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Abstract

This paper addresses the problem of determining the
next set of releases in the course of software evolution.
It formulates both ranking and selection of candidate
software components as a series of feature subset se-
lection problems to which search based software en-
gineering can be applied. The approach is automated
using greedy and simulated annealing algorithms and
evaluated using a set of software components from the
component base of a large telecommunications organ-
isation. The results are compared to those obtained
by a panel of (human) experts. The results show that
the two automated approaches convincingly outper-
form the expert judgment approach.

1 Introduction

Software development is becoming less and less as-
sociated with the development, ab initio, of a single
software system and more and more an evolutionary
process in which a system is incrementally developed
over a series of releases. There is also an increase
in the use of component based approaches, in which
the next release in the evolutionary process is defined
in terms of a set of additional components that aug-
ment the existing system to meet a set of constraints.
These components may be pre-existing or planned.

Systems often contain an integrated mixture of pre-
existing components and newly built components.

Much has been written about the challenges of
component based software engineering [5, 9], but the
focus of this work has been on the problems of inte-
gration of components, testing, defining, delineating
and assuring the interfaces between components and
the verification of their intended behaviour and in-
teractions.

However, the increasing use of component–led ap-
proaches to software evolution also presents higher
level management choices. These decisions are typi-
cally made in the planing stage of the process and, as
such, their influence can be far reaching; a poor judg-
ment at this point in the development process can be
extremely costly. Furthermore, because of the nature
of most systems’ evolution [11], today’s decisions can
have a dramatic effect upon the future evolution of
the system.

A generic instantiation of this problem finds the
manager considering several candidate components
for which the data available include estimates of
the cost of acquisition (third party purchase or in-
house development), customer desirability, develop-
ment time and expected revenue. The manager may
also have information about the dependencies be-
tween components and may wish to include other
factors in the decision making process, such as the
priority given to each of the customers.
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From the set of all components, the manager must
search for a subset that balances these competing
concerns in the best way possible. The manager may
also want to rank (or prioritize) the components in
some way based upon these trade-offs. For systems
with more than a few simple components the search
space is unmanageably large and complex, with the
consequence that no manager can be expected to find
optimal choices that balance the constraints without
some form of automated support. This is the ‘Com-
ponent Selection Problem’. A closely related prob-
lem is the ‘Component Prioritization Problem’, in
which the manager seeks to order the components
under consideration into a priority ranking. The
Component Selection Problem helps the manager de-
cide which component combinations will make sensi-
ble choices for future evolution, while the Component
Prioritization Problem helps with planning the order
in which components should be tackled first when
planning the next release.

This paper presents the results of study of the ap-
plication of automated approaches to the solution of
these two related problems. The paper formulates
both problems in terms of a series of feature subset
selection problems and presents algorithms for their
solution using search based software engineering.

The paper evaluates the approach using real world
data from a large global telecommunications com-
pany, concerned with selection and prioritization
of forty candidate software components for mobile
telecommunications devices. The real world data has
been anonymized and domain specific information
has been removed to protect confidentiality. How-
ever, no data values have been changed and so all
results reported are real, replicatable and unaffected
by this anonymisation process.

The experimental study compares the results ob-
tained from greedy and simulated annealing algo-
rithms with the ranking produced by expert judg-
ment. The principal contributions of this paper are
as follows:

1. The paper presents results which illustrate the
application of greedy algorithms and simulated
annealing to software selection and ranking
problems using real world data from a large

telecommunications organisation. The results
are also compared with an expert-ranking, show-
ing that the automated search outperforms the
expert ranking.

2. The results reveal that the simulated annealing
approach convincingly outperforms the greedy
approach, and that the data set contains com-
binations of features that cause the known sub–
optimal behaviour of greedy approaches to man-
ifest themselves.

3. As well as discriminating between greedy and
simulated annealing approaches, the study also
investigates the commonality between the so-
lutions found, showing how the use of search
based approaches in this problem domain can
be used to shed light on the reasons for the dif-
ferences in rankings produced. The results from
the study reveal that the difference between the
best rankings found and the worst can be ex-
plained by the inclusion of a few very costly fea-
tures. In this way the approach allows the ex-
perts to pay particular attention to ‘controversial
choices’ (those not common to solutions found by
all techniques).

