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Abstract The Worst-Case Execution Time (WCET) is an important execution metric for real-
time systems, and an accurate estimate for this increases the reliability of subsequent
schedulability analysis. Performance enhancing features on modern processors, such as
pipelines and caches, however, make it difficult to accurately predict theWCET. One technique
for finding the WCET is to use test data generated using search algorithms. Existing work on
search-based approaches has been successfully used in both industry and academia based on a
single criterion function, the WCET, but only for simple processors. This paper investigates
how effective this strategy is for more complex processors and to what extent other criteria help
guide the search, e.g. the number of cache misses. Not unexpectedly the work shows no single
choice of criteria work best across all problems. Based on the findings recommendations are
proposed on which criteria are useful in particular situations.

Keywords WCETanalysis . Multi-criteria optimisation . Search-based software testing

1 Introduction

The study of real-time systems incorporates all systems which have to respond within a fixed,
finite time andwhere a delayed answer is as bad as a wrong response.More formally, a real-time
system is one where “correctness depends not only on the logical result of the computation,
but also on the time at which the results are produced” (Burns and Wellings 2001). Thus,
timeliness is a crucial aspect of a real-time system. One essential measure for all forms of
schedulability analysis is the WCET. WCET research has proceeded in two distinct directions.

The method of static analysis aims to analyse the hardware and software under test
statically i.e. without executing the software, and then use this information to derive an
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estimate for the WCET. Thus, given a processor architecture and the program to be
executed, static analysis works by analysing execution paths and simulating processor
characteristics to determine the worst-case path in a program (Kirner et al. 2004; Wegener
and Mueller 2001). The worst-case path is the path which produces the maximum run-time.
Static analysis has the benefit of guaranteeing a safe upper bound for the WCET making it
ideally suited for critical systems but its pessimism and portability can be seen as a
weakness for less critical systems (Wilhelm et al. 2008).

In contrast, the method of dynamic analysis takes a measurement-based approach to the
task of determining the WCET of a program. Given the program, and the target processor,
dynamic analysis executes the program with a large and diverse range of inputs, and
measures the execution time of each successive run. This information is used to find the
WCET. Often the largest value is taken as the WCET. An exception to this is probabilistic
analysis where a statistical estimate is made of the execution time value results to predict a
WCET with the required reliability (Bernat et al. 2002).

Dynamic Analysis, however, requires the software under investigation to be tested with a
significantly large number of appropriate inputs to achieve a confidence level that the
worst-case run has occurred, and therefore, the WCET has been encountered. Two
distinctly different approaches exist for dynamic analysis; hybrid approaches which
combine static analysis and measurement-based approaches, and so called search-based
techniques. The hybrid techniques (Bernat et al. 2002) show significant promise but come
with a high degree of complexity (Wilhelm et al. 2008). Instead here we explore the extent
to which search-based techniques can be improved.

Search-based techniques have been used to generate the input test-data, as the input
space of the program can be large and quite complex. Results of these optimisation
techniques (Pohlheim and Wegener 1999; Tracey et al. 1998; Wegener and Mueller 2001;
Wegener et al. 1997) show that they are effective in sampling large search spaces. They
have been applied to both academic benchmarks and more significantly to industrial case
studies from both automotive (Wegener et al. 1997) and aerospace applications (Tracey et
al. 1998). In the case of the aerospace application (Tracey et al. 1998), the results were used
in preference to those from static analysis which had at least 30% pessimism (Chapman
1995). Pessimism is defined as the difference between the estimated and actual value. It has
been observed that the pessimism produced by static analysis techniques is greater than the
optimism linked with evolutionary, search-based techniques (Wegener and Mueller 2001).
Further, it is widely recognised that the pessimism associated with static analysis will only
get worse with more complex processors (Wilhelm et al. 2008).

In (Wegener and Mueller 2001) a comparison is performed of these techniques with
those of static analysis showing that each technique has its own merits and drawbacks with
the decision of which to use depending very much on the application context. As with all
dynamic analysis approaches they can only guarantee a safe upper bound on the WCET if
the appropriate test data is used. All the previous work based on search-based techniques
have only used a single criteria function, the WCET itself, in the search for good test-inputs.
Pohlheim and Wegener (1999, Wegener and Mueller 2001, Wegener et al. 1997) has
suggested adding other criteria into a combined fitness function as a way of improving the
search, i.e. the time to find the maximum execution and the magnitude of this execution
time. As modern processors have a number of performance-enhancing features such as
caches and pipelines, use of these features can significantly alter the time taken by the
software. In some cases, these features even cause a different path to emerge as the new
worst-case path. Thus, including these features in the fitness function for the search may
beneficially modify the search direction. This type of strategy is widely recognised across
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search-based software engineering (Harman 2007). An example of how a feature may be
included is to have a criteria for the number of cache misses encountered.

For example, an additional criterion could be added to influence the search to derive test
cases which maximise the number of cache misses. This has the added benefit that it may
increase the number of instructions executed or data accesses made or find most interesting
paths through the software. Of course this does not provide a guarantee of finding the
WCET but may help. To the best of our knowledge no other work has explored the use of
multi-criteria approaches. The closest work to this is Betts et al. (2006) who proposed the
use of different coverage criteria, instead of the more usual Modified Condition/Decision
Coverage (MCDC) (McMinn 2004) which is an often used structural coverage criteria.
These other criteria allow low-level processing effects on the WCET to be captured, e.g. the
order of instructions through a pipeline. However they have not evaluated the concept.
Using coverage criteria is a different approach to what is proposed here, as we do not
attempt to achieve complete coverage, instead effort is concentrated on maximising the
primary objective—WCET. Other work (Lammermann et al. 2008) has shown that
structure-oriented coverage metrics are often not a good indicator as to the quality of the
testing output. In addition significant issues are envisaged with achieving this level of
coverage as MCDC itself is hard to achieve and the coverage criteria proposed by Betts et
al. (2006) would require many more test cases.

The specific goals of this work are to understand how criteria, other than WCET, helps
guide the search towards a better overall result and how the results depend on specific
applications. Here a better overall result is not only the final value obtained but also the
reliability (i.e. the variance in the results found) and the efficiency (i.e. the percentage of the
overall time needed to find the final WCET) of the search. The context for the work is that
dynamic analysis approaches can deliver WCETs where static analysis is too complex and
expensive to apply for the degree of rigour needed by the designers of systems. However
our perspective on the problem is that current approaches are too black-box in nature and
that using knowledge of the software and hardware (i.e. application specific knowledge)
will improve the results.

