For the dithering
mechanism, we adopted a Gaussian distribution, with mean
of 0.5 and standard deviation of 0.5, as adopted in [25].

Also, in order to discern significant differences among the
results, the Kruskal Wallis test was used together with Dunn’s
post-hoc test where appropriate (α = 0.05). These tests allow
us to know it the results from different settings may come
from the same random distribution. If not, is possible to
suggest if a configuration is better than the other; for doing
this, we compared mean values.

3) BGA: The BGA can be seen as a combination of
Genetic Algorithms and Evolution Strategies [15]. Parent
individuals are chosen with truncation selection; in our
experiments, we set the truncation threshold to 25%, which is
a typical value. Discrete crossover is employed to create the
offspring individuals; the probability of crossover is always
fixed to 1. The mutation operator was originally designed for
continuous variables. A variable x is selected with probability
1/n, n denoting the number of problem variables. Mutation
of at least one variable is forced. x is then added a value in
the interval [−R · (u − l), R · (u − l)], with [l, u] denoting
the bounds for x. A usual value for R is 0.1 [15], [17]. In
our case, however, we may have programmes with integer
variables. In order to identify the best parameter value for
these programmes we ran preliminary experiments with R =
0.001, 0.01, 0.1, 0.2. The best values were obtained with R =
0.001 for triangle1 and remainder, and with R = 0.1
for atof. The implemented stopping criterion is to achieve
the optimum or a maximum number of generations. In the
experiments, we set the maximum number of generations (G)
to 50, 100 and 200.

The superiority of feasible points mechanism [29] is
employed to rank the population before selection.

In order to check the performance of the BGA with small
and relatively big populations, we made experiments with
population sizes M = 10, 25, 50, 100, 200, 300, 400.

B. Evaluation of DE models

In Table II are shown the results for the different experi-
ments on the DE approach. More precisely, the tables present
the means for the percentage of branches covered (%) and
the number of inputs generated (#) during the whole process.
Taking priority over the coverage percentage, the best values
for each programme are marked in bold. We have only
included tables with G = 100, for considering representative.
However, all the comments in this analysis also hold for
the results not included.1 From the next discussions it will
become evident that there are two classes of problems in the
selected benchmark, say the easy ones and the hard ones.
We called easy problems to triangle1, triangle2 and
remainder, for which we have found a combination of
parameters which cover 100 % of the branches. On the
other hand, we called hard ones to atof and sncndn,
which consume a high number of evaluations to obtain

1A document which contains results for
all the experiments performed is available at
http://sites.google.com/site/ricardolandabecerra/
papers/DEinST-extended.pdf Such document is available for the
interested reader, for it supports all the comments here, while not being
mandatory for the comparisons.
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a good solution. This simple classification is adopted for
better understanding the performance of the algorithm with
different parameters.

Let us begin with the comparison of results on the
maximum number of generations G. For coverage, only
in triangle2 we found significant differences among
different configurations, and also in sncndn with DE/rand,
so DE is robust in G for coverage. Conversely, when
analysing the number of inputs, most of the configurations
have differences (except in triangle1 with DE/best and
in reminder with both), and means suggest that lower
values of G are better. So, as a suggestion for tuning, G
can be adjusted with a low value, and then increasing it a
satisfactory coverage is not achieved. If not enough resources
for experimentation are available, a larger value can obtain
better results from the beginning.

Now, regarding the population size M , most of the con-
figurations presented significant differences, in both cover-
age (except for some specific cases in triangle2 and
remainder) and inputs (except for some specific cases
in triangle1 and triangle2). Furthermore, regarding
coverage, means suggested that larger values of M are
significantly better, but regarding the number of inputs, the
results are mixed (in DE/rand, a larger M is suggested to
better except in triangle1, which is not clear, and in
DE/best, a larger M is suggested to be better in triangle1
and triangle2, an intermediate value is suggested to
be better in remainder, and a lower value is suggested
to be better in atof and sncndn). That is to say, in
easy problems the effect seems to be uniform, and larger
values are commonly better; but in hard problems, the results
suggest that a small M can reduce the number of inputs, but
also affects the coverage. In general, and giving preference
to coverage, a tuning suggestion is to keep larger values of
M (around 30).