4. The results for the simulated annealing algo-
rithm were found to be robust over many dif-
ferent executions of the algorithm with identical
parameter settings and also over different runs
with different parameter settings, indicating that
the simulated annealing approach is robust for
this problem and data set.

The rest of the paper is organised as follows: Sec-
tion 2 states the research problems investigated in
this paper more rigorously, while Section 3 presents a
brief overview of the search algorithms studied. Sec-
tion 4 describes the experimental methods and Sec-
tion 5 presents the results of the experiments and
discusses the findings. Section 6 briefly describes re-
lated work and Section 7 concludes.
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2 Problem Statement

In this paper we are working with a model of soft-
ware development in which software systems are con-
structed as an agglomeration of sets of components
with well defined behaviours and interfaces. This
model of software development is becoming more
prevalent with the advent of component–based soft-
ware engineering and with the increasing reliance of
large organisations upon out–sourcing of software de-
velopment, service–based approaches and the con-
struction of architectures into which trusted and
semi-trusted components are assembled.

The results reported in the paper come from the
application of our approach to software component
selection for a large telecommunications organisation
that has a range of portable communications devices,
each of which must contain features that are attrac-
tive to the users and important to the company in
terms of their revenue–to–cost ratio.

In the application domain reported upon here,
these components are independent ‘add-ons’, to the
base system, i.e., these components will determine
special, additional features or functions of the next
release in the evolution of the software. Each com-
ponent is characterised by a set of values, including
estimates of the cost of acquisition, customer desir-
ability and expected development time and revenue.
We associate a weight (or score) with each compo-
nent where we combine the cost of acquisition and
development time to a single cost value ci, and cus-
tomer desirability and expected revenue to a weight
value wi, and the value of the item, xi where i is an
index of the components.

In the feature or component selection problem, we
are given a set of such components and want to deter-
mine a subset that maximises the total sum of weights
while minimizing the total cost of the selected com-
ponents.

This problem, like most realistic optimisation prob-
lems, requires the simultaneous optimisation of more
than one objective function. Similar to the tradi-
tional portfolio optimisation problem that attempts
to simultaneously minimize the risk and maximise the
fiscal return, we need to find some trade-off between
the criteria to ensure a satisfactory design.

Such multiobjective problems can be solved by
combining the multiple objectives into one scalar ob-
jective. Another approach is to bound one criteria
while optimising the other. This yields solutions
that are optimum and nondominated; there are no
other solutions superior in all objectives. These, so–
called Pareto optimal solutions, plot a Pareto opti-
mum curve that gives the best possible insight into
trade-off solutions.

By bounding the total sum of costs to K, we can
formulate the component selection problem for a par-
ticular given bound of total cost as an optimisation
0-1 knapsack problem:

maximise
∑n

j=1 wjxj

subject to
∑n

j=1 cjxj ≤ K, xj ∈ {0, 1}.

The knapsack problem is known to be NP-hard.
However, it can be solved by a pseudo-polynomial
algorithm using dynamic programming [13]. The al-
gorithm runs in O(n2w) time (where n is the number
of components) and therefore depends on the opti-
mum value for w that can be found within K. One
can transform this algorithm into a polynomial-time
approximation scheme (PTAS) by truncating the last
t decimal digits of all wi.

However, for this application such truncation may
not be desirable; choices of components can have a
significant impact on the organisation’s profitability,
so we are interested in solutions that are as close
as possible to the Pareto optimum. Therefore, we
seek to solve each of the set of individual knapsack
problems governed by each possible budget choice.
We compare the performance of each search with a
greedy approach and we also compare the implied
ranking from the set of feature subset selection prob-
lems with the pre-existing expert ranking.

3 Algorithms Studied

This section describes the two automated techniques
for solving the sequence of feature subset selection
problems in more detail.
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3.1 Simulated Annealing

Simulated annealing algorithms act within a search
space in accordance with a certain neighbourhood
structure or a set of transition rules, where the partic-
ular steps are controlled by the value of an objective
function. In this case, the search space is the set of
feasible solutions for a given set of n features and a
given budget limit K. We shall denote this space by
F . Clearly, each component is included in the so-
lution at most once. Therefore, we can represent a
solution S as a vector {x1, . . . , xn}, where xi ∈ {0, 1}.
Thus the size of F can be upper bounded by |F| ≤ 2n,
because it consists of the set of all subsets of n fea-
tures. Such a space is too large for enumeration of
all possible solutions, suggesting that a search based
approach may be appropriate.