The contribution of this paper, consequently, is to establish the processor and software
features which have the most notable impact on the search for the WCET, and to determine
the best way in which the effect of these features can be captured in a multi-criteria heuristic
function. To the best of our knowledge no work, other than our own (Khan and Bate 2009),
has considered multi-criteria heuristic functions as part of finding the WCET. The work in
(Khan and Bate 2009) has been extended to include more details on the approach
significantly more experimental results and analysis of these results. In particular the paper
contains a more detailed consideration of the efficiency (i.e. how much processing power is
needed) and the reliability of results (i.e. the likelihood of a result being reproduced).

The structure of the paper is as follows. Section 2 surveys issues identified in the
literature that affect WCET analysis. Next, Section 3 proposes different methods for WCET
analysis using search-based techniques. In Section 4 the results are presented. Finally
conclusions are drawn in Section 5.

2 Problems in Timing Analysis

A number of problems are encountered in analysing the temporal behaviour of real-
time programs. These range from complexity in the real-time programs to be analysed,
to the internal features of the hardware. These are discussed in the following sections.
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2.1 Causes of Complexity in Real-Time Programs

Groβ (2000), amongst others, defines some aspects of complexity in real-time programs
which make it difficult for a dynamic analysis technique, for example a search-based
testing method, to precisely predict the WCET. In this paper it is recognised that it is not
practical to deal with all components that might influence the WCET of software, instead
the ones generally recognised as being the dominant ones are considered (Wilhelm et al.
2008). The following measures are identified as important criteria which add to a
program’s complexity, and consequently, cause difficulty for search-based testing to find
the actual solution:

1. High nesting within a program
2. Low path probability of paths within a program, where the low probability is caused by

very few values in the domain of the input variable(s), for the program being analysed,
leading to the choice of that path.

3. High parameter and algorithmic interdependence, which is caused by the execution
time being highly dependent on the values of the input variables, e.g. in a parameter-
dependent loop.

4. Size of the program’s input, or the range of values that input variables can take.

Groβ (2000) validates the difficulty of each of these measures by applying them
individually to 22 simple test programs. The results show that, generally, increasing the
difficulty of each measure makes it more difficult to find the actual WCET. Even though the
complexity measures have only been applied to simple test programs, Groβ (2000)
proposes that the significant number of test programs used, together with the considerable
variations in the complexity of the test objects, makes the results generally applicable to
larger more complex real-time programs.

2.2 Complexity in Processor Hardware

As with program characteristics there are certain hardware features that make finding the
WCET more difficult. These are widely recognised to be as follows (Wilhelm et al. 2008).

1. Cache—there are three types of cache: instruction, data and unified as well as many
different configurations, e.g. direct mapped, set associative or multi-level. Normally as
the number of cache misses increases so does the WCET.

2. Pipeline—here three types of complexity are introduced; instruction level parallelism,
resource sharing and allocation, and dynamic scheduling where instructions can be
executed out of order.

3. Branch prediction—similar to caches there is an aspect of global history to decide
which instructions’ information is stored. However in addition there can be complex
logic deciding the result of the prediction.

However there are other significant issues that these features introduce. The principal
one being timing anomalies which can be introduced when processors feature dynamic
scheduling (Lunqvist and Stenstrom 1999). Timing anomalies are defined as situations
where the counter-intuitive influence of the local execution time of one instruction has an
adverse bearing on the global execution time of the whole task (Wilhelm et al. 2008). Thus,
a faster execution within part of the code can actually cause an increase in the execution
time of the whole task, perhaps even leading to the WCET.
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An advantage of dynamic analysis techniques, including the search-based techniques
discussed here, is the fact that timing anomalies are taken into account in the measures of
the actual run-time of the software on the target processor (Bernat et al. 2002). Thus, an
execution containing a timing anomaly, when occurring in the test runs, but with a larger
overall execution time is still considered and given preference over a non-anomalous
execution.

3 Finding the WCET Using Search

In Section 2 a number of contributing factors were identified for why WCET analysis is a
difficult, generally speaking intractable (Wilhelm et al. 2008) problem. Each of these
factors may also influence the final WCET, e.g. maximising the number of cache
misses normally results in a larger execution time. They also mean that there is no
way of knowing what the actual WCET is. Therefore the normal approach (Wilhelm
et al. 2008) is to consider how different analysis methods affect the ability to find the
WCET. As with all approaches to WCET analysis, it is assumed the software being
analysed runs non-preemptively with effects from other software (e.g. context switches,
cache pollution etc) being accounted for as part of higher-level schedulability analysis
(Wilhelm et al. 2008).

Two alternative approaches were considered. Firstly to perform a comprehensive set of
evaluations and determine which approach best achieves our desirable properties, i.e.
achieving the maximum execution time, repeatability / reliability, and efficiency (i.e. how
long the search takes), and in what circumstances. Secondly, to again perform
comprehensive evaluations but use an approach such as Principal Component Analysis
(PCA) (Jolliffe 2005) to try and determine dominant patterns. The first approach was taken
as it was anticipated that the combination of a large complex problem landscape and the
fact the landscape may be different for each problem will make it difficult for PCA to be
applied. However with the results from the first approach in place, future work could then
apply PCA as it could be used in a more focussed manner.

There are four phases to the work:

1. Single criterion—in essence perform WCET analysis as previously demonstrated by
Tracey et al. (1998), Wegener (2001, Wegener et al. 1997) and Groβ (2000).

2. Low-level analysis—investigate to what extent adding criteria based on low-level
(instruction) features influences the search. Key factors are the number of cache misses
and branch mis-predictions. Cache misses can be separated into data and instruction or
treated together.

3. High-level analysis—examine to what extent high-level (program flow) features affect
the search. The key factor here is the loop count.

4. Integrated analysis—consider how combinations of the previous three phases perform.

The following sub-sections discuss the phases in more detail.

3.1 Phase 1—Single Criterion Search

A Genetic Algorithm (GA) was developed for automatically generating input test-data. The
algorithm was chosen as previous work (Tracey et al. 1998) has used it, albeit with minor
differences in approaches, and initial trials have shown it to be effective. This algorithm
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initially uses execution time as its single fitness measure. The representation, that is
subsequently manipulated through crossover and mutation, is the set of values for the input
variables. This data is the only item under our control.