Proceeding with a specific parameter of DE, let us examine
different values of F . First, concerning coverage, F = 0.25
exhibited significant differences against the other three values
(except in sncndn, where the results of F = 0.25 may
come of the same distribution as those of F = 0.75), and the
test suggested that such value is significantly worse; while
F = 0.75 is always among those which are suggested to
be the best on easy problems. And concerning the number
of inputs, F = 0.25 again presented differences against the
others (except in sncndn, where F = 0.25 is similar to
0.75, and in remainder, where F = 0.25 is similar to
0.5, all for DE/rand; and in triangle1, triangle2 and
atof, for DE/best), and F = 0.75 also presented differences
(except with DE/best in triangle1, triangle2 and
atof). This time, a larger value is suggested to be better
in triangle1, triangle2 and atof, while remaining
unclear in the rest of the programmes. An overall evaluation
returned that F = 0.25 is suggested to be significantly worse
for the easy programmes, while F = 0.75 is among the
best values for most of the problems. From those results, we
suggest to set a large F , close to 0.75. Interestingly, using

dithering presents much variable results, depending heavily
on the programme.

In order to ascertain the significantly best parameter con-
figuration for a DE variant, we prioritise over the coverage.
That is, we first test for statistically significant differences
between every parameter combination and the configuration
with highest coverage. Then, we repeat the process with
regard to number of inputs, just among those for which
no dissimilarity was found. We deem the resulting set of
non-different combinations as the best. Once obtained such
configurations, we performed a comparison between the
DE/rand and DE/best variants. Regarding coverage, there
are no significant differences in triangle1, triangle2
and remainder, that is, the easy programmes. On the
hard ones, there are differences, and the mean coverage
is suggested to be better for the DE/rand variant. Now,
regarding the number of inputs, only in triangle1 there
are not significant differences. For the rest of the cases,
DE/rand is suggested to be better for hard problems, while
DE/best is suggested to be better for the easy problems.
In general, if some information about the programmes is
available, and giving preference to coverage, DE/best variant
was found to be more appropriate for the easy ones; the
converse can also be mentioned. This is consistent with the
fact that the DE/best variants are more greedy, and they
focus on exploitation, so if the problem is, say, unimodal
and separable (characteristics considered easier than the
opposite), an algorithm with good amount of exploitation is
convenient; and a more random approach is frequently better
for problems with difficult characteristics, as multimodality
[31].

C. Comparison with other approaches

1) DE vs. BGA: In order to present a comparison with a
reference approach, we present results of BGA in Table III.

Regarding the maximum number of generations, BGA
presented significant differences only in some particular
cases of triangle1, triangle2 and remainder when
watching the coverage; and presented differences in most
of the cases (except some particular cases of triangle1)
when watching number of inputs. So, BGA is affected in a
similar way than DE, that is to say, a larger value is better.

For M , and regarding coverage, most of the programmes
had differences with small population sizes; furthermore,
there are not significant differences for M = 200, 300 and
400. Regarding number of inputs, results are not clear and is
harder to extract patterns. In general, and giving preference
to coverage, the means suggest that larger values are better,
but as mentioned before, starting from 200 there are not
differences.

Now, let us focus on the best results obtained for each tech-
nique (obtained as mentioned in the previous section). On
coverage, there are no significant differences in triangle1
for BGA and DE/rand, and in the rest of the cases BGA is
suggested to be better only on atof. And regarding number
of inputs, there are no differences in sncndn for BGA and
DE/rand, while the rest presented differences and BGA is
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TABLE II

RESULTS FOR DE/rand/1/bin (TOP) AND DE/best/1/bin (BOTTOM); G = 100.

triangle1 triangle2 atof remainder sncndn
% # % # % # % # % #

M = 10 F = 0.25 83.54 12616 80.69 18628 57.67 22302 97 800 82.88 5444
F = 0.5 92.77 5842 92 6481 72.47 15119 99.44 301 85.38 4654
F = 0.75 99.85 619 97 1885 90.13 7284 99.89 273 82.5 6232
dithering 99.46 696 96.08 1841 69.8 50740 99.89 373 81.63 6555