To describe the neighbourhood of a solution S ∈ F ,
we define a neighbourhood function η(S) : F →
℘(F). The neighbourhood of S is given by η(S) ⊆ F ,
and each solution in η(S) is called a neighbour of
S. Our neighbourhood transition is a flip of a sin-
gle variable in the solution vector. Thus, a neigh-
bour S′ ∈ η(S) of a solution S = {x1, . . . , xn} is a
vector {x′

1, . . . , x
′
n} where exactly one xi �= x′

i and∑n
j=1 cixi ≤ K.
The objective is to maximise the total score of fea-

sible subsets, where ‘feasible’ means the total cost of
selected components is less or equal to the budget.
Hence, we define the objective (or ‘fitness’) function,
Z as follows:

Z(S) :=
n∑

j=1

wjsj , (1)

where sj = 1 iff the jth component has been selected
and therefore, is a member of the solution subset.
Furthermore, we set

Fmax :=
{

S | S ∈ F and

∀S′(S′ ∈ F → Z(S′) ≤ Z(S)
) }

.

In simulated annealing, the transitions between
neighbouring elements depend on the objective func-
tion Z. Given a pair of feasible solutions [S, S′], S′ ∈

η(S), we denote by G[S, S′] the probability of gen-
erating S′ from S and by A[S, S′] the probability of
accepting S′ once it has been generated from S. Since
we consider a single step of transitions, the value of
G[S, S′] depends on the set η(S). In most cases, a
uniform generation probability with respect to S is
taken, given by

G[S, S′] :=
1

|η(S) | .

The acceptance probabilities A[S, S′], S′ ∈ η(S) ⊆
F are derived from the underlying analogy to ther-
modynamic systems and are the following:

A[S, S′] :=

{
1, if Z(S) − Z(S′) ≤ 0,

e−
Z(S)−Z(S′)

c , otherwise,

where c is a control parameter having the interpreta-
tion of a temperature in annealing procedures. The
actual decision as to whether or not S′ should be
accepted for Z(S′) < Z(S), is performed in the fol-
lowing way: S′ is accepted, if

e−
Z(S) −Z(S′)

c ≥ ρ,

where ρ ∈ [0, 1] is a uniformly distributed random
number. The value ρ is generated in each trial if
Z(S′) < Z(S).

Finally, the probability of performing the transi-
tion between S and S′, S, S′ ∈ F , is defined by

Pr{S → S′} =




G[S, S′] · A[S, S′], if S′ �=S,

1− ∑
Q�=S

G[S, Q]·A[S, Q], if S′=S

By definition, the probability Pr{S → S′} depends
on the control parameter c.

For the cooling schedule we follow the analysis pre-
sented in [18]. The starting “temperature” c(0) is
defined by

e
−∆Zmax

c(0) = 1 − p1, c(0) = − ∆Zmax

ln(1 − p1)
,

where p1 is a small positive value.
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The decremental rule of the cooling schedule is
given by the simple relation

c(t + 1) := (1 − p2) · c(t), (2)

where p2 is a small value larger than zero. The stop-
ping criterion is reached when the temperature falls
below a value c(tfin) which is chosen to be close to
zero (for exact values of parameters, see Section 4).

3.2 Greedy Algorithm

For the greedy algorithm, all components have been
sorted according to their weight value wi. Then all
components with the highest weight are included in
the solution until the budget bound has been reached.
For the case where the inclusion of the next highest-
scoring feature exceeds the budget, our procedure
checks whether one of the following components can
still be fit into the budget.

The sorted components are stored in an array cost
such that the cost of the component with the highest
score is stored at cost[1]. The following pseudocode
describes how our greedy algorithm selects the com-
ponents. A value of 1 in solution[i] indicates that
the ith highest-scoring component is included in the
solution.

for(i = 1 to number_of_components)
solution[i] = 0;

for(i = 1 to number_of_components)
if(current_cost + cost[i] <= budget) {

current_cost += cost[i];
solution[i] = 1;}

4 Experimental Methodology

For this experimental study, we used a component
base containing forty software components, all of
which are candidates to be included in possible fu-
ture evolution of the software controlling a mobile
telecommunications device. The set of components
were ordered according to an expert ranking that de-
notes the importance of a component as judged by a
panel of human experts from the company.