The design of the GA used is a relatively general one based on those in (Whitley 1994).
Certain common choices and strategies for the algorithm were, however, fixed and used
throughout this work to support fair comparison between the different approaches. These
choices are:

1. Population Size: 100
2. Number of Generations: 100
3. No. of elitist children in the next generation: 1
4. Selection: Roulette Selection
5. Crossover Strategy: Arithmetic Crossover
6. Mutation Strategy: Random Mutation
7. Crossover Percentage: 60%
8. No. of runs for each experiment: 10

A choice of 100 for the population size ensures that there is sufficient diversity within
the population without this value being so large as to significantly slow the computations at
each generation. Further, fixing the number of generations to 100 ensures that the trajectory
of the search can be examined once it has completed, without being so large as to
significantly slow down each experiment. Restricting the number of elitist children in the
next generation to 1 allows only the best solution to be carried over from one generation to
the next, rather than a large number of best solutions. This helps maintain the diversity of
the search. Additionally, roulette selection, arithmetic crossover and random mutation are
common strategies adopted by the genetic algorithm, which work well in practice and are
simple to implement. A crossover percentage of 60% has also been observed to work well
in a genetic algorithm. The last requirement, for each experiment to be conducted 10 times,
enables the reliability of the solution, i.e. the degree of repeatability, to be calculated. Here
reliability is defined as the likelihood of obtaining similar results in practice.

Simplescalar (Burger and Austin 1997) was chosen as the processor simulator on which
the working of the input program would be analysed as it is widely recognised as being a
stable and accurate simulator, forming the basis for a number of other simulators, e.g.
WATTCH (Brooks et al. 2000) and CATS (Kim et al. 2007). The choice of simulator is
important as the validity of the data which the search uses is important for the overall
results. An inaccurate simulator may give mis-leading results. That said, it is widely
recognised that significant cost is involved in using real hardware (Burger and Austin 1997;
Tracey et al. 1998). In addition, the ARM-processor was chosen for the experiments as it
was supported by Simplescalar and as configured in this work represents a relatively
complex processor, containing two-levels of cache, branch prediction and out-of-order
execution. This ensured that, in general, experimental results were representative of
executions on a modern processor. Specific details of the processor used are as follows.
These are the default configurations of Simplescalar and as such have often been used in
other work, e.g. (Tan 2006).

& Branch predictor: bimodal
& Branch predictor table size: 2,048 entries
& Branch Target Buffer (BTB): 512 blocks
& Data Cache (L1): 128 blocks, 32 bytes block size, Least Recently Used (LRU)

replacement policy
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& Data Cache (L1) Hit Latency: 1 cycle
& Instruction Cache (L1): 512 blocks, 32 bytes block size, LRU replacement policy
& Instruction Cache (L1) Hit Latency: 1 cycle
& Memory Access Latency: 18 cycles (first block in a multi-fetch instruction), 2 cycles

(subsequent blocks)

3.2 Phase 2—Low-Level Analysis

Based on a detailed consideration of the low-level microprocessor features that affect the
WCET, summarised in Section 2, the following is a list of criteria considered as part of a
multi-criteria search method. Each of the criteria can be used in isolation or combined with
others. For example it may be expected to use combined knowledge of cache misses, i.e. an
overall total for the data and instruction cache misses. Number of misses is used instead of a
normalised rate (total misses divided by the number of memory accesses) as this will favour
software paths with more memory accesses. These figures are obtained by parsing the
detailed log files, produced by Simplescalar (Burger and Austin 1997), for the information
needed. Future work could consider other means for obtaining the information, including in
vivo analysis.

1. Execution Time (ET)
2. Branch Prediction Misses (BPM)
3. Data (Level 1) Cache Misses (DCM)
4. Instruction (Level 1) Cache Misses (ICM)

These measures were used to create the following heuristics. (Instructions Cache
Accesses refers to the total cache accesses irrespective of whether they are hits or misses.)
The heuristics feature different ratios (or weightings) used to combine the results from the
evaluation of each of the criterion. Different ratios are used between the same sets of criteria
so that the effect of biasing can be examined. The ratios were chosen based on the results of
some preliminary assessments to determine the typical quantities involved and then to
provide some degree of balancing. For example the ratios between BPM and ICM are
chosen so the outputs of their respective analyses tend to give a similar magnitude. In other
cases, our intention is to consider different balances between parameters. For example in
cases (d) and (e) it is interesting to see what happens what we give data and instruction
caches equal weighting and then later look at giving preference to data caches which may
show interesting characteristics for software that is more data intensive. Clearly future work
could look at more principled methods for deciding these weightings and the factors used,
e.g. (Emberson and Bate 2010; Tate and Bate 2010).

(a) BPM only
(b) DCM only
(c) ICM only
(d) DCM and ICM in the ratio 1:1
(e) DCM and ICM in the ratio 3:1
(f) DCM and Instruction Cache Accesses (ICA) in the ratio 1:1
(g) BPM, DCM and ICM in the ratio 2:1:1
(h) ET and BPM in the ratio 1:10
(i) ET and DCM in the ratio 1:10
(j) ET and ICM in the ratio 1:10
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(k) ET, DCM and ICM in the ratio 1:5:5
(l) ET, DCM and ICM in the ratio 2:15:5
(m) ET, BPM, DCM and ICM in the ratio 1:10:10:10
(n) ET, BPM, DCM and ICM in the ratio 7:10:10:10
(o) ET, BPM, DCM and ICM in the ratio 7:1:1:1

An important choice when gathering the metrics for each of the criteria is whether they
are measured for the whole program or at specific points. For example, the cache miss rate
could be measured separately for each memory access and each measure represented by its
own criterion. However this would result in a large number of criteria even for small
programs and it is generally accepted that searching across more than six criteria is difficult
(Coello 1999). For this reason one overall measure (a combination by a weighted sum,
using the previously mentioned ratios as weights, of the results from evaluating each
individual criteria) is made for the whole program.

3.3 Phase 3—High-Level Analysis

As previously stated in Section 2, the principal issue affecting the WCET is the number of
loop iterations and hence this is chosen as a criterion. In this paper loop iterations not only
includes conventional well-structured loops (e.g. do while loops) but also less well-
structured loops (e.g. due to recursion). The following heuristics were used as the fitness
function for this phase. In a similar fashion to the criteria for low-level analysis, the fitness
function is calculated across the whole program.