M = 20 F = 0.25 92.77 5825 93.15 13464 76.93 25958 99.89 283 84.75 10605
F = 0.5 100 491 99.69 2141 93.27 8212 100 326 88.75 7000
F = 0.75 100 794 98.54 3316 98 4842 100 450 84.5 10606
dithering 100 923 96.23 3708 88.67 17279 100 486 81.88 13312

M = 30 F = 0.25 97.92 2500 95.46 8443 85.27 22097 100 323 86.88 13224
F = 0.5 100 655 99.92 2991 98.27 5365 100 455 89.25 10151
F = 0.75 100 1113 98.85 5094 99.6 5798 100 622 87.25 12394
dithering 100 1325 96.23 5698 95.8 10075 100 687 81.75 20210

M = 10 F = 0.25 78.92 16121 77.69 23972 45.4 29121 96 908 81.38 5282
F = 0.5 96.15 3279 89.77 8922 52.93 27586 99.78 231 81.75 5869
F = 0.75 99.54 643 96.85 2048 63.93 23289 99.33 373 81.75 5949
dithering 95.54 5557 93 13116 47.73 91863 99.33 292 81.5 5929

M = 20 F = 0.25 94.15 3846 93.39 12636 51.2 53100 100 233 82.38 10847
F = 0.5 99.77 619 99.69 4093 63 40088 100 331 83.63 10578
F = 0.75 100 804 99 3270 70.73 28557 100 439 82.5 12665
dithering 99.92 518 99.77 1982 56.93 83054 100 292 81.5 11978

M = 30 F = 0.25 96.77 3457 95.62 9842 57.93 64540 100 314 83.88 14756
F = 0.5 100 662 100 2937 64.93 54519 100 460 86 13213
F = 0.75 100 1062 98.23 5039 82.27 29296 100 597 83.88 16772
dithering 100 587 100 2558 60.93 84212 100 402 81.75 18210

worse, (except in the hard problems, where is among the
bests). In general, and giving preference to coverage, BGA
was only better than DE in atof, a hard problem.

2) DE approach vs. others: Other SBSTDG works in the
literature have used some of the benchmark programmes
herein to evaluate their approaches for branch coverage.
The search algorithms adopted include GAs [5], [6], Scatter
Search [18], [19] and Estimation of Distribution Algorithms
[4]. All the test data generators in these works conform
to the classical approach (Section II-A). In [7], preliminary
experiments were conducted using a GA in nine different test
data generators: two based on the classical approach, four
based on constrained optimisation (four penalty functions)
and three based on multiobjective optimisation (transforming
constraints into objectives). Table IV shows the best out-
comes of these works and DE for our programmes. Best
results are marked in bold.

As it can be observed, the DE generator clearly obtains
the best values among the constraints based approaches in all
programmes but atof. In this case, DE is the second best,
close to the value in [4], which corresponds to a GA with
static penalty function. Compared with classical approaches,
the DE generator notably beats all but the Scatter Search
approach from [19] in programme remainder, where DE
is the second best. All in all, the DE approach presents the
best or second best results in every programme.

V. CONCLUSIONS

In this work, we have applied DE to the problem of
automatically generating a set of test inputs that cover all the
branches in the source code of a programme. Building upon
a novel constraint-handling formulation, we have evaluated
empirically the performance of a number of popular DE
models. Also, we have faced DE with a well-known Genetic

Algorithm, i.e. BGA, and other test data generators in the
literature.

The results obtained by DE are better in most of the
problems than those obtained by BGA, but properly setting
the parameters is an important task. DE appears specially
sensitive to the value of F . Parameters as G and M only
need to be large enough to allow DE perform the search
accordingly with the difficulty of the problem. The variant
DE/best/1/bin is recommended if the problem is not so
difficult, but in case of lack of information, DE/rand/1/bin
can also work well in a wide variety of problems.

Combining advantages of different variants, is a possible
future work which may improve the performance of DE in
this field. The use of mechanisms which adaptively provide
this combinations, by incorporating information extracted
from the problem, are specially suitable. So, a cultural
algorithm framework is a good candidate for future research.
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