Currently, the component selection process would
involve hand-picking as many high-ranked compo-
nents as possible until a budget bound is met. As
described in Section 3, we used a greedy algorithm
and a simulated annealing-based procedure to inves-
tigate the behaviour of these two automated alterna-
tive methods to component selection and ranking.

Following a discussion with the human experts, it
was decided that the first five entries of the list con-
sisted of important components that should need to
be present no matter how the device software might
evolve. Therefore, these ‘base components’ were re-
moved from the set of candidates and were not taken
into consideration in the experiments we conducted.
The remaining 35 components were the subject of the
ordering experiment, using a series of 35 feature sub-
set selection experiments for each ranking method.
Each subset selection experiment, Ei was allocated
a budget bi; the budget implicitly required by the
expert judgment that determines that the first i ele-
ments of the expert ranking should be selected as the
set of features should only i features be included in a
particular product.

In this way, the ranking problem is reduced to a
set of feature subset selection problems for each au-
tomated algorithm applied. In each feature subset se-
lection experiment, we recorded the overall score and
the number of features that we were able to include.
The results from the experiments are presented in the
next section.

Both approaches were implemented in C++ and
optimised for fast execution. The entire set of ex-
periments to produce a ranking using the greedy ap-
proach took practically no noticeable time on stan-
dard computing equipment, while the simulated an-
nealing procedure took about 30 seconds on average.
The parameter setting for our simulated annealing
procedure has been derived following the analysis by
Steinhöfel et al. [18] and are as follows: p1 = 0.8,
p2 = 0.2, L = 15000 and c(tfin) = 0.005, where L
denotes the number of steps at each level of the tem-
perature.

The greedy algorithm is entirely deterministic and
so only one experiment was performed for each of
the 35 feature subset selection problems. How-
ever, the simulated annealing algorithm, in common
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with other meta-heuristic search techniques com-
monly used in Search Based Software Engineering
(SBSE) [7, 8], exhibits a certain degree of random-
ness. To control for this randomness, multiple runs of
each feature subset selection problem were executed
and the results for each were compared.

Strikingly, we found that the results for all of these
multiple runs were identical; only the execution time
changed. This observation remained, even when the
parameters of the simulated annealing algorithm were
changed. This finding tends to suggest that the re-
sults obtained are highly robust and are not unduly
affected by either the inherent randomness present
in the approach, nor by any unwanted sensitivity to
algorithmic parameter settings.

5 Results and Analysis

A summary of the results can be found in Figure 4.
The column headings of the form CX refer to costs,
ZX refers to score (fitness) obtained and SX refers
to the size of the set of features selected (the more
the better). The subscripts to these three labels in-
dicate the selection/ranking method used (‘GR’ de-
notes GReedy algorithm, ‘ER’ = denotes (human)
Expert Rank judgement and ‘SA’ denotes Simulated
Annealing). The final two columns report the size of
the intersection of features from two sets. That is,
they record the number of features that are common
between two solutions to the selection problem.

The performance of the three approaches to rank-
ing features and selecting sets of features for a given
budget, can be better understood by visualisation.
Figures are used to illustrate the performance of the
algorithms in terms of score and feature set size and
the behaviour of the algorithms in terms of common-
ality of feature selection.

Figure 1 presents the overall score of each method
for the thirty-five budget bounds. The initial ob-
servation is that the simulated annealing procedure
yields the best score in every experiment, with the
greedy algorithm following and the expert judgement
approach performing least well.

Clearly, the graph of these three performance func-
tions must (naturally) meet at the last data point, be-

0

10

20

30

40

50

60

10
0
15
0
45
0
53
0
60
0
70
0
17
00
17
40
19
40
19
60
30
60
30
70
35
70
35
80
35
90
36
00
36
20
38
20
48
20
49
40
52
40
52
90
53
00
53
30
54
40
56
70
57
10
58
90
59
10
60
60
61
20
62
20
66
20
67
00
67
40

Budget

S
c
o
re

SA

G reedy

Expert Ranking

Figure 1: Scores achieved by each method for each
budget bound
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Figure 2: Number of components selected by each
method for each budget bound

cause this limiting budget permits the inclusion of all
the components. The graph suggests that both sim-
ulated annealing and the greedy algorithm produce
considerably better sets of components than those
selected by expert judgement. For example, with a
budget limit of 1960, ZGR(the score for the greedy
algorithm) is about 136% better than ZER(the score
for the expert ranking) and ZSA(the score for the
simulated annealing algorithm) is even better with a
158% increase. Even for higher budgets, the increase
is still appreciable. For instance, with a budget of
5670 we were able to get ZSA to be 27% better than
ZER.