(a) Loop Iterations only
(b) Execution Time and Loop Iterations, combined in the ratio 1:1

3.4 Phase 4—Integrated Analysis

The heuristics used as the fitness functions for this phase were obtained by combining the
heuristics from Phases 2 and 3. However, as Phase 3 only used a single new execution
measure, the number of loop iterations, the resulting heuristics merely added the number of
loop iterations to each of the heuristics developed in Phase 2. The heuristics used for the
Integration Phase, thus, consisted of:

(a) BPM and Loop Iterations (LI) in the ratio 10:1
(b) DCM and LI in the ratio 10:1
(c) ICM and LI in the ratio 10:1
(d) DCM, ICM and LI in the ratio 5:5:1
(e) DCM, ICM and LI in the ratio 15:5:2
(f) DCM, ICA and LI in the ratio 5:5:1
(g) BPM, DCM, ICM and LI in the ratio 10:5:5:2
(h) ET, BPM and LI in the ratio 1:10:2
(i) ET, DCM and LI in the ratio 1:10:2
(j) ET, ICM and LI in the ratio 1:10:2
(k) ET, DCM, ICM and LI in the ratio 1:5:5:2
(l) ET, DCM, ICM and LI in the ratio 2:15:5:4
(m) ET, BPM, DCM, ICM and LI in the ratio 1:10:10:10:4
(n) ET, BPM, DCM, ICM and LI in the ratio 7:10:10:10:10
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4 Evaluation

A set of benchmark problems is publicly maintained by the Mälardalen WCET research
group (Ermedahl and Gustafsson). The problems comprise a number of programs used
to evaluate the performance of different WCET analysis tools. They are widely used in
a number of papers and have been the subject of a biennial WCET challenge (Wilhelm
et al. 2008). The benchmarks have been categorised by type with the types chosen
based on those that are relevant to WCET in terms of their influence from both the
final result and problem complexity perspectives. The types considered include a
categorisation of whether the software includes features such as nested loops, arrays,
recursion or whether the software has no flow dependencies. A selection of programs
were chosen to give a reasonable sample from each category, after discounting the more
trivial examples, e.g. small pieces of code with no distinctive features. Consequently
sixteen of the programs, listed in Table 1, were chosen that had a range of
characteristics, comprising different input sizes, number of procedure calls, loops
(including nested loops) and conditional statements, and a varying degree of dependence
on the input data.

Each experiment was run 10 times, in order to evaluate the reliability of the solution
produced. Reliability is assessed based on the variance of the resulting execution times.
This is calculated using the average square of the difference between the mean WCET and
the WCET from each of the 10 repeated trials. Further, the WCET estimate predicted at the
end of 100 generations, with a population size of 100, was recorded, together with the time
taken to produce the estimate, in order to evaluate the direction, quality and efficiency of
the search.

Table 1 Phase 1 results

Benchmark programs WCET (mean) WCET (max)

Factorial 2,053.3 2,188.0

Cover 3,991.0 3,991.0

Insertion Sort (10 inputs) (INS10) 1,328.8 1,333.0

Insertion Sort (50 inputs) (INS50) 17,528.2 18,240.0

Insertion Sort (100 inputs) (INS100) 59,367.9 63,216.0

Discrete Cosine Transformation (DCT) 4,186.0 4,186.0

Extended Petri Net Simulation (PETRI) 16,722.7 18,378.0

Matrix multiplication 21,376.0 21,376.0

Quadratic Equations Root Computation (QERC) 1,069.0 1,069.0

Janne Complex 437.3 443.0

Matrix Inversion 3,787.0 3,787.0

Computing an exponential integral function (EXP) 14,317.5 16,358.0

Quick Sort 2,905.4 2,980.0

Fast DCT (FDCT) 4,712.0 4,712.0

Fast Fourier Transformation (FFT) 14,026.2 14,449.0

Select 10,711.7 10,757.0

Statistics Program 14,429.7 14,470.0

Binary Search 269.0 269.0
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4.1 Phase 1

The results of the initial experiments are presented in Table 1 for the WCET estimate
produced for each benchmark program. These results show the quality of the solution
generated for each program, using execution time as the fitness value, and is, additionally, a
measure of the general direction of the search after 100 generations. A higher estimate of
the WCET is considered more accurate and therefore, better.

The Phase 1 results for the reliability, Fig. 1, of the search show that three programs,
INS100, PETRI and EXP had large variances, (denoted by the square of the difference
between the mean WCET and the WCET from each of the 10 repeated trials), and so, the
results of these programs were the least reliable. At the other end of the scale, seven
programs, e.g. Cover, had zero variance and are classed as being simple to examine. The
results in these cases were validated by both checking the program characterisation in
(Ermedahl and Gustafsson), e.g. to see whether it should have flow dependencies, and then
by manually inspecting the software. For the rest of the paper the eleven benchmarks that
are not simple are classed as interesting benchmarks and are considered in more detail. The

Fig. 1 Reliability results from Phase 1
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variances, and thus the reliability, of the other programs varies from under 100 cycles2 for
INS10 and Janne Complex to almost a million cycles2 for INS50. It should be noted that
whilst a million cycles2 may seem large, as this is a variance within units number of clock
cycles squared it only corresponds to a standard deviation of a thousand cycles which is just
over 5% of the WCET(max) for INS50.

4.2 Phase 2

The results of the experiments, for the interesting benchmarks, are presented in Figs. 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18, where Phases 2a–2o represent the
heuristics (a)–(o) in Section 3.2. The results show that, in general, execution time is a good
fitness measure, and finds a high-quality solution in an efficient and reliable manner. For
example, Figs. 2, 3 and 4 show the comparative results for the Extended Petri Net
Simulation (PETRI) program. Throughout the paper, where a “Quality of Solution” figure is
presented then for the results of each phase the left hand rectangle represents the average
WCET found and the right hand one the maximum WCET across the ten trials.

The results show that, in general a single low-level fitness criteria, for example, only
branch mispredictions, data cache misses or instruction cache misses, do not perform well
in practice. Thus, in the figures that represent quality of solution for the WCET estimate (i.
e. Figs. 2, 5, 7, 9, 10, 12, 13 and 14) produced by Phases 2a, 2b and 2c, the ‘WCET (max)’
for each of these phases is amongst the lowest values predicted. The figures for reliability
(i.e. Figs. 4, 6 and 8—the units for the y-axis of these are clock cycles2) show that these
results also have a large variance, and consequently, low reliability, thereby reducing their
usefulness. The speed of producing these results, however, is high as represented in Fig. 3
(the units for the y-axis are seconds of actual compute time on a 2.4 GHz Intel processor).
A mean figure across the ten runs is given here. Thus, a quick but exceedingly inaccurate
estimate for the WCET can be obtained using these low-level criteria individually as the
fitness measure. This trend was further demonstrated across the whole set of benchmarks.
However if reliability and quality are concerns, then the single criteria of execution time
normally offers the best choice.

However, in 7 of the benchmark programs, a multi-criteria fitness measure produced a
higher-quality solution than execution time alone. (In the context of this paper where a
conclusion is reached that one approach is better or worse than another it is based on
manual inspection of the data rather than performing statistical tests. The reason for this
approach is in all cases the results give a definitive conclusion.) This shows that multi-
criteria heuristic fitness functions can still be gainfully used in practice for a program, if
appropriate ones are chosen. For example, the Factorial program calls itself recursively

Fig. 2 Extended Petri net simulation (quality of solution)
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passing data at each recursive call. This implies that the program makes heavy use of the
data cache, and therefore, the number of data cache misses, and latency caused as a result of
these misses, can be a useful metric in guiding the search to the WCET. The results of the
Phase 2 experiments on the Factorial program are presented in Figs. 5 and 6. These results
confirm the analysis about the dependence of the Factorial program on the data cache, as
data cache misses used alone as the fitness measure (Phase 2b in Figs. 5 and 6) produces a
solution whose quality is only slightly poorer than that of the solution produced by
execution time as the single fitness measure (Phase 1 in Fig. 5). Further, a combination of
execution time and data cache misses (Phase 2i in Figs. 5 and 6) as the fitness measure
produces a better solution than execution time used alone, and the highest-quality solution
overall, confirming the analysis. It is noted though that the wrong combination of criteria
has a negative effect as shown by the results of Phase 2m for instance.

A program’s dependence on the data cache increases with the size of its inputs and the
number of calculations performed within it. This information can be gainfully used in
devising the best heuristic fitness function to aid the search in reaching the WCET. Thus, a
combination of execution time and data cache misses works well in practice, for a program
taking a large number of inputs. For example, the Insertion Sort program with 10 inputs
(INS10) (Figs. 7 and 8), has a relatively low dependence on the data cache. Thus, execution
time as the single fitness measure produces a higher quality solution than execution time
used with the total number of data cache misses. However, as the size of the inputs is
increased, the dependence on the data cache becomes prominent. For example, in the
Insertion Sort program with 50 inputs (INS50) (Fig. 9), the combination of data cache
misses and execution time as the fitness measure, gives a higher-quality solution than
execution time alone, and only a marginally poorer solution than execution time, branch
prediction misses, data cache misses and instruction cache misses used altogether as the
fitness function, which produces the overall highest-quality solution. However, in the
Insertion Sort program with 100 inputs (INS100) (Figs. 10 and 11), this situation is

Fig. 4 Extended Petri net simulation (reliability of solution)

Fig. 3 Extended Petri net simulation (efficiency of solution)
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reversed. In this case, execution time and data cache misses used together as the fitness
function finds the highest-quality solution, thus, validating the analysis. Moreover, the
results are produced in only a slightly less efficient way (Phase 2i in Fig. 11) than execution
time, branch prediction misses, data cache misses and instruction cache misses used
together as the fitness function (Phase 2o), confirming the applicability of this joint fitness
measure.

The presence of a large number of loops or conditional statements within a program can
cause instruction cache misses, as the instructions after the target of a conditional branch
will need to be loaded into the instruction cache, and, depending on the branch prediction
method used, causes branch mispredictions as well. Thus, these two execution measures
can be gainfully used for such programs as additional objectives within the fitness function
of the genetic algorithm. For example, the Quadratic Equations Root Computation (QERC)
program takes only 3 inputs. However, these are used in a loop and conditional statements
within the program. Thus, instruction cache misses and branch mispredictions can be used
to aid the search. The results for this program (Fig. 12) show that execution time and branch
mispredictions together (Phase 2h), and execution time and instruction cache misses
together as fitness functions (Phase 2j) produce higher quality solutions than execution time
alone, with execution time and instruction cache misses together producing the highest-
quality solution. Further, a combination of execution time, branch mispredictions,
instruction cache misses and data cache misses as the fitness measure also attains a
higher-quality solution than execution time alone. These results show that branch

Fig. 6 Factorial (reliability of solution)

Fig. 5 Factorial (quality of solution)
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mispredictions and in particular, instruction cache misses can be gainfully used as
additional fitness objectives in programs with similar characteristics.

In some cases, however, the addition of extra criteria confuses the search algorithm. This
is particularly true when the objectives assign conflicting fitness values to a program
execution. For example, the program Janne Complex contains a two-level nested loop.
Entry into this loop, is however, dependent on the input values and only a small number of
input values cause this loop to be executed. Thus, the path probability of this loop is low.
Consequently, if the input values do not permit entry into the loop, a significant number of
cache misses outside the loop can confuse the search into giving a high fitness to these
program inputs. Thus, executing the loop will then be regarded as an undesirable
proposition for the search, as a high fitness solution did not execute it. Clearly with careful
tuning of weightings a different result could be achieved, however this is out of the scope of
this paper. As a result, the loop will remain unexecuted and the WCET estimate produced
may be inaccurate. Figure 13 shows the results of applying the search to the Janne Complex
program. The result shows that execution time as the single fitness measure (Phase 1 on
Fig. 13) produces the highest-quality solution, while the result for a combination of
execution time, branch mispredictions, data cache misses and instruction cache misses, with
a heavy bais towards the execution time, as the fitness measure (Phase 2o on Fig. 12) is
only marginally poorer. However, the rest of the results range from only slightly poorer to
much worse. This shows that the fitness assigned to other objectives, such as cache misses
and branch mispredictions may cause program inputs resulting in only a few iterations of

Fig. 8 Insertion sort (10 inputs) (reliability of solution)

Fig. 7 Insertion sort (10 inputs) (quality of solution)
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the loop to be assigned a higher fitness than inputs which execute the loop longer, thereby
reducing the program inputs that execute the loop longer from the genetic algorithm’s
population. The results for Phase 2j show that the highest fitness is dominated by
instruction cache misses to the extent that a zero loop count had the highest fitness even
though the execution time was low.