The substantial gains in score can be explained by
looking at the number of components that each solu-

6



0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

# com ponents

#
 c
o
m
m
o
n
 c
o
m
p
o
n
e
n
ts

SA

G reedy
Expert Ranking

Figure 3: Common components between the three
methods and the expert ranking approach

tion contains. Figure 2 shows the number of compo-
nents that each approach was able to include for each
budget limit. By construction of the experiment, the
number of components of the expert-ranked solutions
increases by one with each increased budget, provid-
ing a baseline for comparison.

The figure indicates that the two automated meth-
ods manage to include many more features in each
run, thereby obtaining higher fitness scores. These
findings suggest that some components with a rela-
tively low score and relatively high cost are ranked
‘artificially’ highly by the human experts.

In most cases, the dramatic difference in score is
due to the experts including one or two high-cost
components. For example, with a budget of 3570,
the expert-ranking method would result in a set of
13 components, with 12 of these also included in the
greedy algorithm’s solution (see Figure 4). However,
by omitting just one human-selected component, the
greedy algorithm manages to include a further 14
components, resulting in a dramatic increase in score.
For the same budget, the simulated annealing proce-
dure omits two components from the experts’ choice,
allowing it to include a further 19 components.

Figure 3 illustrates the number of common compo-
nents selected for each budget. The figure shows the
number of components that are common to the so-
lutions found by the simulated annealing algorithm
and the expert judgement approach and the num-
ber common to the greedy algorithm and the expert

judgement approach.
The x-axis represents the thirty-five runs. The line

x = y is included to provide an indication to how
close each of the other two lines come to the maxi-
mum possible level of commonality. The simulated
annealing procedure manages to include a large per-
centage of the components preferred by the expert in
every run except in the first few. In fact, except for
the first four runs, the algorithm omits a rounded-
up average of only two components per run. It is
also important to note from the relationship between
components chosen by each search technique (repre-
sented by the results in Figure 3) that the simulated
annealing approach has a closer agreement to the hu-
man ranking, despite producing better results than
the greedy approach. This is important, because the
expert ranking drawn up by the human–based ap-
proach is likely to take into account, unstated, im-
plicit factors which have not and cannot have been
factoring into the assessment of fitness.

The users of any automated technique for produc-
ing ranking results are unlikely to want to deviate
enormously from the expert judgement ranking, even
if the apparent benefits are high because of the influ-
ence of these unstated assumptions, which can only
be taken into account by the experts. Of course, a
set of results such as these, form a natural starting
point for a discussion between the experts and the
experimenters and, indeed, this is precisely what has
happened in practice in our experience.

The benefits of using the two automated meth-
ods over the expert ranking are obvious. Further-
more, simulated annealing convincingly outperforms
the greedy algorithm; it performs better than or
equally well as the other methods in all experiments.
Although the scores and number of features in each
case clearly support the above statement, there is an-
other fundamental reason that would make simulated
annealing a more suitable approach.

It would be natural to suppose that the higher the
budget is, the higher the overall score would be. How-
ever, as is well known, greedy algorithms do not nec-
essarily observe this ‘natural intuition’. For our data
set, this can be observed for budget limits 3070 and
3570 (see Figures 1 and 4). The large drops in score
and number of components for the greedy algorithm
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are due to the way the algorithm works (see Section
3).

The algorithm starts from the highest-scoring com-
ponents, considering each in turn, progressing to-
wards the lowest-scoring components until no unused
component can be added without surpassing the bud-
get bound. In case the component’s cost does not
allow it to be selected, the greedy algorithm ignores
it and proceeds with the next one. For example, at
budget Bi, component Cx may not be included be-
cause of its cost, but components Cx+1 and Cx+2 may
be selected because cx > cx+1 + cx+2. In the next it-
eration, at budget Bi+1, Cx is included and there is
no budget room available for any other components.
A ‘drop’ in score over two iterations will be noticed
if wx < wx+1 + wx+2.