Another example of this conflict within fitness objectives is seen in the results for the
Binary Search program (Fig. 14). In this case, only Phase 1 and 2o give the maximum
observed execution time showing that execution time alone is a good criterion (in the case
of the phase 1 results) but the same results can be found with the right selection of other
criteria (in the case of the phase 2o results) within the heuristic. Although this is not as
extreme as the previous example, both examples have the potential for a high number of
cache misses given the appropriate input test data. The two examples show there is a trend
towards better solution for the multi-criteria heuristics when the number of cache misses
(particularly instruction cache misses) has a high bias, i.e. when the fitness function is
heavily weighted (through the choice of ratios) towards cache misses. The rest of the results
almost invariably stop at 238 processor cycles, implying that the fitness assigned by another
objective is preventing the genetic algorithm from finding a larger execution time.

Thus, the conflict between objectives is a serious problem in multi-criteria fitness
functions as it can inhibit, rather than aid, the search, thus, preventing it from finding the
best solution. This problem can be resolved by using the proposed method of program
analysis before the search, in order to evaluate the objective, or combination of objectives
that best guides a search to the program’s WCET. Later in the paper this is explored further.

Fig. 10 Insertion sort (100 inputs) (quality of solution)

Fig. 9 Insertion sort (50 inputs) (quality of solution)
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4.3 Phases 3 and 4

The combined results of the experiments for Phases 3 and 4 are presented in this section.
Each of these phases is considered in the following sub-sections

4.3.1 Phase 3

The experiment results for Phase 3 show again that execution time is a good fitness
measure, in general. Consequently, execution time as the fitness function finds the highest-
quality solution in 12 of the 18 benchmark programs. However, in 6 of the 18 benchmark
programs, loop counts on its own, or together with execution time as the fitness measure
produce the highest-quality solution. This shows that loop counts can gainfully be used to
benefit the search. The loop counts measure is particularly useful if there is a single loop
within the program, and the number of iterations of this loop varies significantly with the
program inputs. For example, in the Factorial program, there are recursive calls to this
program, where the number of calls made is dependent on program inputs. Thus, loop
counts can be beneficially used as the fitness measure, or as a component of the fitness
measure in this search. The results for the Factorial program (Fig. 5) show that loop counts,
used as a single fitness measure (Phase 3a on Fig. 5) produces the overall highest-quality
solution, while a combination of loop counts and execution time as the fitness function
(Phase 3b on Fig. 5), also achieves a better-quality solution than execution time alone.

Fig. 12 Quadratic equations root computation (quality of solution)

Fig. 11 Insertion sort (100 inputs) (efficiency of solution)
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Similarly, the Insertion Sort program has a two-level nested loop, where the inner loop
iterates an input-data dependent number of times. As the size of the input is increased, the
execution time of the program becomes more heavily dependent on the number of iterations
of this loop, as it is run a large number of times. Consequently, the number of loop
iterations would be a helpful measure in guiding the search in this program, when it is used
with a large number of inputs. The results of the Insertion Sort program (Figs. 7, 9 and 10)
verify this analysis. Thus, when the program is used with 10 inputs, the solution produced
using loop counts as the fitness measure (Phase 3a on Fig. 7) is of a lower-quality than that
produced by using execution time as the single fitness measure (Phase 1 on Fig. 7). A
combination of execution time and loop iterations as the fitness, however, like execution
time used alone, finds the highest-quality solution, but the reliability of finding the highest-
quality solution is higher using execution time and loop iterations jointly as the fitness
measure (Fig. 15). The results of the Insertion Sort program with 100 inputs (Fig. 10),
however, reverse this result as well, as the solution produced using loop iterations alone as
the fitness measure has the highest-quality amongst the results for this program. This shows
that loop iterations can be successfully used as a measure to guide the search when the size
of the program inputs is large, and the values of these inputs significantly alter the number
of iterations performed by a single loop, or a set of loops, within the program. Further,
maximising loop iterations and execution times simultaneously can increase the reliability
of producing the highest-quality solution, particularly in programs with a large number of
loops, where loop iterations have a direct correlation with execution times, as a greater
number of loop iterations results in a proportionate increase in execution times.

Fig. 14 Binary search (quality of solution)

Fig. 13 Janne complex (quality of solution)
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4.3.2 Phase 4

The results for Phase 4 show that, in general, combining the criteria does not work well in
practice. This was shown by the fact that a heuristic from this phase produced the highest-
quality solution in only two of the benchmark programs, the Select and Statistics programs
(Figs. 16 and 17, respectively). Further, in both these programs the results from Phase 1,
with execution time as the fitness measure, are within 1% of the highest-quality solution, at
99.33% and 99.79% respectively. The results from Phase 4, additionally, take much longer
as they extract a larger amount of execution information, and thus, have a fairly poor speed
and efficiency. The reliability of these results, although varying significantly from one
program to another, is generally fair and comparable to the results from the other phases.
Thus, combining the low-level and high-level fitness objectives in Phases 2 and 3 does not
produce any significant gain in quality, reliability or efficiency.

Fig. 16 Select (quality of solution)

Fig. 15 Insertion sort (10 inputs) (reliability of solution)
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However, the results do show that execution time is a good fitness measure as it finds the
highest-quality solution in 10 of the 18 benchmark programs. For example, the results for
the Fast Fourier Transformation program, in Fig. 18, show that execution time as the fitness
measure finds the highest-quality solution which is, additionally, found in an efficient and
reliable manner.

Moreover, of the remaining 8 programs where execution time does not find the highest-
quality solution, in 3 programs, the solution found by execution time is within 1% of the
highest-quality solution while, in a further 2 programs, the solution found by execution time
is within 5% of the highest-quality solution. This suggests that running the genetic
algorithm with execution time as a fitness measure for a slightly larger number of
generations will find the highest-quality solution. Therefore, there is no significant benefit
from using the fitness measure which produced the highest-quality solution, unless it was
guaranteed to obtain a solution with better fitness than execution time.

Further, no other fitness measure found as many highest-quality solutions as execution
time. The maximum number of highest-quality solutions found by another fitness measure
is 8 out of 18. This is achieved by using execution time, branch prediction misses, data
cache misses and instruction cache misses together, with a heavy weight assigned to
execution time, as the fitness measure (Phase 2o). Similarly, a combination of execution
time and loop counts as the fitness measure (Phase 3b) finds the highest-quality solution in
8 out of the 18 benchmark programs. This shows the general suitability, and applicability,
of these fitness measures. However, program analysis should be done beforehand to

Fig. 18 Fast Fourier transformation (quality of solution)

Fig. 17 Statistics program (quality of solution)
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determine the programs on which use of this particular heuristic as the fitness measure of
the genetic algorithm is likely to guide the search to the WCET.

For example, loop iterations (Phase 3a) are seen as the best fitness measure for the
Factorial program in Fig. 5, as they lead the search to the highest-quality solution. Thus,
program analysis beforehand can establish that the number of procedure calls is directly
proportional to the execution time and directly dependent on the program inputs.
Consequently, use of the number of calls, which subsumes the number of loop iterations
(as recursive calls can be considered as loops for the purpose of program analysis) as the
fitness heuristic, is the measure most likely to lead a search to the program’s WCET.

For the Insertion Sort program, thus, a prior program analysis can establish that loop
counts have the most significant bearing for this program, as the program simply consists of
a nested loop. Further, the number of iterations of the loop is not dependent on the number
of inputs but, rather, the ordering of the inputs. Thus, while increasing the number of inputs
will increase the number of data cache accesses and, consequently, data cache misses, the
number of times the loop iterates has a more significant bearing on the execution time than
the number of data cache misses. Additionally, problems have been seen in the guidance
given to the search when two or more objectives are combined. Consequently, it is
recommended that only the number of loop iterations, either on its own (Phase 3a) or in
combination with execution time (Phase 3b), is used to guide the WCET search. The results
show that this analysis holds, as the fittest solution produced by either of these 2 objectives
produces the highest-quality solution or a solution whose execution time is within 5% of
the best overall estimate for the WCET amongst all the experiments. This is demonstrated
in Figs. 7 and 10, which shows high-quality solutions, with an excellent overall reliability
produced by these two fitness heuristics (Phases 3a and 3b in each figure).

In contrast, in a program such as Quadratic Equations Root Computation (QERC),
which contains an input-data dependent loop and input-data dependent conditional
statements, the execution time of the loop is not the primary contributor to the overall
execution time. Instead the combined presence of many complex loop and conditional
statements implies that branch mispredictions or instruction cache misses are likely to have
a significant effect on the execution times. Thus, either of these two measures, when
combined with execution time in order to ensure that the search does not proceed in a
wrong direction, can be used as an effective fitness measure. In particular the results for
Phase 4(d) are good due to the fact this set of criteria provides an appropriate balance of
maximising cache misses (data and instructions) and loop iterations which reflects the
dependencies in the software between data and control flow. The results (Fig. 12) show that
this holds in practice.

4.4 Proposed Heuristics

Using the results from Phases 1, 2, 3 and 4, the following fitness heuristic is proposed
(where the first matching value should be used as the heuristic):

1. If the program has a single path through it, i.e. no conditional statements or loops are
dependent on the program inputs, then execution time should be used as the single
fitness measure.

2. If the program contains a large number of input-data dependent loops, particularly
deeply-nested loops, or an input-data dependent number of self-recursive procedure
calls, and few or no conditional statements, then the number of loop iterations and
measured execution time should be jointly used as the fitness function. (Large in this
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context is measured by the percentage of the source code contained within a loop, with a
proposed value of 75% or greater constituting a large number of loops within a program.)

3. If the size of the program’s input space is large, i.e. the program takes a large number
of inputs, and there are multiple paths within the program, where the choice of path is
dependent on the program inputs, then data cache misses and execution time should be
used together as the fitness function. (In this context, a large number of inputs is
defined as the ratio of the size of the inputs to the size of the data cache. If this ratio
exceeds a proposed measure of 25%, then the fitness measure proposed in this step
should be used.)

4. If the program contains a large number of conditional statements or loops, where the
entry condition is dependent on the program inputs, then instruction cache misses and

Table 2 Testing the proposed heuristics

Benchmark program FFP Performance (%)

Quality / Accuracy Reliability Efficiency

Factorial L,E 97.6 164.7 518.5

Cover E 100.0 100.0 100.0

Insertion Sort (10 inputs) L,E 100.0 323.5 173.1

Insertion Sort (50 inputs) L,E 97.9 411.5 81.9

Insertion Sort (100 inputs) L,E 97.6 200.0 58.2

DCT E 100.0 100.0 100.0

PETRI L,E 100.0 100.0 17.6

Matrix multiplication E 100.0 100.0 100.0

QERC I,E 100.0 100.0 100.0

Janne Complex L,E 100.0 331.3 20.6

Matrix Inversion D,E 99.6 144041.7 93.6

EXP E 80.4 5,621.3 187.7

Quick Sort L,E 99.6 195.8 30.0

FDCT E 100.0 100.0 100.0

FFT E 100.0 100.0 100.0

Select L,E 99.9 217.6 212.3

Statistics Program D,E 99.8 1,088.6 97.5

Binary Search L,E 100.0 100.0 91.5

Overall 98.5 8,522.0 121.3

Fig. 19 Comparison of quality of different fitness heuristics
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execution time together should constitute the fitness function. (A large number of
conditions is defined as the ratio of the number of conditions to the total number of
lines in the source code. A value of 15% or over would constitute large in this context.)

5. If the program contains large basic blocks, that take a long time to execute, then
execution time should be used as the fitness measure.

6. If neither of the preceding steps matches the program’s characteristics, then execution
time should be utilised as the fitness measure.

The choice of heuristic assumes that it will be possible to do program analysis to find the
significant characteristics of the program before using a search algorithm on the program to
determine its WCET. Such an analysis would benefit the subsequent search significantly.
However, if it is not possible to do this analysis, this research recommends the use of the
measured program execution time as the fitness measure, as it has been found to be the
best-performing general-purpose fitness measure for generating a high-quality (result
compared to the best found), reliable (variance of final result over 10 trials) and efficient
(time taken to search compared to search with a single objective of execution time) estimate
for the WCET.

The proposed fitness function for each benchmark problem is listed in Table 2. This
table gives the results for the various benchmark programs of the performance metrics
(quality / accuracy, reliability and efficiency) and the Fitness Function Proposed (FFP),
where L denotes loop count, I the instruction cache misses, D the data cache misses and E
the execution time.