What these data reveal is that the search space for
this component selection and ranking problem is not
well suited to a greedy approach, although it is inter-
esting to note that the greedy approach is still able
to surpass the score and number of features available
using the expert judgement approach.

6 Related Work

General ordering and feature subset selection prob-
lems have been widely studied in the operations re-
search, meta-heuristic search and evolutionary com-
putation communities [13]. The work reported in
the present paper on feature subset selection and or-
dering (ranking) follows this general pattern, but is
most closely related to the previous work on ordering
and selection problems in Software Engineering, in
in particular to previous work on Search Based Soft-
ware Engineering (SBSE). This previous work has
concerned regression testing (selection and prioritiza-
tion), project planning (ordering and selection) and
requirements analysis(selection).

Much of the work on test case prioritization [14,
17, 19] has concerned the application of greedy algo-
rithms. However, Nashat Mansour [12] empirically
compared five regression test selection algorithms:
Simulated Annealing, Reduction, Slicing, Dataflow
and Firewall algorithms. However, unlike the pro-
grams studied by Rothermel and his colleagues, the

programs used by Mansour were small laboratory
programs. Wong et al. [19] presented a technique
that combines test set minimization and prioritiza-
tion to select test cases, according to the criterion of
‘increasing cost per additional coverage’.

Other examples of selection and ordering problems
in Search Based Software Engineering come from
work on project planning [1, 2, 6] and the Next Re-
lease Problem in requirements engineering.

Antoniol et al. [1, 2] address the problem of or-
dering the work packages of a massive maintenance
project using a combination of search techniques and
a queueing simulation. A variety of encodings and
search algorithms are used. The primary difference
between the work of Antoniol et al. and that pre-
sented here is that the fitness function employed by
Antoniol et al. uses a simulation–based approach and
that the items being ordered are work packages (all of
which have to be completed) rather than components
(only some of which may be used).

Chicano and Alba [6] also use search techniques
for the software project planning problem. In their
approach, the problem is formulated as a multi ob-
jective search problem in which each objective is
combined into a single fitness function by means of
weights applied to each sub-fitness function.

Kirsopp and Shepperd [10] also used search to ad-
dress problems of project planning. In this case, the
problem was cost estimation using a case–based rea-
soning approach [15, 16]. The estimates of features
(such as cost) for a newly proposed project are cal-
culated in terms of those historical projects found
to be most similar to the newly proposed project.
The search problem consists of determining the set
of project features that forms a good basis for this
predictive analogy. Kirsopp and Shepperd present
results for a hill-climbing solution to the search for
such a feature subset selection problem, based on
real–world data for projects with 43 features. They
also use their results to present visualisations of the
search landscape.

One of the first papers that presented a solution
to a software engineering problem as a feature sub-
set selection search was the work on the ‘Next Release
Problem’ by Bagnall et al. [3]. In this work, the prob-
lem was to determine the set of requirements that
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should be included in the next release of a software
system. Bagnall et al. formulated this problem as
a feature subset selection problem and presented re-
sults from the application of several search techniques
to synthetic data on hypothesized projects and their
requirements sets.

We presented a poster at GECCO 2006 [4], which
outlined our approach to ranking as feature subset
selection, but this two-page poster contained neither
detail nor results. The present paper is the first to
apply search based software engineering techniques to
a real-world next release problem and to demonstrate
that the search based approach is able to out-perform
expert judgement. The present paper is also the first
to study robustness and commonality of features se-
lected in the different approaches.

7 Conclusion and Future work

This paper has shown how ideas from search based
software engineering can be applied to problems of
software component selection and ranking, produc-
ing results which exceed those produced by expert
judgement alone.

The paper reports on the application of both
greedy and simulated annealing algorithms to this
selection and ranking problem. The results were
compared to expert judgement for a large-scale real–
world set of features, representing a set of compo-
nents in a software component base.

The results show that both of the automated tech-
niques outperform the expert ranking, with the sim-
ulated annealing approach providing superior results
to the greedy approach. The results also show a strik-
ing robustness of solution for the simulated annealing
approach and a large degree of commonality between
solutions found by the approaches (despite large dif-
ferences in fitness achieved). In this way, it is possible
to use the search approach to provide insight into the
nature of the search problem and the characteristics
of the set of data under study.

Future work will consider improved algorithms for
locating the optimal feature sets, feature set prioriti-
sation, multi objective search and feature interaction.
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