The performance of the proposed fitness functions for each benchmark problem is
summarized in Table 2 and in Fig. 19. The quality, reliability and efficiency of the proposed
fitness in this table are measured in comparison to the highest-quality solution produced for
the respective benchmark problems. Reliability is computed by variance of the highest-
quality solution divided by the variance found with the proposed fitness function.
Efficiency is computed by time taken to find the highest quality solution divided by the
time taken with the proposed fitness function. The results, especially in Fig. 19, show the
proposed fitness functions provide the best results.

5 Conclusions

The paper shows how existing work on search-based WCET analysis can be extended to
include criteria other than WCET. However as expected the choice of criteria is not always
straightforward. In particular the work has showed that simply introducing a wide range of
criteria gives bad results and no single set of criteria works across all the problems. Based
on the detailed evaluation performed, recommendations are formed and shown to be
effective via further evaluation.

References

Bernat G, Colin A, Petters S (2002) WCET analysis of probabilistic hard real-time systems. In: Proceedings
of 23rd IEEE real-time systems symposium, pp 279–288

Empir Software Eng (2011) 16:5–2826



Betts A, Bernat G, Kirner R, Puschner P, Wenzel I (2006) WCET coverage for pipelines, technical report for
the ARTIST2 network of excellence, August

Brooks D, Tiwari V, Martonosi M (2000) WATTCH: a framework for architectural-level power analysis and
optimizations. Proceedings of the conference on 27th international symposium on computer architecture,
pp 83–94

Burger D, Austin T (1997) The Simplescalar tool set, version 2.0. SIGARCH Comput Archit News 25
(3):13–25

Burns A, Wellings A (2001) Real-time systems and programming languages, 3rd edn. Addison Wesley,
Harlow

Chapman R (1995) Static timing analysis and program proof, PhD thesis, University of York
Coello C (1999) A comprehensive survey of evolutionary-based multiobjective optimization techniques.

Knowl Inf Syst 1(3):269–308
Emberson P, Bate I (2010) Stressing search with scenarios for flexible solutions to real-time task allocation

problems. Trans Softw Eng, http://doi.ieeecomputersociety.org/10.1109/TSE.2009.58
Ermedahl A, Gustafsson J WCET project / benchmarks. Accessed: 5 May 2008. Available at: www.mrtc.mdh.se/

projects/wcet/benchmarks.html
Groβ H (2000) Measuring evolutionary testability of real-time software. Ph.D. thesis, University of

Glamorgan/Prifysgol
Harman M (2007) The current state and future of search based software engineering. In: Proceedings of the

future of software engineering 2007, pp 342–357
Jolliffe, IT (2005) Principal component analysis, In: Everitt BS, Howell DC (eds) Encyclopedia of Statistics

in Behavioral Science, Wiley, New York, 3, pp 1580–1584
Khan U, Bate I (2009) WCET analysis of modern processors using multi-criteria optimisation. Proceedings

of the 1st International Symposium on Search Based Software Engineering (SSBSE ’09),
pp 103–112

Kim D, Ha S, Gupta R (2007) CATS: cycle accurate transaction-driven simulation with multiple processor
simulators. Proceedings of the Conference on Design, Automation and Test in Europe (DATE), pp 749–
754

Kirner R, Puschner P, Wenzel I (2004) Measurement-based worst-case execution time analysis using
automatic test-data generation. In: Proceedings of the 4th euromicro workshop on worst case execution
time analysis

Lammermann F, Baresel A, Wegener J (2008) Evaluating evolutionary testability for structure-oriented
testing with software measurements. Appl Soft Comput 8(2):1018–1028

Lunqvist T, Stenstrom P (1999) Timing anomalies in dynamically scheduled microprocessors. In:
Proceedings of the 20th IEEE real-time systems symposium, pp 12–21

McMinn P (2004) Search-based software test data generation: a survey. Softw Test Verif Reliab 14(2):105–
156

Pohlheim H, Wegener J (1999) Testing the temporal behavior of real-time software modules using extended
evolutionary algorithms. In: Proceedings of genetic and evolutionary computation conference

Tan L (2006) The worst case execution time tool challenge 2006: the external test, 2nd International
Symposium on Leveraging Applications of formal methods, verification and validation (ISoLA 2006),
pp 241–248

Tate J, Bate I (2010) Sensornet protocol tuning using principled engineering methods. Comput J,
doi:10.1093/comjnl/bxp077

Tracey N, Clark J, Mander K (1998) The way forward for unifying dynamic test case generation: the
optimisation-based approach. In: Proceedings of the international workshop on dependable computing
and its applications

Wegener J, Mueller F (2001) A comparison of static analysis and evolutionary testing for the verification of
timing constraints. Real Time Syst J 21(3):241–268

Wegener J, Sthamer H, Jones B, Eyres D (1997) Testing real-time systems using genetic algorithms. Softw
Qual J 6(2):127–135

Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4:65–85
Wilhelm R, Engblom J, Ermedahl A, Holsti N, Thesing S, Whalley D, Bernat G, Ferdinand C, Heckmann

R, Mitra T, Mueller F, Puaut I, Puschner P, Staschulat J, Stenstrom P (2008) The worst-case execution
time problem—overview of methods and survey of tools. ACM Trans Embedded Comput Syst 7(3):
1–53

Empir Software Eng (2011) 16: –5 28 27

http://doi.ieeecomputersociety.org/10.1109/TSE.2009.58
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://dx.doi.org/10.1093/comjnl/bxp077


Iain Bate is a lecturer in Real‐Time Systems. His research interests include scheduling and timing analysis,
design and analysis of safety‐critical systems, and engineering of complex systems of systems including
sensornets. He is the Editor-in‐Chief of the Journal of Systems Architecture and a frequent member of
programme committees for distinguished international conferences.

Usman Khan received his MEng (First Class Honours with Distinction) in Computer Systems and Software
Engineering from the University of York in 2008. He is a member of the IET and the BCS. His research
interests include timing analysis, simulation, real-time systems modelling, control engineering and machine
learning.

Empir Software Eng (2011) 16:5–2828


	WCET analysis of modern processors using multi-criteria optimisation
	Abstract
	Introduction
	Problems in Timing Analysis
	Causes of Complexity in Real-Time Programs
	Complexity in Processor Hardware

	Finding the WCET Using Search
	Phase 1—Single Criterion Search
	Phase 2—Low-Level Analysis
	Phase 3—High-Level Analysis
	Phase 4—Integrated Analysis

	Evaluation
	Phase 1
	Phase 2
	Phases 3 and 4
	Phase 3
	Phase 4

	Proposed Heuristics

	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


